Merge branch 'vendor/GCC50'
[dragonfly.git] / contrib / binutils-2.24 / gold / gdb-index.cc
1 // gdb-index.cc -- generate .gdb_index section for fast debug lookup
2
3 // Copyright 2012 Free Software Foundation, Inc.
4 // Written by Cary Coutant <ccoutant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include "gdb-index.h"
26 #include "dwarf_reader.h"
27 #include "dwarf.h"
28 #include "object.h"
29 #include "output.h"
30 #include "demangle.h"
31
32 namespace gold
33 {
34
35 const int gdb_index_version = 5;
36
37 // Sizes of various records in the .gdb_index section.
38 const int gdb_index_offset_size = 4;
39 const int gdb_index_hdr_size = 6 * gdb_index_offset_size;
40 const int gdb_index_cu_size = 16;
41 const int gdb_index_tu_size = 24;
42 const int gdb_index_addr_size = 16 + gdb_index_offset_size;
43 const int gdb_index_sym_size = 2 * gdb_index_offset_size;
44
45 // This class manages the hashed symbol table for the .gdb_index section.
46 // It is essentially equivalent to the hashtab implementation in libiberty,
47 // but is copied into gdb sources and here for compatibility because its
48 // data structure is exposed on disk.
49
50 template <typename T>
51 class Gdb_hashtab
52 {
53  public:
54   Gdb_hashtab()
55     : size_(0), capacity_(0), hashtab_(NULL)
56   { }
57
58   ~Gdb_hashtab()
59   {
60     for (size_t i = 0; i < this->capacity_; ++i)
61       if (this->hashtab_[i] != NULL)
62         delete this->hashtab_[i];
63     delete[] this->hashtab_;
64   }
65
66   // Add a symbol.
67   T*
68   add(T* symbol)
69   {
70     // Resize the hash table if necessary.
71     if (4 * this->size_ / 3 >= this->capacity_)
72       this->expand();
73
74     T** slot = this->find_slot(symbol);
75     if (*slot == NULL)
76       {
77         ++this->size_;
78         *slot = symbol;
79       }
80
81     return *slot;
82   }
83
84   // Return the current size.
85   size_t
86   size() const
87   { return this->size_; }
88
89   // Return the current capacity.
90   size_t
91   capacity() const
92   { return this->capacity_; }
93
94   // Return the contents of slot N.
95   T*
96   operator[](size_t n)
97   { return this->hashtab_[n]; }
98
99  private:
100   // Find a symbol in the hash table, or return an empty slot if
101   // the symbol is not in the table.
102   T**
103   find_slot(T* symbol)
104   {
105     unsigned int index = symbol->hash() & (this->capacity_ - 1);
106     unsigned int step = ((symbol->hash() * 17) & (this->capacity_ - 1)) | 1;
107
108     for (;;)
109       {
110         if (this->hashtab_[index] == NULL
111             || this->hashtab_[index]->equal(symbol))
112           return &this->hashtab_[index];
113         index = (index + step) & (this->capacity_ - 1);
114       }
115   }
116
117   // Expand the hash table.
118   void
119   expand()
120   {
121     if (this->capacity_ == 0)
122       {
123         // Allocate the hash table for the first time.
124         this->capacity_ = Gdb_hashtab::initial_size;
125         this->hashtab_ = new T*[this->capacity_];
126         memset(this->hashtab_, 0, this->capacity_ * sizeof(T*));
127       }
128     else
129       {
130         // Expand and rehash.
131         unsigned int old_cap = this->capacity_;
132         T** old_hashtab = this->hashtab_;
133         this->capacity_ *= 2;
134         this->hashtab_ = new T*[this->capacity_];
135         memset(this->hashtab_, 0, this->capacity_ * sizeof(T*));
136         for (size_t i = 0; i < old_cap; ++i)
137           {
138             if (old_hashtab[i] != NULL)
139               {
140                 T** slot = this->find_slot(old_hashtab[i]);
141                 *slot = old_hashtab[i];
142               }
143           }
144         delete[] old_hashtab;
145       }
146   }
147
148   // Initial size of the hash table; must be a power of 2.
149   static const int initial_size = 1024;
150   size_t size_;
151   size_t capacity_;
152   T** hashtab_;
153 };
154
155 // The hash function for strings in the mapped index.  This is copied
156 // directly from gdb/dwarf2read.c.
157
158 static unsigned int
159 mapped_index_string_hash(const unsigned char* str)
160 {
161   unsigned int r = 0;
162   unsigned char c;
163
164   while ((c = *str++) != 0)
165     {
166       if (gdb_index_version >= 5)
167         c = tolower (c);
168       r = r * 67 + c - 113;
169     }
170
171   return r;
172 }
173
174 // A specialization of Dwarf_info_reader, for building the .gdb_index.
175
176 class Gdb_index_info_reader : public Dwarf_info_reader
177 {
178  public:
179   Gdb_index_info_reader(bool is_type_unit,
180                         Relobj* object,
181                         const unsigned char* symbols,
182                         off_t symbols_size,
183                         unsigned int shndx,
184                         unsigned int reloc_shndx,
185                         unsigned int reloc_type,
186                         Gdb_index* gdb_index)
187     : Dwarf_info_reader(is_type_unit, object, symbols, symbols_size, shndx,
188                         reloc_shndx, reloc_type),
189       gdb_index_(gdb_index), cu_index_(0), cu_language_(0)
190   { }
191
192   ~Gdb_index_info_reader()
193   { this->clear_declarations(); }
194
195   // Print usage statistics.
196   static void
197   print_stats();
198
199  protected:
200   // Visit a compilation unit.
201   virtual void
202   visit_compilation_unit(off_t cu_offset, off_t cu_length, Dwarf_die*);
203
204   // Visit a type unit.
205   virtual void
206   visit_type_unit(off_t tu_offset, off_t type_offset, uint64_t signature,
207                   Dwarf_die*);
208
209  private:
210   // A map for recording DIEs we've seen that may be referred to be
211   // later DIEs (via DW_AT_specification or DW_AT_abstract_origin).
212   // The map is indexed by a DIE offset within the compile unit.
213   // PARENT_OFFSET_ is the offset of the DIE that represents the
214   // outer context, and NAME_ is a pointer to a component of the
215   // fully-qualified name.
216   // Normally, the names we point to are in a string table, so we don't
217   // have to manage them, but when we have a fully-qualified name
218   // computed, we put it in the table, and set PARENT_OFFSET_ to -1
219   // indicate a string that we are managing.
220   struct Declaration_pair
221   {
222     Declaration_pair(off_t parent_offset, const char* name)
223       : parent_offset_(parent_offset), name_(name)
224     { }
225
226     off_t parent_offset_;
227     const char* name_; 
228   };
229   typedef Unordered_map<off_t, Declaration_pair> Declaration_map;
230
231   // Visit a top-level DIE.
232   void
233   visit_top_die(Dwarf_die* die);
234
235   // Visit the children of a DIE.
236   void
237   visit_children(Dwarf_die* die, Dwarf_die* context);
238
239   // Visit a DIE.
240   void
241   visit_die(Dwarf_die* die, Dwarf_die* context);
242
243   // Visit the children of a DIE.
244   void
245   visit_children_for_decls(Dwarf_die* die);
246
247   // Visit a DIE.
248   void
249   visit_die_for_decls(Dwarf_die* die, Dwarf_die* context);
250
251   // Guess a fully-qualified name for a class type, based on member function
252   // linkage names.
253   std::string
254   guess_full_class_name(Dwarf_die* die);
255
256   // Add a declaration DIE to the table of declarations.
257   void
258   add_declaration(Dwarf_die* die, Dwarf_die* context);
259
260   // Add a declaration whose fully-qualified name is already known.
261   void
262   add_declaration_with_full_name(Dwarf_die* die, const char* full_name);
263
264   // Return the context for a DIE whose parent is at DIE_OFFSET.
265   std::string
266   get_context(off_t die_offset);
267
268   // Construct a fully-qualified name for DIE.
269   std::string
270   get_qualified_name(Dwarf_die* die, Dwarf_die* context);
271
272   // Record the address ranges for a compilation unit.
273   void
274   record_cu_ranges(Dwarf_die* die);
275
276   // Wrapper for read_pubtable.
277   bool
278   read_pubnames_and_pubtypes(Dwarf_die* die);
279
280   // Read the .debug_pubnames and .debug_pubtypes tables.
281   bool
282   read_pubtable(Dwarf_pubnames_table* table, off_t offset);
283
284   // Clear the declarations map.
285   void
286   clear_declarations();
287
288   // The Gdb_index section.
289   Gdb_index* gdb_index_;
290   // The current CU index (negative for a TU).
291   int cu_index_;
292   // The language of the current CU or TU.
293   unsigned int cu_language_;
294   // Map from DIE offset to (parent offset, name) pair,
295   // for DW_AT_specification.
296   Declaration_map declarations_;
297
298   // Statistics.
299   // Total number of DWARF compilation units processed.
300   static unsigned int dwarf_cu_count;
301   // Number of DWARF compilation units with pubnames/pubtypes.
302   static unsigned int dwarf_cu_nopubnames_count;
303   // Total number of DWARF type units processed.
304   static unsigned int dwarf_tu_count;
305   // Number of DWARF type units with pubnames/pubtypes.
306   static unsigned int dwarf_tu_nopubnames_count;
307 };
308
309 // Total number of DWARF compilation units processed.
310 unsigned int Gdb_index_info_reader::dwarf_cu_count = 0;
311 // Number of DWARF compilation units without pubnames/pubtypes.
312 unsigned int Gdb_index_info_reader::dwarf_cu_nopubnames_count = 0;
313 // Total number of DWARF type units processed.
314 unsigned int Gdb_index_info_reader::dwarf_tu_count = 0;
315 // Number of DWARF type units without pubnames/pubtypes.
316 unsigned int Gdb_index_info_reader::dwarf_tu_nopubnames_count = 0;
317
318 // Process a compilation unit and parse its child DIE.
319
320 void
321 Gdb_index_info_reader::visit_compilation_unit(off_t cu_offset, off_t cu_length,
322                                               Dwarf_die* root_die)
323 {
324   ++Gdb_index_info_reader::dwarf_cu_count;
325   this->cu_index_ = this->gdb_index_->add_comp_unit(cu_offset, cu_length);
326   this->visit_top_die(root_die);
327 }
328
329 // Process a type unit and parse its child DIE.
330
331 void
332 Gdb_index_info_reader::visit_type_unit(off_t tu_offset, off_t type_offset,
333                                        uint64_t signature, Dwarf_die* root_die)
334 {
335   ++Gdb_index_info_reader::dwarf_tu_count;
336   // Use a negative index to flag this as a TU instead of a CU.
337   this->cu_index_ = -1 - this->gdb_index_->add_type_unit(tu_offset, type_offset,
338                                                          signature);
339   this->visit_top_die(root_die);
340 }
341
342 // Process a top-level DIE.
343 // For compile_unit DIEs, record the address ranges.  For all
344 // interesting tags, add qualified names to the symbol table
345 // and process interesting children.  We may need to process
346 // certain children just for saving declarations that might be
347 // referenced by later DIEs with a DW_AT_specification attribute.
348
349 void
350 Gdb_index_info_reader::visit_top_die(Dwarf_die* die)
351 {
352   this->clear_declarations();
353
354   switch (die->tag())
355     {
356       case elfcpp::DW_TAG_compile_unit:
357       case elfcpp::DW_TAG_type_unit:
358         this->cu_language_ = die->int_attribute(elfcpp::DW_AT_language);
359         // Check for languages that require specialized knowledge to
360         // construct fully-qualified names, that we don't yet support.
361         if (this->cu_language_ == elfcpp::DW_LANG_Ada83
362             || this->cu_language_ == elfcpp::DW_LANG_Fortran77
363             || this->cu_language_ == elfcpp::DW_LANG_Fortran90
364             || this->cu_language_ == elfcpp::DW_LANG_Java
365             || this->cu_language_ == elfcpp::DW_LANG_Ada95
366             || this->cu_language_ == elfcpp::DW_LANG_Fortran95)
367           {
368             gold_warning(_("%s: --gdb-index currently supports "
369                            "only C and C++ languages"),
370                          this->object()->name().c_str());
371             return;
372           }
373         if (die->tag() == elfcpp::DW_TAG_compile_unit)
374           this->record_cu_ranges(die);
375         // If there is a pubnames and/or pubtypes section for this
376         // compilation unit, use those; otherwise, parse the DWARF
377         // info to extract the names.
378         if (!this->read_pubnames_and_pubtypes(die))
379           {
380             if (die->tag() == elfcpp::DW_TAG_compile_unit)
381               ++Gdb_index_info_reader::dwarf_cu_nopubnames_count;
382             else
383               ++Gdb_index_info_reader::dwarf_tu_nopubnames_count;
384             this->visit_children(die, NULL);
385           }
386         break;
387       default:
388         // The top level DIE should be one of the above.
389         gold_warning(_("%s: top level DIE is not DW_TAG_compile_unit "
390                        "or DW_TAG_type_unit"),
391                      this->object()->name().c_str());
392         return;
393     }
394
395 }
396
397 // Visit the children of PARENT, looking for symbols to add to the index.
398 // CONTEXT points to the DIE to use for constructing the qualified name --
399 // NULL if PARENT is the top-level DIE; otherwise it is the same as PARENT.
400
401 void
402 Gdb_index_info_reader::visit_children(Dwarf_die* parent, Dwarf_die* context)
403 {
404   off_t next_offset = 0;
405   for (off_t die_offset = parent->child_offset();
406        die_offset != 0;
407        die_offset = next_offset)
408     {
409       Dwarf_die die(this, die_offset, parent);
410       if (die.tag() == 0)
411         break;
412       this->visit_die(&die, context);
413       next_offset = die.sibling_offset();
414     }
415 }
416
417 // Visit a child DIE, looking for symbols to add to the index.
418 // CONTEXT is the parent DIE, used for constructing the qualified name;
419 // it is NULL if the parent DIE is the top-level DIE.
420
421 void
422 Gdb_index_info_reader::visit_die(Dwarf_die* die, Dwarf_die* context)
423 {
424   switch (die->tag())
425     {
426       case elfcpp::DW_TAG_subprogram:
427       case elfcpp::DW_TAG_constant:
428       case elfcpp::DW_TAG_variable:
429       case elfcpp::DW_TAG_enumerator:
430       case elfcpp::DW_TAG_base_type:
431         if (die->is_declaration())
432           this->add_declaration(die, context);
433         else
434           {
435             // If the DIE is not a declaration, add it to the index.
436             std::string full_name = this->get_qualified_name(die, context);
437             if (!full_name.empty())
438               this->gdb_index_->add_symbol(this->cu_index_, full_name.c_str());
439           }
440         break;
441       case elfcpp::DW_TAG_typedef:
442       case elfcpp::DW_TAG_union_type:
443       case elfcpp::DW_TAG_class_type:
444       case elfcpp::DW_TAG_interface_type:
445       case elfcpp::DW_TAG_structure_type:
446       case elfcpp::DW_TAG_enumeration_type:
447       case elfcpp::DW_TAG_subrange_type:
448       case elfcpp::DW_TAG_namespace:
449         {
450           std::string full_name;
451           
452           // For classes at the top level, we need to look for a
453           // member function with a linkage name in order to get
454           // the properly-canonicalized name.
455           if (context == NULL
456               && (die->tag() == elfcpp::DW_TAG_class_type
457                   || die->tag() == elfcpp::DW_TAG_structure_type
458                   || die->tag() == elfcpp::DW_TAG_union_type))
459             full_name.assign(this->guess_full_class_name(die));
460
461           // Because we will visit the children, we need to add this DIE
462           // to the declarations table.
463           if (full_name.empty())
464             this->add_declaration(die, context);
465           else
466             this->add_declaration_with_full_name(die, full_name.c_str());
467
468           // If the DIE is not a declaration, add it to the index.
469           // Gdb stores a namespace in the index even when it is
470           // a declaration.
471           if (die->tag() == elfcpp::DW_TAG_namespace
472               || !die->is_declaration())
473             {
474               if (full_name.empty())
475                 full_name = this->get_qualified_name(die, context);
476               if (!full_name.empty())
477                 this->gdb_index_->add_symbol(this->cu_index_,
478                                              full_name.c_str());
479             }
480
481           // We're interested in the children only for namespaces and
482           // enumeration types.  For enumeration types, we do not include
483           // the enumeration tag as part of the full name.  For other tags,
484           // visit the children only to collect declarations.
485           if (die->tag() == elfcpp::DW_TAG_namespace
486               || die->tag() == elfcpp::DW_TAG_enumeration_type)
487             this->visit_children(die, die);
488           else
489             this->visit_children_for_decls(die);
490         }
491         break;
492       default:
493         break;
494     }
495 }
496
497 // Visit the children of PARENT, looking only for declarations that
498 // may be referenced by later specification DIEs.
499
500 void
501 Gdb_index_info_reader::visit_children_for_decls(Dwarf_die* parent)
502 {
503   off_t next_offset = 0;
504   for (off_t die_offset = parent->child_offset();
505        die_offset != 0;
506        die_offset = next_offset)
507     {
508       Dwarf_die die(this, die_offset, parent);
509       if (die.tag() == 0)
510         break;
511       this->visit_die_for_decls(&die, parent);
512       next_offset = die.sibling_offset();
513     }
514 }
515
516 // Visit a child DIE, looking only for declarations that
517 // may be referenced by later specification DIEs.
518
519 void
520 Gdb_index_info_reader::visit_die_for_decls(Dwarf_die* die, Dwarf_die* context)
521 {
522   switch (die->tag())
523     {
524       case elfcpp::DW_TAG_subprogram:
525       case elfcpp::DW_TAG_constant:
526       case elfcpp::DW_TAG_variable:
527       case elfcpp::DW_TAG_enumerator:
528       case elfcpp::DW_TAG_base_type:
529         {
530           if (die->is_declaration())
531             this->add_declaration(die, context);
532         }
533         break;
534       case elfcpp::DW_TAG_typedef:
535       case elfcpp::DW_TAG_union_type:
536       case elfcpp::DW_TAG_class_type:
537       case elfcpp::DW_TAG_interface_type:
538       case elfcpp::DW_TAG_structure_type:
539       case elfcpp::DW_TAG_enumeration_type:
540       case elfcpp::DW_TAG_subrange_type:
541       case elfcpp::DW_TAG_namespace:
542         {
543           if (die->is_declaration())
544             this->add_declaration(die, context);
545           this->visit_children_for_decls(die);
546         }
547         break;
548       default:
549         break;
550     }
551 }
552
553 // Extract the class name from the linkage name of a member function.
554 // This code is adapted from ../gdb/cp-support.c.
555
556 #define d_left(dc) (dc)->u.s_binary.left
557 #define d_right(dc) (dc)->u.s_binary.right
558
559 static char*
560 class_name_from_linkage_name(const char* linkage_name)
561 {
562   void* storage;
563   struct demangle_component* tree =
564       cplus_demangle_v3_components(linkage_name, DMGL_NO_OPTS, &storage);
565   if (tree == NULL)
566     return NULL;
567
568   int done = 0;
569
570   // First strip off any qualifiers, if we have a function or
571   // method.
572   while (!done)
573     switch (tree->type)
574       {
575         case DEMANGLE_COMPONENT_CONST:
576         case DEMANGLE_COMPONENT_RESTRICT:
577         case DEMANGLE_COMPONENT_VOLATILE:
578         case DEMANGLE_COMPONENT_CONST_THIS:
579         case DEMANGLE_COMPONENT_RESTRICT_THIS:
580         case DEMANGLE_COMPONENT_VOLATILE_THIS:
581         case DEMANGLE_COMPONENT_VENDOR_TYPE_QUAL:
582           tree = d_left(tree);
583           break;
584         default:
585           done = 1;
586           break;
587       }
588
589   // If what we have now is a function, discard the argument list.
590   if (tree->type == DEMANGLE_COMPONENT_TYPED_NAME)
591     tree = d_left(tree);
592
593   // If what we have now is a template, strip off the template
594   // arguments.  The left subtree may be a qualified name.
595   if (tree->type == DEMANGLE_COMPONENT_TEMPLATE)
596     tree = d_left(tree);
597
598   // What we have now should be a name, possibly qualified.
599   // Additional qualifiers could live in the left subtree or the right
600   // subtree.  Find the last piece.
601   done = 0;
602   struct demangle_component* prev_comp = NULL;
603   struct demangle_component* cur_comp = tree;
604   while (!done)
605     switch (cur_comp->type)
606       {
607         case DEMANGLE_COMPONENT_QUAL_NAME:
608         case DEMANGLE_COMPONENT_LOCAL_NAME:
609           prev_comp = cur_comp;
610           cur_comp = d_right(cur_comp);
611           break;
612         case DEMANGLE_COMPONENT_TEMPLATE:
613         case DEMANGLE_COMPONENT_NAME:
614         case DEMANGLE_COMPONENT_CTOR:
615         case DEMANGLE_COMPONENT_DTOR:
616         case DEMANGLE_COMPONENT_OPERATOR:
617         case DEMANGLE_COMPONENT_EXTENDED_OPERATOR:
618           done = 1;
619           break;
620         default:
621           done = 1;
622           cur_comp = NULL;
623           break;
624       }
625
626   char* ret = NULL;
627   if (cur_comp != NULL && prev_comp != NULL)
628     {
629       // We want to discard the rightmost child of PREV_COMP.
630       *prev_comp = *d_left(prev_comp);
631       size_t allocated_size;
632       ret = cplus_demangle_print(DMGL_NO_OPTS, tree, 30, &allocated_size);
633     }
634
635   free(storage);
636   return ret;
637 }
638
639 // Guess a fully-qualified name for a class type, based on member function
640 // linkage names.  This is needed for class/struct/union types at the
641 // top level, because GCC does not always properly embed them within
642 // the namespace.  As in gdb, we look for a member function with a linkage
643 // name and extract the qualified name from the demangled name.
644
645 std::string
646 Gdb_index_info_reader::guess_full_class_name(Dwarf_die* die)
647 {
648   std::string full_name;
649   off_t next_offset = 0;
650   
651   // This routine scans ahead in the DIE structure, possibly advancing
652   // the relocation tracker beyond the current DIE.  We need to checkpoint
653   // the tracker and reset it when we're done.
654   uint64_t checkpoint = this->get_reloc_checkpoint();
655
656   for (off_t child_offset = die->child_offset();
657        child_offset != 0;
658        child_offset = next_offset)
659     {
660       Dwarf_die child(this, child_offset, die);
661       if (child.tag() == 0)
662         break;
663       if (child.tag() == elfcpp::DW_TAG_subprogram)
664         {
665           const char* linkage_name = child.linkage_name();
666           if (linkage_name != NULL)
667             {
668               char* guess = class_name_from_linkage_name(linkage_name);
669               if (guess != NULL)
670                 {
671                   full_name.assign(guess);
672                   free(guess);
673                   break;
674                 }
675             }
676         }
677       next_offset = child.sibling_offset();
678     }
679
680   this->reset_relocs(checkpoint);
681   return full_name;
682 }
683
684 // Add a declaration DIE to the table of declarations.
685
686 void
687 Gdb_index_info_reader::add_declaration(Dwarf_die* die, Dwarf_die* context)
688 {
689   const char* name = die->name();
690
691   off_t parent_offset = context != NULL ? context->offset() : 0;
692
693   // If this DIE has a DW_AT_specification or DW_AT_abstract_origin
694   // attribute, use the parent and name from the earlier declaration.
695   off_t spec = die->specification();
696   if (spec == 0)
697     spec = die->abstract_origin();
698   if (spec > 0)
699     {
700       Declaration_map::iterator it = this->declarations_.find(spec);
701       if (it != this->declarations_.end())
702         {
703           parent_offset = it->second.parent_offset_;
704           name = it->second.name_;
705         }
706     }
707
708   if (name == NULL)
709     {
710       if (die->tag() == elfcpp::DW_TAG_namespace)
711         name = "(anonymous namespace)";
712       else if (die->tag() == elfcpp::DW_TAG_union_type)
713         name = "(anonymous union)";
714       else
715         name = "(unknown)";
716     }
717
718   Declaration_pair decl(parent_offset, name);
719   this->declarations_.insert(std::make_pair(die->offset(), decl));
720 }
721
722 // Add a declaration whose fully-qualified name is already known.
723 // In the case where we had to get the canonical name by demangling
724 // a linkage name, this ensures we use that name instead of the one
725 // provided in DW_AT_name.
726
727 void
728 Gdb_index_info_reader::add_declaration_with_full_name(
729     Dwarf_die* die,
730     const char* full_name)
731 {
732   // We need to copy the name.
733   int len = strlen(full_name);
734   char* copy = new char[len + 1];
735   memcpy(copy, full_name, len + 1);
736
737   // Flag that we now manage the memory this points to.
738   Declaration_pair decl(-1, copy);
739   this->declarations_.insert(std::make_pair(die->offset(), decl));
740 }
741
742 // Return the context for a DIE whose parent is at DIE_OFFSET.
743
744 std::string
745 Gdb_index_info_reader::get_context(off_t die_offset)
746 {
747   std::string context;
748   Declaration_map::iterator it = this->declarations_.find(die_offset);
749   if (it != this->declarations_.end())
750     {
751       off_t parent_offset = it->second.parent_offset_;
752       if (parent_offset > 0)
753         {
754           context = get_context(parent_offset);
755           context.append("::");
756         }
757       if (it->second.name_ != NULL)
758         context.append(it->second.name_);
759     }
760   return context;
761 }
762
763 // Construct the fully-qualified name for DIE.
764
765 std::string
766 Gdb_index_info_reader::get_qualified_name(Dwarf_die* die, Dwarf_die* context)
767 {
768   std::string full_name;
769   const char* name = die->name();
770
771   off_t parent_offset = context != NULL ? context->offset() : 0;
772
773   // If this DIE has a DW_AT_specification or DW_AT_abstract_origin
774   // attribute, use the parent and name from the earlier declaration.
775   off_t spec = die->specification();
776   if (spec == 0)
777     spec = die->abstract_origin();
778   if (spec > 0)
779     {
780       Declaration_map::iterator it = this->declarations_.find(spec);
781       if (it != this->declarations_.end())
782         {
783           parent_offset = it->second.parent_offset_;
784           name = it->second.name_;
785         }
786     }
787
788   if (name == NULL && die->tag() == elfcpp::DW_TAG_namespace)
789     name = "(anonymous namespace)";
790   else if (name == NULL)
791     return full_name;
792
793   // If this is an enumerator constant, skip the immediate parent,
794   // which is the enumeration tag.
795   if (die->tag() == elfcpp::DW_TAG_enumerator)
796     {
797       Declaration_map::iterator it = this->declarations_.find(parent_offset);
798       if (it != this->declarations_.end())
799         parent_offset = it->second.parent_offset_;
800     }
801
802   if (parent_offset > 0)
803     {
804       full_name.assign(this->get_context(parent_offset));
805       full_name.append("::");
806     }
807   full_name.append(name);
808
809   return full_name;
810 }
811
812 // Record the address ranges for a compilation unit.
813
814 void
815 Gdb_index_info_reader::record_cu_ranges(Dwarf_die* die)
816 {
817   unsigned int shndx;
818   unsigned int shndx2;
819
820   off_t ranges_offset = die->ref_attribute(elfcpp::DW_AT_ranges, &shndx);
821   if (ranges_offset != -1)
822     {
823       Dwarf_range_list* ranges = this->read_range_list(shndx, ranges_offset);
824       if (ranges != NULL)
825         this->gdb_index_->add_address_range_list(this->object(),
826                                                  this->cu_index_, ranges);
827       return;
828     }
829
830   off_t low_pc = die->address_attribute(elfcpp::DW_AT_low_pc, &shndx);
831   off_t high_pc = die->address_attribute(elfcpp::DW_AT_high_pc, &shndx2);
832   if (high_pc == -1)
833     {
834       high_pc = die->uint_attribute(elfcpp::DW_AT_high_pc);
835       high_pc += low_pc;
836       shndx2 = shndx;
837     }
838   if ((low_pc != 0 || high_pc != 0) && low_pc != -1)
839     {
840       if (shndx != shndx2)
841         {
842           gold_warning(_("%s: DWARF info may be corrupt; low_pc and high_pc "
843                          "are in different sections"),
844                        this->object()->name().c_str());
845           return;
846         }
847       if (shndx == 0 || this->object()->is_section_included(shndx))
848         {
849           Dwarf_range_list* ranges = new Dwarf_range_list();
850           ranges->add(shndx, low_pc, high_pc);
851           this->gdb_index_->add_address_range_list(this->object(),
852                                                    this->cu_index_, ranges);
853         }
854     }
855 }
856
857 // Read table and add the relevant names to the index.  Returns true
858 // if any names were added.
859
860 bool
861 Gdb_index_info_reader::read_pubtable(Dwarf_pubnames_table* table, off_t offset)
862 {
863   // If we couldn't read the section when building the cu_pubname_map,
864   // then we won't find any pubnames now.
865   if (table == NULL)
866     return false;
867
868   if (!table->read_header(offset))
869     return false;
870   while (true)
871     {
872       const char* name = table->next_name();
873       if (name == NULL)
874         break;
875
876       this->gdb_index_->add_symbol(this->cu_index_, name);
877     }
878   return true;
879 }
880
881 // Read the .debug_pubnames and .debug_pubtypes tables for the CU or TU.
882 // Returns TRUE if either a pubnames or pubtypes section was found.
883
884 bool
885 Gdb_index_info_reader::read_pubnames_and_pubtypes(Dwarf_die* die)
886 {
887   // We use stmt_list_off as a unique identifier for the
888   // compilation unit and its associated type units.
889   unsigned int shndx;
890   off_t stmt_list_off = die->ref_attribute (elfcpp::DW_AT_stmt_list,
891                                             &shndx);
892   // Look for the attr as either a flag or a ref.
893   off_t offset = die->ref_attribute(elfcpp::DW_AT_GNU_pubnames, &shndx);
894
895   // Newer versions of GCC generate CUs, but not TUs, with
896   // DW_AT_FORM_flag_present.
897   unsigned int flag = die->uint_attribute(elfcpp::DW_AT_GNU_pubnames);
898   if (offset == -1 && flag == 0)
899     {
900       // Didn't find the attribute.
901       if (die->tag() == elfcpp::DW_TAG_type_unit)
902         {
903           // If die is a TU, then it might correspond to a CU which we
904           // have read. If it does, then no need to read the pubnames.
905           // If it doesn't, then the caller will have to parse the
906           // dies manually to find the names.
907           return this->gdb_index_->pubnames_read(this->object(),
908                                                  stmt_list_off);
909         }
910       else
911         {
912           // No attribute on the CU means that no pubnames were read.
913           return false;
914         }
915     }
916
917   // We found the attribute, so we can check if the corresponding
918   // pubnames have been read.
919   if (this->gdb_index_->pubnames_read(this->object(), stmt_list_off))
920     return true;
921
922   this->gdb_index_->set_pubnames_read(this->object(), stmt_list_off);
923
924   // We have an attribute, and the pubnames haven't been read, so read
925   // them.
926   bool names = false;
927   // In some of the cases, we could rely on the previous value of
928   // offset here, but sorting out which cases complicates the logic
929   // enough that it isn't worth it. So just look up the offset again.
930   offset = this->gdb_index_->find_pubname_offset(this->cu_offset());
931   names = this->read_pubtable(this->gdb_index_->pubnames_table(), offset);
932
933   bool types = false;
934   offset = this->gdb_index_->find_pubtype_offset(this->cu_offset());
935   types = this->read_pubtable(this->gdb_index_->pubtypes_table(), offset);
936   return names || types;
937 }
938
939 // Clear the declarations map.
940 void
941 Gdb_index_info_reader::clear_declarations()
942 {
943   // Free strings in memory we manage.
944   for (Declaration_map::iterator it = this->declarations_.begin();
945        it != this->declarations_.end();
946        ++it)
947     {
948       if (it->second.parent_offset_ == -1)
949         delete[] it->second.name_;
950     }
951
952   this->declarations_.clear();
953 }
954
955 // Print usage statistics.
956 void
957 Gdb_index_info_reader::print_stats()
958 {
959   fprintf(stderr, _("%s: DWARF CUs: %u\n"),
960           program_name, Gdb_index_info_reader::dwarf_cu_count);
961   fprintf(stderr, _("%s: DWARF CUs without pubnames/pubtypes: %u\n"),
962           program_name, Gdb_index_info_reader::dwarf_cu_nopubnames_count);
963   fprintf(stderr, _("%s: DWARF TUs: %u\n"),
964           program_name, Gdb_index_info_reader::dwarf_tu_count);
965   fprintf(stderr, _("%s: DWARF TUs without pubnames/pubtypes: %u\n"),
966           program_name, Gdb_index_info_reader::dwarf_tu_nopubnames_count);
967 }
968
969 // Class Gdb_index.
970
971 // Construct the .gdb_index section.
972
973 Gdb_index::Gdb_index(Output_section* gdb_index_section)
974   : Output_section_data(4),
975     pubnames_table_(NULL),
976     pubtypes_table_(NULL),
977     gdb_index_section_(gdb_index_section),
978     comp_units_(),
979     type_units_(),
980     ranges_(),
981     cu_vector_list_(),
982     cu_vector_offsets_(NULL),
983     stringpool_(),
984     tu_offset_(0),
985     addr_offset_(0),
986     symtab_offset_(0),
987     cu_pool_offset_(0),
988     stringpool_offset_(0),
989     pubnames_object_(NULL),
990     stmt_list_offset_(-1)
991 {
992   this->gdb_symtab_ = new Gdb_hashtab<Gdb_symbol>();
993 }
994
995 Gdb_index::~Gdb_index()
996 {
997   // Free the memory used by the symbol table.
998   delete this->gdb_symtab_;
999   // Free the memory used by the CU vectors.
1000   for (unsigned int i = 0; i < this->cu_vector_list_.size(); ++i)
1001     delete this->cu_vector_list_[i];
1002 }
1003
1004
1005 // Scan the pubnames and pubtypes sections and build a map of the
1006 // various cus and tus they refer to, so we can process the entries
1007 // when we encounter the die for that cu or tu.
1008 // Return the just-read table so it can be cached.
1009
1010 Dwarf_pubnames_table*
1011 Gdb_index::map_pubtable_to_dies(unsigned int attr,
1012                                 Gdb_index_info_reader* dwinfo,
1013                                 Relobj* object,
1014                                 const unsigned char* symbols,
1015                                 off_t symbols_size)
1016 {
1017   uint64_t section_offset = 0;
1018   Dwarf_pubnames_table* table;
1019   Pubname_offset_map* map;
1020
1021   if (attr == elfcpp::DW_AT_GNU_pubnames)
1022     {
1023       table = new Dwarf_pubnames_table(dwinfo, false);
1024       map = &this->cu_pubname_map_;
1025     }
1026   else
1027     {
1028       table = new Dwarf_pubnames_table(dwinfo, true);
1029       map = &this->cu_pubtype_map_;
1030     }
1031
1032   map->clear();
1033   if (!table->read_section(object, symbols, symbols_size))
1034     return NULL;
1035
1036   while (table->read_header(section_offset))
1037     {
1038       map->insert(std::make_pair(table->cu_offset(), section_offset));
1039       section_offset += table->subsection_size();
1040     }
1041
1042   return table;
1043 }
1044
1045 // Wrapper for map_pubtable_to_dies
1046
1047 void
1048 Gdb_index::map_pubnames_and_types_to_dies(Gdb_index_info_reader* dwinfo,
1049                                           Relobj* object,
1050                                           const unsigned char* symbols,
1051                                           off_t symbols_size)
1052 {
1053   // This is a new object, so reset the relevant variables.
1054   this->pubnames_object_ = object;
1055   this->stmt_list_offset_ = -1;
1056
1057   delete this->pubnames_table_;
1058   this->pubnames_table_
1059       = this->map_pubtable_to_dies(elfcpp::DW_AT_GNU_pubnames, dwinfo,
1060                                    object, symbols, symbols_size);
1061   delete this->pubtypes_table_;
1062   this->pubtypes_table_
1063       = this->map_pubtable_to_dies(elfcpp::DW_AT_GNU_pubtypes, dwinfo,
1064                                    object, symbols, symbols_size);
1065 }
1066
1067 // Given a cu_offset, find the associated section of the pubnames
1068 // table.
1069
1070 off_t
1071 Gdb_index::find_pubname_offset(off_t cu_offset)
1072 {
1073   Pubname_offset_map::iterator it = this->cu_pubname_map_.find(cu_offset);
1074   if (it != this->cu_pubname_map_.end())
1075     return it->second;
1076   return -1;
1077 }
1078
1079 // Given a cu_offset, find the associated section of the pubnames
1080 // table.
1081
1082 off_t
1083 Gdb_index::find_pubtype_offset(off_t cu_offset)
1084 {
1085   Pubname_offset_map::iterator it = this->cu_pubtype_map_.find(cu_offset);
1086   if (it != this->cu_pubtype_map_.end())
1087     return it->second;
1088   return -1;
1089 }
1090
1091 // Scan a .debug_info or .debug_types input section.
1092
1093 void
1094 Gdb_index::scan_debug_info(bool is_type_unit,
1095                            Relobj* object,
1096                            const unsigned char* symbols,
1097                            off_t symbols_size,
1098                            unsigned int shndx,
1099                            unsigned int reloc_shndx,
1100                            unsigned int reloc_type)
1101 {
1102   Gdb_index_info_reader dwinfo(is_type_unit, object,
1103                                symbols, symbols_size,
1104                                shndx, reloc_shndx,
1105                                reloc_type, this);
1106   if (object != this->pubnames_object_)
1107     map_pubnames_and_types_to_dies(&dwinfo, object, symbols, symbols_size);
1108   dwinfo.parse();
1109 }
1110
1111 // Add a symbol.
1112
1113 void
1114 Gdb_index::add_symbol(int cu_index, const char* sym_name)
1115 {
1116   unsigned int hash = mapped_index_string_hash(
1117       reinterpret_cast<const unsigned char*>(sym_name));
1118   Gdb_symbol* sym = new Gdb_symbol();
1119   this->stringpool_.add(sym_name, true, &sym->name_key);
1120   sym->hashval = hash;
1121   sym->cu_vector_index = 0;
1122
1123   Gdb_symbol* found = this->gdb_symtab_->add(sym);
1124   if (found == sym)
1125     {
1126       // New symbol -- allocate a new CU index vector.
1127       found->cu_vector_index = this->cu_vector_list_.size();
1128       this->cu_vector_list_.push_back(new Cu_vector());
1129     }
1130   else
1131     {
1132       // Found an existing symbol -- append to the existing
1133       // CU index vector.
1134       delete sym;
1135     }
1136
1137   // Add the CU index to the vector list for this symbol,
1138   // if it's not already on the list.  We only need to
1139   // check the last added entry.
1140   Cu_vector* cu_vec = this->cu_vector_list_[found->cu_vector_index];
1141   if (cu_vec->size() == 0 || cu_vec->back() != cu_index)
1142     cu_vec->push_back(cu_index);
1143 }
1144
1145 // Return TRUE if we have already processed the pubnames associated
1146 // with the statement list at the given OFFSET.
1147
1148 bool
1149 Gdb_index::pubnames_read(const Relobj* object, off_t offset)
1150 {
1151   bool ret = (this->pubnames_object_ == object
1152               && this->stmt_list_offset_ == offset);
1153   return ret;
1154 }
1155
1156 // Record that we have processed the pubnames associated with the
1157 // statement list for OBJECT at the given OFFSET.
1158
1159 void
1160 Gdb_index::set_pubnames_read(const Relobj* object, off_t offset)
1161 {
1162   this->pubnames_object_ = object;
1163   this->stmt_list_offset_ = offset;
1164 }
1165
1166 // Set the size of the .gdb_index section.
1167
1168 void
1169 Gdb_index::set_final_data_size()
1170 {
1171   // Finalize the string pool.
1172   this->stringpool_.set_string_offsets();
1173
1174   // Compute the total size of the CU vectors.
1175   // For each CU vector, include one entry for the count at the
1176   // beginning of the vector.
1177   unsigned int cu_vector_count = this->cu_vector_list_.size();
1178   unsigned int cu_vector_size = 0;
1179   this->cu_vector_offsets_ = new off_t[cu_vector_count];
1180   for (unsigned int i = 0; i < cu_vector_count; ++i)
1181     {
1182       Cu_vector* cu_vec = this->cu_vector_list_[i];
1183       cu_vector_offsets_[i] = cu_vector_size;
1184       cu_vector_size += gdb_index_offset_size * (cu_vec->size() + 1);
1185     }
1186
1187   // Assign relative offsets to each portion of the index,
1188   // and find the total size of the section.
1189   section_size_type data_size = gdb_index_hdr_size;
1190   data_size += this->comp_units_.size() * gdb_index_cu_size;
1191   this->tu_offset_ = data_size;
1192   data_size += this->type_units_.size() * gdb_index_tu_size;
1193   this->addr_offset_ = data_size;
1194   for (unsigned int i = 0; i < this->ranges_.size(); ++i)
1195     data_size += this->ranges_[i].ranges->size() * gdb_index_addr_size;
1196   this->symtab_offset_ = data_size;
1197   data_size += this->gdb_symtab_->capacity() * gdb_index_sym_size;
1198   this->cu_pool_offset_ = data_size;
1199   data_size += cu_vector_size;
1200   this->stringpool_offset_ = data_size;
1201   data_size += this->stringpool_.get_strtab_size();
1202
1203   this->set_data_size(data_size);
1204 }
1205
1206 // Write the data to the file.
1207
1208 void
1209 Gdb_index::do_write(Output_file* of)
1210 {
1211   const off_t off = this->offset();
1212   const off_t oview_size = this->data_size();
1213   unsigned char* const oview = of->get_output_view(off, oview_size);
1214   unsigned char* pov = oview;
1215
1216   // Write the file header.
1217   // (1) Version number.
1218   elfcpp::Swap<32, false>::writeval(pov, gdb_index_version);
1219   pov += 4;
1220   // (2) Offset of the CU list.
1221   elfcpp::Swap<32, false>::writeval(pov, gdb_index_hdr_size);
1222   pov += 4;
1223   // (3) Offset of the types CU list.
1224   elfcpp::Swap<32, false>::writeval(pov, this->tu_offset_);
1225   pov += 4;
1226   // (4) Offset of the address area.
1227   elfcpp::Swap<32, false>::writeval(pov, this->addr_offset_);
1228   pov += 4;
1229   // (5) Offset of the symbol table.
1230   elfcpp::Swap<32, false>::writeval(pov, this->symtab_offset_);
1231   pov += 4;
1232   // (6) Offset of the constant pool.
1233   elfcpp::Swap<32, false>::writeval(pov, this->cu_pool_offset_);
1234   pov += 4;
1235
1236   gold_assert(pov - oview == gdb_index_hdr_size);
1237
1238   // Write the CU list.
1239   unsigned int comp_units_count = this->comp_units_.size();
1240   for (unsigned int i = 0; i < comp_units_count; ++i)
1241     {
1242       const Comp_unit& cu = this->comp_units_[i];
1243       elfcpp::Swap<64, false>::writeval(pov, cu.cu_offset);
1244       elfcpp::Swap<64, false>::writeval(pov + 8, cu.cu_length);
1245       pov += 16;
1246     }
1247
1248   gold_assert(pov - oview == this->tu_offset_);
1249
1250   // Write the types CU list.
1251   for (unsigned int i = 0; i < this->type_units_.size(); ++i)
1252     {
1253       const Type_unit& tu = this->type_units_[i];
1254       elfcpp::Swap<64, false>::writeval(pov, tu.tu_offset);
1255       elfcpp::Swap<64, false>::writeval(pov + 8, tu.type_offset);
1256       elfcpp::Swap<64, false>::writeval(pov + 16, tu.type_signature);
1257       pov += 24;
1258     }
1259
1260   gold_assert(pov - oview == this->addr_offset_);
1261
1262   // Write the address area.
1263   for (unsigned int i = 0; i < this->ranges_.size(); ++i)
1264     {
1265       int cu_index = this->ranges_[i].cu_index;
1266       // Translate negative indexes, which refer to a TU, to a
1267       // logical index into a concatenated CU/TU list.
1268       if (cu_index < 0)
1269         cu_index = comp_units_count + (-1 - cu_index);
1270       Relobj* object = this->ranges_[i].object;
1271       const Dwarf_range_list& ranges = *this->ranges_[i].ranges;
1272       for (unsigned int j = 0; j < ranges.size(); ++j)
1273         {
1274           const Dwarf_range_list::Range& range = ranges[j];
1275           uint64_t base = 0;
1276           if (range.shndx > 0)
1277             {
1278               const Output_section* os = object->output_section(range.shndx);
1279               base = (os->address()
1280                       + object->output_section_offset(range.shndx));
1281             }
1282           elfcpp::Swap_aligned32<64, false>::writeval(pov, base + range.start);
1283           elfcpp::Swap_aligned32<64, false>::writeval(pov + 8,
1284                                                       base + range.end);
1285           elfcpp::Swap<32, false>::writeval(pov + 16, cu_index);
1286           pov += 20;
1287         }
1288     }
1289
1290   gold_assert(pov - oview == this->symtab_offset_);
1291
1292   // Write the symbol table.
1293   for (unsigned int i = 0; i < this->gdb_symtab_->capacity(); ++i)
1294     {
1295       const Gdb_symbol* sym = (*this->gdb_symtab_)[i];
1296       section_offset_type name_offset = 0;
1297       unsigned int cu_vector_offset = 0;
1298       if (sym != NULL)
1299         {
1300           name_offset = (this->stringpool_.get_offset_from_key(sym->name_key)
1301                          + this->stringpool_offset_ - this->cu_pool_offset_);
1302           cu_vector_offset = this->cu_vector_offsets_[sym->cu_vector_index];
1303         }
1304       elfcpp::Swap<32, false>::writeval(pov, name_offset);
1305       elfcpp::Swap<32, false>::writeval(pov + 4, cu_vector_offset);
1306       pov += 8;
1307     }
1308
1309   gold_assert(pov - oview == this->cu_pool_offset_);
1310
1311   // Write the CU vectors into the constant pool.
1312   for (unsigned int i = 0; i < this->cu_vector_list_.size(); ++i)
1313     {
1314       Cu_vector* cu_vec = this->cu_vector_list_[i];
1315       elfcpp::Swap<32, false>::writeval(pov, cu_vec->size());
1316       pov += 4;
1317       for (unsigned int j = 0; j < cu_vec->size(); ++j)
1318         {
1319           int cu_index = (*cu_vec)[j];
1320           if (cu_index < 0)
1321             cu_index = comp_units_count + (-1 - cu_index);
1322           elfcpp::Swap<32, false>::writeval(pov, cu_index);
1323           pov += 4;
1324         }
1325     }
1326
1327   gold_assert(pov - oview == this->stringpool_offset_);
1328
1329   // Write the strings into the constant pool.
1330   this->stringpool_.write_to_buffer(pov, oview_size - this->stringpool_offset_);
1331
1332   of->write_output_view(off, oview_size, oview);
1333 }
1334
1335 // Print usage statistics.
1336 void
1337 Gdb_index::print_stats()
1338 {
1339   if (parameters->options().gdb_index())
1340     Gdb_index_info_reader::print_stats();
1341 }
1342
1343 } // End namespace gold.