Merge branch 'vendor/GCC50'
[dragonfly.git] / contrib / binutils-2.24 / gold / script-sections.cc
1 // script-sections.cc -- linker script SECTIONS for gold
2
3 // Copyright 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27 #include <list>
28 #include <map>
29 #include <string>
30 #include <vector>
31 #include <fnmatch.h>
32
33 #include "parameters.h"
34 #include "object.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "script-c.h"
38 #include "script.h"
39 #include "script-sections.h"
40
41 // Support for the SECTIONS clause in linker scripts.
42
43 namespace gold
44 {
45
46 // A region of memory.
47 class Memory_region
48 {
49  public:
50   Memory_region(const char* name, size_t namelen, unsigned int attributes,
51                 Expression* start, Expression* length)
52     : name_(name, namelen),
53       attributes_(attributes),
54       start_(start),
55       length_(length),
56       current_offset_(0),
57       vma_sections_(),
58       lma_sections_(),
59       last_section_(NULL)
60   { }
61
62   // Return the name of this region.
63   const std::string&
64   name() const
65   { return this->name_; }
66
67   // Return the start address of this region.
68   Expression*
69   start_address() const
70   { return this->start_; }
71
72   // Return the length of this region.
73   Expression*
74   length() const
75   { return this->length_; }
76
77   // Print the region (when debugging).
78   void
79   print(FILE*) const;
80
81   // Return true if <name,namelen> matches this region.
82   bool
83   name_match(const char* name, size_t namelen)
84   {
85     return (this->name_.length() == namelen
86             && strncmp(this->name_.c_str(), name, namelen) == 0);
87   }
88
89   Expression*
90   get_current_address() const
91   {
92     return
93       script_exp_binary_add(this->start_,
94                             script_exp_integer(this->current_offset_));
95   }
96   
97   void
98   increment_offset(std::string section_name, uint64_t amount,
99                    const Symbol_table* symtab, const Layout* layout)
100   {
101     this->current_offset_ += amount;
102
103     if (this->current_offset_
104         > this->length_->eval(symtab, layout, false))
105       gold_error(_("section %s overflows end of region %s"),
106                  section_name.c_str(), this->name_.c_str());
107   }
108   
109   // Returns true iff there is room left in this region
110   // for AMOUNT more bytes of data.
111   bool
112   has_room_for(const Symbol_table* symtab, const Layout* layout,
113                uint64_t amount) const
114   {
115     return (this->current_offset_ + amount
116             < this->length_->eval(symtab, layout, false));
117   }
118
119   // Return true if the provided section flags
120   // are compatible with this region's attributes.
121   bool
122   attributes_compatible(elfcpp::Elf_Xword flags, elfcpp::Elf_Xword type) const;
123   
124   void
125   add_section(Output_section_definition* sec, bool vma)
126   {
127     if (vma)
128       this->vma_sections_.push_back(sec);
129     else
130       this->lma_sections_.push_back(sec);
131   }
132
133   typedef std::vector<Output_section_definition*> Section_list;
134
135   // Return the start of the list of sections
136   // whose VMAs are taken from this region.
137   Section_list::const_iterator
138   get_vma_section_list_start() const
139   { return this->vma_sections_.begin(); }
140
141   // Return the start of the list of sections
142   // whose LMAs are taken from this region.
143   Section_list::const_iterator
144   get_lma_section_list_start() const
145   { return this->lma_sections_.begin(); }
146
147   // Return the end of the list of sections
148   // whose VMAs are taken from this region.
149   Section_list::const_iterator
150   get_vma_section_list_end() const
151   { return this->vma_sections_.end(); }
152
153   // Return the end of the list of sections
154   // whose LMAs are taken from this region.
155   Section_list::const_iterator
156   get_lma_section_list_end() const
157   { return this->lma_sections_.end(); }
158
159   Output_section_definition*
160   get_last_section() const
161   { return this->last_section_; }
162
163   void
164   set_last_section(Output_section_definition* sec)
165   { this->last_section_ = sec; }
166
167  private:
168
169   std::string name_;
170   unsigned int attributes_;
171   Expression* start_;
172   Expression* length_;
173   // The offset to the next free byte in the region.
174   // Note - for compatibility with GNU LD we only maintain one offset
175   // regardless of whether the region is being used for VMA values,
176   // LMA values, or both.
177   uint64_t current_offset_;
178   // A list of sections whose VMAs are set inside this region.
179   Section_list vma_sections_;
180   // A list of sections whose LMAs are set inside this region.
181   Section_list lma_sections_;
182   // The latest section to make use of this region.
183   Output_section_definition* last_section_;
184 };
185
186 // Return true if the provided section flags
187 // are compatible with this region's attributes.
188
189 bool
190 Memory_region::attributes_compatible(elfcpp::Elf_Xword flags,
191                                      elfcpp::Elf_Xword type) const
192 {
193   unsigned int attrs = this->attributes_;
194
195   // No attributes means that this region is not compatible with anything.
196   if (attrs == 0)
197     return false;
198
199   bool match = true;
200   do
201     {
202       switch (attrs & - attrs)
203         {
204         case MEM_EXECUTABLE:
205           if ((flags & elfcpp::SHF_EXECINSTR) == 0)
206             match = false;
207           break;
208
209         case MEM_WRITEABLE:
210           if ((flags & elfcpp::SHF_WRITE) == 0)
211             match = false;
212           break;
213
214         case MEM_READABLE:
215           // All sections are presumed readable.
216           break;
217
218         case MEM_ALLOCATABLE:
219           if ((flags & elfcpp::SHF_ALLOC) == 0)
220             match = false;
221           break;
222
223         case MEM_INITIALIZED:
224           if ((type & elfcpp::SHT_NOBITS) != 0)
225             match = false;
226           break;
227         }
228       attrs &= ~ (attrs & - attrs);
229     }
230   while (attrs != 0);
231   
232   return match;
233 }
234   
235 // Print a memory region.
236
237 void
238 Memory_region::print(FILE* f) const
239 {
240   fprintf(f, "  %s", this->name_.c_str());
241
242   unsigned int attrs = this->attributes_;
243   if (attrs != 0)
244     {
245       fprintf(f, " (");
246       do
247         {
248           switch (attrs & - attrs)
249             {
250             case MEM_EXECUTABLE:  fputc('x', f); break;
251             case MEM_WRITEABLE:   fputc('w', f); break;
252             case MEM_READABLE:    fputc('r', f); break;
253             case MEM_ALLOCATABLE: fputc('a', f); break;
254             case MEM_INITIALIZED: fputc('i', f); break;
255             default:
256               gold_unreachable();
257             }
258           attrs &= ~ (attrs & - attrs);
259         }
260       while (attrs != 0);
261       fputc(')', f);
262     }
263
264   fprintf(f, " : origin = ");
265   this->start_->print(f);
266   fprintf(f, ", length = ");
267   this->length_->print(f);
268   fprintf(f, "\n");
269 }
270
271 // Manage orphan sections.  This is intended to be largely compatible
272 // with the GNU linker.  The Linux kernel implicitly relies on
273 // something similar to the GNU linker's orphan placement.  We
274 // originally used a simpler scheme here, but it caused the kernel
275 // build to fail, and was also rather inefficient.
276
277 class Orphan_section_placement
278 {
279  private:
280   typedef Script_sections::Elements_iterator Elements_iterator;
281
282  public:
283   Orphan_section_placement();
284
285   // Handle an output section during initialization of this mapping.
286   void
287   output_section_init(const std::string& name, Output_section*,
288                       Elements_iterator location);
289
290   // Initialize the last location.
291   void
292   last_init(Elements_iterator location);
293
294   // Set *PWHERE to the address of an iterator pointing to the
295   // location to use for an orphan section.  Return true if the
296   // iterator has a value, false otherwise.
297   bool
298   find_place(Output_section*, Elements_iterator** pwhere);
299
300   // Return the iterator being used for sections at the very end of
301   // the linker script.
302   Elements_iterator
303   last_place() const;
304
305  private:
306   // The places that we specifically recognize.  This list is copied
307   // from the GNU linker.
308   enum Place_index
309   {
310     PLACE_TEXT,
311     PLACE_RODATA,
312     PLACE_DATA,
313     PLACE_TLS,
314     PLACE_TLS_BSS,
315     PLACE_BSS,
316     PLACE_REL,
317     PLACE_INTERP,
318     PLACE_NONALLOC,
319     PLACE_LAST,
320     PLACE_MAX
321   };
322
323   // The information we keep for a specific place.
324   struct Place
325   {
326     // The name of sections for this place.
327     const char* name;
328     // Whether we have a location for this place.
329     bool have_location;
330     // The iterator for this place.
331     Elements_iterator location;
332   };
333
334   // Initialize one place element.
335   void
336   initialize_place(Place_index, const char*);
337
338   // The places.
339   Place places_[PLACE_MAX];
340   // True if this is the first call to output_section_init.
341   bool first_init_;
342 };
343
344 // Initialize Orphan_section_placement.
345
346 Orphan_section_placement::Orphan_section_placement()
347   : first_init_(true)
348 {
349   this->initialize_place(PLACE_TEXT, ".text");
350   this->initialize_place(PLACE_RODATA, ".rodata");
351   this->initialize_place(PLACE_DATA, ".data");
352   this->initialize_place(PLACE_TLS, NULL);
353   this->initialize_place(PLACE_TLS_BSS, NULL);
354   this->initialize_place(PLACE_BSS, ".bss");
355   this->initialize_place(PLACE_REL, NULL);
356   this->initialize_place(PLACE_INTERP, ".interp");
357   this->initialize_place(PLACE_NONALLOC, NULL);
358   this->initialize_place(PLACE_LAST, NULL);
359 }
360
361 // Initialize one place element.
362
363 void
364 Orphan_section_placement::initialize_place(Place_index index, const char* name)
365 {
366   this->places_[index].name = name;
367   this->places_[index].have_location = false;
368 }
369
370 // While initializing the Orphan_section_placement information, this
371 // is called once for each output section named in the linker script.
372 // If we found an output section during the link, it will be passed in
373 // OS.
374
375 void
376 Orphan_section_placement::output_section_init(const std::string& name,
377                                               Output_section* os,
378                                               Elements_iterator location)
379 {
380   bool first_init = this->first_init_;
381   this->first_init_ = false;
382
383   for (int i = 0; i < PLACE_MAX; ++i)
384     {
385       if (this->places_[i].name != NULL && this->places_[i].name == name)
386         {
387           if (this->places_[i].have_location)
388             {
389               // We have already seen a section with this name.
390               return;
391             }
392
393           this->places_[i].location = location;
394           this->places_[i].have_location = true;
395
396           // If we just found the .bss section, restart the search for
397           // an unallocated section.  This follows the GNU linker's
398           // behaviour.
399           if (i == PLACE_BSS)
400             this->places_[PLACE_NONALLOC].have_location = false;
401
402           return;
403         }
404     }
405
406   // Relocation sections.
407   if (!this->places_[PLACE_REL].have_location
408       && os != NULL
409       && (os->type() == elfcpp::SHT_REL || os->type() == elfcpp::SHT_RELA)
410       && (os->flags() & elfcpp::SHF_ALLOC) != 0)
411     {
412       this->places_[PLACE_REL].location = location;
413       this->places_[PLACE_REL].have_location = true;
414     }
415
416   // We find the location for unallocated sections by finding the
417   // first debugging or comment section after the BSS section (if
418   // there is one).
419   if (!this->places_[PLACE_NONALLOC].have_location
420       && (name == ".comment" || Layout::is_debug_info_section(name.c_str())))
421     {
422       // We add orphan sections after the location in PLACES_.  We
423       // want to store unallocated sections before LOCATION.  If this
424       // is the very first section, we can't use it.
425       if (!first_init)
426         {
427           --location;
428           this->places_[PLACE_NONALLOC].location = location;
429           this->places_[PLACE_NONALLOC].have_location = true;
430         }
431     }
432 }
433
434 // Initialize the last location.
435
436 void
437 Orphan_section_placement::last_init(Elements_iterator location)
438 {
439   this->places_[PLACE_LAST].location = location;
440   this->places_[PLACE_LAST].have_location = true;
441 }
442
443 // Set *PWHERE to the address of an iterator pointing to the location
444 // to use for an orphan section.  Return true if the iterator has a
445 // value, false otherwise.
446
447 bool
448 Orphan_section_placement::find_place(Output_section* os,
449                                      Elements_iterator** pwhere)
450 {
451   // Figure out where OS should go.  This is based on the GNU linker
452   // code.  FIXME: The GNU linker handles small data sections
453   // specially, but we don't.
454   elfcpp::Elf_Word type = os->type();
455   elfcpp::Elf_Xword flags = os->flags();
456   Place_index index;
457   if ((flags & elfcpp::SHF_ALLOC) == 0
458       && !Layout::is_debug_info_section(os->name()))
459     index = PLACE_NONALLOC;
460   else if ((flags & elfcpp::SHF_ALLOC) == 0)
461     index = PLACE_LAST;
462   else if (type == elfcpp::SHT_NOTE)
463     index = PLACE_INTERP;
464   else if ((flags & elfcpp::SHF_TLS) != 0)
465     {
466       if (type == elfcpp::SHT_NOBITS)
467         index = PLACE_TLS_BSS;
468       else
469         index = PLACE_TLS;
470     }
471   else if (type == elfcpp::SHT_NOBITS)
472     index = PLACE_BSS;
473   else if ((flags & elfcpp::SHF_WRITE) != 0)
474     index = PLACE_DATA;
475   else if (type == elfcpp::SHT_REL || type == elfcpp::SHT_RELA)
476     index = PLACE_REL;
477   else if ((flags & elfcpp::SHF_EXECINSTR) == 0)
478     index = PLACE_RODATA;
479   else
480     index = PLACE_TEXT;
481
482   // If we don't have a location yet, try to find one based on a
483   // plausible ordering of sections.
484   if (!this->places_[index].have_location)
485     {
486       Place_index follow;
487       switch (index)
488         {
489         default:
490           follow = PLACE_MAX;
491           break;
492         case PLACE_RODATA:
493           follow = PLACE_TEXT;
494           break;
495         case PLACE_BSS:
496           follow = PLACE_DATA;
497           break;
498         case PLACE_REL:
499           follow = PLACE_TEXT;
500           break;
501         case PLACE_INTERP:
502           follow = PLACE_TEXT;
503           break;
504         case PLACE_TLS:
505           follow = PLACE_DATA;
506           break;
507         case PLACE_TLS_BSS:
508           follow = PLACE_TLS;
509           if (!this->places_[PLACE_TLS].have_location)
510             follow = PLACE_DATA;
511           break;
512         }
513       if (follow != PLACE_MAX && this->places_[follow].have_location)
514         {
515           // Set the location of INDEX to the location of FOLLOW.  The
516           // location of INDEX will then be incremented by the caller,
517           // so anything in INDEX will continue to be after anything
518           // in FOLLOW.
519           this->places_[index].location = this->places_[follow].location;
520           this->places_[index].have_location = true;
521         }
522     }
523
524   *pwhere = &this->places_[index].location;
525   bool ret = this->places_[index].have_location;
526
527   // The caller will set the location.
528   this->places_[index].have_location = true;
529
530   return ret;
531 }
532
533 // Return the iterator being used for sections at the very end of the
534 // linker script.
535
536 Orphan_section_placement::Elements_iterator
537 Orphan_section_placement::last_place() const
538 {
539   gold_assert(this->places_[PLACE_LAST].have_location);
540   return this->places_[PLACE_LAST].location;
541 }
542
543 // An element in a SECTIONS clause.
544
545 class Sections_element
546 {
547  public:
548   Sections_element()
549   { }
550
551   virtual ~Sections_element()
552   { }
553
554   // Return whether an output section is relro.
555   virtual bool
556   is_relro() const
557   { return false; }
558
559   // Record that an output section is relro.
560   virtual void
561   set_is_relro()
562   { }
563
564   // Create any required output sections.  The only real
565   // implementation is in Output_section_definition.
566   virtual void
567   create_sections(Layout*)
568   { }
569
570   // Add any symbol being defined to the symbol table.
571   virtual void
572   add_symbols_to_table(Symbol_table*)
573   { }
574
575   // Finalize symbols and check assertions.
576   virtual void
577   finalize_symbols(Symbol_table*, const Layout*, uint64_t*)
578   { }
579
580   // Return the output section name to use for an input file name and
581   // section name.  This only real implementation is in
582   // Output_section_definition.
583   virtual const char*
584   output_section_name(const char*, const char*, Output_section***,
585                       Script_sections::Section_type*, bool*)
586   { return NULL; }
587
588   // Initialize OSP with an output section.
589   virtual void
590   orphan_section_init(Orphan_section_placement*,
591                       Script_sections::Elements_iterator)
592   { }
593
594   // Set section addresses.  This includes applying assignments if the
595   // expression is an absolute value.
596   virtual void
597   set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*,
598                         uint64_t*)
599   { }
600
601   // Check a constraint (ONLY_IF_RO, etc.) on an output section.  If
602   // this section is constrained, and the input sections do not match,
603   // return the constraint, and set *POSD.
604   virtual Section_constraint
605   check_constraint(Output_section_definition**)
606   { return CONSTRAINT_NONE; }
607
608   // See if this is the alternate output section for a constrained
609   // output section.  If it is, transfer the Output_section and return
610   // true.  Otherwise return false.
611   virtual bool
612   alternate_constraint(Output_section_definition*, Section_constraint)
613   { return false; }
614
615   // Get the list of segments to use for an allocated section when
616   // using a PHDRS clause.  If this is an allocated section, return
617   // the Output_section, and set *PHDRS_LIST (the first parameter) to
618   // the list of PHDRS to which it should be attached.  If the PHDRS
619   // were not specified, don't change *PHDRS_LIST.  When not returning
620   // NULL, set *ORPHAN (the second parameter) according to whether
621   // this is an orphan section--one that is not mentioned in the
622   // linker script.
623   virtual Output_section*
624   allocate_to_segment(String_list**, bool*)
625   { return NULL; }
626
627   // Look for an output section by name and return the address, the
628   // load address, the alignment, and the size.  This is used when an
629   // expression refers to an output section which was not actually
630   // created.  This returns true if the section was found, false
631   // otherwise.  The only real definition is for
632   // Output_section_definition.
633   virtual bool
634   get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
635                           uint64_t*) const
636   { return false; }
637
638   // Return the associated Output_section if there is one.
639   virtual Output_section*
640   get_output_section() const
641   { return NULL; }
642
643   // Set the section's memory regions.
644   virtual void
645   set_memory_region(Memory_region*, bool)
646   { gold_error(_("Attempt to set a memory region for a non-output section")); }
647
648   // Print the element for debugging purposes.
649   virtual void
650   print(FILE* f) const = 0;
651 };
652
653 // An assignment in a SECTIONS clause outside of an output section.
654
655 class Sections_element_assignment : public Sections_element
656 {
657  public:
658   Sections_element_assignment(const char* name, size_t namelen,
659                               Expression* val, bool provide, bool hidden)
660     : assignment_(name, namelen, false, val, provide, hidden)
661   { }
662
663   // Add the symbol to the symbol table.
664   void
665   add_symbols_to_table(Symbol_table* symtab)
666   { this->assignment_.add_to_table(symtab); }
667
668   // Finalize the symbol.
669   void
670   finalize_symbols(Symbol_table* symtab, const Layout* layout,
671                    uint64_t* dot_value)
672   {
673     this->assignment_.finalize_with_dot(symtab, layout, *dot_value, NULL);
674   }
675
676   // Set the section address.  There is no section here, but if the
677   // value is absolute, we set the symbol.  This permits us to use
678   // absolute symbols when setting dot.
679   void
680   set_section_addresses(Symbol_table* symtab, Layout* layout,
681                         uint64_t* dot_value, uint64_t*, uint64_t*)
682   {
683     this->assignment_.set_if_absolute(symtab, layout, true, *dot_value, NULL);
684   }
685
686   // Print for debugging.
687   void
688   print(FILE* f) const
689   {
690     fprintf(f, "  ");
691     this->assignment_.print(f);
692   }
693
694  private:
695   Symbol_assignment assignment_;
696 };
697
698 // An assignment to the dot symbol in a SECTIONS clause outside of an
699 // output section.
700
701 class Sections_element_dot_assignment : public Sections_element
702 {
703  public:
704   Sections_element_dot_assignment(Expression* val)
705     : val_(val)
706   { }
707
708   // Finalize the symbol.
709   void
710   finalize_symbols(Symbol_table* symtab, const Layout* layout,
711                    uint64_t* dot_value)
712   {
713     // We ignore the section of the result because outside of an
714     // output section definition the dot symbol is always considered
715     // to be absolute.
716     *dot_value = this->val_->eval_with_dot(symtab, layout, true, *dot_value,
717                                            NULL, NULL, NULL, false);
718   }
719
720   // Update the dot symbol while setting section addresses.
721   void
722   set_section_addresses(Symbol_table* symtab, Layout* layout,
723                         uint64_t* dot_value, uint64_t* dot_alignment,
724                         uint64_t* load_address)
725   {
726     *dot_value = this->val_->eval_with_dot(symtab, layout, false, *dot_value,
727                                            NULL, NULL, dot_alignment, false);
728     *load_address = *dot_value;
729   }
730
731   // Print for debugging.
732   void
733   print(FILE* f) const
734   {
735     fprintf(f, "  . = ");
736     this->val_->print(f);
737     fprintf(f, "\n");
738   }
739
740  private:
741   Expression* val_;
742 };
743
744 // An assertion in a SECTIONS clause outside of an output section.
745
746 class Sections_element_assertion : public Sections_element
747 {
748  public:
749   Sections_element_assertion(Expression* check, const char* message,
750                              size_t messagelen)
751     : assertion_(check, message, messagelen)
752   { }
753
754   // Check the assertion.
755   void
756   finalize_symbols(Symbol_table* symtab, const Layout* layout, uint64_t*)
757   { this->assertion_.check(symtab, layout); }
758
759   // Print for debugging.
760   void
761   print(FILE* f) const
762   {
763     fprintf(f, "  ");
764     this->assertion_.print(f);
765   }
766
767  private:
768   Script_assertion assertion_;
769 };
770
771 // An element in an output section in a SECTIONS clause.
772
773 class Output_section_element
774 {
775  public:
776   // A list of input sections.
777   typedef std::list<Output_section::Input_section> Input_section_list;
778
779   Output_section_element()
780   { }
781
782   virtual ~Output_section_element()
783   { }
784
785   // Return whether this element requires an output section to exist.
786   virtual bool
787   needs_output_section() const
788   { return false; }
789
790   // Add any symbol being defined to the symbol table.
791   virtual void
792   add_symbols_to_table(Symbol_table*)
793   { }
794
795   // Finalize symbols and check assertions.
796   virtual void
797   finalize_symbols(Symbol_table*, const Layout*, uint64_t*, Output_section**)
798   { }
799
800   // Return whether this element matches FILE_NAME and SECTION_NAME.
801   // The only real implementation is in Output_section_element_input.
802   virtual bool
803   match_name(const char*, const char*, bool *) const
804   { return false; }
805
806   // Set section addresses.  This includes applying assignments if the
807   // expression is an absolute value.
808   virtual void
809   set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
810                         uint64_t*, uint64_t*, Output_section**, std::string*,
811                         Input_section_list*)
812   { }
813
814   // Print the element for debugging purposes.
815   virtual void
816   print(FILE* f) const = 0;
817
818  protected:
819   // Return a fill string that is LENGTH bytes long, filling it with
820   // FILL.
821   std::string
822   get_fill_string(const std::string* fill, section_size_type length) const;
823 };
824
825 std::string
826 Output_section_element::get_fill_string(const std::string* fill,
827                                         section_size_type length) const
828 {
829   std::string this_fill;
830   this_fill.reserve(length);
831   while (this_fill.length() + fill->length() <= length)
832     this_fill += *fill;
833   if (this_fill.length() < length)
834     this_fill.append(*fill, 0, length - this_fill.length());
835   return this_fill;
836 }
837
838 // A symbol assignment in an output section.
839
840 class Output_section_element_assignment : public Output_section_element
841 {
842  public:
843   Output_section_element_assignment(const char* name, size_t namelen,
844                                     Expression* val, bool provide,
845                                     bool hidden)
846     : assignment_(name, namelen, false, val, provide, hidden)
847   { }
848
849   // Add the symbol to the symbol table.
850   void
851   add_symbols_to_table(Symbol_table* symtab)
852   { this->assignment_.add_to_table(symtab); }
853
854   // Finalize the symbol.
855   void
856   finalize_symbols(Symbol_table* symtab, const Layout* layout,
857                    uint64_t* dot_value, Output_section** dot_section)
858   {
859     this->assignment_.finalize_with_dot(symtab, layout, *dot_value,
860                                         *dot_section);
861   }
862
863   // Set the section address.  There is no section here, but if the
864   // value is absolute, we set the symbol.  This permits us to use
865   // absolute symbols when setting dot.
866   void
867   set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
868                         uint64_t, uint64_t* dot_value, uint64_t*,
869                         Output_section** dot_section, std::string*,
870                         Input_section_list*)
871   {
872     this->assignment_.set_if_absolute(symtab, layout, true, *dot_value,
873                                       *dot_section);
874   }
875
876   // Print for debugging.
877   void
878   print(FILE* f) const
879   {
880     fprintf(f, "    ");
881     this->assignment_.print(f);
882   }
883
884  private:
885   Symbol_assignment assignment_;
886 };
887
888 // An assignment to the dot symbol in an output section.
889
890 class Output_section_element_dot_assignment : public Output_section_element
891 {
892  public:
893   Output_section_element_dot_assignment(Expression* val)
894     : val_(val)
895   { }
896
897   // An assignment to dot within an output section is enough to force
898   // the output section to exist.
899   bool
900   needs_output_section() const
901   { return true; }
902
903   // Finalize the symbol.
904   void
905   finalize_symbols(Symbol_table* symtab, const Layout* layout,
906                    uint64_t* dot_value, Output_section** dot_section)
907   {
908     *dot_value = this->val_->eval_with_dot(symtab, layout, true, *dot_value,
909                                            *dot_section, dot_section, NULL,
910                                            true);
911   }
912
913   // Update the dot symbol while setting section addresses.
914   void
915   set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
916                         uint64_t, uint64_t* dot_value, uint64_t*,
917                         Output_section** dot_section, std::string*,
918                         Input_section_list*);
919
920   // Print for debugging.
921   void
922   print(FILE* f) const
923   {
924     fprintf(f, "    . = ");
925     this->val_->print(f);
926     fprintf(f, "\n");
927   }
928
929  private:
930   Expression* val_;
931 };
932
933 // Update the dot symbol while setting section addresses.
934
935 void
936 Output_section_element_dot_assignment::set_section_addresses(
937     Symbol_table* symtab,
938     Layout* layout,
939     Output_section* output_section,
940     uint64_t,
941     uint64_t* dot_value,
942     uint64_t* dot_alignment,
943     Output_section** dot_section,
944     std::string* fill,
945     Input_section_list*)
946 {
947   uint64_t next_dot = this->val_->eval_with_dot(symtab, layout, false,
948                                                 *dot_value, *dot_section,
949                                                 dot_section, dot_alignment,
950                                                 true);
951   if (next_dot < *dot_value)
952     gold_error(_("dot may not move backward"));
953   if (next_dot > *dot_value && output_section != NULL)
954     {
955       section_size_type length = convert_to_section_size_type(next_dot
956                                                               - *dot_value);
957       Output_section_data* posd;
958       if (fill->empty())
959         posd = new Output_data_zero_fill(length, 0);
960       else
961         {
962           std::string this_fill = this->get_fill_string(fill, length);
963           posd = new Output_data_const(this_fill, 0);
964         }
965       output_section->add_output_section_data(posd);
966       layout->new_output_section_data_from_script(posd);
967     }
968   *dot_value = next_dot;
969 }
970
971 // An assertion in an output section.
972
973 class Output_section_element_assertion : public Output_section_element
974 {
975  public:
976   Output_section_element_assertion(Expression* check, const char* message,
977                                    size_t messagelen)
978     : assertion_(check, message, messagelen)
979   { }
980
981   void
982   print(FILE* f) const
983   {
984     fprintf(f, "    ");
985     this->assertion_.print(f);
986   }
987
988  private:
989   Script_assertion assertion_;
990 };
991
992 // We use a special instance of Output_section_data to handle BYTE,
993 // SHORT, etc.  This permits forward references to symbols in the
994 // expressions.
995
996 class Output_data_expression : public Output_section_data
997 {
998  public:
999   Output_data_expression(int size, bool is_signed, Expression* val,
1000                          const Symbol_table* symtab, const Layout* layout,
1001                          uint64_t dot_value, Output_section* dot_section)
1002     : Output_section_data(size, 0, true),
1003       is_signed_(is_signed), val_(val), symtab_(symtab),
1004       layout_(layout), dot_value_(dot_value), dot_section_(dot_section)
1005   { }
1006
1007  protected:
1008   // Write the data to the output file.
1009   void
1010   do_write(Output_file*);
1011
1012   // Write the data to a buffer.
1013   void
1014   do_write_to_buffer(unsigned char*);
1015
1016   // Write to a map file.
1017   void
1018   do_print_to_mapfile(Mapfile* mapfile) const
1019   { mapfile->print_output_data(this, _("** expression")); }
1020
1021  private:
1022   template<bool big_endian>
1023   void
1024   endian_write_to_buffer(uint64_t, unsigned char*);
1025
1026   bool is_signed_;
1027   Expression* val_;
1028   const Symbol_table* symtab_;
1029   const Layout* layout_;
1030   uint64_t dot_value_;
1031   Output_section* dot_section_;
1032 };
1033
1034 // Write the data element to the output file.
1035
1036 void
1037 Output_data_expression::do_write(Output_file* of)
1038 {
1039   unsigned char* view = of->get_output_view(this->offset(), this->data_size());
1040   this->write_to_buffer(view);
1041   of->write_output_view(this->offset(), this->data_size(), view);
1042 }
1043
1044 // Write the data element to a buffer.
1045
1046 void
1047 Output_data_expression::do_write_to_buffer(unsigned char* buf)
1048 {
1049   uint64_t val = this->val_->eval_with_dot(this->symtab_, this->layout_,
1050                                            true, this->dot_value_,
1051                                            this->dot_section_, NULL, NULL,
1052                                            false);
1053
1054   if (parameters->target().is_big_endian())
1055     this->endian_write_to_buffer<true>(val, buf);
1056   else
1057     this->endian_write_to_buffer<false>(val, buf);
1058 }
1059
1060 template<bool big_endian>
1061 void
1062 Output_data_expression::endian_write_to_buffer(uint64_t val,
1063                                                unsigned char* buf)
1064 {
1065   switch (this->data_size())
1066     {
1067     case 1:
1068       elfcpp::Swap_unaligned<8, big_endian>::writeval(buf, val);
1069       break;
1070     case 2:
1071       elfcpp::Swap_unaligned<16, big_endian>::writeval(buf, val);
1072       break;
1073     case 4:
1074       elfcpp::Swap_unaligned<32, big_endian>::writeval(buf, val);
1075       break;
1076     case 8:
1077       if (parameters->target().get_size() == 32)
1078         {
1079           val &= 0xffffffff;
1080           if (this->is_signed_ && (val & 0x80000000) != 0)
1081             val |= 0xffffffff00000000LL;
1082         }
1083       elfcpp::Swap_unaligned<64, big_endian>::writeval(buf, val);
1084       break;
1085     default:
1086       gold_unreachable();
1087     }
1088 }
1089
1090 // A data item in an output section.
1091
1092 class Output_section_element_data : public Output_section_element
1093 {
1094  public:
1095   Output_section_element_data(int size, bool is_signed, Expression* val)
1096     : size_(size), is_signed_(is_signed), val_(val)
1097   { }
1098
1099   // If there is a data item, then we must create an output section.
1100   bool
1101   needs_output_section() const
1102   { return true; }
1103
1104   // Finalize symbols--we just need to update dot.
1105   void
1106   finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
1107                    Output_section**)
1108   { *dot_value += this->size_; }
1109
1110   // Store the value in the section.
1111   void
1112   set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
1113                         uint64_t* dot_value, uint64_t*, Output_section**,
1114                         std::string*, Input_section_list*);
1115
1116   // Print for debugging.
1117   void
1118   print(FILE*) const;
1119
1120  private:
1121   // The size in bytes.
1122   int size_;
1123   // Whether the value is signed.
1124   bool is_signed_;
1125   // The value.
1126   Expression* val_;
1127 };
1128
1129 // Store the value in the section.
1130
1131 void
1132 Output_section_element_data::set_section_addresses(
1133     Symbol_table* symtab,
1134     Layout* layout,
1135     Output_section* os,
1136     uint64_t,
1137     uint64_t* dot_value,
1138     uint64_t*,
1139     Output_section** dot_section,
1140     std::string*,
1141     Input_section_list*)
1142 {
1143   gold_assert(os != NULL);
1144   Output_data_expression* expression =
1145     new Output_data_expression(this->size_, this->is_signed_, this->val_,
1146                                symtab, layout, *dot_value, *dot_section);
1147   os->add_output_section_data(expression);
1148   layout->new_output_section_data_from_script(expression);
1149   *dot_value += this->size_;
1150 }
1151
1152 // Print for debugging.
1153
1154 void
1155 Output_section_element_data::print(FILE* f) const
1156 {
1157   const char* s;
1158   switch (this->size_)
1159     {
1160     case 1:
1161       s = "BYTE";
1162       break;
1163     case 2:
1164       s = "SHORT";
1165       break;
1166     case 4:
1167       s = "LONG";
1168       break;
1169     case 8:
1170       if (this->is_signed_)
1171         s = "SQUAD";
1172       else
1173         s = "QUAD";
1174       break;
1175     default:
1176       gold_unreachable();
1177     }
1178   fprintf(f, "    %s(", s);
1179   this->val_->print(f);
1180   fprintf(f, ")\n");
1181 }
1182
1183 // A fill value setting in an output section.
1184
1185 class Output_section_element_fill : public Output_section_element
1186 {
1187  public:
1188   Output_section_element_fill(Expression* val)
1189     : val_(val)
1190   { }
1191
1192   // Update the fill value while setting section addresses.
1193   void
1194   set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
1195                         uint64_t, uint64_t* dot_value, uint64_t*,
1196                         Output_section** dot_section,
1197                         std::string* fill, Input_section_list*)
1198   {
1199     Output_section* fill_section;
1200     uint64_t fill_val = this->val_->eval_with_dot(symtab, layout, false,
1201                                                   *dot_value, *dot_section,
1202                                                   &fill_section, NULL, false);
1203     if (fill_section != NULL)
1204       gold_warning(_("fill value is not absolute"));
1205     // FIXME: The GNU linker supports fill values of arbitrary length.
1206     unsigned char fill_buff[4];
1207     elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
1208     fill->assign(reinterpret_cast<char*>(fill_buff), 4);
1209   }
1210
1211   // Print for debugging.
1212   void
1213   print(FILE* f) const
1214   {
1215     fprintf(f, "    FILL(");
1216     this->val_->print(f);
1217     fprintf(f, ")\n");
1218   }
1219
1220  private:
1221   // The new fill value.
1222   Expression* val_;
1223 };
1224
1225 // An input section specification in an output section
1226
1227 class Output_section_element_input : public Output_section_element
1228 {
1229  public:
1230   Output_section_element_input(const Input_section_spec* spec, bool keep);
1231
1232   // Finalize symbols--just update the value of the dot symbol.
1233   void
1234   finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
1235                    Output_section** dot_section)
1236   {
1237     *dot_value = this->final_dot_value_;
1238     *dot_section = this->final_dot_section_;
1239   }
1240
1241   // See whether we match FILE_NAME and SECTION_NAME as an input section.
1242   // If we do then also indicate whether the section should be KEPT.
1243   bool
1244   match_name(const char* file_name, const char* section_name, bool* keep) const;
1245
1246   // Set the section address.
1247   void
1248   set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
1249                         uint64_t subalign, uint64_t* dot_value, uint64_t*,
1250                         Output_section**, std::string* fill,
1251                         Input_section_list*);
1252
1253   // Print for debugging.
1254   void
1255   print(FILE* f) const;
1256
1257  private:
1258   // An input section pattern.
1259   struct Input_section_pattern
1260   {
1261     std::string pattern;
1262     bool pattern_is_wildcard;
1263     Sort_wildcard sort;
1264
1265     Input_section_pattern(const char* patterna, size_t patternlena,
1266                           Sort_wildcard sorta)
1267       : pattern(patterna, patternlena),
1268         pattern_is_wildcard(is_wildcard_string(this->pattern.c_str())),
1269         sort(sorta)
1270     { }
1271   };
1272
1273   typedef std::vector<Input_section_pattern> Input_section_patterns;
1274
1275   // Filename_exclusions is a pair of filename pattern and a bool
1276   // indicating whether the filename is a wildcard.
1277   typedef std::vector<std::pair<std::string, bool> > Filename_exclusions;
1278
1279   // Return whether STRING matches PATTERN, where IS_WILDCARD_PATTERN
1280   // indicates whether this is a wildcard pattern.
1281   static inline bool
1282   match(const char* string, const char* pattern, bool is_wildcard_pattern)
1283   {
1284     return (is_wildcard_pattern
1285             ? fnmatch(pattern, string, 0) == 0
1286             : strcmp(string, pattern) == 0);
1287   }
1288
1289   // See if we match a file name.
1290   bool
1291   match_file_name(const char* file_name) const;
1292
1293   // The file name pattern.  If this is the empty string, we match all
1294   // files.
1295   std::string filename_pattern_;
1296   // Whether the file name pattern is a wildcard.
1297   bool filename_is_wildcard_;
1298   // How the file names should be sorted.  This may only be
1299   // SORT_WILDCARD_NONE or SORT_WILDCARD_BY_NAME.
1300   Sort_wildcard filename_sort_;
1301   // The list of file names to exclude.
1302   Filename_exclusions filename_exclusions_;
1303   // The list of input section patterns.
1304   Input_section_patterns input_section_patterns_;
1305   // Whether to keep this section when garbage collecting.
1306   bool keep_;
1307   // The value of dot after including all matching sections.
1308   uint64_t final_dot_value_;
1309   // The section where dot is defined after including all matching
1310   // sections.
1311   Output_section* final_dot_section_;
1312 };
1313
1314 // Construct Output_section_element_input.  The parser records strings
1315 // as pointers into a copy of the script file, which will go away when
1316 // parsing is complete.  We make sure they are in std::string objects.
1317
1318 Output_section_element_input::Output_section_element_input(
1319     const Input_section_spec* spec,
1320     bool keep)
1321   : filename_pattern_(),
1322     filename_is_wildcard_(false),
1323     filename_sort_(spec->file.sort),
1324     filename_exclusions_(),
1325     input_section_patterns_(),
1326     keep_(keep),
1327     final_dot_value_(0),
1328     final_dot_section_(NULL)
1329 {
1330   // The filename pattern "*" is common, and matches all files.  Turn
1331   // it into the empty string.
1332   if (spec->file.name.length != 1 || spec->file.name.value[0] != '*')
1333     this->filename_pattern_.assign(spec->file.name.value,
1334                                    spec->file.name.length);
1335   this->filename_is_wildcard_ = is_wildcard_string(this->filename_pattern_.c_str());
1336
1337   if (spec->input_sections.exclude != NULL)
1338     {
1339       for (String_list::const_iterator p =
1340              spec->input_sections.exclude->begin();
1341            p != spec->input_sections.exclude->end();
1342            ++p)
1343         {
1344           bool is_wildcard = is_wildcard_string((*p).c_str());
1345           this->filename_exclusions_.push_back(std::make_pair(*p,
1346                                                               is_wildcard));
1347         }
1348     }
1349
1350   if (spec->input_sections.sections != NULL)
1351     {
1352       Input_section_patterns& isp(this->input_section_patterns_);
1353       for (String_sort_list::const_iterator p =
1354              spec->input_sections.sections->begin();
1355            p != spec->input_sections.sections->end();
1356            ++p)
1357         isp.push_back(Input_section_pattern(p->name.value, p->name.length,
1358                                             p->sort));
1359     }
1360 }
1361
1362 // See whether we match FILE_NAME.
1363
1364 bool
1365 Output_section_element_input::match_file_name(const char* file_name) const
1366 {
1367   if (!this->filename_pattern_.empty())
1368     {
1369       // If we were called with no filename, we refuse to match a
1370       // pattern which requires a file name.
1371       if (file_name == NULL)
1372         return false;
1373
1374       if (!match(file_name, this->filename_pattern_.c_str(),
1375                  this->filename_is_wildcard_))
1376         return false;
1377     }
1378
1379   if (file_name != NULL)
1380     {
1381       // Now we have to see whether FILE_NAME matches one of the
1382       // exclusion patterns, if any.
1383       for (Filename_exclusions::const_iterator p =
1384              this->filename_exclusions_.begin();
1385            p != this->filename_exclusions_.end();
1386            ++p)
1387         {
1388           if (match(file_name, p->first.c_str(), p->second))
1389             return false;
1390         }
1391     }
1392
1393   return true;
1394 }
1395
1396 // See whether we match FILE_NAME and SECTION_NAME.  If we do then
1397 // KEEP indicates whether the section should survive garbage collection.
1398
1399 bool
1400 Output_section_element_input::match_name(const char* file_name,
1401                                          const char* section_name,
1402                                          bool *keep) const
1403 {
1404   if (!this->match_file_name(file_name))
1405     return false;
1406
1407   *keep = this->keep_;
1408
1409   // If there are no section name patterns, then we match.
1410   if (this->input_section_patterns_.empty())
1411     return true;
1412
1413   // See whether we match the section name patterns.
1414   for (Input_section_patterns::const_iterator p =
1415          this->input_section_patterns_.begin();
1416        p != this->input_section_patterns_.end();
1417        ++p)
1418     {
1419       if (match(section_name, p->pattern.c_str(), p->pattern_is_wildcard))
1420         return true;
1421     }
1422
1423   // We didn't match any section names, so we didn't match.
1424   return false;
1425 }
1426
1427 // Information we use to sort the input sections.
1428
1429 class Input_section_info
1430 {
1431  public:
1432   Input_section_info(const Output_section::Input_section& input_section)
1433     : input_section_(input_section), section_name_(),
1434       size_(0), addralign_(1)
1435   { }
1436
1437   // Return the simple input section.
1438   const Output_section::Input_section&
1439   input_section() const
1440   { return this->input_section_; }
1441
1442   // Return the object.
1443   Relobj*
1444   relobj() const
1445   { return this->input_section_.relobj(); }
1446
1447   // Return the section index.
1448   unsigned int
1449   shndx()
1450   { return this->input_section_.shndx(); }
1451
1452   // Return the section name.
1453   const std::string&
1454   section_name() const
1455   { return this->section_name_; }
1456
1457   // Set the section name.
1458   void
1459   set_section_name(const std::string name)
1460   { this->section_name_ = name; }
1461
1462   // Return the section size.
1463   uint64_t
1464   size() const
1465   { return this->size_; }
1466
1467   // Set the section size.
1468   void
1469   set_size(uint64_t size)
1470   { this->size_ = size; }
1471
1472   // Return the address alignment.
1473   uint64_t
1474   addralign() const
1475   { return this->addralign_; }
1476
1477   // Set the address alignment.
1478   void
1479   set_addralign(uint64_t addralign)
1480   { this->addralign_ = addralign; }
1481
1482  private:
1483   // Input section, can be a relaxed section.
1484   Output_section::Input_section input_section_;
1485   // Name of the section. 
1486   std::string section_name_;
1487   // Section size.
1488   uint64_t size_;
1489   // Address alignment.
1490   uint64_t addralign_;
1491 };
1492
1493 // A class to sort the input sections.
1494
1495 class Input_section_sorter
1496 {
1497  public:
1498   Input_section_sorter(Sort_wildcard filename_sort, Sort_wildcard section_sort)
1499     : filename_sort_(filename_sort), section_sort_(section_sort)
1500   { }
1501
1502   bool
1503   operator()(const Input_section_info&, const Input_section_info&) const;
1504
1505  private:
1506   Sort_wildcard filename_sort_;
1507   Sort_wildcard section_sort_;
1508 };
1509
1510 bool
1511 Input_section_sorter::operator()(const Input_section_info& isi1,
1512                                  const Input_section_info& isi2) const
1513 {
1514   if (this->section_sort_ == SORT_WILDCARD_BY_NAME
1515       || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
1516       || (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME
1517           && isi1.addralign() == isi2.addralign()))
1518     {
1519       if (isi1.section_name() != isi2.section_name())
1520         return isi1.section_name() < isi2.section_name();
1521     }
1522   if (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT
1523       || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
1524       || this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME)
1525     {
1526       if (isi1.addralign() != isi2.addralign())
1527         return isi1.addralign() < isi2.addralign();
1528     }
1529   if (this->filename_sort_ == SORT_WILDCARD_BY_NAME)
1530     {
1531       if (isi1.relobj()->name() != isi2.relobj()->name())
1532         return (isi1.relobj()->name() < isi2.relobj()->name());
1533     }
1534
1535   // Otherwise we leave them in the same order.
1536   return false;
1537 }
1538
1539 // Set the section address.  Look in INPUT_SECTIONS for sections which
1540 // match this spec, sort them as specified, and add them to the output
1541 // section.
1542
1543 void
1544 Output_section_element_input::set_section_addresses(
1545     Symbol_table*,
1546     Layout* layout,
1547     Output_section* output_section,
1548     uint64_t subalign,
1549     uint64_t* dot_value,
1550     uint64_t*,
1551     Output_section** dot_section,
1552     std::string* fill,
1553     Input_section_list* input_sections)
1554 {
1555   // We build a list of sections which match each
1556   // Input_section_pattern.
1557
1558   typedef std::vector<std::vector<Input_section_info> > Matching_sections;
1559   size_t input_pattern_count = this->input_section_patterns_.size();
1560   if (input_pattern_count == 0)
1561     input_pattern_count = 1;
1562   Matching_sections matching_sections(input_pattern_count);
1563
1564   // Look through the list of sections for this output section.  Add
1565   // each one which matches to one of the elements of
1566   // MATCHING_SECTIONS.
1567
1568   Input_section_list::iterator p = input_sections->begin();
1569   while (p != input_sections->end())
1570     {
1571       Relobj* relobj = p->relobj();
1572       unsigned int shndx = p->shndx();      
1573       Input_section_info isi(*p);
1574
1575       // Calling section_name and section_addralign is not very
1576       // efficient.
1577
1578       // Lock the object so that we can get information about the
1579       // section.  This is OK since we know we are single-threaded
1580       // here.
1581       {
1582         const Task* task = reinterpret_cast<const Task*>(-1);
1583         Task_lock_obj<Object> tl(task, relobj);
1584
1585         isi.set_section_name(relobj->section_name(shndx));
1586         if (p->is_relaxed_input_section())
1587           {
1588             // We use current data size because relaxed section sizes may not
1589             // have finalized yet.
1590             isi.set_size(p->relaxed_input_section()->current_data_size());
1591             isi.set_addralign(p->relaxed_input_section()->addralign());
1592           }
1593         else
1594           {
1595             isi.set_size(relobj->section_size(shndx));
1596             isi.set_addralign(relobj->section_addralign(shndx));
1597           }
1598       }
1599
1600       if (!this->match_file_name(relobj->name().c_str()))
1601         ++p;
1602       else if (this->input_section_patterns_.empty())
1603         {
1604           matching_sections[0].push_back(isi);
1605           p = input_sections->erase(p);
1606         }
1607       else
1608         {
1609           size_t i;
1610           for (i = 0; i < input_pattern_count; ++i)
1611             {
1612               const Input_section_pattern&
1613                 isp(this->input_section_patterns_[i]);
1614               if (match(isi.section_name().c_str(), isp.pattern.c_str(),
1615                         isp.pattern_is_wildcard))
1616                 break;
1617             }
1618
1619           if (i >= this->input_section_patterns_.size())
1620             ++p;
1621           else
1622             {
1623               matching_sections[i].push_back(isi);
1624               p = input_sections->erase(p);
1625             }
1626         }
1627     }
1628
1629   // Look through MATCHING_SECTIONS.  Sort each one as specified,
1630   // using a stable sort so that we get the default order when
1631   // sections are otherwise equal.  Add each input section to the
1632   // output section.
1633
1634   uint64_t dot = *dot_value;
1635   for (size_t i = 0; i < input_pattern_count; ++i)
1636     {
1637       if (matching_sections[i].empty())
1638         continue;
1639
1640       gold_assert(output_section != NULL);
1641
1642       const Input_section_pattern& isp(this->input_section_patterns_[i]);
1643       if (isp.sort != SORT_WILDCARD_NONE
1644           || this->filename_sort_ != SORT_WILDCARD_NONE)
1645         std::stable_sort(matching_sections[i].begin(),
1646                          matching_sections[i].end(),
1647                          Input_section_sorter(this->filename_sort_,
1648                                               isp.sort));
1649
1650       for (std::vector<Input_section_info>::const_iterator p =
1651              matching_sections[i].begin();
1652            p != matching_sections[i].end();
1653            ++p)
1654         {
1655           // Override the original address alignment if SUBALIGN is specified
1656           // and is greater than the original alignment.  We need to make a
1657           // copy of the input section to modify the alignment.
1658           Output_section::Input_section sis(p->input_section());
1659
1660           uint64_t this_subalign = sis.addralign();
1661           if (!sis.is_input_section())
1662             sis.output_section_data()->finalize_data_size();    
1663           uint64_t data_size = sis.data_size();
1664           if (this_subalign < subalign)
1665             {
1666               this_subalign = subalign;
1667               sis.set_addralign(subalign);
1668             }
1669
1670           uint64_t address = align_address(dot, this_subalign);
1671
1672           if (address > dot && !fill->empty())
1673             {
1674               section_size_type length =
1675                 convert_to_section_size_type(address - dot);
1676               std::string this_fill = this->get_fill_string(fill, length);
1677               Output_section_data* posd = new Output_data_const(this_fill, 0);
1678               output_section->add_output_section_data(posd);
1679               layout->new_output_section_data_from_script(posd);
1680             }
1681
1682           output_section->add_script_input_section(sis);
1683           dot = address + data_size;
1684         }
1685     }
1686
1687   // An SHF_TLS/SHT_NOBITS section does not take up any
1688   // address space.
1689   if (output_section == NULL
1690       || (output_section->flags() & elfcpp::SHF_TLS) == 0
1691       || output_section->type() != elfcpp::SHT_NOBITS)
1692     *dot_value = dot;
1693
1694   this->final_dot_value_ = *dot_value;
1695   this->final_dot_section_ = *dot_section;
1696 }
1697
1698 // Print for debugging.
1699
1700 void
1701 Output_section_element_input::print(FILE* f) const
1702 {
1703   fprintf(f, "    ");
1704
1705   if (this->keep_)
1706     fprintf(f, "KEEP(");
1707
1708   if (!this->filename_pattern_.empty())
1709     {
1710       bool need_close_paren = false;
1711       switch (this->filename_sort_)
1712         {
1713         case SORT_WILDCARD_NONE:
1714           break;
1715         case SORT_WILDCARD_BY_NAME:
1716           fprintf(f, "SORT_BY_NAME(");
1717           need_close_paren = true;
1718           break;
1719         default:
1720           gold_unreachable();
1721         }
1722
1723       fprintf(f, "%s", this->filename_pattern_.c_str());
1724
1725       if (need_close_paren)
1726         fprintf(f, ")");
1727     }
1728
1729   if (!this->input_section_patterns_.empty()
1730       || !this->filename_exclusions_.empty())
1731     {
1732       fprintf(f, "(");
1733
1734       bool need_space = false;
1735       if (!this->filename_exclusions_.empty())
1736         {
1737           fprintf(f, "EXCLUDE_FILE(");
1738           bool need_comma = false;
1739           for (Filename_exclusions::const_iterator p =
1740                  this->filename_exclusions_.begin();
1741                p != this->filename_exclusions_.end();
1742                ++p)
1743             {
1744               if (need_comma)
1745                 fprintf(f, ", ");
1746               fprintf(f, "%s", p->first.c_str());
1747               need_comma = true;
1748             }
1749           fprintf(f, ")");
1750           need_space = true;
1751         }
1752
1753       for (Input_section_patterns::const_iterator p =
1754              this->input_section_patterns_.begin();
1755            p != this->input_section_patterns_.end();
1756            ++p)
1757         {
1758           if (need_space)
1759             fprintf(f, " ");
1760
1761           int close_parens = 0;
1762           switch (p->sort)
1763             {
1764             case SORT_WILDCARD_NONE:
1765               break;
1766             case SORT_WILDCARD_BY_NAME:
1767               fprintf(f, "SORT_BY_NAME(");
1768               close_parens = 1;
1769               break;
1770             case SORT_WILDCARD_BY_ALIGNMENT:
1771               fprintf(f, "SORT_BY_ALIGNMENT(");
1772               close_parens = 1;
1773               break;
1774             case SORT_WILDCARD_BY_NAME_BY_ALIGNMENT:
1775               fprintf(f, "SORT_BY_NAME(SORT_BY_ALIGNMENT(");
1776               close_parens = 2;
1777               break;
1778             case SORT_WILDCARD_BY_ALIGNMENT_BY_NAME:
1779               fprintf(f, "SORT_BY_ALIGNMENT(SORT_BY_NAME(");
1780               close_parens = 2;
1781               break;
1782             default:
1783               gold_unreachable();
1784             }
1785
1786           fprintf(f, "%s", p->pattern.c_str());
1787
1788           for (int i = 0; i < close_parens; ++i)
1789             fprintf(f, ")");
1790
1791           need_space = true;
1792         }
1793
1794       fprintf(f, ")");
1795     }
1796
1797   if (this->keep_)
1798     fprintf(f, ")");
1799
1800   fprintf(f, "\n");
1801 }
1802
1803 // An output section.
1804
1805 class Output_section_definition : public Sections_element
1806 {
1807  public:
1808   typedef Output_section_element::Input_section_list Input_section_list;
1809
1810   Output_section_definition(const char* name, size_t namelen,
1811                             const Parser_output_section_header* header);
1812
1813   // Finish the output section with the information in the trailer.
1814   void
1815   finish(const Parser_output_section_trailer* trailer);
1816
1817   // Add a symbol to be defined.
1818   void
1819   add_symbol_assignment(const char* name, size_t length, Expression* value,
1820                         bool provide, bool hidden);
1821
1822   // Add an assignment to the special dot symbol.
1823   void
1824   add_dot_assignment(Expression* value);
1825
1826   // Add an assertion.
1827   void
1828   add_assertion(Expression* check, const char* message, size_t messagelen);
1829
1830   // Add a data item to the current output section.
1831   void
1832   add_data(int size, bool is_signed, Expression* val);
1833
1834   // Add a setting for the fill value.
1835   void
1836   add_fill(Expression* val);
1837
1838   // Add an input section specification.
1839   void
1840   add_input_section(const Input_section_spec* spec, bool keep);
1841
1842   // Return whether the output section is relro.
1843   bool
1844   is_relro() const
1845   { return this->is_relro_; }
1846
1847   // Record that the output section is relro.
1848   void
1849   set_is_relro()
1850   { this->is_relro_ = true; }
1851
1852   // Create any required output sections.
1853   void
1854   create_sections(Layout*);
1855
1856   // Add any symbols being defined to the symbol table.
1857   void
1858   add_symbols_to_table(Symbol_table* symtab);
1859
1860   // Finalize symbols and check assertions.
1861   void
1862   finalize_symbols(Symbol_table*, const Layout*, uint64_t*);
1863
1864   // Return the output section name to use for an input file name and
1865   // section name.
1866   const char*
1867   output_section_name(const char* file_name, const char* section_name,
1868                       Output_section***, Script_sections::Section_type*,
1869                       bool*);
1870
1871   // Initialize OSP with an output section.
1872   void
1873   orphan_section_init(Orphan_section_placement* osp,
1874                       Script_sections::Elements_iterator p)
1875   { osp->output_section_init(this->name_, this->output_section_, p); }
1876
1877   // Set the section address.
1878   void
1879   set_section_addresses(Symbol_table* symtab, Layout* layout,
1880                         uint64_t* dot_value, uint64_t*,
1881                         uint64_t* load_address);
1882
1883   // Check a constraint (ONLY_IF_RO, etc.) on an output section.  If
1884   // this section is constrained, and the input sections do not match,
1885   // return the constraint, and set *POSD.
1886   Section_constraint
1887   check_constraint(Output_section_definition** posd);
1888
1889   // See if this is the alternate output section for a constrained
1890   // output section.  If it is, transfer the Output_section and return
1891   // true.  Otherwise return false.
1892   bool
1893   alternate_constraint(Output_section_definition*, Section_constraint);
1894
1895   // Get the list of segments to use for an allocated section when
1896   // using a PHDRS clause.
1897   Output_section*
1898   allocate_to_segment(String_list** phdrs_list, bool* orphan);
1899
1900   // Look for an output section by name and return the address, the
1901   // load address, the alignment, and the size.  This is used when an
1902   // expression refers to an output section which was not actually
1903   // created.  This returns true if the section was found, false
1904   // otherwise.
1905   bool
1906   get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
1907                           uint64_t*) const;
1908
1909   // Return the associated Output_section if there is one.
1910   Output_section*
1911   get_output_section() const
1912   { return this->output_section_; }
1913
1914   // Print the contents to the FILE.  This is for debugging.
1915   void
1916   print(FILE*) const;
1917
1918   // Return the output section type if specified or Script_sections::ST_NONE.
1919   Script_sections::Section_type
1920   section_type() const;
1921
1922   // Store the memory region to use.
1923   void
1924   set_memory_region(Memory_region*, bool set_vma);
1925
1926   void
1927   set_section_vma(Expression* address)
1928   { this->address_ = address; }
1929   
1930   void
1931   set_section_lma(Expression* address)
1932   { this->load_address_ = address; }
1933
1934   const std::string&
1935   get_section_name() const
1936   { return this->name_; }
1937   
1938  private:
1939   static const char*
1940   script_section_type_name(Script_section_type);
1941
1942   typedef std::vector<Output_section_element*> Output_section_elements;
1943
1944   // The output section name.
1945   std::string name_;
1946   // The address.  This may be NULL.
1947   Expression* address_;
1948   // The load address.  This may be NULL.
1949   Expression* load_address_;
1950   // The alignment.  This may be NULL.
1951   Expression* align_;
1952   // The input section alignment.  This may be NULL.
1953   Expression* subalign_;
1954   // The constraint, if any.
1955   Section_constraint constraint_;
1956   // The fill value.  This may be NULL.
1957   Expression* fill_;
1958   // The list of segments this section should go into.  This may be
1959   // NULL.
1960   String_list* phdrs_;
1961   // The list of elements defining the section.
1962   Output_section_elements elements_;
1963   // The Output_section created for this definition.  This will be
1964   // NULL if none was created.
1965   Output_section* output_section_;
1966   // The address after it has been evaluated.
1967   uint64_t evaluated_address_;
1968   // The load address after it has been evaluated.
1969   uint64_t evaluated_load_address_;
1970   // The alignment after it has been evaluated.
1971   uint64_t evaluated_addralign_;
1972   // The output section is relro.
1973   bool is_relro_;
1974   // The output section type if specified.
1975   enum Script_section_type script_section_type_;
1976 };
1977
1978 // Constructor.
1979
1980 Output_section_definition::Output_section_definition(
1981     const char* name,
1982     size_t namelen,
1983     const Parser_output_section_header* header)
1984   : name_(name, namelen),
1985     address_(header->address),
1986     load_address_(header->load_address),
1987     align_(header->align),
1988     subalign_(header->subalign),
1989     constraint_(header->constraint),
1990     fill_(NULL),
1991     phdrs_(NULL),
1992     elements_(),
1993     output_section_(NULL),
1994     evaluated_address_(0),
1995     evaluated_load_address_(0),
1996     evaluated_addralign_(0),
1997     is_relro_(false),
1998     script_section_type_(header->section_type)
1999 {
2000 }
2001
2002 // Finish an output section.
2003
2004 void
2005 Output_section_definition::finish(const Parser_output_section_trailer* trailer)
2006 {
2007   this->fill_ = trailer->fill;
2008   this->phdrs_ = trailer->phdrs;
2009 }
2010
2011 // Add a symbol to be defined.
2012
2013 void
2014 Output_section_definition::add_symbol_assignment(const char* name,
2015                                                  size_t length,
2016                                                  Expression* value,
2017                                                  bool provide,
2018                                                  bool hidden)
2019 {
2020   Output_section_element* p = new Output_section_element_assignment(name,
2021                                                                     length,
2022                                                                     value,
2023                                                                     provide,
2024                                                                     hidden);
2025   this->elements_.push_back(p);
2026 }
2027
2028 // Add an assignment to the special dot symbol.
2029
2030 void
2031 Output_section_definition::add_dot_assignment(Expression* value)
2032 {
2033   Output_section_element* p = new Output_section_element_dot_assignment(value);
2034   this->elements_.push_back(p);
2035 }
2036
2037 // Add an assertion.
2038
2039 void
2040 Output_section_definition::add_assertion(Expression* check,
2041                                          const char* message,
2042                                          size_t messagelen)
2043 {
2044   Output_section_element* p = new Output_section_element_assertion(check,
2045                                                                    message,
2046                                                                    messagelen);
2047   this->elements_.push_back(p);
2048 }
2049
2050 // Add a data item to the current output section.
2051
2052 void
2053 Output_section_definition::add_data(int size, bool is_signed, Expression* val)
2054 {
2055   Output_section_element* p = new Output_section_element_data(size, is_signed,
2056                                                               val);
2057   this->elements_.push_back(p);
2058 }
2059
2060 // Add a setting for the fill value.
2061
2062 void
2063 Output_section_definition::add_fill(Expression* val)
2064 {
2065   Output_section_element* p = new Output_section_element_fill(val);
2066   this->elements_.push_back(p);
2067 }
2068
2069 // Add an input section specification.
2070
2071 void
2072 Output_section_definition::add_input_section(const Input_section_spec* spec,
2073                                              bool keep)
2074 {
2075   Output_section_element* p = new Output_section_element_input(spec, keep);
2076   this->elements_.push_back(p);
2077 }
2078
2079 // Create any required output sections.  We need an output section if
2080 // there is a data statement here.
2081
2082 void
2083 Output_section_definition::create_sections(Layout* layout)
2084 {
2085   if (this->output_section_ != NULL)
2086     return;
2087   for (Output_section_elements::const_iterator p = this->elements_.begin();
2088        p != this->elements_.end();
2089        ++p)
2090     {
2091       if ((*p)->needs_output_section())
2092         {
2093           const char* name = this->name_.c_str();
2094           this->output_section_ =
2095             layout->make_output_section_for_script(name, this->section_type());
2096           return;
2097         }
2098     }
2099 }
2100
2101 // Add any symbols being defined to the symbol table.
2102
2103 void
2104 Output_section_definition::add_symbols_to_table(Symbol_table* symtab)
2105 {
2106   for (Output_section_elements::iterator p = this->elements_.begin();
2107        p != this->elements_.end();
2108        ++p)
2109     (*p)->add_symbols_to_table(symtab);
2110 }
2111
2112 // Finalize symbols and check assertions.
2113
2114 void
2115 Output_section_definition::finalize_symbols(Symbol_table* symtab,
2116                                             const Layout* layout,
2117                                             uint64_t* dot_value)
2118 {
2119   if (this->output_section_ != NULL)
2120     *dot_value = this->output_section_->address();
2121   else
2122     {
2123       uint64_t address = *dot_value;
2124       if (this->address_ != NULL)
2125         {
2126           address = this->address_->eval_with_dot(symtab, layout, true,
2127                                                   *dot_value, NULL,
2128                                                   NULL, NULL, false);
2129         }
2130       if (this->align_ != NULL)
2131         {
2132           uint64_t align = this->align_->eval_with_dot(symtab, layout, true,
2133                                                        *dot_value, NULL,
2134                                                        NULL, NULL, false);
2135           address = align_address(address, align);
2136         }
2137       *dot_value = address;
2138     }
2139
2140   Output_section* dot_section = this->output_section_;
2141   for (Output_section_elements::iterator p = this->elements_.begin();
2142        p != this->elements_.end();
2143        ++p)
2144     (*p)->finalize_symbols(symtab, layout, dot_value, &dot_section);
2145 }
2146
2147 // Return the output section name to use for an input section name.
2148
2149 const char*
2150 Output_section_definition::output_section_name(
2151     const char* file_name,
2152     const char* section_name,
2153     Output_section*** slot,
2154     Script_sections::Section_type* psection_type,
2155     bool* keep)
2156 {
2157   // Ask each element whether it matches NAME.
2158   for (Output_section_elements::const_iterator p = this->elements_.begin();
2159        p != this->elements_.end();
2160        ++p)
2161     {
2162       if ((*p)->match_name(file_name, section_name, keep))
2163         {
2164           // We found a match for NAME, which means that it should go
2165           // into this output section.
2166           *slot = &this->output_section_;
2167           *psection_type = this->section_type();
2168           return this->name_.c_str();
2169         }
2170     }
2171
2172   // We don't know about this section name.
2173   return NULL;
2174 }
2175
2176 // Return true if memory from START to START + LENGTH is contained
2177 // within a memory region.
2178
2179 bool
2180 Script_sections::block_in_region(Symbol_table* symtab, Layout* layout,
2181                                  uint64_t start, uint64_t length) const
2182 {
2183   if (this->memory_regions_ == NULL)
2184     return false;
2185
2186   for (Memory_regions::const_iterator mr = this->memory_regions_->begin();
2187        mr != this->memory_regions_->end();
2188        ++mr)
2189     {
2190       uint64_t s = (*mr)->start_address()->eval(symtab, layout, false);
2191       uint64_t l = (*mr)->length()->eval(symtab, layout, false);
2192
2193       if (s <= start
2194           && (s + l) >= (start + length))
2195         return true;
2196     }
2197
2198   return false;
2199 }
2200
2201 // Find a memory region that should be used by a given output SECTION.
2202 // If provided set PREVIOUS_SECTION_RETURN to point to the last section
2203 // that used the return memory region.
2204
2205 Memory_region*
2206 Script_sections::find_memory_region(
2207     Output_section_definition* section,
2208     bool find_vma_region,
2209     Output_section_definition** previous_section_return)
2210 {
2211   if (previous_section_return != NULL)
2212     * previous_section_return = NULL;
2213
2214   // Walk the memory regions specified in this script, if any.
2215   if (this->memory_regions_ == NULL)
2216     return NULL;
2217
2218   // The /DISCARD/ section never gets assigned to any region.
2219   if (section->get_section_name() == "/DISCARD/")
2220     return NULL;
2221
2222   Memory_region* first_match = NULL;
2223
2224   // First check to see if a region has been assigned to this section.
2225   for (Memory_regions::const_iterator mr = this->memory_regions_->begin();
2226        mr != this->memory_regions_->end();
2227        ++mr)
2228     {
2229       if (find_vma_region)
2230         {
2231           for (Memory_region::Section_list::const_iterator s =
2232                  (*mr)->get_vma_section_list_start();
2233                s != (*mr)->get_vma_section_list_end();
2234                ++s)
2235             if ((*s) == section)
2236               {
2237                 (*mr)->set_last_section(section);
2238                 return *mr;
2239               }
2240         }
2241       else
2242         {
2243           for (Memory_region::Section_list::const_iterator s =
2244                  (*mr)->get_lma_section_list_start();
2245                s != (*mr)->get_lma_section_list_end();
2246                ++s)
2247             if ((*s) == section)
2248               {
2249                 (*mr)->set_last_section(section);
2250                 return *mr;
2251               }
2252         }
2253
2254       // Make a note of the first memory region whose attributes
2255       // are compatible with the section.  If we do not find an
2256       // explicit region assignment, then we will return this region.
2257       Output_section* out_sec = section->get_output_section();
2258       if (first_match == NULL
2259           && out_sec != NULL
2260           && (*mr)->attributes_compatible(out_sec->flags(),
2261                                           out_sec->type()))
2262         first_match = *mr;
2263     }
2264
2265   // With LMA computations, if an explicit region has not been specified then
2266   // we will want to set the difference between the VMA and the LMA of the
2267   // section were searching for to be the same as the difference between the
2268   // VMA and LMA of the last section to be added to first matched region.
2269   // Hence, if it was asked for, we return a pointer to the last section
2270   // known to be used by the first matched region.
2271   if (first_match != NULL
2272       && previous_section_return != NULL)
2273     *previous_section_return = first_match->get_last_section();
2274
2275   return first_match;
2276 }
2277
2278 // Set the section address.  Note that the OUTPUT_SECTION_ field will
2279 // be NULL if no input sections were mapped to this output section.
2280 // We still have to adjust dot and process symbol assignments.
2281
2282 void
2283 Output_section_definition::set_section_addresses(Symbol_table* symtab,
2284                                                  Layout* layout,
2285                                                  uint64_t* dot_value,
2286                                                  uint64_t* dot_alignment,
2287                                                  uint64_t* load_address)
2288 {
2289   Memory_region* vma_region = NULL;
2290   Memory_region* lma_region = NULL;
2291   Script_sections* script_sections =
2292     layout->script_options()->script_sections();
2293   uint64_t address;
2294   uint64_t old_dot_value = *dot_value;
2295   uint64_t old_load_address = *load_address;
2296
2297   // If input section sorting is requested via --section-ordering-file or
2298   // linker plugins, then do it here.  This is important because we want 
2299   // any sorting specified in the linker scripts, which will be done after
2300   // this, to take precedence.  The final order of input sections is then 
2301   // guaranteed to be according to the linker script specification.
2302   if (this->output_section_ != NULL
2303       && this->output_section_->input_section_order_specified())
2304     this->output_section_->sort_attached_input_sections();
2305
2306   // Decide the start address for the section.  The algorithm is:
2307   // 1) If an address has been specified in a linker script, use that.
2308   // 2) Otherwise if a memory region has been specified for the section,
2309   //    use the next free address in the region.
2310   // 3) Otherwise if memory regions have been specified find the first
2311   //    region whose attributes are compatible with this section and
2312   //    install it into that region.
2313   // 4) Otherwise use the current location counter.
2314
2315   if (this->output_section_ != NULL
2316       // Check for --section-start.
2317       && parameters->options().section_start(this->output_section_->name(),
2318                                              &address))
2319     ;
2320   else if (this->address_ == NULL)
2321     {
2322       vma_region = script_sections->find_memory_region(this, true, NULL);
2323
2324       if (vma_region != NULL)
2325         address = vma_region->get_current_address()->eval(symtab, layout,
2326                                                           false);
2327       else
2328         address = *dot_value;
2329     }
2330   else
2331     address = this->address_->eval_with_dot(symtab, layout, true,
2332                                             *dot_value, NULL, NULL,
2333                                             dot_alignment, false);
2334   uint64_t align;
2335   if (this->align_ == NULL)
2336     {
2337       if (this->output_section_ == NULL)
2338         align = 0;
2339       else
2340         align = this->output_section_->addralign();
2341     }
2342   else
2343     {
2344       Output_section* align_section;
2345       align = this->align_->eval_with_dot(symtab, layout, true, *dot_value,
2346                                           NULL, &align_section, NULL, false);
2347       if (align_section != NULL)
2348         gold_warning(_("alignment of section %s is not absolute"),
2349                      this->name_.c_str());
2350       if (this->output_section_ != NULL)
2351         this->output_section_->set_addralign(align);
2352     }
2353
2354   address = align_address(address, align);
2355
2356   uint64_t start_address = address;
2357
2358   *dot_value = address;
2359
2360   // Except for NOLOAD sections, the address of non-SHF_ALLOC sections is
2361   // forced to zero, regardless of what the linker script wants.
2362   if (this->output_section_ != NULL
2363       && ((this->output_section_->flags() & elfcpp::SHF_ALLOC) != 0
2364           || this->output_section_->is_noload()))
2365     this->output_section_->set_address(address);
2366
2367   this->evaluated_address_ = address;
2368   this->evaluated_addralign_ = align;
2369
2370   uint64_t laddr;
2371
2372   if (this->load_address_ == NULL)
2373     {
2374       Output_section_definition* previous_section;
2375
2376       // Determine if an LMA region has been set for this section.
2377       lma_region = script_sections->find_memory_region(this, false,
2378                                                        &previous_section);
2379
2380       if (lma_region != NULL)
2381         {
2382           if (previous_section == NULL)
2383             // The LMA address was explicitly set to the given region.
2384             laddr = lma_region->get_current_address()->eval(symtab, layout,
2385                                                             false);
2386           else 
2387             {
2388               // We are not going to use the discovered lma_region, so
2389               // make sure that we do not update it in the code below.
2390               lma_region = NULL;
2391
2392               if (this->address_ != NULL || previous_section == this)
2393                 {
2394                   // Either an explicit VMA address has been set, or an
2395                   // explicit VMA region has been set, so set the LMA equal to
2396                   // the VMA.
2397                   laddr = address;
2398                 }
2399               else
2400                 {
2401                   // The LMA address was not explicitly or implicitly set.
2402                   //
2403                   // We have been given the first memory region that is
2404                   // compatible with the current section and a pointer to the
2405                   // last section to use this region.  Set the LMA of this
2406                   // section so that the difference between its' VMA and LMA
2407                   // is the same as the difference between the VMA and LMA of
2408                   // the last section in the given region.
2409                   laddr = address + (previous_section->evaluated_load_address_
2410                                      - previous_section->evaluated_address_);
2411                 }
2412             }
2413
2414           if (this->output_section_ != NULL)
2415             this->output_section_->set_load_address(laddr);
2416         }
2417       else
2418         {
2419           // Do not set the load address of the output section, if one exists.
2420           // This allows future sections to determine what the load address
2421           // should be.  If none is ever set, it will default to being the
2422           // same as the vma address.
2423           laddr = address;
2424         }
2425     }
2426   else
2427     {
2428       laddr = this->load_address_->eval_with_dot(symtab, layout, true,
2429                                                  *dot_value,
2430                                                  this->output_section_,
2431                                                  NULL, NULL, false);
2432       if (this->output_section_ != NULL)
2433         this->output_section_->set_load_address(laddr);
2434     }
2435
2436   this->evaluated_load_address_ = laddr;
2437
2438   uint64_t subalign;
2439   if (this->subalign_ == NULL)
2440     subalign = 0;
2441   else
2442     {
2443       Output_section* subalign_section;
2444       subalign = this->subalign_->eval_with_dot(symtab, layout, true,
2445                                                 *dot_value, NULL,
2446                                                 &subalign_section, NULL,
2447                                                 false);
2448       if (subalign_section != NULL)
2449         gold_warning(_("subalign of section %s is not absolute"),
2450                      this->name_.c_str());
2451     }
2452
2453   std::string fill;
2454   if (this->fill_ != NULL)
2455     {
2456       // FIXME: The GNU linker supports fill values of arbitrary
2457       // length.
2458       Output_section* fill_section;
2459       uint64_t fill_val = this->fill_->eval_with_dot(symtab, layout, true,
2460                                                      *dot_value,
2461                                                      NULL, &fill_section,
2462                                                      NULL, false);
2463       if (fill_section != NULL)
2464         gold_warning(_("fill of section %s is not absolute"),
2465                      this->name_.c_str());
2466       unsigned char fill_buff[4];
2467       elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
2468       fill.assign(reinterpret_cast<char*>(fill_buff), 4);
2469     }
2470
2471   Input_section_list input_sections;
2472   if (this->output_section_ != NULL)
2473     {
2474       // Get the list of input sections attached to this output
2475       // section.  This will leave the output section with only
2476       // Output_section_data entries.
2477       address += this->output_section_->get_input_sections(address,
2478                                                            fill,
2479                                                            &input_sections);
2480       *dot_value = address;
2481     }
2482
2483   Output_section* dot_section = this->output_section_;
2484   for (Output_section_elements::iterator p = this->elements_.begin();
2485        p != this->elements_.end();
2486        ++p)
2487     (*p)->set_section_addresses(symtab, layout, this->output_section_,
2488                                 subalign, dot_value, dot_alignment,
2489                                 &dot_section, &fill, &input_sections);
2490
2491   gold_assert(input_sections.empty());
2492
2493   if (vma_region != NULL)
2494     {
2495       // Update the VMA region being used by the section now that we know how
2496       // big it is.  Use the current address in the region, rather than
2497       // start_address because that might have been aligned upwards and we
2498       // need to allow for the padding.
2499       Expression* addr = vma_region->get_current_address();
2500       uint64_t size = *dot_value - addr->eval(symtab, layout, false);
2501
2502       vma_region->increment_offset(this->get_section_name(), size,
2503                                    symtab, layout);
2504     }
2505
2506   // If the LMA region is different from the VMA region, then increment the
2507   // offset there as well.  Note that we use the same "dot_value -
2508   // start_address" formula that is used in the load_address assignment below.
2509   if (lma_region != NULL && lma_region != vma_region)
2510     lma_region->increment_offset(this->get_section_name(),
2511                                  *dot_value - start_address,
2512                                  symtab, layout);
2513
2514   // Compute the load address for the following section.
2515   if (this->output_section_ == NULL)
2516     *load_address = *dot_value;
2517   else if (this->load_address_ == NULL)
2518     {
2519       if (lma_region == NULL)
2520         *load_address = *dot_value;
2521       else
2522         *load_address =
2523           lma_region->get_current_address()->eval(symtab, layout, false);
2524     }
2525   else
2526     *load_address = (this->output_section_->load_address()
2527                      + (*dot_value - start_address));
2528
2529   if (this->output_section_ != NULL)
2530     {
2531       if (this->is_relro_)
2532         this->output_section_->set_is_relro();
2533       else
2534         this->output_section_->clear_is_relro();
2535
2536       // If this is a NOLOAD section, keep dot and load address unchanged.
2537       if (this->output_section_->is_noload())
2538         {
2539           *dot_value = old_dot_value;
2540           *load_address = old_load_address;
2541         }
2542     }
2543 }
2544
2545 // Check a constraint (ONLY_IF_RO, etc.) on an output section.  If
2546 // this section is constrained, and the input sections do not match,
2547 // return the constraint, and set *POSD.
2548
2549 Section_constraint
2550 Output_section_definition::check_constraint(Output_section_definition** posd)
2551 {
2552   switch (this->constraint_)
2553     {
2554     case CONSTRAINT_NONE:
2555       return CONSTRAINT_NONE;
2556
2557     case CONSTRAINT_ONLY_IF_RO:
2558       if (this->output_section_ != NULL
2559           && (this->output_section_->flags() & elfcpp::SHF_WRITE) != 0)
2560         {
2561           *posd = this;
2562           return CONSTRAINT_ONLY_IF_RO;
2563         }
2564       return CONSTRAINT_NONE;
2565
2566     case CONSTRAINT_ONLY_IF_RW:
2567       if (this->output_section_ != NULL
2568           && (this->output_section_->flags() & elfcpp::SHF_WRITE) == 0)
2569         {
2570           *posd = this;
2571           return CONSTRAINT_ONLY_IF_RW;
2572         }
2573       return CONSTRAINT_NONE;
2574
2575     case CONSTRAINT_SPECIAL:
2576       if (this->output_section_ != NULL)
2577         gold_error(_("SPECIAL constraints are not implemented"));
2578       return CONSTRAINT_NONE;
2579
2580     default:
2581       gold_unreachable();
2582     }
2583 }
2584
2585 // See if this is the alternate output section for a constrained
2586 // output section.  If it is, transfer the Output_section and return
2587 // true.  Otherwise return false.
2588
2589 bool
2590 Output_section_definition::alternate_constraint(
2591     Output_section_definition* posd,
2592     Section_constraint constraint)
2593 {
2594   if (this->name_ != posd->name_)
2595     return false;
2596
2597   switch (constraint)
2598     {
2599     case CONSTRAINT_ONLY_IF_RO:
2600       if (this->constraint_ != CONSTRAINT_ONLY_IF_RW)
2601         return false;
2602       break;
2603
2604     case CONSTRAINT_ONLY_IF_RW:
2605       if (this->constraint_ != CONSTRAINT_ONLY_IF_RO)
2606         return false;
2607       break;
2608
2609     default:
2610       gold_unreachable();
2611     }
2612
2613   // We have found the alternate constraint.  We just need to move
2614   // over the Output_section.  When constraints are used properly,
2615   // THIS should not have an output_section pointer, as all the input
2616   // sections should have matched the other definition.
2617
2618   if (this->output_section_ != NULL)
2619     gold_error(_("mismatched definition for constrained sections"));
2620
2621   this->output_section_ = posd->output_section_;
2622   posd->output_section_ = NULL;
2623
2624   if (this->is_relro_)
2625     this->output_section_->set_is_relro();
2626   else
2627     this->output_section_->clear_is_relro();
2628
2629   return true;
2630 }
2631
2632 // Get the list of segments to use for an allocated section when using
2633 // a PHDRS clause.
2634
2635 Output_section*
2636 Output_section_definition::allocate_to_segment(String_list** phdrs_list,
2637                                                bool* orphan)
2638 {
2639   // Update phdrs_list even if we don't have an output section. It
2640   // might be used by the following sections.
2641   if (this->phdrs_ != NULL)
2642     *phdrs_list = this->phdrs_;
2643
2644   if (this->output_section_ == NULL)
2645     return NULL;
2646   if ((this->output_section_->flags() & elfcpp::SHF_ALLOC) == 0)
2647     return NULL;
2648   *orphan = false;
2649   return this->output_section_;
2650 }
2651
2652 // Look for an output section by name and return the address, the load
2653 // address, the alignment, and the size.  This is used when an
2654 // expression refers to an output section which was not actually
2655 // created.  This returns true if the section was found, false
2656 // otherwise.
2657
2658 bool
2659 Output_section_definition::get_output_section_info(const char* name,
2660                                                    uint64_t* address,
2661                                                    uint64_t* load_address,
2662                                                    uint64_t* addralign,
2663                                                    uint64_t* size) const
2664 {
2665   if (this->name_ != name)
2666     return false;
2667
2668   if (this->output_section_ != NULL)
2669     {
2670       *address = this->output_section_->address();
2671       if (this->output_section_->has_load_address())
2672         *load_address = this->output_section_->load_address();
2673       else
2674         *load_address = *address;
2675       *addralign = this->output_section_->addralign();
2676       *size = this->output_section_->current_data_size();
2677     }
2678   else
2679     {
2680       *address = this->evaluated_address_;
2681       *load_address = this->evaluated_load_address_;
2682       *addralign = this->evaluated_addralign_;
2683       *size = 0;
2684     }
2685
2686   return true;
2687 }
2688
2689 // Print for debugging.
2690
2691 void
2692 Output_section_definition::print(FILE* f) const
2693 {
2694   fprintf(f, "  %s ", this->name_.c_str());
2695
2696   if (this->address_ != NULL)
2697     {
2698       this->address_->print(f);
2699       fprintf(f, " ");
2700     }
2701
2702   if (this->script_section_type_ != SCRIPT_SECTION_TYPE_NONE)
2703       fprintf(f, "(%s) ",
2704               this->script_section_type_name(this->script_section_type_));
2705
2706   fprintf(f, ": ");
2707
2708   if (this->load_address_ != NULL)
2709     {
2710       fprintf(f, "AT(");
2711       this->load_address_->print(f);
2712       fprintf(f, ") ");
2713     }
2714
2715   if (this->align_ != NULL)
2716     {
2717       fprintf(f, "ALIGN(");
2718       this->align_->print(f);
2719       fprintf(f, ") ");
2720     }
2721
2722   if (this->subalign_ != NULL)
2723     {
2724       fprintf(f, "SUBALIGN(");
2725       this->subalign_->print(f);
2726       fprintf(f, ") ");
2727     }
2728
2729   fprintf(f, "{\n");
2730
2731   for (Output_section_elements::const_iterator p = this->elements_.begin();
2732        p != this->elements_.end();
2733        ++p)
2734     (*p)->print(f);
2735
2736   fprintf(f, "  }");
2737
2738   if (this->fill_ != NULL)
2739     {
2740       fprintf(f, " = ");
2741       this->fill_->print(f);
2742     }
2743
2744   if (this->phdrs_ != NULL)
2745     {
2746       for (String_list::const_iterator p = this->phdrs_->begin();
2747            p != this->phdrs_->end();
2748            ++p)
2749         fprintf(f, " :%s", p->c_str());
2750     }
2751
2752   fprintf(f, "\n");
2753 }
2754
2755 Script_sections::Section_type
2756 Output_section_definition::section_type() const
2757 {
2758   switch (this->script_section_type_)
2759     {
2760     case SCRIPT_SECTION_TYPE_NONE:
2761       return Script_sections::ST_NONE;
2762     case SCRIPT_SECTION_TYPE_NOLOAD:
2763       return Script_sections::ST_NOLOAD;
2764     case SCRIPT_SECTION_TYPE_COPY:
2765     case SCRIPT_SECTION_TYPE_DSECT:
2766     case SCRIPT_SECTION_TYPE_INFO:
2767     case SCRIPT_SECTION_TYPE_OVERLAY:
2768       // There are not really support so we treat them as ST_NONE.  The
2769       // parse should have issued errors for them already.
2770       return Script_sections::ST_NONE;
2771     default:
2772       gold_unreachable();
2773     }
2774 }
2775
2776 // Return the name of a script section type.
2777
2778 const char*
2779 Output_section_definition::script_section_type_name(
2780     Script_section_type script_section_type)
2781 {
2782   switch (script_section_type)
2783     {
2784     case SCRIPT_SECTION_TYPE_NONE:
2785       return "NONE";
2786     case SCRIPT_SECTION_TYPE_NOLOAD:
2787       return "NOLOAD";
2788     case SCRIPT_SECTION_TYPE_DSECT:
2789       return "DSECT";
2790     case SCRIPT_SECTION_TYPE_COPY:
2791       return "COPY";
2792     case SCRIPT_SECTION_TYPE_INFO:
2793       return "INFO";
2794     case SCRIPT_SECTION_TYPE_OVERLAY:
2795       return "OVERLAY";
2796     default:
2797       gold_unreachable();
2798     }
2799 }
2800
2801 void
2802 Output_section_definition::set_memory_region(Memory_region* mr, bool set_vma)
2803 {
2804   gold_assert(mr != NULL);
2805   // Add the current section to the specified region's list.
2806   mr->add_section(this, set_vma);
2807 }
2808
2809 // An output section created to hold orphaned input sections.  These
2810 // do not actually appear in linker scripts.  However, for convenience
2811 // when setting the output section addresses, we put a marker to these
2812 // sections in the appropriate place in the list of SECTIONS elements.
2813
2814 class Orphan_output_section : public Sections_element
2815 {
2816  public:
2817   Orphan_output_section(Output_section* os)
2818     : os_(os)
2819   { }
2820
2821   // Return whether the orphan output section is relro.  We can just
2822   // check the output section because we always set the flag, if
2823   // needed, just after we create the Orphan_output_section.
2824   bool
2825   is_relro() const
2826   { return this->os_->is_relro(); }
2827
2828   // Initialize OSP with an output section.  This should have been
2829   // done already.
2830   void
2831   orphan_section_init(Orphan_section_placement*,
2832                       Script_sections::Elements_iterator)
2833   { gold_unreachable(); }
2834
2835   // Set section addresses.
2836   void
2837   set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*,
2838                         uint64_t*);
2839
2840   // Get the list of segments to use for an allocated section when
2841   // using a PHDRS clause.
2842   Output_section*
2843   allocate_to_segment(String_list**, bool*);
2844
2845   // Return the associated Output_section.
2846   Output_section*
2847   get_output_section() const
2848   { return this->os_; }
2849
2850   // Print for debugging.
2851   void
2852   print(FILE* f) const
2853   {
2854     fprintf(f, "  marker for orphaned output section %s\n",
2855             this->os_->name());
2856   }
2857
2858  private:
2859   Output_section* os_;
2860 };
2861
2862 // Set section addresses.
2863
2864 void
2865 Orphan_output_section::set_section_addresses(Symbol_table*, Layout*,
2866                                              uint64_t* dot_value,
2867                                              uint64_t*,
2868                                              uint64_t* load_address)
2869 {
2870   typedef std::list<Output_section::Input_section> Input_section_list;
2871
2872   bool have_load_address = *load_address != *dot_value;
2873
2874   uint64_t address = *dot_value;
2875   address = align_address(address, this->os_->addralign());
2876
2877   // If input section sorting is requested via --section-ordering-file or
2878   // linker plugins, then do it here.  This is important because we want 
2879   // any sorting specified in the linker scripts, which will be done after
2880   // this, to take precedence.  The final order of input sections is then 
2881   // guaranteed to be according to the linker script specification.
2882   if (this->os_ != NULL
2883       && this->os_->input_section_order_specified())
2884     this->os_->sort_attached_input_sections();
2885
2886   // For a relocatable link, all orphan sections are put at
2887   // address 0.  In general we expect all sections to be at
2888   // address 0 for a relocatable link, but we permit the linker
2889   // script to override that for specific output sections.
2890   if (parameters->options().relocatable())
2891     {
2892       address = 0;
2893       *load_address = 0;
2894       have_load_address = false;
2895     }
2896
2897   if ((this->os_->flags() & elfcpp::SHF_ALLOC) != 0)
2898     {
2899       this->os_->set_address(address);
2900       if (have_load_address)
2901         this->os_->set_load_address(align_address(*load_address,
2902                                                   this->os_->addralign()));
2903     }
2904
2905   Input_section_list input_sections;
2906   address += this->os_->get_input_sections(address, "", &input_sections);
2907
2908   for (Input_section_list::iterator p = input_sections.begin();
2909        p != input_sections.end();
2910        ++p)
2911     {
2912       uint64_t addralign = p->addralign();
2913       if (!p->is_input_section())
2914         p->output_section_data()->finalize_data_size(); 
2915       uint64_t size = p->data_size();
2916       address = align_address(address, addralign);
2917       this->os_->add_script_input_section(*p);
2918       address += size;
2919     }
2920
2921   if (parameters->options().relocatable())
2922     {
2923       // For a relocatable link, reset DOT_VALUE to 0.
2924       *dot_value = 0;
2925       *load_address = 0;
2926     }
2927   else if (this->os_ == NULL
2928            || (this->os_->flags() & elfcpp::SHF_TLS) == 0
2929            || this->os_->type() != elfcpp::SHT_NOBITS)
2930     {
2931       // An SHF_TLS/SHT_NOBITS section does not take up any address space.
2932       if (!have_load_address)
2933         *load_address = address;
2934       else
2935         *load_address += address - *dot_value;
2936
2937       *dot_value = address;
2938     }
2939 }
2940
2941 // Get the list of segments to use for an allocated section when using
2942 // a PHDRS clause.  If this is an allocated section, return the
2943 // Output_section.  We don't change the list of segments.
2944
2945 Output_section*
2946 Orphan_output_section::allocate_to_segment(String_list**, bool* orphan)
2947 {
2948   if ((this->os_->flags() & elfcpp::SHF_ALLOC) == 0)
2949     return NULL;
2950   *orphan = true;
2951   return this->os_;
2952 }
2953
2954 // Class Phdrs_element.  A program header from a PHDRS clause.
2955
2956 class Phdrs_element
2957 {
2958  public:
2959   Phdrs_element(const char* name, size_t namelen, unsigned int type,
2960                 bool includes_filehdr, bool includes_phdrs,
2961                 bool is_flags_valid, unsigned int flags,
2962                 Expression* load_address)
2963     : name_(name, namelen), type_(type), includes_filehdr_(includes_filehdr),
2964       includes_phdrs_(includes_phdrs), is_flags_valid_(is_flags_valid),
2965       flags_(flags), load_address_(load_address), load_address_value_(0),
2966       segment_(NULL)
2967   { }
2968
2969   // Return the name of this segment.
2970   const std::string&
2971   name() const
2972   { return this->name_; }
2973
2974   // Return the type of the segment.
2975   unsigned int
2976   type() const
2977   { return this->type_; }
2978
2979   // Whether to include the file header.
2980   bool
2981   includes_filehdr() const
2982   { return this->includes_filehdr_; }
2983
2984   // Whether to include the program headers.
2985   bool
2986   includes_phdrs() const
2987   { return this->includes_phdrs_; }
2988
2989   // Return whether there is a load address.
2990   bool
2991   has_load_address() const
2992   { return this->load_address_ != NULL; }
2993
2994   // Evaluate the load address expression if there is one.
2995   void
2996   eval_load_address(Symbol_table* symtab, Layout* layout)
2997   {
2998     if (this->load_address_ != NULL)
2999       this->load_address_value_ = this->load_address_->eval(symtab, layout,
3000                                                             true);
3001   }
3002
3003   // Return the load address.
3004   uint64_t
3005   load_address() const
3006   {
3007     gold_assert(this->load_address_ != NULL);
3008     return this->load_address_value_;
3009   }
3010
3011   // Create the segment.
3012   Output_segment*
3013   create_segment(Layout* layout)
3014   {
3015     this->segment_ = layout->make_output_segment(this->type_, this->flags_);
3016     return this->segment_;
3017   }
3018
3019   // Return the segment.
3020   Output_segment*
3021   segment()
3022   { return this->segment_; }
3023
3024   // Release the segment.
3025   void
3026   release_segment()
3027   { this->segment_ = NULL; }
3028
3029   // Set the segment flags if appropriate.
3030   void
3031   set_flags_if_valid()
3032   {
3033     if (this->is_flags_valid_)
3034       this->segment_->set_flags(this->flags_);
3035   }
3036
3037   // Print for debugging.
3038   void
3039   print(FILE*) const;
3040
3041  private:
3042   // The name used in the script.
3043   std::string name_;
3044   // The type of the segment (PT_LOAD, etc.).
3045   unsigned int type_;
3046   // Whether this segment includes the file header.
3047   bool includes_filehdr_;
3048   // Whether this segment includes the section headers.
3049   bool includes_phdrs_;
3050   // Whether the flags were explicitly specified.
3051   bool is_flags_valid_;
3052   // The flags for this segment (PF_R, etc.) if specified.
3053   unsigned int flags_;
3054   // The expression for the load address for this segment.  This may
3055   // be NULL.
3056   Expression* load_address_;
3057   // The actual load address from evaluating the expression.
3058   uint64_t load_address_value_;
3059   // The segment itself.
3060   Output_segment* segment_;
3061 };
3062
3063 // Print for debugging.
3064
3065 void
3066 Phdrs_element::print(FILE* f) const
3067 {
3068   fprintf(f, "  %s 0x%x", this->name_.c_str(), this->type_);
3069   if (this->includes_filehdr_)
3070     fprintf(f, " FILEHDR");
3071   if (this->includes_phdrs_)
3072     fprintf(f, " PHDRS");
3073   if (this->is_flags_valid_)
3074     fprintf(f, " FLAGS(%u)", this->flags_);
3075   if (this->load_address_ != NULL)
3076     {
3077       fprintf(f, " AT(");
3078       this->load_address_->print(f);
3079       fprintf(f, ")");
3080     }
3081   fprintf(f, ";\n");
3082 }
3083
3084 // Add a memory region.
3085
3086 void
3087 Script_sections::add_memory_region(const char* name, size_t namelen,
3088                                    unsigned int attributes,
3089                                    Expression* start, Expression* length)
3090 {
3091   if (this->memory_regions_ == NULL)
3092     this->memory_regions_ = new Memory_regions();
3093   else if (this->find_memory_region(name, namelen))
3094     {
3095       gold_error(_("region '%.*s' already defined"), static_cast<int>(namelen),
3096                   name);
3097       // FIXME: Add a GOLD extension to allow multiple regions with the same
3098       // name.  This would amount to a single region covering disjoint blocks
3099       // of memory, which is useful for embedded devices.
3100     }
3101
3102   // FIXME: Check the length and start values.  Currently we allow
3103   // non-constant expressions for these values, whereas LD does not.
3104
3105   // FIXME: Add a GOLD extension to allow NEGATIVE LENGTHS.  This would
3106   // describe a region that packs from the end address going down, rather
3107   // than the start address going up.  This would be useful for embedded
3108   // devices.
3109
3110   this->memory_regions_->push_back(new Memory_region(name, namelen, attributes,
3111                                                      start, length));
3112 }
3113
3114 // Find a memory region.
3115
3116 Memory_region*
3117 Script_sections::find_memory_region(const char* name, size_t namelen)
3118 {
3119   if (this->memory_regions_ == NULL)
3120     return NULL;
3121
3122   for (Memory_regions::const_iterator m = this->memory_regions_->begin();
3123        m != this->memory_regions_->end();
3124        ++m)
3125     if ((*m)->name_match(name, namelen))
3126       return *m;
3127
3128   return NULL;
3129 }
3130
3131 // Find a memory region's origin.
3132
3133 Expression*
3134 Script_sections::find_memory_region_origin(const char* name, size_t namelen)
3135 {
3136   Memory_region* mr = find_memory_region(name, namelen);
3137   if (mr == NULL)
3138     return NULL;
3139
3140   return mr->start_address();
3141 }
3142
3143 // Find a memory region's length.
3144
3145 Expression*
3146 Script_sections::find_memory_region_length(const char* name, size_t namelen)
3147 {
3148   Memory_region* mr = find_memory_region(name, namelen);
3149   if (mr == NULL)
3150     return NULL;
3151
3152   return mr->length();
3153 }
3154
3155 // Set the memory region to use for the current section.
3156
3157 void
3158 Script_sections::set_memory_region(Memory_region* mr, bool set_vma)
3159 {
3160   gold_assert(!this->sections_elements_->empty());
3161   this->sections_elements_->back()->set_memory_region(mr, set_vma);
3162 }
3163
3164 // Class Script_sections.
3165
3166 Script_sections::Script_sections()
3167   : saw_sections_clause_(false),
3168     in_sections_clause_(false),
3169     sections_elements_(NULL),
3170     output_section_(NULL),
3171     memory_regions_(NULL),
3172     phdrs_elements_(NULL),
3173     orphan_section_placement_(NULL),
3174     data_segment_align_start_(),
3175     saw_data_segment_align_(false),
3176     saw_relro_end_(false),
3177     saw_segment_start_expression_(false)
3178 {
3179 }
3180
3181 // Start a SECTIONS clause.
3182
3183 void
3184 Script_sections::start_sections()
3185 {
3186   gold_assert(!this->in_sections_clause_ && this->output_section_ == NULL);
3187   this->saw_sections_clause_ = true;
3188   this->in_sections_clause_ = true;
3189   if (this->sections_elements_ == NULL)
3190     this->sections_elements_ = new Sections_elements;
3191 }
3192
3193 // Finish a SECTIONS clause.
3194
3195 void
3196 Script_sections::finish_sections()
3197 {
3198   gold_assert(this->in_sections_clause_ && this->output_section_ == NULL);
3199   this->in_sections_clause_ = false;
3200 }
3201
3202 // Add a symbol to be defined.
3203
3204 void
3205 Script_sections::add_symbol_assignment(const char* name, size_t length,
3206                                        Expression* val, bool provide,
3207                                        bool hidden)
3208 {
3209   if (this->output_section_ != NULL)
3210     this->output_section_->add_symbol_assignment(name, length, val,
3211                                                  provide, hidden);
3212   else
3213     {
3214       Sections_element* p = new Sections_element_assignment(name, length,
3215                                                             val, provide,
3216                                                             hidden);
3217       this->sections_elements_->push_back(p);
3218     }
3219 }
3220
3221 // Add an assignment to the special dot symbol.
3222
3223 void
3224 Script_sections::add_dot_assignment(Expression* val)
3225 {
3226   if (this->output_section_ != NULL)
3227     this->output_section_->add_dot_assignment(val);
3228   else
3229     {
3230       // The GNU linker permits assignments to . to appears outside of
3231       // a SECTIONS clause, and treats it as appearing inside, so
3232       // sections_elements_ may be NULL here.
3233       if (this->sections_elements_ == NULL)
3234         {
3235           this->sections_elements_ = new Sections_elements;
3236           this->saw_sections_clause_ = true;
3237         }
3238
3239       Sections_element* p = new Sections_element_dot_assignment(val);
3240       this->sections_elements_->push_back(p);
3241     }
3242 }
3243
3244 // Add an assertion.
3245
3246 void
3247 Script_sections::add_assertion(Expression* check, const char* message,
3248                                size_t messagelen)
3249 {
3250   if (this->output_section_ != NULL)
3251     this->output_section_->add_assertion(check, message, messagelen);
3252   else
3253     {
3254       Sections_element* p = new Sections_element_assertion(check, message,
3255                                                            messagelen);
3256       this->sections_elements_->push_back(p);
3257     }
3258 }
3259
3260 // Start processing entries for an output section.
3261
3262 void
3263 Script_sections::start_output_section(
3264     const char* name,
3265     size_t namelen,
3266     const Parser_output_section_header* header)
3267 {
3268   Output_section_definition* posd = new Output_section_definition(name,
3269                                                                   namelen,
3270                                                                   header);
3271   this->sections_elements_->push_back(posd);
3272   gold_assert(this->output_section_ == NULL);
3273   this->output_section_ = posd;
3274 }
3275
3276 // Stop processing entries for an output section.
3277
3278 void
3279 Script_sections::finish_output_section(
3280     const Parser_output_section_trailer* trailer)
3281 {
3282   gold_assert(this->output_section_ != NULL);
3283   this->output_section_->finish(trailer);
3284   this->output_section_ = NULL;
3285 }
3286
3287 // Add a data item to the current output section.
3288
3289 void
3290 Script_sections::add_data(int size, bool is_signed, Expression* val)
3291 {
3292   gold_assert(this->output_section_ != NULL);
3293   this->output_section_->add_data(size, is_signed, val);
3294 }
3295
3296 // Add a fill value setting to the current output section.
3297
3298 void
3299 Script_sections::add_fill(Expression* val)
3300 {
3301   gold_assert(this->output_section_ != NULL);
3302   this->output_section_->add_fill(val);
3303 }
3304
3305 // Add an input section specification to the current output section.
3306
3307 void
3308 Script_sections::add_input_section(const Input_section_spec* spec, bool keep)
3309 {
3310   gold_assert(this->output_section_ != NULL);
3311   this->output_section_->add_input_section(spec, keep);
3312 }
3313
3314 // This is called when we see DATA_SEGMENT_ALIGN.  It means that any
3315 // subsequent output sections may be relro.
3316
3317 void
3318 Script_sections::data_segment_align()
3319 {
3320   if (this->saw_data_segment_align_)
3321     gold_error(_("DATA_SEGMENT_ALIGN may only appear once in a linker script"));
3322   gold_assert(!this->sections_elements_->empty());
3323   Sections_elements::iterator p = this->sections_elements_->end();
3324   --p;
3325   this->data_segment_align_start_ = p;
3326   this->saw_data_segment_align_ = true;
3327 }
3328
3329 // This is called when we see DATA_SEGMENT_RELRO_END.  It means that
3330 // any output sections seen since DATA_SEGMENT_ALIGN are relro.
3331
3332 void
3333 Script_sections::data_segment_relro_end()
3334 {
3335   if (this->saw_relro_end_)
3336     gold_error(_("DATA_SEGMENT_RELRO_END may only appear once "
3337                  "in a linker script"));
3338   this->saw_relro_end_ = true;
3339
3340   if (!this->saw_data_segment_align_)
3341     gold_error(_("DATA_SEGMENT_RELRO_END must follow DATA_SEGMENT_ALIGN"));
3342   else
3343     {
3344       Sections_elements::iterator p = this->data_segment_align_start_;
3345       for (++p; p != this->sections_elements_->end(); ++p)
3346         (*p)->set_is_relro();
3347     }
3348 }
3349
3350 // Create any required sections.
3351
3352 void
3353 Script_sections::create_sections(Layout* layout)
3354 {
3355   if (!this->saw_sections_clause_)
3356     return;
3357   for (Sections_elements::iterator p = this->sections_elements_->begin();
3358        p != this->sections_elements_->end();
3359        ++p)
3360     (*p)->create_sections(layout);
3361 }
3362
3363 // Add any symbols we are defining to the symbol table.
3364
3365 void
3366 Script_sections::add_symbols_to_table(Symbol_table* symtab)
3367 {
3368   if (!this->saw_sections_clause_)
3369     return;
3370   for (Sections_elements::iterator p = this->sections_elements_->begin();
3371        p != this->sections_elements_->end();
3372        ++p)
3373     (*p)->add_symbols_to_table(symtab);
3374 }
3375
3376 // Finalize symbols and check assertions.
3377
3378 void
3379 Script_sections::finalize_symbols(Symbol_table* symtab, const Layout* layout)
3380 {
3381   if (!this->saw_sections_clause_)
3382     return;
3383   uint64_t dot_value = 0;
3384   for (Sections_elements::iterator p = this->sections_elements_->begin();
3385        p != this->sections_elements_->end();
3386        ++p)
3387     (*p)->finalize_symbols(symtab, layout, &dot_value);
3388 }
3389
3390 // Return the name of the output section to use for an input file name
3391 // and section name.
3392
3393 const char*
3394 Script_sections::output_section_name(
3395     const char* file_name,
3396     const char* section_name,
3397     Output_section*** output_section_slot,
3398     Script_sections::Section_type* psection_type,
3399     bool* keep)
3400 {
3401   for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3402        p != this->sections_elements_->end();
3403        ++p)
3404     {
3405       const char* ret = (*p)->output_section_name(file_name, section_name,
3406                                                   output_section_slot,
3407                                                   psection_type, keep);
3408
3409       if (ret != NULL)
3410         {
3411           // The special name /DISCARD/ means that the input section
3412           // should be discarded.
3413           if (strcmp(ret, "/DISCARD/") == 0)
3414             {
3415               *output_section_slot = NULL;
3416               *psection_type = Script_sections::ST_NONE;
3417               return NULL;
3418             }
3419           return ret;
3420         }
3421     }
3422
3423   // If we couldn't find a mapping for the name, the output section
3424   // gets the name of the input section.
3425
3426   *output_section_slot = NULL;
3427   *psection_type = Script_sections::ST_NONE;
3428
3429   return section_name;
3430 }
3431
3432 // Place a marker for an orphan output section into the SECTIONS
3433 // clause.
3434
3435 void
3436 Script_sections::place_orphan(Output_section* os)
3437 {
3438   Orphan_section_placement* osp = this->orphan_section_placement_;
3439   if (osp == NULL)
3440     {
3441       // Initialize the Orphan_section_placement structure.
3442       osp = new Orphan_section_placement();
3443       for (Sections_elements::iterator p = this->sections_elements_->begin();
3444            p != this->sections_elements_->end();
3445            ++p)
3446         (*p)->orphan_section_init(osp, p);
3447       gold_assert(!this->sections_elements_->empty());
3448       Sections_elements::iterator last = this->sections_elements_->end();
3449       --last;
3450       osp->last_init(last);
3451       this->orphan_section_placement_ = osp;
3452     }
3453
3454   Orphan_output_section* orphan = new Orphan_output_section(os);
3455
3456   // Look for where to put ORPHAN.
3457   Sections_elements::iterator* where;
3458   if (osp->find_place(os, &where))
3459     {
3460       if ((**where)->is_relro())
3461         os->set_is_relro();
3462       else
3463         os->clear_is_relro();
3464
3465       // We want to insert ORPHAN after *WHERE, and then update *WHERE
3466       // so that the next one goes after this one.
3467       Sections_elements::iterator p = *where;
3468       gold_assert(p != this->sections_elements_->end());
3469       ++p;
3470       *where = this->sections_elements_->insert(p, orphan);
3471     }
3472   else
3473     {
3474       os->clear_is_relro();
3475       // We don't have a place to put this orphan section.  Put it,
3476       // and all other sections like it, at the end, but before the
3477       // sections which always come at the end.
3478       Sections_elements::iterator last = osp->last_place();
3479       *where = this->sections_elements_->insert(last, orphan);
3480     }
3481 }
3482
3483 // Set the addresses of all the output sections.  Walk through all the
3484 // elements, tracking the dot symbol.  Apply assignments which set
3485 // absolute symbol values, in case they are used when setting dot.
3486 // Fill in data statement values.  As we find output sections, set the
3487 // address, set the address of all associated input sections, and
3488 // update dot.  Return the segment which should hold the file header
3489 // and segment headers, if any.
3490
3491 Output_segment*
3492 Script_sections::set_section_addresses(Symbol_table* symtab, Layout* layout)
3493 {
3494   gold_assert(this->saw_sections_clause_);
3495          
3496   // Implement ONLY_IF_RO/ONLY_IF_RW constraints.  These are a pain
3497   // for our representation.
3498   for (Sections_elements::iterator p = this->sections_elements_->begin();
3499        p != this->sections_elements_->end();
3500        ++p)
3501     {
3502       Output_section_definition* posd;
3503       Section_constraint failed_constraint = (*p)->check_constraint(&posd);
3504       if (failed_constraint != CONSTRAINT_NONE)
3505         {
3506           Sections_elements::iterator q;
3507           for (q = this->sections_elements_->begin();
3508                q != this->sections_elements_->end();
3509                ++q)
3510             {
3511               if (q != p)
3512                 {
3513                   if ((*q)->alternate_constraint(posd, failed_constraint))
3514                     break;
3515                 }
3516             }
3517
3518           if (q == this->sections_elements_->end())
3519             gold_error(_("no matching section constraint"));
3520         }
3521     }
3522
3523   // Force the alignment of the first TLS section to be the maximum
3524   // alignment of all TLS sections.
3525   Output_section* first_tls = NULL;
3526   uint64_t tls_align = 0;
3527   for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3528        p != this->sections_elements_->end();
3529        ++p)
3530     {
3531       Output_section* os = (*p)->get_output_section();
3532       if (os != NULL && (os->flags() & elfcpp::SHF_TLS) != 0)
3533         {
3534           if (first_tls == NULL)
3535             first_tls = os;
3536           if (os->addralign() > tls_align)
3537             tls_align = os->addralign();
3538         }
3539     }
3540   if (first_tls != NULL)
3541     first_tls->set_addralign(tls_align);
3542
3543   // For a relocatable link, we implicitly set dot to zero.
3544   uint64_t dot_value = 0;
3545   uint64_t dot_alignment = 0;
3546   uint64_t load_address = 0;
3547
3548   // Check to see if we want to use any of -Ttext, -Tdata and -Tbss options
3549   // to set section addresses.  If the script has any SEGMENT_START
3550   // expression, we do not set the section addresses.
3551   bool use_tsection_options =
3552     (!this->saw_segment_start_expression_
3553      && (parameters->options().user_set_Ttext()
3554          || parameters->options().user_set_Tdata()
3555          || parameters->options().user_set_Tbss()));
3556
3557   for (Sections_elements::iterator p = this->sections_elements_->begin();
3558        p != this->sections_elements_->end();
3559        ++p)
3560     {
3561       Output_section* os = (*p)->get_output_section();
3562
3563       // Handle -Ttext, -Tdata and -Tbss options.  We do this by looking for
3564       // the special sections by names and doing dot assignments. 
3565       if (use_tsection_options
3566           && os != NULL
3567           && (os->flags() & elfcpp::SHF_ALLOC) != 0)
3568         {
3569           uint64_t new_dot_value = dot_value;
3570
3571           if (parameters->options().user_set_Ttext()
3572               && strcmp(os->name(), ".text") == 0)
3573             new_dot_value = parameters->options().Ttext();
3574           else if (parameters->options().user_set_Tdata()
3575               && strcmp(os->name(), ".data") == 0)
3576             new_dot_value = parameters->options().Tdata();
3577           else if (parameters->options().user_set_Tbss()
3578               && strcmp(os->name(), ".bss") == 0)
3579             new_dot_value = parameters->options().Tbss();
3580
3581           // Update dot and load address if necessary.
3582           if (new_dot_value < dot_value)
3583             gold_error(_("dot may not move backward"));
3584           else if (new_dot_value != dot_value)
3585             {
3586               dot_value = new_dot_value;
3587               load_address = new_dot_value;
3588             }
3589         }
3590
3591       (*p)->set_section_addresses(symtab, layout, &dot_value, &dot_alignment,
3592                                   &load_address);
3593     } 
3594
3595   if (this->phdrs_elements_ != NULL)
3596     {
3597       for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
3598            p != this->phdrs_elements_->end();
3599            ++p)
3600         (*p)->eval_load_address(symtab, layout);
3601     }
3602
3603   return this->create_segments(layout, dot_alignment);
3604 }
3605
3606 // Sort the sections in order to put them into segments.
3607
3608 class Sort_output_sections
3609 {
3610  public:
3611   Sort_output_sections(const Script_sections::Sections_elements* elements)
3612    : elements_(elements)
3613   { }
3614
3615   bool
3616   operator()(const Output_section* os1, const Output_section* os2) const;
3617
3618  private:
3619   int
3620   script_compare(const Output_section* os1, const Output_section* os2) const;
3621
3622  private:
3623   const Script_sections::Sections_elements* elements_;
3624 };
3625
3626 bool
3627 Sort_output_sections::operator()(const Output_section* os1,
3628                                  const Output_section* os2) const
3629 {
3630   // Sort first by the load address.
3631   uint64_t lma1 = (os1->has_load_address()
3632                    ? os1->load_address()
3633                    : os1->address());
3634   uint64_t lma2 = (os2->has_load_address()
3635                    ? os2->load_address()
3636                    : os2->address());
3637   if (lma1 != lma2)
3638     return lma1 < lma2;
3639
3640   // Then sort by the virtual address.
3641   if (os1->address() != os2->address())
3642     return os1->address() < os2->address();
3643
3644   // If the linker script says which of these sections is first, go
3645   // with what it says.
3646   int i = this->script_compare(os1, os2);
3647   if (i != 0)
3648     return i < 0;
3649
3650   // Sort PROGBITS before NOBITS.
3651   bool nobits1 = os1->type() == elfcpp::SHT_NOBITS;
3652   bool nobits2 = os2->type() == elfcpp::SHT_NOBITS;
3653   if (nobits1 != nobits2)
3654     return nobits2;
3655
3656   // Sort PROGBITS TLS sections to the end, NOBITS TLS sections to the
3657   // beginning.
3658   bool tls1 = (os1->flags() & elfcpp::SHF_TLS) != 0;
3659   bool tls2 = (os2->flags() & elfcpp::SHF_TLS) != 0;
3660   if (tls1 != tls2)
3661     return nobits1 ? tls1 : tls2;
3662
3663   // Sort non-NOLOAD before NOLOAD.
3664   if (os1->is_noload() && !os2->is_noload())
3665     return true;
3666   if (!os1->is_noload() && os2->is_noload())
3667     return true;
3668
3669   // The sections seem practically identical.  Sort by name to get a
3670   // stable sort.
3671   return os1->name() < os2->name();
3672 }
3673
3674 // Return -1 if OS1 comes before OS2 in ELEMENTS_, 1 if comes after, 0
3675 // if either OS1 or OS2 is not mentioned.  This ensures that we keep
3676 // empty sections in the order in which they appear in a linker
3677 // script.
3678
3679 int
3680 Sort_output_sections::script_compare(const Output_section* os1,
3681                                      const Output_section* os2) const
3682 {
3683   if (this->elements_ == NULL)
3684     return 0;
3685
3686   bool found_os1 = false;
3687   bool found_os2 = false;
3688   for (Script_sections::Sections_elements::const_iterator
3689          p = this->elements_->begin();
3690        p != this->elements_->end();
3691        ++p)
3692     {
3693       if (os2 == (*p)->get_output_section())
3694         {
3695           if (found_os1)
3696             return -1;
3697           found_os2 = true;
3698         }
3699       else if (os1 == (*p)->get_output_section())
3700         {
3701           if (found_os2)
3702             return 1;
3703           found_os1 = true;
3704         }
3705     }
3706
3707   return 0;
3708 }
3709
3710 // Return whether OS is a BSS section.  This is a SHT_NOBITS section.
3711 // We treat a section with the SHF_TLS flag set as taking up space
3712 // even if it is SHT_NOBITS (this is true of .tbss), as we allocate
3713 // space for them in the file.
3714
3715 bool
3716 Script_sections::is_bss_section(const Output_section* os)
3717 {
3718   return (os->type() == elfcpp::SHT_NOBITS
3719           && (os->flags() & elfcpp::SHF_TLS) == 0);
3720 }
3721
3722 // Return the size taken by the file header and the program headers.
3723
3724 size_t
3725 Script_sections::total_header_size(Layout* layout) const
3726 {
3727   size_t segment_count = layout->segment_count();
3728   size_t file_header_size;
3729   size_t segment_headers_size;
3730   if (parameters->target().get_size() == 32)
3731     {
3732       file_header_size = elfcpp::Elf_sizes<32>::ehdr_size;
3733       segment_headers_size = segment_count * elfcpp::Elf_sizes<32>::phdr_size;
3734     }
3735   else if (parameters->target().get_size() == 64)
3736     {
3737       file_header_size = elfcpp::Elf_sizes<64>::ehdr_size;
3738       segment_headers_size = segment_count * elfcpp::Elf_sizes<64>::phdr_size;
3739     }
3740   else
3741     gold_unreachable();
3742
3743   return file_header_size + segment_headers_size;
3744 }
3745
3746 // Return the amount we have to subtract from the LMA to accommodate
3747 // headers of the given size.  The complication is that the file
3748 // header have to be at the start of a page, as otherwise it will not
3749 // be at the start of the file.
3750
3751 uint64_t
3752 Script_sections::header_size_adjustment(uint64_t lma,
3753                                         size_t sizeof_headers) const
3754 {
3755   const uint64_t abi_pagesize = parameters->target().abi_pagesize();
3756   uint64_t hdr_lma = lma - sizeof_headers;
3757   hdr_lma &= ~(abi_pagesize - 1);
3758   return lma - hdr_lma;
3759 }
3760
3761 // Create the PT_LOAD segments when using a SECTIONS clause.  Returns
3762 // the segment which should hold the file header and segment headers,
3763 // if any.
3764
3765 Output_segment*
3766 Script_sections::create_segments(Layout* layout, uint64_t dot_alignment)
3767 {
3768   gold_assert(this->saw_sections_clause_);
3769
3770   if (parameters->options().relocatable())
3771     return NULL;
3772
3773   if (this->saw_phdrs_clause())
3774     return create_segments_from_phdrs_clause(layout, dot_alignment);
3775
3776   Layout::Section_list sections;
3777   layout->get_allocated_sections(&sections);
3778
3779   // Sort the sections by address.
3780   std::stable_sort(sections.begin(), sections.end(), 
3781                    Sort_output_sections(this->sections_elements_));
3782
3783   this->create_note_and_tls_segments(layout, &sections);
3784
3785   // Walk through the sections adding them to PT_LOAD segments.
3786   const uint64_t abi_pagesize = parameters->target().abi_pagesize();
3787   Output_segment* first_seg = NULL;
3788   Output_segment* current_seg = NULL;
3789   bool is_current_seg_readonly = true;
3790   Layout::Section_list::iterator plast = sections.end();
3791   uint64_t last_vma = 0;
3792   uint64_t last_lma = 0;
3793   uint64_t last_size = 0;
3794   for (Layout::Section_list::iterator p = sections.begin();
3795        p != sections.end();
3796        ++p)
3797     {
3798       const uint64_t vma = (*p)->address();
3799       const uint64_t lma = ((*p)->has_load_address()
3800                             ? (*p)->load_address()
3801                             : vma);
3802       const uint64_t size = (*p)->current_data_size();
3803
3804       bool need_new_segment;
3805       if (current_seg == NULL)
3806         need_new_segment = true;
3807       else if (lma - vma != last_lma - last_vma)
3808         {
3809           // This section has a different LMA relationship than the
3810           // last one; we need a new segment.
3811           need_new_segment = true;
3812         }
3813       else if (align_address(last_lma + last_size, abi_pagesize)
3814                < align_address(lma, abi_pagesize))
3815         {
3816           // Putting this section in the segment would require
3817           // skipping a page.
3818           need_new_segment = true;
3819         }
3820       else if (is_bss_section(*plast) && !is_bss_section(*p))
3821         {
3822           // A non-BSS section can not follow a BSS section in the
3823           // same segment.
3824           need_new_segment = true;
3825         }
3826       else if (is_current_seg_readonly
3827                && ((*p)->flags() & elfcpp::SHF_WRITE) != 0
3828                && !parameters->options().omagic())
3829         {
3830           // Don't put a writable section in the same segment as a
3831           // non-writable section.
3832           need_new_segment = true;
3833         }
3834       else
3835         {
3836           // Otherwise, reuse the existing segment.
3837           need_new_segment = false;
3838         }
3839
3840       elfcpp::Elf_Word seg_flags =
3841         Layout::section_flags_to_segment((*p)->flags());
3842
3843       if (need_new_segment)
3844         {
3845           current_seg = layout->make_output_segment(elfcpp::PT_LOAD,
3846                                                     seg_flags);
3847           current_seg->set_addresses(vma, lma);
3848           current_seg->set_minimum_p_align(dot_alignment);
3849           if (first_seg == NULL)
3850             first_seg = current_seg;
3851           is_current_seg_readonly = true;
3852         }
3853
3854       current_seg->add_output_section_to_load(layout, *p, seg_flags);
3855
3856       if (((*p)->flags() & elfcpp::SHF_WRITE) != 0)
3857         is_current_seg_readonly = false;
3858
3859       plast = p;
3860       last_vma = vma;
3861       last_lma = lma;
3862       last_size = size;
3863     }
3864
3865   // An ELF program should work even if the program headers are not in
3866   // a PT_LOAD segment.  However, it appears that the Linux kernel
3867   // does not set the AT_PHDR auxiliary entry in that case.  It sets
3868   // the load address to p_vaddr - p_offset of the first PT_LOAD
3869   // segment.  It then sets AT_PHDR to the load address plus the
3870   // offset to the program headers, e_phoff in the file header.  This
3871   // fails when the program headers appear in the file before the
3872   // first PT_LOAD segment.  Therefore, we always create a PT_LOAD
3873   // segment to hold the file header and the program headers.  This is
3874   // effectively what the GNU linker does, and it is slightly more
3875   // efficient in any case.  We try to use the first PT_LOAD segment
3876   // if we can, otherwise we make a new one.
3877
3878   if (first_seg == NULL)
3879     return NULL;
3880
3881   // -n or -N mean that the program is not demand paged and there is
3882   // no need to put the program headers in a PT_LOAD segment.
3883   if (parameters->options().nmagic() || parameters->options().omagic())
3884     return NULL;
3885
3886   size_t sizeof_headers = this->total_header_size(layout);
3887
3888   uint64_t vma = first_seg->vaddr();
3889   uint64_t lma = first_seg->paddr();
3890
3891   uint64_t subtract = this->header_size_adjustment(lma, sizeof_headers);
3892
3893   if ((lma & (abi_pagesize - 1)) >= sizeof_headers)
3894     {
3895       first_seg->set_addresses(vma - subtract, lma - subtract);
3896       return first_seg;
3897     }
3898
3899   // If there is no room to squeeze in the headers, then punt.  The
3900   // resulting executable probably won't run on GNU/Linux, but we
3901   // trust that the user knows what they are doing.
3902   if (lma < subtract || vma < subtract)
3903     return NULL;
3904
3905   // If memory regions have been specified and the address range
3906   // we are about to use is not contained within any region then
3907   // issue a warning message about the segment we are going to
3908   // create.  It will be outside of any region and so possibly
3909   // using non-existent or protected memory.  We test LMA rather
3910   // than VMA since we assume that the headers will never be
3911   // relocated.
3912   if (this->memory_regions_ != NULL
3913       && !this->block_in_region (NULL, layout, lma - subtract, subtract))
3914     gold_warning(_("creating a segment to contain the file and program"
3915                    " headers outside of any MEMORY region"));
3916
3917   Output_segment* load_seg = layout->make_output_segment(elfcpp::PT_LOAD,
3918                                                          elfcpp::PF_R);
3919   load_seg->set_addresses(vma - subtract, lma - subtract);
3920
3921   return load_seg;
3922 }
3923
3924 // Create a PT_NOTE segment for each SHT_NOTE section and a PT_TLS
3925 // segment if there are any SHT_TLS sections.
3926
3927 void
3928 Script_sections::create_note_and_tls_segments(
3929     Layout* layout,
3930     const Layout::Section_list* sections)
3931 {
3932   gold_assert(!this->saw_phdrs_clause());
3933
3934   bool saw_tls = false;
3935   for (Layout::Section_list::const_iterator p = sections->begin();
3936        p != sections->end();
3937        ++p)
3938     {
3939       if ((*p)->type() == elfcpp::SHT_NOTE)
3940         {
3941           elfcpp::Elf_Word seg_flags =
3942             Layout::section_flags_to_segment((*p)->flags());
3943           Output_segment* oseg = layout->make_output_segment(elfcpp::PT_NOTE,
3944                                                              seg_flags);
3945           oseg->add_output_section_to_nonload(*p, seg_flags);
3946
3947           // Incorporate any subsequent SHT_NOTE sections, in the
3948           // hopes that the script is sensible.
3949           Layout::Section_list::const_iterator pnext = p + 1;
3950           while (pnext != sections->end()
3951                  && (*pnext)->type() == elfcpp::SHT_NOTE)
3952             {
3953               seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
3954               oseg->add_output_section_to_nonload(*pnext, seg_flags);
3955               p = pnext;
3956               ++pnext;
3957             }
3958         }
3959
3960       if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
3961         {
3962           if (saw_tls)
3963             gold_error(_("TLS sections are not adjacent"));
3964
3965           elfcpp::Elf_Word seg_flags =
3966             Layout::section_flags_to_segment((*p)->flags());
3967           Output_segment* oseg = layout->make_output_segment(elfcpp::PT_TLS,
3968                                                              seg_flags);
3969           oseg->add_output_section_to_nonload(*p, seg_flags);
3970
3971           Layout::Section_list::const_iterator pnext = p + 1;
3972           while (pnext != sections->end()
3973                  && ((*pnext)->flags() & elfcpp::SHF_TLS) != 0)
3974             {
3975               seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
3976               oseg->add_output_section_to_nonload(*pnext, seg_flags);
3977               p = pnext;
3978               ++pnext;
3979             }
3980
3981           saw_tls = true;
3982         }
3983
3984       // If we are making a shared library, and we see a section named
3985       // .interp then put the .interp section in a PT_INTERP segment.
3986       // This is for GNU ld compatibility.
3987       if (strcmp((*p)->name(), ".interp") == 0)
3988         {
3989           elfcpp::Elf_Word seg_flags =
3990             Layout::section_flags_to_segment((*p)->flags());
3991           Output_segment* oseg = layout->make_output_segment(elfcpp::PT_INTERP,
3992                                                              seg_flags);
3993           oseg->add_output_section_to_nonload(*p, seg_flags);
3994         }
3995     }
3996 }
3997
3998 // Add a program header.  The PHDRS clause is syntactically distinct
3999 // from the SECTIONS clause, but we implement it with the SECTIONS
4000 // support because PHDRS is useless if there is no SECTIONS clause.
4001
4002 void
4003 Script_sections::add_phdr(const char* name, size_t namelen, unsigned int type,
4004                           bool includes_filehdr, bool includes_phdrs,
4005                           bool is_flags_valid, unsigned int flags,
4006                           Expression* load_address)
4007 {
4008   if (this->phdrs_elements_ == NULL)
4009     this->phdrs_elements_ = new Phdrs_elements();
4010   this->phdrs_elements_->push_back(new Phdrs_element(name, namelen, type,
4011                                                      includes_filehdr,
4012                                                      includes_phdrs,
4013                                                      is_flags_valid, flags,
4014                                                      load_address));
4015 }
4016
4017 // Return the number of segments we expect to create based on the
4018 // SECTIONS clause.  This is used to implement SIZEOF_HEADERS.
4019
4020 size_t
4021 Script_sections::expected_segment_count(const Layout* layout) const
4022 {
4023   if (this->saw_phdrs_clause())
4024     return this->phdrs_elements_->size();
4025
4026   Layout::Section_list sections;
4027   layout->get_allocated_sections(&sections);
4028
4029   // We assume that we will need two PT_LOAD segments.
4030   size_t ret = 2;
4031
4032   bool saw_note = false;
4033   bool saw_tls = false;
4034   for (Layout::Section_list::const_iterator p = sections.begin();
4035        p != sections.end();
4036        ++p)
4037     {
4038       if ((*p)->type() == elfcpp::SHT_NOTE)
4039         {