daaf1aea7494793a5c681f5e757acaa00d6e70f1
[dragonfly.git] / contrib / openbsd_libm / src / e_jnf.c
1 /* e_jnf.c -- float version of e_jn.c.
2  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
3  */
4
5 /*
6  * ====================================================
7  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
8  *
9  * Developed at SunPro, a Sun Microsystems, Inc. business.
10  * Permission to use, copy, modify, and distribute this
11  * software is freely granted, provided that this notice 
12  * is preserved.
13  * ====================================================
14  */
15
16 #include "math.h"
17 #include "math_private.h"
18
19 static const float
20 two   =  2.0000000000e+00, /* 0x40000000 */
21 one   =  1.0000000000e+00; /* 0x3F800000 */
22
23 static const float zero  =  0.0000000000e+00;
24
25 float
26 jnf(int n, float x)
27 {
28         int32_t i,hx,ix, sgn;
29         float a, b, temp, di;
30         float z, w;
31
32     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
33      * Thus, J(-n,x) = J(n,-x)
34      */
35         GET_FLOAT_WORD(hx,x);
36         ix = 0x7fffffff&hx;
37     /* if J(n,NaN) is NaN */
38         if(ix>0x7f800000) return x+x;
39         if(n<0){                
40                 n = -n;
41                 x = -x;
42                 hx ^= 0x80000000;
43         }
44         if(n==0) return(j0f(x));
45         if(n==1) return(j1f(x));
46         sgn = (n&1)&(hx>>31);   /* even n -- 0, odd n -- sign(x) */
47         x = fabsf(x);
48         if(ix==0||ix>=0x7f800000)       /* if x is 0 or inf */
49             b = zero;
50         else if((float)n<=x) {   
51                 /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
52             a = j0f(x);
53             b = j1f(x);
54             for(i=1;i<n;i++){
55                 temp = b;
56                 b = b*((float)(i+i)/x) - a; /* avoid underflow */
57                 a = temp;
58             }
59         } else {
60             if(ix<0x30800000) { /* x < 2**-29 */
61     /* x is tiny, return the first Taylor expansion of J(n,x) 
62      * J(n,x) = 1/n!*(x/2)^n  - ...
63      */
64                 if(n>33)        /* underflow */
65                     b = zero;
66                 else {
67                     temp = x*(float)0.5; b = temp;
68                     for (a=one,i=2;i<=n;i++) {
69                         a *= (float)i;          /* a = n! */
70                         b *= temp;              /* b = (x/2)^n */
71                     }
72                     b = b/a;
73                 }
74             } else {
75                 /* use backward recurrence */
76                 /*                      x      x^2      x^2       
77                  *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
78                  *                      2n  - 2(n+1) - 2(n+2)
79                  *
80                  *                      1      1        1       
81                  *  (for large x)   =  ----  ------   ------   .....
82                  *                      2n   2(n+1)   2(n+2)
83                  *                      -- - ------ - ------ - 
84                  *                       x     x         x
85                  *
86                  * Let w = 2n/x and h=2/x, then the above quotient
87                  * is equal to the continued fraction:
88                  *                  1
89                  *      = -----------------------
90                  *                     1
91                  *         w - -----------------
92                  *                        1
93                  *              w+h - ---------
94                  *                     w+2h - ...
95                  *
96                  * To determine how many terms needed, let
97                  * Q(0) = w, Q(1) = w(w+h) - 1,
98                  * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
99                  * When Q(k) > 1e4      good for single 
100                  * When Q(k) > 1e9      good for double 
101                  * When Q(k) > 1e17     good for quadruple 
102                  */
103             /* determine k */
104                 float t,v;
105                 float q0,q1,h,tmp; int32_t k,m;
106                 w  = (n+n)/(float)x; h = (float)2.0/(float)x;
107                 q0 = w;  z = w+h; q1 = w*z - (float)1.0; k=1;
108                 while(q1<(float)1.0e9) {
109                         k += 1; z += h;
110                         tmp = z*q1 - q0;
111                         q0 = q1;
112                         q1 = tmp;
113                 }
114                 m = n+n;
115                 for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
116                 a = t;
117                 b = one;
118                 /*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
119                  *  Hence, if n*(log(2n/x)) > ...
120                  *  single 8.8722839355e+01
121                  *  double 7.09782712893383973096e+02
122                  *  long double 1.1356523406294143949491931077970765006170e+04
123                  *  then recurrent value may overflow and the result is 
124                  *  likely underflow to zero
125                  */
126                 tmp = n;
127                 v = two/x;
128                 tmp = tmp*logf(fabsf(v*tmp));
129                 if(tmp<(float)8.8721679688e+01) {
130                     for(i=n-1,di=(float)(i+i);i>0;i--){
131                         temp = b;
132                         b *= di;
133                         b  = b/x - a;
134                         a = temp;
135                         di -= two;
136                     }
137                 } else {
138                     for(i=n-1,di=(float)(i+i);i>0;i--){
139                         temp = b;
140                         b *= di;
141                         b  = b/x - a;
142                         a = temp;
143                         di -= two;
144                     /* scale b to avoid spurious overflow */
145                         if(b>(float)1e10) {
146                             a /= b;
147                             t /= b;
148                             b  = one;
149                         }
150                     }
151                 }
152                 b = (t*j0f(x)/b);
153             }
154         }
155         if(sgn==1) return -b; else return b;
156 }
157
158 float
159 ynf(int n, float x) 
160 {
161         int32_t i,hx,ix,ib;
162         int32_t sign;
163         float a, b, temp;
164
165         GET_FLOAT_WORD(hx,x);
166         ix = 0x7fffffff&hx;
167     /* if Y(n,NaN) is NaN */
168         if(ix>0x7f800000) return x+x;
169         if(ix==0) return -one/zero;
170         if(hx<0) return zero/zero;
171         sign = 1;
172         if(n<0){
173                 n = -n;
174                 sign = 1 - ((n&1)<<1);
175         }
176         if(n==0) return(y0f(x));
177         if(n==1) return(sign*y1f(x));
178         if(ix==0x7f800000) return zero;
179
180         a = y0f(x);
181         b = y1f(x);
182         /* quit if b is -inf */
183         GET_FLOAT_WORD(ib,b);
184         for(i=1;i<n&&ib!=0xff800000;i++){ 
185             temp = b;
186             b = ((float)(i+i)/x)*b - a;
187             GET_FLOAT_WORD(ib,b);
188             a = temp;
189         }
190         if(sign>0) return b; else return -b;
191 }