Correct BSD License clause numbering from 1-2-4 to 1-2-3.
[dragonfly.git] / sys / vm / vm_pageout.c
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_pageout.c,v 1.151.2.15 2002/12/29 18:21:04 dillon Exp $
65  */
66
67 /*
68  *      The proverbial page-out daemon.
69  */
70
71 #include "opt_vm.h"
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/kernel.h>
75 #include <sys/proc.h>
76 #include <sys/kthread.h>
77 #include <sys/resourcevar.h>
78 #include <sys/signalvar.h>
79 #include <sys/vnode.h>
80 #include <sys/vmmeter.h>
81 #include <sys/sysctl.h>
82
83 #include <vm/vm.h>
84 #include <vm/vm_param.h>
85 #include <sys/lock.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_pageout.h>
90 #include <vm/vm_pager.h>
91 #include <vm/swap_pager.h>
92 #include <vm/vm_extern.h>
93
94 #include <sys/thread2.h>
95 #include <sys/spinlock2.h>
96 #include <vm/vm_page2.h>
97
98 /*
99  * System initialization
100  */
101
102 /* the kernel process "vm_pageout"*/
103 static int vm_pageout_clean (vm_page_t);
104 static int vm_pageout_free_page_calc (vm_size_t count);
105 struct thread *pagethread;
106
107 #if !defined(NO_SWAPPING)
108 /* the kernel process "vm_daemon"*/
109 static void vm_daemon (void);
110 static struct   thread *vmthread;
111
112 static struct kproc_desc vm_kp = {
113         "vmdaemon",
114         vm_daemon,
115         &vmthread
116 };
117 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
118 #endif
119
120 int vm_pages_needed=0;          /* Event on which pageout daemon sleeps */
121 int vm_pageout_deficit=0;       /* Estimated number of pages deficit */
122 int vm_pageout_pages_needed=0;  /* flag saying that the pageout daemon needs pages */
123
124 #if !defined(NO_SWAPPING)
125 static int vm_pageout_req_swapout;      /* XXX */
126 static int vm_daemon_needed;
127 #endif
128 static int vm_max_launder = 32;
129 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
130 static int vm_pageout_full_stats_interval = 0;
131 static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
132 static int defer_swap_pageouts=0;
133 static int disable_swap_pageouts=0;
134 static u_int vm_anonmem_decline = ACT_DECLINE;
135 static u_int vm_filemem_decline = ACT_DECLINE * 2;
136
137 #if defined(NO_SWAPPING)
138 static int vm_swap_enabled=0;
139 static int vm_swap_idle_enabled=0;
140 #else
141 static int vm_swap_enabled=1;
142 static int vm_swap_idle_enabled=0;
143 #endif
144
145 SYSCTL_UINT(_vm, VM_PAGEOUT_ALGORITHM, anonmem_decline,
146         CTLFLAG_RW, &vm_anonmem_decline, 0, "active->inactive anon memory");
147
148 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, filemem_decline,
149         CTLFLAG_RW, &vm_filemem_decline, 0, "active->inactive file cache");
150
151 SYSCTL_INT(_vm, OID_AUTO, max_launder,
152         CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
153
154 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
155         CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
156
157 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
158         CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
159
160 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
161         CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
162
163 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
164         CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
165
166 #if defined(NO_SWAPPING)
167 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
168         CTLFLAG_RD, &vm_swap_enabled, 0, "");
169 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
170         CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
171 #else
172 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
173         CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
174 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
175         CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
176 #endif
177
178 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
179         CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
180
181 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
182         CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
183
184 static int pageout_lock_miss;
185 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
186         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
187
188 #define VM_PAGEOUT_PAGE_COUNT 16
189 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
190
191 int vm_page_max_wired;          /* XXX max # of wired pages system-wide */
192
193 #if !defined(NO_SWAPPING)
194 typedef void freeer_fcn_t (vm_map_t, vm_object_t, vm_pindex_t, int);
195 static void vm_pageout_map_deactivate_pages (vm_map_t, vm_pindex_t);
196 static freeer_fcn_t vm_pageout_object_deactivate_pages;
197 static void vm_req_vmdaemon (void);
198 #endif
199 static void vm_pageout_page_stats(int q);
200
201 static __inline int
202 PQAVERAGE(int n)
203 {
204         if (n >= 0)
205                 return((n + (PQ_L2_SIZE - 1)) / PQ_L2_SIZE + 1);
206         else
207                 return((n - (PQ_L2_SIZE - 1)) / PQ_L2_SIZE - 1);
208 }
209
210 /*
211  * vm_pageout_clean:
212  *
213  * Clean the page and remove it from the laundry.  The page must not be
214  * busy on-call.
215  * 
216  * We set the busy bit to cause potential page faults on this page to
217  * block.  Note the careful timing, however, the busy bit isn't set till
218  * late and we cannot do anything that will mess with the page.
219  */
220 static int
221 vm_pageout_clean(vm_page_t m)
222 {
223         vm_object_t object;
224         vm_page_t mc[2*vm_pageout_page_count];
225         int pageout_count;
226         int error;
227         int ib, is, page_base;
228         vm_pindex_t pindex = m->pindex;
229
230         object = m->object;
231
232         /*
233          * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
234          * with the new swapper, but we could have serious problems paging
235          * out other object types if there is insufficient memory.  
236          *
237          * Unfortunately, checking free memory here is far too late, so the
238          * check has been moved up a procedural level.
239          */
240
241         /*
242          * Don't mess with the page if it's busy, held, or special
243          *
244          * XXX do we really need to check hold_count here?  hold_count
245          * isn't supposed to mess with vm_page ops except prevent the
246          * page from being reused.
247          */
248         if (m->hold_count != 0 || (m->flags & PG_UNMANAGED)) {
249                 vm_page_wakeup(m);
250                 return 0;
251         }
252
253         mc[vm_pageout_page_count] = m;
254         pageout_count = 1;
255         page_base = vm_pageout_page_count;
256         ib = 1;
257         is = 1;
258
259         /*
260          * Scan object for clusterable pages.
261          *
262          * We can cluster ONLY if: ->> the page is NOT
263          * clean, wired, busy, held, or mapped into a
264          * buffer, and one of the following:
265          * 1) The page is inactive, or a seldom used
266          *    active page.
267          * -or-
268          * 2) we force the issue.
269          *
270          * During heavy mmap/modification loads the pageout
271          * daemon can really fragment the underlying file
272          * due to flushing pages out of order and not trying
273          * align the clusters (which leave sporatic out-of-order
274          * holes).  To solve this problem we do the reverse scan
275          * first and attempt to align our cluster, then do a 
276          * forward scan if room remains.
277          */
278
279         vm_object_hold(object);
280 more:
281         while (ib && pageout_count < vm_pageout_page_count) {
282                 vm_page_t p;
283
284                 if (ib > pindex) {
285                         ib = 0;
286                         break;
287                 }
288
289                 p = vm_page_lookup_busy_try(object, pindex - ib, TRUE, &error);
290                 if (error || p == NULL) {
291                         ib = 0;
292                         break;
293                 }
294                 if ((p->queue - p->pc) == PQ_CACHE ||
295                     (p->flags & PG_UNMANAGED)) {
296                         vm_page_wakeup(p);
297                         ib = 0;
298                         break;
299                 }
300                 vm_page_test_dirty(p);
301                 if (((p->dirty & p->valid) == 0 &&
302                      (p->flags & PG_NEED_COMMIT) == 0) ||
303                     p->queue - p->pc != PQ_INACTIVE ||
304                     p->wire_count != 0 ||       /* may be held by buf cache */
305                     p->hold_count != 0) {       /* may be undergoing I/O */
306                         vm_page_wakeup(p);
307                         ib = 0;
308                         break;
309                 }
310                 mc[--page_base] = p;
311                 ++pageout_count;
312                 ++ib;
313                 /*
314                  * alignment boundry, stop here and switch directions.  Do
315                  * not clear ib.
316                  */
317                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
318                         break;
319         }
320
321         while (pageout_count < vm_pageout_page_count && 
322             pindex + is < object->size) {
323                 vm_page_t p;
324
325                 p = vm_page_lookup_busy_try(object, pindex + is, TRUE, &error);
326                 if (error || p == NULL)
327                         break;
328                 if (((p->queue - p->pc) == PQ_CACHE) ||
329                     (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
330                         vm_page_wakeup(p);
331                         break;
332                 }
333                 vm_page_test_dirty(p);
334                 if (((p->dirty & p->valid) == 0 &&
335                      (p->flags & PG_NEED_COMMIT) == 0) ||
336                     p->queue - p->pc != PQ_INACTIVE ||
337                     p->wire_count != 0 ||       /* may be held by buf cache */
338                     p->hold_count != 0) {       /* may be undergoing I/O */
339                         vm_page_wakeup(p);
340                         break;
341                 }
342                 mc[page_base + pageout_count] = p;
343                 ++pageout_count;
344                 ++is;
345         }
346
347         /*
348          * If we exhausted our forward scan, continue with the reverse scan
349          * when possible, even past a page boundry.  This catches boundry
350          * conditions.
351          */
352         if (ib && pageout_count < vm_pageout_page_count)
353                 goto more;
354
355         vm_object_drop(object);
356
357         /*
358          * we allow reads during pageouts...
359          */
360         return vm_pageout_flush(&mc[page_base], pageout_count, 0);
361 }
362
363 /*
364  * vm_pageout_flush() - launder the given pages
365  *
366  *      The given pages are laundered.  Note that we setup for the start of
367  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
368  *      reference count all in here rather then in the parent.  If we want
369  *      the parent to do more sophisticated things we may have to change
370  *      the ordering.
371  *
372  *      The pages in the array must be busied by the caller and will be
373  *      unbusied by this function.
374  */
375 int
376 vm_pageout_flush(vm_page_t *mc, int count, int flags)
377 {
378         vm_object_t object;
379         int pageout_status[count];
380         int numpagedout = 0;
381         int i;
382
383         /*
384          * Initiate I/O.  Bump the vm_page_t->busy counter.
385          */
386         for (i = 0; i < count; i++) {
387                 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
388                         ("vm_pageout_flush page %p index %d/%d: partially "
389                          "invalid page", mc[i], i, count));
390                 vm_page_io_start(mc[i]);
391         }
392
393         /*
394          * We must make the pages read-only.  This will also force the
395          * modified bit in the related pmaps to be cleared.  The pager
396          * cannot clear the bit for us since the I/O completion code
397          * typically runs from an interrupt.  The act of making the page
398          * read-only handles the case for us.
399          *
400          * Then we can unbusy the pages, we still hold a reference by virtue
401          * of our soft-busy.
402          */
403         for (i = 0; i < count; i++) {
404                 vm_page_protect(mc[i], VM_PROT_READ);
405                 vm_page_wakeup(mc[i]);
406         }
407
408         object = mc[0]->object;
409         vm_object_pip_add(object, count);
410
411         vm_pager_put_pages(object, mc, count,
412             (flags | ((object == &kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
413             pageout_status);
414
415         for (i = 0; i < count; i++) {
416                 vm_page_t mt = mc[i];
417
418                 switch (pageout_status[i]) {
419                 case VM_PAGER_OK:
420                         numpagedout++;
421                         break;
422                 case VM_PAGER_PEND:
423                         numpagedout++;
424                         break;
425                 case VM_PAGER_BAD:
426                         /*
427                          * Page outside of range of object. Right now we
428                          * essentially lose the changes by pretending it
429                          * worked.
430                          */
431                         vm_page_busy_wait(mt, FALSE, "pgbad");
432                         pmap_clear_modify(mt);
433                         vm_page_undirty(mt);
434                         vm_page_wakeup(mt);
435                         break;
436                 case VM_PAGER_ERROR:
437                 case VM_PAGER_FAIL:
438                         /*
439                          * A page typically cannot be paged out when we
440                          * have run out of swap.  We leave the page
441                          * marked inactive and will try to page it out
442                          * again later.
443                          *
444                          * Starvation of the active page list is used to
445                          * determine when the system is massively memory
446                          * starved.
447                          */
448                         break;
449                 case VM_PAGER_AGAIN:
450                         break;
451                 }
452
453                 /*
454                  * If the operation is still going, leave the page busy to
455                  * block all other accesses. Also, leave the paging in
456                  * progress indicator set so that we don't attempt an object
457                  * collapse.
458                  *
459                  * For any pages which have completed synchronously, 
460                  * deactivate the page if we are under a severe deficit.
461                  * Do not try to enter them into the cache, though, they
462                  * might still be read-heavy.
463                  */
464                 if (pageout_status[i] != VM_PAGER_PEND) {
465                         vm_page_busy_wait(mt, FALSE, "pgouw");
466                         if (vm_page_count_severe())
467                                 vm_page_deactivate(mt);
468 #if 0
469                         if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
470                                 vm_page_protect(mt, VM_PROT_READ);
471 #endif
472                         vm_page_io_finish(mt);
473                         vm_page_wakeup(mt);
474                         vm_object_pip_wakeup(object);
475                 }
476         }
477         return numpagedout;
478 }
479
480 #if !defined(NO_SWAPPING)
481 /*
482  * deactivate enough pages to satisfy the inactive target
483  * requirements or if vm_page_proc_limit is set, then
484  * deactivate all of the pages in the object and its
485  * backing_objects.
486  *
487  * The map must be locked.
488  * The caller must hold the vm_object.
489  */
490 static int vm_pageout_object_deactivate_pages_callback(vm_page_t, void *);
491
492 static void
493 vm_pageout_object_deactivate_pages(vm_map_t map, vm_object_t object,
494                                    vm_pindex_t desired, int map_remove_only)
495 {
496         struct rb_vm_page_scan_info info;
497         vm_object_t lobject;
498         vm_object_t tobject;
499         int remove_mode;
500
501         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
502         lobject = object;
503
504         while (lobject) {
505                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
506                         break;
507                 if (lobject->type == OBJT_DEVICE || lobject->type == OBJT_PHYS)
508                         break;
509                 if (lobject->paging_in_progress)
510                         break;
511
512                 remove_mode = map_remove_only;
513                 if (lobject->shadow_count > 1)
514                         remove_mode = 1;
515
516                 /*
517                  * scan the objects entire memory queue.  We hold the
518                  * object's token so the scan should not race anything.
519                  */
520                 info.limit = remove_mode;
521                 info.map = map;
522                 info.desired = desired;
523                 vm_page_rb_tree_RB_SCAN(&lobject->rb_memq, NULL,
524                                 vm_pageout_object_deactivate_pages_callback,
525                                 &info
526                 );
527                 while ((tobject = lobject->backing_object) != NULL) {
528                         KKASSERT(tobject != object);
529                         vm_object_hold(tobject);
530                         if (tobject == lobject->backing_object)
531                                 break;
532                         vm_object_drop(tobject);
533                 }
534                 if (lobject != object) {
535                         if (tobject)
536                                 vm_object_lock_swap();
537                         vm_object_drop(lobject);
538                         /* leaves tobject locked & at top */
539                 }
540                 lobject = tobject;
541         }
542         if (lobject != object)
543                 vm_object_drop(lobject);        /* NULL ok */
544 }
545
546 /*
547  * The caller must hold the vm_object.
548  */
549 static int
550 vm_pageout_object_deactivate_pages_callback(vm_page_t p, void *data)
551 {
552         struct rb_vm_page_scan_info *info = data;
553         int actcount;
554
555         if (pmap_resident_count(vm_map_pmap(info->map)) <= info->desired) {
556                 return(-1);
557         }
558         mycpu->gd_cnt.v_pdpages++;
559
560         if (vm_page_busy_try(p, TRUE))
561                 return(0);
562         if (p->wire_count || p->hold_count || (p->flags & PG_UNMANAGED)) {
563                 vm_page_wakeup(p);
564                 return(0);
565         }
566         if (!pmap_page_exists_quick(vm_map_pmap(info->map), p)) {
567                 vm_page_wakeup(p);
568                 return(0);
569         }
570
571         actcount = pmap_ts_referenced(p);
572         if (actcount) {
573                 vm_page_flag_set(p, PG_REFERENCED);
574         } else if (p->flags & PG_REFERENCED) {
575                 actcount = 1;
576         }
577
578         vm_page_and_queue_spin_lock(p);
579         if (p->queue - p->pc != PQ_ACTIVE && (p->flags & PG_REFERENCED)) {
580                 vm_page_and_queue_spin_unlock(p);
581                 vm_page_activate(p);
582                 p->act_count += actcount;
583                 vm_page_flag_clear(p, PG_REFERENCED);
584         } else if (p->queue - p->pc == PQ_ACTIVE) {
585                 if ((p->flags & PG_REFERENCED) == 0) {
586                         p->act_count -= min(p->act_count, ACT_DECLINE);
587                         if (!info->limit &&
588                             (vm_pageout_algorithm || (p->act_count == 0))) {
589                                 vm_page_and_queue_spin_unlock(p);
590                                 vm_page_protect(p, VM_PROT_NONE);
591                                 vm_page_deactivate(p);
592                         } else {
593                                 TAILQ_REMOVE(&vm_page_queues[p->queue].pl,
594                                              p, pageq);
595                                 TAILQ_INSERT_TAIL(&vm_page_queues[p->queue].pl,
596                                                   p, pageq);
597                                 vm_page_and_queue_spin_unlock(p);
598                         }
599                 } else {
600                         vm_page_and_queue_spin_unlock(p);
601                         vm_page_activate(p);
602                         vm_page_flag_clear(p, PG_REFERENCED);
603
604                         vm_page_and_queue_spin_lock(p);
605                         if (p->queue - p->pc == PQ_ACTIVE) {
606                                 if (p->act_count < (ACT_MAX - ACT_ADVANCE))
607                                         p->act_count += ACT_ADVANCE;
608                                 TAILQ_REMOVE(&vm_page_queues[p->queue].pl,
609                                              p, pageq);
610                                 TAILQ_INSERT_TAIL(&vm_page_queues[p->queue].pl,
611                                                   p, pageq);
612                         }
613                         vm_page_and_queue_spin_unlock(p);
614                 }
615         } else if (p->queue - p->pc == PQ_INACTIVE) {
616                 vm_page_and_queue_spin_unlock(p);
617                 vm_page_protect(p, VM_PROT_NONE);
618         } else {
619                 vm_page_and_queue_spin_unlock(p);
620         }
621         vm_page_wakeup(p);
622         return(0);
623 }
624
625 /*
626  * Deactivate some number of pages in a map, try to do it fairly, but
627  * that is really hard to do.
628  */
629 static void
630 vm_pageout_map_deactivate_pages(vm_map_t map, vm_pindex_t desired)
631 {
632         vm_map_entry_t tmpe;
633         vm_object_t obj, bigobj;
634         int nothingwired;
635
636         if (lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT)) {
637                 return;
638         }
639
640         bigobj = NULL;
641         nothingwired = TRUE;
642
643         /*
644          * first, search out the biggest object, and try to free pages from
645          * that.
646          */
647         tmpe = map->header.next;
648         while (tmpe != &map->header) {
649                 switch(tmpe->maptype) {
650                 case VM_MAPTYPE_NORMAL:
651                 case VM_MAPTYPE_VPAGETABLE:
652                         obj = tmpe->object.vm_object;
653                         if ((obj != NULL) && (obj->shadow_count <= 1) &&
654                                 ((bigobj == NULL) ||
655                                  (bigobj->resident_page_count < obj->resident_page_count))) {
656                                 bigobj = obj;
657                         }
658                         break;
659                 default:
660                         break;
661                 }
662                 if (tmpe->wired_count > 0)
663                         nothingwired = FALSE;
664                 tmpe = tmpe->next;
665         }
666
667         if (bigobj)  {
668                 vm_object_hold(bigobj);
669                 vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
670                 vm_object_drop(bigobj);
671         }
672
673         /*
674          * Next, hunt around for other pages to deactivate.  We actually
675          * do this search sort of wrong -- .text first is not the best idea.
676          */
677         tmpe = map->header.next;
678         while (tmpe != &map->header) {
679                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
680                         break;
681                 switch(tmpe->maptype) {
682                 case VM_MAPTYPE_NORMAL:
683                 case VM_MAPTYPE_VPAGETABLE:
684                         obj = tmpe->object.vm_object;
685                         if (obj) {
686                                 vm_object_hold(obj);
687                                 vm_pageout_object_deactivate_pages(map, obj, desired, 0);
688                                 vm_object_drop(obj);
689                         }
690                         break;
691                 default:
692                         break;
693                 }
694                 tmpe = tmpe->next;
695         }
696
697         /*
698          * Remove all mappings if a process is swapped out, this will free page
699          * table pages.
700          */
701         if (desired == 0 && nothingwired)
702                 pmap_remove(vm_map_pmap(map),
703                             VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
704         vm_map_unlock(map);
705 }
706 #endif
707
708 /*
709  * Called when the pageout scan wants to free a page.  We no longer
710  * try to cycle the vm_object here with a reference & dealloc, which can
711  * cause a non-trivial object collapse in a critical path.
712  *
713  * It is unclear why we cycled the ref_count in the past, perhaps to try
714  * to optimize shadow chain collapses but I don't quite see why it would
715  * be necessary.  An OBJ_DEAD object should terminate any and all vm_pages
716  * synchronously and not have to be kicked-start.
717  */
718 static void
719 vm_pageout_page_free(vm_page_t m) 
720 {
721         vm_page_protect(m, VM_PROT_NONE);
722         vm_page_free(m);
723 }
724
725 /*
726  * vm_pageout_scan does the dirty work for the pageout daemon.
727  */
728 struct vm_pageout_scan_info {
729         struct proc *bigproc;
730         vm_offset_t bigsize;
731 };
732
733 static int vm_pageout_scan_callback(struct proc *p, void *data);
734
735 static int
736 vm_pageout_scan_inactive(int pass, int q, int avail_shortage,
737                          int *vnodes_skippedp)
738 {
739         vm_page_t m;
740         struct vm_page marker;
741         struct vnode *vpfailed;         /* warning, allowed to be stale */
742         int maxscan;
743         int delta = 0;
744         vm_object_t object;
745         int actcount;
746         int maxlaunder;
747
748         /*
749          * Start scanning the inactive queue for pages we can move to the
750          * cache or free.  The scan will stop when the target is reached or
751          * we have scanned the entire inactive queue.  Note that m->act_count
752          * is not used to form decisions for the inactive queue, only for the
753          * active queue.
754          *
755          * maxlaunder limits the number of dirty pages we flush per scan.
756          * For most systems a smaller value (16 or 32) is more robust under
757          * extreme memory and disk pressure because any unnecessary writes
758          * to disk can result in extreme performance degredation.  However,
759          * systems with excessive dirty pages (especially when MAP_NOSYNC is
760          * used) will die horribly with limited laundering.  If the pageout
761          * daemon cannot clean enough pages in the first pass, we let it go
762          * all out in succeeding passes.
763          */
764         if ((maxlaunder = vm_max_launder) <= 1)
765                 maxlaunder = 1;
766         if (pass)
767                 maxlaunder = 10000;
768
769         /*
770          * Initialize our marker
771          */
772         bzero(&marker, sizeof(marker));
773         marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
774         marker.queue = PQ_INACTIVE + q;
775         marker.pc = q;
776         marker.wire_count = 1;
777
778         /*
779          * Inactive queue scan.
780          *
781          * NOTE: The vm_page must be spinlocked before the queue to avoid
782          *       deadlocks, so it is easiest to simply iterate the loop
783          *       with the queue unlocked at the top.
784          */
785         vpfailed = NULL;
786
787         vm_page_queues_spin_lock(PQ_INACTIVE + q);
788         TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE + q].pl, &marker, pageq);
789         maxscan = vm_page_queues[PQ_INACTIVE + q].lcnt;
790         vm_page_queues_spin_unlock(PQ_INACTIVE + q);
791
792         while ((m = TAILQ_NEXT(&marker, pageq)) != NULL &&
793                maxscan-- > 0 && avail_shortage - delta > 0)
794         {
795                 vm_page_and_queue_spin_lock(m);
796                 if (m != TAILQ_NEXT(&marker, pageq)) {
797                         vm_page_and_queue_spin_unlock(m);
798                         ++maxscan;
799                         continue;
800                 }
801                 KKASSERT(m->queue - m->pc == PQ_INACTIVE);
802                 TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE + q].pl,
803                              &marker, pageq);
804                 TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE + q].pl, m,
805                                    &marker, pageq);
806                 mycpu->gd_cnt.v_pdpages++;
807
808                 /*
809                  * Skip marker pages
810                  */
811                 if (m->flags & PG_MARKER) {
812                         vm_page_and_queue_spin_unlock(m);
813                         continue;
814                 }
815
816                 /*
817                  * Try to busy the page.  Don't mess with pages which are
818                  * already busy or reorder them in the queue.
819                  */
820                 if (vm_page_busy_try(m, TRUE)) {
821                         vm_page_and_queue_spin_unlock(m);
822                         continue;
823                 }
824                 vm_page_and_queue_spin_unlock(m);
825                 KKASSERT(m->queue - m->pc == PQ_INACTIVE);
826
827                 lwkt_yield();
828
829                 /*
830                  * The page has been successfully busied and is now no
831                  * longer spinlocked.  The queue is no longer spinlocked
832                  * either.
833                  */
834
835                 /*
836                  * It is possible for a page to be busied ad-hoc (e.g. the
837                  * pmap_collect() code) and wired and race against the
838                  * allocation of a new page.  vm_page_alloc() may be forced
839                  * to deactivate the wired page in which case it winds up
840                  * on the inactive queue and must be handled here.  We
841                  * correct the problem simply by unqueuing the page.
842                  */
843                 if (m->wire_count) {
844                         vm_page_unqueue_nowakeup(m);
845                         vm_page_wakeup(m);
846                         kprintf("WARNING: pagedaemon: wired page on "
847                                 "inactive queue %p\n", m);
848                         continue;
849                 }
850
851                 /*
852                  * A held page may be undergoing I/O, so skip it.
853                  */
854                 if (m->hold_count) {
855                         vm_page_and_queue_spin_lock(m);
856                         if (m->queue - m->pc == PQ_INACTIVE) {
857                                 TAILQ_REMOVE(
858                                         &vm_page_queues[PQ_INACTIVE + q].pl,
859                                         m, pageq);
860                                 TAILQ_INSERT_TAIL(
861                                         &vm_page_queues[PQ_INACTIVE + q].pl,
862                                         m, pageq);
863                                 ++vm_swapcache_inactive_heuristic;
864                         }
865                         vm_page_and_queue_spin_unlock(m);
866                         vm_page_wakeup(m);
867                         continue;
868                 }
869
870                 if (m->object == NULL || m->object->ref_count == 0) {
871                         /*
872                          * If the object is not being used, we ignore previous 
873                          * references.
874                          */
875                         vm_page_flag_clear(m, PG_REFERENCED);
876                         pmap_clear_reference(m);
877                         /* fall through to end */
878                 } else if (((m->flags & PG_REFERENCED) == 0) &&
879                             (actcount = pmap_ts_referenced(m))) {
880                         /*
881                          * Otherwise, if the page has been referenced while 
882                          * in the inactive queue, we bump the "activation
883                          * count" upwards, making it less likely that the
884                          * page will be added back to the inactive queue
885                          * prematurely again.  Here we check the page tables
886                          * (or emulated bits, if any), given the upper level
887                          * VM system not knowing anything about existing 
888                          * references.
889                          */
890                         vm_page_activate(m);
891                         m->act_count += (actcount + ACT_ADVANCE);
892                         vm_page_wakeup(m);
893                         continue;
894                 }
895
896                 /*
897                  * (m) is still busied.
898                  *
899                  * If the upper level VM system knows about any page 
900                  * references, we activate the page.  We also set the 
901                  * "activation count" higher than normal so that we will less 
902                  * likely place pages back onto the inactive queue again.
903                  */
904                 if ((m->flags & PG_REFERENCED) != 0) {
905                         vm_page_flag_clear(m, PG_REFERENCED);
906                         actcount = pmap_ts_referenced(m);
907                         vm_page_activate(m);
908                         m->act_count += (actcount + ACT_ADVANCE + 1);
909                         vm_page_wakeup(m);
910                         continue;
911                 }
912
913                 /*
914                  * If the upper level VM system doesn't know anything about 
915                  * the page being dirty, we have to check for it again.  As 
916                  * far as the VM code knows, any partially dirty pages are 
917                  * fully dirty.
918                  *
919                  * Pages marked PG_WRITEABLE may be mapped into the user
920                  * address space of a process running on another cpu.  A
921                  * user process (without holding the MP lock) running on
922                  * another cpu may be able to touch the page while we are
923                  * trying to remove it.  vm_page_cache() will handle this
924                  * case for us.
925                  */
926                 if (m->dirty == 0) {
927                         vm_page_test_dirty(m);
928                 } else {
929                         vm_page_dirty(m);
930                 }
931
932                 if (m->valid == 0 && (m->flags & PG_NEED_COMMIT) == 0) {
933                         /*
934                          * Invalid pages can be easily freed
935                          */
936                         vm_pageout_page_free(m);
937                         mycpu->gd_cnt.v_dfree++;
938                         ++delta;
939                 } else if (m->dirty == 0 && (m->flags & PG_NEED_COMMIT) == 0) {
940                         /*
941                          * Clean pages can be placed onto the cache queue.
942                          * This effectively frees them.
943                          */
944                         vm_page_cache(m);
945                         ++delta;
946                 } else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
947                         /*
948                          * Dirty pages need to be paged out, but flushing
949                          * a page is extremely expensive verses freeing
950                          * a clean page.  Rather then artificially limiting
951                          * the number of pages we can flush, we instead give
952                          * dirty pages extra priority on the inactive queue
953                          * by forcing them to be cycled through the queue
954                          * twice before being flushed, after which the 
955                          * (now clean) page will cycle through once more
956                          * before being freed.  This significantly extends
957                          * the thrash point for a heavily loaded machine.
958                          */
959                         vm_page_flag_set(m, PG_WINATCFLS);
960                         vm_page_and_queue_spin_lock(m);
961                         if (m->queue - m->pc == PQ_INACTIVE) {
962                                 TAILQ_REMOVE(
963                                         &vm_page_queues[PQ_INACTIVE + q].pl,
964                                         m, pageq);
965                                 TAILQ_INSERT_TAIL(
966                                         &vm_page_queues[PQ_INACTIVE + q].pl,
967                                         m, pageq);
968                                 ++vm_swapcache_inactive_heuristic;
969                         }
970                         vm_page_and_queue_spin_unlock(m);
971                         vm_page_wakeup(m);
972                 } else if (maxlaunder > 0) {
973                         /*
974                          * We always want to try to flush some dirty pages if
975                          * we encounter them, to keep the system stable.
976                          * Normally this number is small, but under extreme
977                          * pressure where there are insufficient clean pages
978                          * on the inactive queue, we may have to go all out.
979                          */
980                         int swap_pageouts_ok;
981                         struct vnode *vp = NULL;
982
983                         swap_pageouts_ok = 0;
984                         object = m->object;
985                         if (object &&
986                             (object->type != OBJT_SWAP) && 
987                             (object->type != OBJT_DEFAULT)) {
988                                 swap_pageouts_ok = 1;
989                         } else {
990                                 swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
991                                 swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
992                                 vm_page_count_min(0));
993                                                                                 
994                         }
995
996                         /*
997                          * We don't bother paging objects that are "dead".  
998                          * Those objects are in a "rundown" state.
999                          */
1000                         if (!swap_pageouts_ok || 
1001                             (object == NULL) ||
1002                             (object->flags & OBJ_DEAD)) {
1003                                 vm_page_and_queue_spin_lock(m);
1004                                 if (m->queue - m->pc == PQ_INACTIVE) {
1005                                         TAILQ_REMOVE(
1006                                             &vm_page_queues[PQ_INACTIVE + q].pl,
1007                                             m, pageq);
1008                                         TAILQ_INSERT_TAIL(
1009                                             &vm_page_queues[PQ_INACTIVE + q].pl,
1010                                             m, pageq);
1011                                         ++vm_swapcache_inactive_heuristic;
1012                                 }
1013                                 vm_page_and_queue_spin_unlock(m);
1014                                 vm_page_wakeup(m);
1015                                 continue;
1016                         }
1017
1018                         /*
1019                          * (m) is still busied.
1020                          *
1021                          * The object is already known NOT to be dead.   It
1022                          * is possible for the vget() to block the whole
1023                          * pageout daemon, but the new low-memory handling
1024                          * code should prevent it.
1025                          *
1026                          * The previous code skipped locked vnodes and, worse,
1027                          * reordered pages in the queue.  This results in
1028                          * completely non-deterministic operation because,
1029                          * quite often, a vm_fault has initiated an I/O and
1030                          * is holding a locked vnode at just the point where
1031                          * the pageout daemon is woken up.
1032                          *
1033                          * We can't wait forever for the vnode lock, we might
1034                          * deadlock due to a vn_read() getting stuck in
1035                          * vm_wait while holding this vnode.  We skip the 
1036                          * vnode if we can't get it in a reasonable amount
1037                          * of time.
1038                          *
1039                          * vpfailed is used to (try to) avoid the case where
1040                          * a large number of pages are associated with a
1041                          * locked vnode, which could cause the pageout daemon
1042                          * to stall for an excessive amount of time.
1043                          */
1044                         if (object->type == OBJT_VNODE) {
1045                                 int flags;
1046
1047                                 vp = object->handle;
1048                                 flags = LK_EXCLUSIVE | LK_NOOBJ;
1049                                 if (vp == vpfailed)
1050                                         flags |= LK_NOWAIT;
1051                                 else
1052                                         flags |= LK_TIMELOCK;
1053                                 vm_page_hold(m);
1054                                 vm_page_wakeup(m);
1055
1056                                 /*
1057                                  * We have unbusied (m) temporarily so we can
1058                                  * acquire the vp lock without deadlocking.
1059                                  * (m) is held to prevent destruction.
1060                                  */
1061                                 if (vget(vp, flags) != 0) {
1062                                         vpfailed = vp;
1063                                         ++pageout_lock_miss;
1064                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1065                                                     ++*vnodes_skippedp;
1066                                         vm_page_unhold(m);
1067                                         continue;
1068                                 }
1069
1070                                 /*
1071                                  * The page might have been moved to another
1072                                  * queue during potential blocking in vget()
1073                                  * above.  The page might have been freed and
1074                                  * reused for another vnode.  The object might
1075                                  * have been reused for another vnode.
1076                                  */
1077                                 if (m->queue - m->pc != PQ_INACTIVE ||
1078                                     m->object != object ||
1079                                     object->handle != vp) {
1080                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1081                                                 ++*vnodes_skippedp;
1082                                         vput(vp);
1083                                         vm_page_unhold(m);
1084                                         continue;
1085                                 }
1086         
1087                                 /*
1088                                  * The page may have been busied during the
1089                                  * blocking in vput();  We don't move the
1090                                  * page back onto the end of the queue so that
1091                                  * statistics are more correct if we don't.
1092                                  */
1093                                 if (vm_page_busy_try(m, TRUE)) {
1094                                         vput(vp);
1095                                         vm_page_unhold(m);
1096                                         continue;
1097                                 }
1098                                 vm_page_unhold(m);
1099
1100                                 /*
1101                                  * (m) is busied again
1102                                  *
1103                                  * We own the busy bit and remove our hold
1104                                  * bit.  If the page is still held it
1105                                  * might be undergoing I/O, so skip it.
1106                                  */
1107                                 if (m->hold_count) {
1108                                         vm_page_and_queue_spin_lock(m);
1109                                         if (m->queue - m->pc == PQ_INACTIVE) {
1110                                                 TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE + q].pl, m, pageq);
1111                                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE + q].pl, m, pageq);
1112                                                 ++vm_swapcache_inactive_heuristic;
1113                                         }
1114                                         vm_page_and_queue_spin_unlock(m);
1115                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1116                                                 ++*vnodes_skippedp;
1117                                         vm_page_wakeup(m);
1118                                         vput(vp);
1119                                         continue;
1120                                 }
1121                                 /* (m) is left busied as we fall through */
1122                         }
1123
1124                         /*
1125                          * page is busy and not held here.
1126                          *
1127                          * If a page is dirty, then it is either being washed
1128                          * (but not yet cleaned) or it is still in the
1129                          * laundry.  If it is still in the laundry, then we
1130                          * start the cleaning operation. 
1131                          *
1132                          * decrement inactive_shortage on success to account
1133                          * for the (future) cleaned page.  Otherwise we
1134                          * could wind up laundering or cleaning too many
1135                          * pages.
1136                          */
1137                         if (vm_pageout_clean(m) != 0) {
1138                                 ++delta;
1139                                 --maxlaunder;
1140                         }
1141                         /* clean ate busy, page no longer accessible */
1142                         if (vp != NULL)
1143                                 vput(vp);
1144                 } else {
1145                         vm_page_wakeup(m);
1146                 }
1147
1148                 /*
1149                  * Systems with a ton of memory can wind up with huge
1150                  * deactivation counts.  Because the inactive scan is
1151                  * doing a lot of flushing, the combination can result
1152                  * in excessive paging even in situations where other
1153                  * unrelated threads free up sufficient VM.
1154                  *
1155                  * To deal with this we abort the nominal active->inactive
1156                  * scan before we hit the inactive target when free+cache
1157                  * levels have already reached their target.
1158                  *
1159                  * Note that nominally the inactive scan is not freeing or
1160                  * caching pages, it is deactivating active pages, so it
1161                  * will not by itself cause the abort condition.
1162                  */
1163                 if (vm_paging_target() < 0)
1164                         break;
1165         }
1166         vm_page_queues_spin_lock(PQ_INACTIVE + q);
1167         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE + q].pl, &marker, pageq);
1168         vm_page_queues_spin_unlock(PQ_INACTIVE + q);
1169         return (delta);
1170 }
1171
1172 static int
1173 vm_pageout_scan_active(int pass, int q,
1174                        int avail_shortage, int inactive_shortage,
1175                        int *recycle_countp)
1176 {
1177         struct vm_page marker;
1178         vm_page_t m;
1179         int actcount;
1180         int delta = 0;
1181         int maxscan;
1182
1183         /*
1184          * We want to move pages from the active queue to the inactive
1185          * queue to get the inactive queue to the inactive target.  If
1186          * we still have a page shortage from above we try to directly free
1187          * clean pages instead of moving them.
1188          *
1189          * If we do still have a shortage we keep track of the number of
1190          * pages we free or cache (recycle_count) as a measure of thrashing
1191          * between the active and inactive queues.
1192          *
1193          * If we were able to completely satisfy the free+cache targets
1194          * from the inactive pool we limit the number of pages we move
1195          * from the active pool to the inactive pool to 2x the pages we
1196          * had removed from the inactive pool (with a minimum of 1/5 the
1197          * inactive target).  If we were not able to completely satisfy
1198          * the free+cache targets we go for the whole target aggressively.
1199          *
1200          * NOTE: Both variables can end up negative.
1201          * NOTE: We are still in a critical section.
1202          */
1203
1204         bzero(&marker, sizeof(marker));
1205         marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
1206         marker.queue = PQ_ACTIVE + q;
1207         marker.pc = q;
1208         marker.wire_count = 1;
1209
1210         vm_page_queues_spin_lock(PQ_ACTIVE + q);
1211         TAILQ_INSERT_HEAD(&vm_page_queues[PQ_ACTIVE + q].pl, &marker, pageq);
1212         maxscan = vm_page_queues[PQ_ACTIVE + q].lcnt;
1213         vm_page_queues_spin_unlock(PQ_ACTIVE + q);
1214
1215         while ((m = TAILQ_NEXT(&marker, pageq)) != NULL &&
1216                maxscan-- > 0 && (avail_shortage - delta > 0 ||
1217                                 inactive_shortage > 0))
1218         {
1219                 vm_page_and_queue_spin_lock(m);
1220                 if (m != TAILQ_NEXT(&marker, pageq)) {
1221                         vm_page_and_queue_spin_unlock(m);
1222                         ++maxscan;
1223                         continue;
1224                 }
1225                 KKASSERT(m->queue - m->pc == PQ_ACTIVE);
1226                 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE + q].pl,
1227                              &marker, pageq);
1228                 TAILQ_INSERT_AFTER(&vm_page_queues[PQ_ACTIVE + q].pl, m,
1229                                    &marker, pageq);
1230
1231                 /*
1232                  * Skip marker pages
1233                  */
1234                 if (m->flags & PG_MARKER) {
1235                         vm_page_and_queue_spin_unlock(m);
1236                         continue;
1237                 }
1238
1239                 /*
1240                  * Try to busy the page.  Don't mess with pages which are
1241                  * already busy or reorder them in the queue.
1242                  */
1243                 if (vm_page_busy_try(m, TRUE)) {
1244                         vm_page_and_queue_spin_unlock(m);
1245                         continue;
1246                 }
1247
1248                 /*
1249                  * Don't deactivate pages that are held, even if we can
1250                  * busy them.  (XXX why not?)
1251                  */
1252                 if (m->hold_count != 0) {
1253                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE + q].pl,
1254                                      m, pageq);
1255                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE + q].pl,
1256                                           m, pageq);
1257                         vm_page_and_queue_spin_unlock(m);
1258                         vm_page_wakeup(m);
1259                         continue;
1260                 }
1261                 vm_page_and_queue_spin_unlock(m);
1262                 lwkt_yield();
1263
1264                 /*
1265                  * The page has been successfully busied and the page and
1266                  * queue are no longer locked.
1267                  */
1268
1269                 /*
1270                  * The count for pagedaemon pages is done after checking the
1271                  * page for eligibility...
1272                  */
1273                 mycpu->gd_cnt.v_pdpages++;
1274
1275                 /*
1276                  * Check to see "how much" the page has been used and clear
1277                  * the tracking access bits.  If the object has no references
1278                  * don't bother paying the expense.
1279                  */
1280                 actcount = 0;
1281                 if (m->object && m->object->ref_count != 0) {
1282                         if (m->flags & PG_REFERENCED)
1283                                 ++actcount;
1284                         actcount += pmap_ts_referenced(m);
1285                         if (actcount) {
1286                                 m->act_count += ACT_ADVANCE + actcount;
1287                                 if (m->act_count > ACT_MAX)
1288                                         m->act_count = ACT_MAX;
1289                         }
1290                 }
1291                 vm_page_flag_clear(m, PG_REFERENCED);
1292
1293                 /*
1294                  * actcount is only valid if the object ref_count is non-zero.
1295                  * If the page does not have an object, actcount will be zero.
1296                  */
1297                 if (actcount && m->object->ref_count != 0) {
1298                         vm_page_and_queue_spin_lock(m);
1299                         if (m->queue - m->pc == PQ_ACTIVE) {
1300                                 TAILQ_REMOVE(
1301                                         &vm_page_queues[PQ_ACTIVE + q].pl,
1302                                         m, pageq);
1303                                 TAILQ_INSERT_TAIL(
1304                                         &vm_page_queues[PQ_ACTIVE + q].pl,
1305                                         m, pageq);
1306                         }
1307                         vm_page_and_queue_spin_unlock(m);
1308                         vm_page_wakeup(m);
1309                 } else {
1310                         switch(m->object->type) {
1311                         case OBJT_DEFAULT:
1312                         case OBJT_SWAP:
1313                                 m->act_count -= min(m->act_count,
1314                                                     vm_anonmem_decline);
1315                                 break;
1316                         default:
1317                                 m->act_count -= min(m->act_count,
1318                                                     vm_filemem_decline);
1319                                 break;
1320                         }
1321                         if (vm_pageout_algorithm ||
1322                             (m->object == NULL) ||
1323                             (m->object && (m->object->ref_count == 0)) ||
1324                             m->act_count < pass + 1
1325                         ) {
1326                                 /*
1327                                  * Deactivate the page.  If we had a
1328                                  * shortage from our inactive scan try to
1329                                  * free (cache) the page instead.
1330                                  *
1331                                  * Don't just blindly cache the page if
1332                                  * we do not have a shortage from the
1333                                  * inactive scan, that could lead to
1334                                  * gigabytes being moved.
1335                                  */
1336                                 --inactive_shortage;
1337                                 if (avail_shortage - delta > 0 ||
1338                                     (m->object && (m->object->ref_count == 0)))
1339                                 {
1340                                         if (avail_shortage - delta > 0)
1341                                                 ++*recycle_countp;
1342                                         vm_page_protect(m, VM_PROT_NONE);
1343                                         if (m->dirty == 0 &&
1344                                             (m->flags & PG_NEED_COMMIT) == 0 &&
1345                                             avail_shortage - delta > 0) {
1346                                                 vm_page_cache(m);
1347                                         } else {
1348                                                 vm_page_deactivate(m);
1349                                                 vm_page_wakeup(m);
1350                                         }
1351                                 } else {
1352                                         vm_page_deactivate(m);
1353                                         vm_page_wakeup(m);
1354                                 }
1355                                 ++delta;
1356                         } else {
1357                                 vm_page_and_queue_spin_lock(m);
1358                                 if (m->queue - m->pc == PQ_ACTIVE) {
1359                                         TAILQ_REMOVE(
1360                                             &vm_page_queues[PQ_ACTIVE + q].pl,
1361                                             m, pageq);
1362                                         TAILQ_INSERT_TAIL(
1363                                             &vm_page_queues[PQ_ACTIVE + q].pl,
1364                                             m, pageq);
1365                                 }
1366                                 vm_page_and_queue_spin_unlock(m);
1367                                 vm_page_wakeup(m);
1368                         }
1369                 }
1370         }
1371
1372         /*
1373          * Clean out our local marker.
1374          */
1375         vm_page_queues_spin_lock(PQ_ACTIVE + q);
1376         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE + q].pl, &marker, pageq);
1377         vm_page_queues_spin_unlock(PQ_ACTIVE + q);
1378
1379         return (delta);
1380 }
1381
1382 /*
1383  * The number of actually free pages can drop down to v_free_reserved,
1384  * we try to build the free count back above v_free_min.  Note that
1385  * vm_paging_needed() also returns TRUE if v_free_count is not at
1386  * least v_free_min so that is the minimum we must build the free
1387  * count to.
1388  *
1389  * We use a slightly higher target to improve hysteresis,
1390  * ((v_free_target + v_free_min) / 2).  Since v_free_target
1391  * is usually the same as v_cache_min this maintains about
1392  * half the pages in the free queue as are in the cache queue,
1393  * providing pretty good pipelining for pageout operation.
1394  *
1395  * The system operator can manipulate vm.v_cache_min and
1396  * vm.v_free_target to tune the pageout demon.  Be sure
1397  * to keep vm.v_free_min < vm.v_free_target.
1398  *
1399  * Note that the original paging target is to get at least
1400  * (free_min + cache_min) into (free + cache).  The slightly
1401  * higher target will shift additional pages from cache to free
1402  * without effecting the original paging target in order to
1403  * maintain better hysteresis and not have the free count always
1404  * be dead-on v_free_min.
1405  *
1406  * NOTE: we are still in a critical section.
1407  *
1408  * Pages moved from PQ_CACHE to totally free are not counted in the
1409  * pages_freed counter.
1410  */
1411 static void
1412 vm_pageout_scan_cache(int avail_shortage, int vnodes_skipped, int recycle_count)
1413 {
1414         struct vm_pageout_scan_info info;
1415         vm_page_t m;
1416
1417         while (vmstats.v_free_count <
1418                (vmstats.v_free_min + vmstats.v_free_target) / 2) {
1419                 /*
1420                  * This steals some code from vm/vm_page.c
1421                  */
1422                 static int cache_rover = 0;
1423
1424                 m = vm_page_list_find(PQ_CACHE, cache_rover & PQ_L2_MASK, FALSE);
1425                 if (m == NULL)
1426                         break;
1427                 /* page is returned removed from its queue and spinlocked */
1428                 if (vm_page_busy_try(m, TRUE)) {
1429                         vm_page_deactivate_locked(m);
1430                         vm_page_spin_unlock(m);
1431 #ifdef INVARIANTS
1432                         kprintf("Warning: busy page %p found in cache\n", m);
1433 #endif
1434                         continue;
1435                 }
1436                 vm_page_spin_unlock(m);
1437                 pagedaemon_wakeup();
1438                 lwkt_yield();
1439
1440                 /*
1441                  * Page has been successfully busied and it and its queue
1442                  * is no longer spinlocked.
1443                  */
1444                 if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
1445                     m->hold_count ||
1446                     m->wire_count) {
1447                         vm_page_deactivate(m);
1448                         vm_page_wakeup(m);
1449                         continue;
1450                 }
1451                 KKASSERT((m->flags & PG_MAPPED) == 0);
1452                 KKASSERT(m->dirty == 0);
1453                 cache_rover += PQ_PRIME2;
1454                 vm_pageout_page_free(m);
1455                 mycpu->gd_cnt.v_dfree++;
1456         }
1457
1458 #if !defined(NO_SWAPPING)
1459         /*
1460          * Idle process swapout -- run once per second.
1461          */
1462         if (vm_swap_idle_enabled) {
1463                 static long lsec;
1464                 if (time_second != lsec) {
1465                         vm_pageout_req_swapout |= VM_SWAP_IDLE;
1466                         vm_req_vmdaemon();
1467                         lsec = time_second;
1468                 }
1469         }
1470 #endif
1471                 
1472         /*
1473          * If we didn't get enough free pages, and we have skipped a vnode
1474          * in a writeable object, wakeup the sync daemon.  And kick swapout
1475          * if we did not get enough free pages.
1476          */
1477         if (vm_paging_target() > 0) {
1478                 if (vnodes_skipped && vm_page_count_min(0))
1479                         speedup_syncer();
1480 #if !defined(NO_SWAPPING)
1481                 if (vm_swap_enabled && vm_page_count_target()) {
1482                         vm_req_vmdaemon();
1483                         vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1484                 }
1485 #endif
1486         }
1487
1488         /*
1489          * Handle catastrophic conditions.  Under good conditions we should
1490          * be at the target, well beyond our minimum.  If we could not even
1491          * reach our minimum the system is under heavy stress.
1492          *
1493          * Determine whether we have run out of memory.  This occurs when
1494          * swap_pager_full is TRUE and the only pages left in the page
1495          * queues are dirty.  We will still likely have page shortages.
1496          *
1497          * - swap_pager_full is set if insufficient swap was
1498          *   available to satisfy a requested pageout.
1499          *
1500          * - the inactive queue is bloated (4 x size of active queue),
1501          *   meaning it is unable to get rid of dirty pages and.
1502          *
1503          * - vm_page_count_min() without counting pages recycled from the
1504          *   active queue (recycle_count) means we could not recover
1505          *   enough pages to meet bare minimum needs.  This test only
1506          *   works if the inactive queue is bloated.
1507          *
1508          * - due to a positive avail_shortage we shifted the remaining
1509          *   dirty pages from the active queue to the inactive queue
1510          *   trying to find clean ones to free.
1511          */
1512         if (swap_pager_full && vm_page_count_min(recycle_count))
1513                 kprintf("Warning: system low on memory+swap!\n");
1514         if (swap_pager_full && vm_page_count_min(recycle_count) &&
1515             vmstats.v_inactive_count > vmstats.v_active_count * 4 &&
1516             avail_shortage > 0) {
1517                 /*
1518                  * Kill something.
1519                  */
1520                 info.bigproc = NULL;
1521                 info.bigsize = 0;
1522                 allproc_scan(vm_pageout_scan_callback, &info);
1523                 if (info.bigproc != NULL) {
1524                         killproc(info.bigproc, "out of swap space");
1525                         info.bigproc->p_nice = PRIO_MIN;
1526                         info.bigproc->p_usched->resetpriority(
1527                                 FIRST_LWP_IN_PROC(info.bigproc));
1528                         wakeup(&vmstats.v_free_count);
1529                         PRELE(info.bigproc);
1530                 }
1531         }
1532 }
1533
1534 /*
1535  * The caller must hold proc_token.
1536  */
1537 static int
1538 vm_pageout_scan_callback(struct proc *p, void *data)
1539 {
1540         struct vm_pageout_scan_info *info = data;
1541         vm_offset_t size;
1542
1543         /*
1544          * Never kill system processes or init.  If we have configured swap
1545          * then try to avoid killing low-numbered pids.
1546          */
1547         if ((p->p_flags & P_SYSTEM) || (p->p_pid == 1) ||
1548             ((p->p_pid < 48) && (vm_swap_size != 0))) {
1549                 return (0);
1550         }
1551
1552         /*
1553          * if the process is in a non-running type state,
1554          * don't touch it.
1555          */
1556         if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1557                 return (0);
1558
1559         /*
1560          * Get the approximate process size.  Note that anonymous pages
1561          * with backing swap will be counted twice, but there should not
1562          * be too many such pages due to the stress the VM system is
1563          * under at this point.
1564          */
1565         size = vmspace_anonymous_count(p->p_vmspace) +
1566                 vmspace_swap_count(p->p_vmspace);
1567
1568         /*
1569          * If the this process is bigger than the biggest one
1570          * remember it.
1571          */
1572         if (info->bigsize < size) {
1573                 if (info->bigproc)
1574                         PRELE(info->bigproc);
1575                 PHOLD(p);
1576                 info->bigproc = p;
1577                 info->bigsize = size;
1578         }
1579         lwkt_yield();
1580         return(0);
1581 }
1582
1583 /*
1584  * This routine tries to maintain the pseudo LRU active queue,
1585  * so that during long periods of time where there is no paging,
1586  * that some statistic accumulation still occurs.  This code
1587  * helps the situation where paging just starts to occur.
1588  */
1589 static void
1590 vm_pageout_page_stats(int q)
1591 {
1592         static int fullintervalcount = 0;
1593         struct vm_page marker;
1594         vm_page_t m;
1595         int pcount, tpcount;            /* Number of pages to check */
1596         int page_shortage;
1597
1598         page_shortage = (vmstats.v_inactive_target + vmstats.v_cache_max +
1599                          vmstats.v_free_min) -
1600                         (vmstats.v_free_count + vmstats.v_inactive_count +
1601                          vmstats.v_cache_count);
1602
1603         if (page_shortage <= 0)
1604                 return;
1605
1606         pcount = vm_page_queues[PQ_ACTIVE + q].lcnt;
1607         fullintervalcount += vm_pageout_stats_interval;
1608         if (fullintervalcount < vm_pageout_full_stats_interval) {
1609                 tpcount = (vm_pageout_stats_max * pcount) /
1610                           vmstats.v_page_count + 1;
1611                 if (pcount > tpcount)
1612                         pcount = tpcount;
1613         } else {
1614                 fullintervalcount = 0;
1615         }
1616
1617         bzero(&marker, sizeof(marker));
1618         marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
1619         marker.queue = PQ_ACTIVE + q;
1620         marker.pc = q;
1621         marker.wire_count = 1;
1622
1623         vm_page_queues_spin_lock(PQ_ACTIVE + q);
1624         TAILQ_INSERT_HEAD(&vm_page_queues[PQ_ACTIVE + q].pl, &marker, pageq);
1625         vm_page_queues_spin_unlock(PQ_ACTIVE + q);
1626
1627         while ((m = TAILQ_NEXT(&marker, pageq)) != NULL &&
1628                pcount-- > 0)
1629         {
1630                 int actcount;
1631
1632                 vm_page_and_queue_spin_lock(m);
1633                 if (m != TAILQ_NEXT(&marker, pageq)) {
1634                         vm_page_and_queue_spin_unlock(m);
1635                         ++pcount;
1636                         continue;
1637                 }
1638                 KKASSERT(m->queue - m->pc == PQ_ACTIVE);
1639                 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE + q].pl, &marker, pageq);
1640                 TAILQ_INSERT_AFTER(&vm_page_queues[PQ_ACTIVE + q].pl, m,
1641                                    &marker, pageq);
1642
1643                 /*
1644                  * Ignore markers
1645                  */
1646                 if (m->flags & PG_MARKER) {
1647                         vm_page_and_queue_spin_unlock(m);
1648                         continue;
1649                 }
1650
1651                 /*
1652                  * Ignore pages we can't busy
1653                  */
1654                 if (vm_page_busy_try(m, TRUE)) {
1655                         vm_page_and_queue_spin_unlock(m);
1656                         continue;
1657                 }
1658                 vm_page_and_queue_spin_unlock(m);
1659                 KKASSERT(m->queue - m->pc == PQ_ACTIVE);
1660
1661                 /*
1662                  * We now have a safely busied page, the page and queue
1663                  * spinlocks have been released.
1664                  *
1665                  * Ignore held pages
1666                  */
1667                 if (m->hold_count) {
1668                         vm_page_wakeup(m);
1669                         continue;
1670                 }
1671
1672                 /*
1673                  * Calculate activity
1674                  */
1675                 actcount = 0;
1676                 if (m->flags & PG_REFERENCED) {
1677                         vm_page_flag_clear(m, PG_REFERENCED);
1678                         actcount += 1;
1679                 }
1680                 actcount += pmap_ts_referenced(m);
1681
1682                 /*
1683                  * Update act_count and move page to end of queue.
1684                  */
1685                 if (actcount) {
1686                         m->act_count += ACT_ADVANCE + actcount;
1687                         if (m->act_count > ACT_MAX)
1688                                 m->act_count = ACT_MAX;
1689                         vm_page_and_queue_spin_lock(m);
1690                         if (m->queue - m->pc == PQ_ACTIVE) {
1691                                 TAILQ_REMOVE(
1692                                         &vm_page_queues[PQ_ACTIVE + q].pl,
1693                                         m, pageq);
1694                                 TAILQ_INSERT_TAIL(
1695                                         &vm_page_queues[PQ_ACTIVE + q].pl,
1696                                         m, pageq);
1697                         }
1698                         vm_page_and_queue_spin_unlock(m);
1699                         vm_page_wakeup(m);
1700                         continue;
1701                 }
1702
1703                 if (m->act_count == 0) {
1704                         /*
1705                          * We turn off page access, so that we have
1706                          * more accurate RSS stats.  We don't do this
1707                          * in the normal page deactivation when the
1708                          * system is loaded VM wise, because the
1709                          * cost of the large number of page protect
1710                          * operations would be higher than the value
1711                          * of doing the operation.
1712                          *
1713                          * We use the marker to save our place so
1714                          * we can release the spin lock.  both (m)
1715                          * and (next) will be invalid.
1716                          */
1717                         vm_page_protect(m, VM_PROT_NONE);
1718                         vm_page_deactivate(m);
1719                 } else {
1720                         m->act_count -= min(m->act_count, ACT_DECLINE);
1721                         vm_page_and_queue_spin_lock(m);
1722                         if (m->queue - m->pc == PQ_ACTIVE) {
1723                                 TAILQ_REMOVE(
1724                                         &vm_page_queues[PQ_ACTIVE + q].pl,
1725                                         m, pageq);
1726                                 TAILQ_INSERT_TAIL(
1727                                         &vm_page_queues[PQ_ACTIVE + q].pl,
1728                                         m, pageq);
1729                         }
1730                         vm_page_and_queue_spin_unlock(m);
1731                 }
1732                 vm_page_wakeup(m);
1733         }
1734
1735         /*
1736          * Remove our local marker
1737          */
1738         vm_page_queues_spin_lock(PQ_ACTIVE + q);
1739         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE + q].pl, &marker, pageq);
1740         vm_page_queues_spin_unlock(PQ_ACTIVE + q);
1741 }
1742
1743 static int
1744 vm_pageout_free_page_calc(vm_size_t count)
1745 {
1746         if (count < vmstats.v_page_count)
1747                  return 0;
1748         /*
1749          * free_reserved needs to include enough for the largest swap pager
1750          * structures plus enough for any pv_entry structs when paging.
1751          *
1752          * v_free_min           normal allocations
1753          * v_free_reserved      system allocations
1754          * v_pageout_free_min   allocations by pageout daemon
1755          * v_interrupt_free_min low level allocations (e.g swap structures)
1756          */
1757         if (vmstats.v_page_count > 1024)
1758                 vmstats.v_free_min = 64 + (vmstats.v_page_count - 1024) / 200;
1759         else
1760                 vmstats.v_free_min = 64;
1761         vmstats.v_free_reserved = vmstats.v_free_min * 4 / 8 + 7;
1762         vmstats.v_free_severe = vmstats.v_free_min * 4 / 8 + 0;
1763         vmstats.v_pageout_free_min = vmstats.v_free_min * 2 / 8 + 7;
1764         vmstats.v_interrupt_free_min = vmstats.v_free_min * 1 / 8 + 7;
1765
1766         return 1;
1767 }
1768
1769
1770 /*
1771  * vm_pageout is the high level pageout daemon.
1772  *
1773  * No requirements.
1774  */
1775 static void
1776 vm_pageout_thread(void)
1777 {
1778         int pass;
1779         int q;
1780
1781         /*
1782          * Initialize some paging parameters.
1783          */
1784         curthread->td_flags |= TDF_SYSTHREAD;
1785
1786         if (vmstats.v_page_count < 2000)
1787                 vm_pageout_page_count = 8;
1788
1789         vm_pageout_free_page_calc(vmstats.v_page_count);
1790
1791         /*
1792          * v_free_target and v_cache_min control pageout hysteresis.  Note
1793          * that these are more a measure of the VM cache queue hysteresis
1794          * then the VM free queue.  Specifically, v_free_target is the
1795          * high water mark (free+cache pages).
1796          *
1797          * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1798          * low water mark, while v_free_min is the stop.  v_cache_min must
1799          * be big enough to handle memory needs while the pageout daemon
1800          * is signalled and run to free more pages.
1801          */
1802         if (vmstats.v_free_count > 6144)
1803                 vmstats.v_free_target = 4 * vmstats.v_free_min + vmstats.v_free_reserved;
1804         else
1805                 vmstats.v_free_target = 2 * vmstats.v_free_min + vmstats.v_free_reserved;
1806
1807         /*
1808          * NOTE: With the new buffer cache b_act_count we want the default
1809          *       inactive target to be a percentage of available memory.
1810          *
1811          *       The inactive target essentially determines the minimum
1812          *       number of 'temporary' pages capable of caching one-time-use
1813          *       files when the VM system is otherwise full of pages
1814          *       belonging to multi-time-use files or active program data.
1815          *
1816          * NOTE: The inactive target is aggressively persued only if the
1817          *       inactive queue becomes too small.  If the inactive queue
1818          *       is large enough to satisfy page movement to free+cache
1819          *       then it is repopulated more slowly from the active queue.
1820          *       This allows a general inactive_target default to be set.
1821          *
1822          *       There is an issue here for processes which sit mostly idle
1823          *       'overnight', such as sshd, tcsh, and X.  Any movement from
1824          *       the active queue will eventually cause such pages to
1825          *       recycle eventually causing a lot of paging in the morning.
1826          *       To reduce the incidence of this pages cycled out of the
1827          *       buffer cache are moved directly to the inactive queue if
1828          *       they were only used once or twice.
1829          *
1830          *       The vfs.vm_cycle_point sysctl can be used to adjust this.
1831          *       Increasing the value (up to 64) increases the number of
1832          *       buffer recyclements which go directly to the inactive queue.
1833          */
1834         if (vmstats.v_free_count > 2048) {
1835                 vmstats.v_cache_min = vmstats.v_free_target;
1836                 vmstats.v_cache_max = 2 * vmstats.v_cache_min;
1837         } else {
1838                 vmstats.v_cache_min = 0;
1839                 vmstats.v_cache_max = 0;
1840         }
1841         vmstats.v_inactive_target = vmstats.v_free_count / 4;
1842
1843         /* XXX does not really belong here */
1844         if (vm_page_max_wired == 0)
1845                 vm_page_max_wired = vmstats.v_free_count / 3;
1846
1847         if (vm_pageout_stats_max == 0)
1848                 vm_pageout_stats_max = vmstats.v_free_target;
1849
1850         /*
1851          * Set interval in seconds for stats scan.
1852          */
1853         if (vm_pageout_stats_interval == 0)
1854                 vm_pageout_stats_interval = 5;
1855         if (vm_pageout_full_stats_interval == 0)
1856                 vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1857         
1858
1859         /*
1860          * Set maximum free per pass
1861          */
1862         if (vm_pageout_stats_free_max == 0)
1863                 vm_pageout_stats_free_max = 5;
1864
1865         swap_pager_swap_init();
1866         pass = 0;
1867
1868         /*
1869          * The pageout daemon is never done, so loop forever.
1870          */
1871         while (TRUE) {
1872                 int error;
1873                 int delta1;
1874                 int delta2;
1875                 int avail_shortage;
1876                 int inactive_shortage;
1877                 int vnodes_skipped = 0;
1878                 int recycle_count = 0;
1879                 int tmp;
1880
1881                 /*
1882                  * Wait for an action request.  If we timeout check to
1883                  * see if paging is needed (in case the normal wakeup
1884                  * code raced us).
1885                  */
1886                 if (vm_pages_needed == 0) {
1887                         error = tsleep(&vm_pages_needed,
1888                                        0, "psleep",
1889                                        vm_pageout_stats_interval * hz);
1890                         if (error &&
1891                             vm_paging_needed() == 0 &&
1892                             vm_pages_needed == 0) {
1893                                 for (q = 0; q < PQ_L2_SIZE; ++q)
1894                                         vm_pageout_page_stats(q);
1895                                 continue;
1896                         }
1897                         vm_pages_needed = 1;
1898                 }
1899
1900                 mycpu->gd_cnt.v_pdwakeups++;
1901
1902                 /*
1903                  * Do whatever cleanup that the pmap code can.
1904                  */
1905                 pmap_collect();
1906
1907                 /*
1908                  * Scan for pageout.  Try to avoid thrashing the system
1909                  * with activity.
1910                  *
1911                  * Calculate our target for the number of free+cache pages we
1912                  * want to get to.  This is higher then the number that causes
1913                  * allocations to stall (severe) in order to provide hysteresis,
1914                  * and if we don't make it all the way but get to the minimum
1915                  * we're happy.  Goose it a bit if there are multipler
1916                  * requests for memory.
1917                  */
1918                 avail_shortage = vm_paging_target() + vm_pageout_deficit;
1919                 vm_pageout_deficit = 0;
1920                 delta1 = 0;
1921                 if (avail_shortage > 0) {
1922                         for (q = 0; q < PQ_L2_SIZE; ++q) {
1923                                 delta1 += vm_pageout_scan_inactive(
1924                                             pass, q,
1925                                             PQAVERAGE(avail_shortage),
1926                                             &vnodes_skipped);
1927                         }
1928                         avail_shortage -= delta1;
1929                 }
1930
1931                 /*
1932                  * Figure out how many active pages we must deactivate.  If
1933                  * we were able to reach our target with just the inactive
1934                  * scan above we limit the number of active pages we
1935                  * deactivate to reduce unnecessary work.
1936                  */
1937                 inactive_shortage = vmstats.v_inactive_target -
1938                                     vmstats.v_inactive_count;
1939
1940                 /*
1941                  * If we were unable to free sufficient inactive pages to
1942                  * satisfy the free/cache queue requirements then simply
1943                  * reaching the inactive target may not be good enough.
1944                  * Try to deactivate pages in excess of the target based
1945                  * on the shortfall.
1946                  *
1947                  * However to prevent thrashing the VM system do not
1948                  * deactivate more than an additional 1/10 the inactive
1949                  * target's worth of active pages.
1950                  */
1951                 if (avail_shortage > 0) {
1952                         tmp = avail_shortage * 2;
1953                         if (tmp > vmstats.v_inactive_target / 10)
1954                                 tmp = vmstats.v_inactive_target / 10;
1955                         inactive_shortage += tmp;
1956                 }
1957
1958                 if (avail_shortage > 0 || inactive_shortage > 0) {
1959                         delta2 = 0;
1960                         for (q = 0; q < PQ_L2_SIZE; ++q) {
1961                                 delta2 += vm_pageout_scan_active(
1962                                                 pass, q,
1963                                                 PQAVERAGE(avail_shortage),
1964                                                 PQAVERAGE(inactive_shortage),
1965                                                 &recycle_count);
1966                         }
1967                         inactive_shortage -= delta2;
1968                         avail_shortage -= delta2;
1969                 }
1970
1971                 /*
1972                  * Finally free enough cache pages to meet our free page
1973                  * requirement and take more drastic measures if we are
1974                  * still in trouble.
1975                  */
1976                 vm_pageout_scan_cache(avail_shortage, vnodes_skipped,
1977                                       recycle_count);
1978
1979                 /*
1980                  * Wait for more work.
1981                  */
1982                 if (avail_shortage > 0) {
1983                         ++pass;
1984                         if (swap_pager_full) {
1985                                 /*
1986                                  * Running out of memory, catastrophic back-off
1987                                  * to one-second intervals.
1988                                  */
1989                                 tsleep(&vm_pages_needed, 0, "pdelay", hz);
1990                         } else if (pass < 10 && vm_pages_needed > 1) {
1991                                 /*
1992                                  * Normal operation, additional processes
1993                                  * have already kicked us.  Retry immediately.
1994                                  */
1995                         } else if (pass < 10) {
1996                                 /*
1997                                  * Normal operation, fewer processes.  Delay
1998                                  * a bit but allow wakeups.
1999                                  */
2000                                 vm_pages_needed = 0;
2001                                 tsleep(&vm_pages_needed, 0, "pdelay", hz / 10);
2002                                 vm_pages_needed = 1;
2003                         } else {
2004                                 /*
2005                                  * We've taken too many passes, forced delay.
2006                                  */
2007                                 tsleep(&vm_pages_needed, 0, "pdelay", hz / 10);
2008                         }
2009                 } else {
2010                         /*
2011                          * Interlocked wakeup of waiters (non-optional)
2012                          */
2013                         pass = 0;
2014                         if (vm_pages_needed && !vm_page_count_min(0)) {
2015                                 wakeup(&vmstats.v_free_count);
2016                                 vm_pages_needed = 0;
2017                         }
2018                 }
2019         }
2020 }
2021
2022 static struct kproc_desc page_kp = {
2023         "pagedaemon",
2024         vm_pageout_thread,
2025         &pagethread
2026 };
2027 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
2028
2029
2030 /*
2031  * Called after allocating a page out of the cache or free queue
2032  * to possibly wake the pagedaemon up to replentish our supply.
2033  *
2034  * We try to generate some hysteresis by waking the pagedaemon up
2035  * when our free+cache pages go below the free_min+cache_min level.
2036  * The pagedaemon tries to get the count back up to at least the
2037  * minimum, and through to the target level if possible.
2038  *
2039  * If the pagedaemon is already active bump vm_pages_needed as a hint
2040  * that there are even more requests pending.
2041  *
2042  * SMP races ok?
2043  * No requirements.
2044  */
2045 void
2046 pagedaemon_wakeup(void)
2047 {
2048         if (vm_paging_needed() && curthread != pagethread) {
2049                 if (vm_pages_needed == 0) {
2050                         vm_pages_needed = 1;    /* SMP race ok */
2051                         wakeup(&vm_pages_needed);
2052                 } else if (vm_page_count_min(0)) {
2053                         ++vm_pages_needed;      /* SMP race ok */
2054                 }
2055         }
2056 }
2057
2058 #if !defined(NO_SWAPPING)
2059
2060 /*
2061  * SMP races ok?
2062  * No requirements.
2063  */
2064 static void
2065 vm_req_vmdaemon(void)
2066 {
2067         static int lastrun = 0;
2068
2069         if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
2070                 wakeup(&vm_daemon_needed);
2071                 lastrun = ticks;
2072         }
2073 }
2074
2075 static int vm_daemon_callback(struct proc *p, void *data __unused);
2076
2077 /*
2078  * No requirements.
2079  */
2080 static void
2081 vm_daemon(void)
2082 {
2083         /*
2084          * XXX vm_daemon_needed specific token?
2085          */
2086         while (TRUE) {
2087                 tsleep(&vm_daemon_needed, 0, "psleep", 0);
2088                 if (vm_pageout_req_swapout) {
2089                         swapout_procs(vm_pageout_req_swapout);
2090                         vm_pageout_req_swapout = 0;
2091                 }
2092                 /*
2093                  * scan the processes for exceeding their rlimits or if
2094                  * process is swapped out -- deactivate pages
2095                  */
2096                 allproc_scan(vm_daemon_callback, NULL);
2097         }
2098 }
2099
2100 /*
2101  * Caller must hold proc_token.
2102  */
2103 static int
2104 vm_daemon_callback(struct proc *p, void *data __unused)
2105 {
2106         vm_pindex_t limit, size;
2107
2108         /*
2109          * if this is a system process or if we have already
2110          * looked at this process, skip it.
2111          */
2112         if (p->p_flags & (P_SYSTEM | P_WEXIT))
2113                 return (0);
2114
2115         /*
2116          * if the process is in a non-running type state,
2117          * don't touch it.
2118          */
2119         if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
2120                 return (0);
2121
2122         /*
2123          * get a limit
2124          */
2125         limit = OFF_TO_IDX(qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
2126                                 p->p_rlimit[RLIMIT_RSS].rlim_max));
2127
2128         /*
2129          * let processes that are swapped out really be
2130          * swapped out.  Set the limit to nothing to get as
2131          * many pages out to swap as possible.
2132          */
2133         if (p->p_flags & P_SWAPPEDOUT)
2134                 limit = 0;
2135
2136         lwkt_gettoken(&p->p_vmspace->vm_map.token);
2137         size = vmspace_resident_count(p->p_vmspace);
2138         if (limit >= 0 && size >= limit) {
2139                 vm_pageout_map_deactivate_pages(&p->p_vmspace->vm_map, limit);
2140         }
2141         lwkt_reltoken(&p->p_vmspace->vm_map.token);
2142         return (0);
2143 }
2144
2145 #endif