Disconnect hostapd from building in base
[dragonfly.git] / contrib / hostapd / src / crypto / crypto.h
1 /*
2  * Wrapper functions for crypto libraries
3  * Copyright (c) 2004-2013, Jouni Malinen <j@w1.fi>
4  *
5  * This software may be distributed under the terms of the BSD license.
6  * See README for more details.
7  *
8  * This file defines the cryptographic functions that need to be implemented
9  * for wpa_supplicant and hostapd. When TLS is not used, internal
10  * implementation of MD5, SHA1, and AES is used and no external libraries are
11  * required. When TLS is enabled (e.g., by enabling EAP-TLS or EAP-PEAP), the
12  * crypto library used by the TLS implementation is expected to be used for
13  * non-TLS needs, too, in order to save space by not implementing these
14  * functions twice.
15  *
16  * Wrapper code for using each crypto library is in its own file (crypto*.c)
17  * and one of these files is build and linked in to provide the functions
18  * defined here.
19  */
20
21 #ifndef CRYPTO_H
22 #define CRYPTO_H
23
24 /**
25  * md4_vector - MD4 hash for data vector
26  * @num_elem: Number of elements in the data vector
27  * @addr: Pointers to the data areas
28  * @len: Lengths of the data blocks
29  * @mac: Buffer for the hash
30  * Returns: 0 on success, -1 on failure
31  */
32 int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac);
33
34 /**
35  * md5_vector - MD5 hash for data vector
36  * @num_elem: Number of elements in the data vector
37  * @addr: Pointers to the data areas
38  * @len: Lengths of the data blocks
39  * @mac: Buffer for the hash
40  * Returns: 0 on success, -1 on failure
41  */
42 int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac);
43
44
45 /**
46  * sha1_vector - SHA-1 hash for data vector
47  * @num_elem: Number of elements in the data vector
48  * @addr: Pointers to the data areas
49  * @len: Lengths of the data blocks
50  * @mac: Buffer for the hash
51  * Returns: 0 on success, -1 on failure
52  */
53 int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len,
54                 u8 *mac);
55
56 /**
57  * fips186_2-prf - NIST FIPS Publication 186-2 change notice 1 PRF
58  * @seed: Seed/key for the PRF
59  * @seed_len: Seed length in bytes
60  * @x: Buffer for PRF output
61  * @xlen: Output length in bytes
62  * Returns: 0 on success, -1 on failure
63  *
64  * This function implements random number generation specified in NIST FIPS
65  * Publication 186-2 for EAP-SIM. This PRF uses a function that is similar to
66  * SHA-1, but has different message padding.
67  */
68 int __must_check fips186_2_prf(const u8 *seed, size_t seed_len, u8 *x,
69                                size_t xlen);
70
71 /**
72  * sha256_vector - SHA256 hash for data vector
73  * @num_elem: Number of elements in the data vector
74  * @addr: Pointers to the data areas
75  * @len: Lengths of the data blocks
76  * @mac: Buffer for the hash
77  * Returns: 0 on success, -1 on failure
78  */
79 int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len,
80                   u8 *mac);
81
82 /**
83  * des_encrypt - Encrypt one block with DES
84  * @clear: 8 octets (in)
85  * @key: 7 octets (in) (no parity bits included)
86  * @cypher: 8 octets (out)
87  */
88 void des_encrypt(const u8 *clear, const u8 *key, u8 *cypher);
89
90 /**
91  * aes_encrypt_init - Initialize AES for encryption
92  * @key: Encryption key
93  * @len: Key length in bytes (usually 16, i.e., 128 bits)
94  * Returns: Pointer to context data or %NULL on failure
95  */
96 void * aes_encrypt_init(const u8 *key, size_t len);
97
98 /**
99  * aes_encrypt - Encrypt one AES block
100  * @ctx: Context pointer from aes_encrypt_init()
101  * @plain: Plaintext data to be encrypted (16 bytes)
102  * @crypt: Buffer for the encrypted data (16 bytes)
103  */
104 void aes_encrypt(void *ctx, const u8 *plain, u8 *crypt);
105
106 /**
107  * aes_encrypt_deinit - Deinitialize AES encryption
108  * @ctx: Context pointer from aes_encrypt_init()
109  */
110 void aes_encrypt_deinit(void *ctx);
111
112 /**
113  * aes_decrypt_init - Initialize AES for decryption
114  * @key: Decryption key
115  * @len: Key length in bytes (usually 16, i.e., 128 bits)
116  * Returns: Pointer to context data or %NULL on failure
117  */
118 void * aes_decrypt_init(const u8 *key, size_t len);
119
120 /**
121  * aes_decrypt - Decrypt one AES block
122  * @ctx: Context pointer from aes_encrypt_init()
123  * @crypt: Encrypted data (16 bytes)
124  * @plain: Buffer for the decrypted data (16 bytes)
125  */
126 void aes_decrypt(void *ctx, const u8 *crypt, u8 *plain);
127
128 /**
129  * aes_decrypt_deinit - Deinitialize AES decryption
130  * @ctx: Context pointer from aes_encrypt_init()
131  */
132 void aes_decrypt_deinit(void *ctx);
133
134
135 enum crypto_hash_alg {
136         CRYPTO_HASH_ALG_MD5, CRYPTO_HASH_ALG_SHA1,
137         CRYPTO_HASH_ALG_HMAC_MD5, CRYPTO_HASH_ALG_HMAC_SHA1,
138         CRYPTO_HASH_ALG_SHA256, CRYPTO_HASH_ALG_HMAC_SHA256
139 };
140
141 struct crypto_hash;
142
143 /**
144  * crypto_hash_init - Initialize hash/HMAC function
145  * @alg: Hash algorithm
146  * @key: Key for keyed hash (e.g., HMAC) or %NULL if not needed
147  * @key_len: Length of the key in bytes
148  * Returns: Pointer to hash context to use with other hash functions or %NULL
149  * on failure
150  *
151  * This function is only used with internal TLSv1 implementation
152  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
153  * to implement this.
154  */
155 struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key,
156                                       size_t key_len);
157
158 /**
159  * crypto_hash_update - Add data to hash calculation
160  * @ctx: Context pointer from crypto_hash_init()
161  * @data: Data buffer to add
162  * @len: Length of the buffer
163  *
164  * This function is only used with internal TLSv1 implementation
165  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
166  * to implement this.
167  */
168 void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len);
169
170 /**
171  * crypto_hash_finish - Complete hash calculation
172  * @ctx: Context pointer from crypto_hash_init()
173  * @hash: Buffer for hash value or %NULL if caller is just freeing the hash
174  * context
175  * @len: Pointer to length of the buffer or %NULL if caller is just freeing the
176  * hash context; on return, this is set to the actual length of the hash value
177  * Returns: 0 on success, -1 if buffer is too small (len set to needed length),
178  * or -2 on other failures (including failed crypto_hash_update() operations)
179  *
180  * This function calculates the hash value and frees the context buffer that
181  * was used for hash calculation.
182  *
183  * This function is only used with internal TLSv1 implementation
184  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
185  * to implement this.
186  */
187 int crypto_hash_finish(struct crypto_hash *ctx, u8 *hash, size_t *len);
188
189
190 enum crypto_cipher_alg {
191         CRYPTO_CIPHER_NULL = 0, CRYPTO_CIPHER_ALG_AES, CRYPTO_CIPHER_ALG_3DES,
192         CRYPTO_CIPHER_ALG_DES, CRYPTO_CIPHER_ALG_RC2, CRYPTO_CIPHER_ALG_RC4
193 };
194
195 struct crypto_cipher;
196
197 /**
198  * crypto_cipher_init - Initialize block/stream cipher function
199  * @alg: Cipher algorithm
200  * @iv: Initialization vector for block ciphers or %NULL for stream ciphers
201  * @key: Cipher key
202  * @key_len: Length of key in bytes
203  * Returns: Pointer to cipher context to use with other cipher functions or
204  * %NULL on failure
205  *
206  * This function is only used with internal TLSv1 implementation
207  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
208  * to implement this.
209  */
210 struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg,
211                                           const u8 *iv, const u8 *key,
212                                           size_t key_len);
213
214 /**
215  * crypto_cipher_encrypt - Cipher encrypt
216  * @ctx: Context pointer from crypto_cipher_init()
217  * @plain: Plaintext to cipher
218  * @crypt: Resulting ciphertext
219  * @len: Length of the plaintext
220  * Returns: 0 on success, -1 on failure
221  *
222  * This function is only used with internal TLSv1 implementation
223  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
224  * to implement this.
225  */
226 int __must_check crypto_cipher_encrypt(struct crypto_cipher *ctx,
227                                        const u8 *plain, u8 *crypt, size_t len);
228
229 /**
230  * crypto_cipher_decrypt - Cipher decrypt
231  * @ctx: Context pointer from crypto_cipher_init()
232  * @crypt: Ciphertext to decrypt
233  * @plain: Resulting plaintext
234  * @len: Length of the cipher text
235  * Returns: 0 on success, -1 on failure
236  *
237  * This function is only used with internal TLSv1 implementation
238  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
239  * to implement this.
240  */
241 int __must_check crypto_cipher_decrypt(struct crypto_cipher *ctx,
242                                        const u8 *crypt, u8 *plain, size_t len);
243
244 /**
245  * crypto_cipher_decrypt - Free cipher context
246  * @ctx: Context pointer from crypto_cipher_init()
247  *
248  * This function is only used with internal TLSv1 implementation
249  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
250  * to implement this.
251  */
252 void crypto_cipher_deinit(struct crypto_cipher *ctx);
253
254
255 struct crypto_public_key;
256 struct crypto_private_key;
257
258 /**
259  * crypto_public_key_import - Import an RSA public key
260  * @key: Key buffer (DER encoded RSA public key)
261  * @len: Key buffer length in bytes
262  * Returns: Pointer to the public key or %NULL on failure
263  *
264  * This function can just return %NULL if the crypto library supports X.509
265  * parsing. In that case, crypto_public_key_from_cert() is used to import the
266  * public key from a certificate.
267  *
268  * This function is only used with internal TLSv1 implementation
269  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
270  * to implement this.
271  */
272 struct crypto_public_key * crypto_public_key_import(const u8 *key, size_t len);
273
274 /**
275  * crypto_private_key_import - Import an RSA private key
276  * @key: Key buffer (DER encoded RSA private key)
277  * @len: Key buffer length in bytes
278  * @passwd: Key encryption password or %NULL if key is not encrypted
279  * Returns: Pointer to the private key or %NULL on failure
280  *
281  * This function is only used with internal TLSv1 implementation
282  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
283  * to implement this.
284  */
285 struct crypto_private_key * crypto_private_key_import(const u8 *key,
286                                                       size_t len,
287                                                       const char *passwd);
288
289 /**
290  * crypto_public_key_from_cert - Import an RSA public key from a certificate
291  * @buf: DER encoded X.509 certificate
292  * @len: Certificate buffer length in bytes
293  * Returns: Pointer to public key or %NULL on failure
294  *
295  * This function can just return %NULL if the crypto library does not support
296  * X.509 parsing. In that case, internal code will be used to parse the
297  * certificate and public key is imported using crypto_public_key_import().
298  *
299  * This function is only used with internal TLSv1 implementation
300  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
301  * to implement this.
302  */
303 struct crypto_public_key * crypto_public_key_from_cert(const u8 *buf,
304                                                        size_t len);
305
306 /**
307  * crypto_public_key_encrypt_pkcs1_v15 - Public key encryption (PKCS #1 v1.5)
308  * @key: Public key
309  * @in: Plaintext buffer
310  * @inlen: Length of plaintext buffer in bytes
311  * @out: Output buffer for encrypted data
312  * @outlen: Length of output buffer in bytes; set to used length on success
313  * Returns: 0 on success, -1 on failure
314  *
315  * This function is only used with internal TLSv1 implementation
316  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
317  * to implement this.
318  */
319 int __must_check crypto_public_key_encrypt_pkcs1_v15(
320         struct crypto_public_key *key, const u8 *in, size_t inlen,
321         u8 *out, size_t *outlen);
322
323 /**
324  * crypto_private_key_decrypt_pkcs1_v15 - Private key decryption (PKCS #1 v1.5)
325  * @key: Private key
326  * @in: Encrypted buffer
327  * @inlen: Length of encrypted buffer in bytes
328  * @out: Output buffer for encrypted data
329  * @outlen: Length of output buffer in bytes; set to used length on success
330  * Returns: 0 on success, -1 on failure
331  *
332  * This function is only used with internal TLSv1 implementation
333  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
334  * to implement this.
335  */
336 int __must_check crypto_private_key_decrypt_pkcs1_v15(
337         struct crypto_private_key *key, const u8 *in, size_t inlen,
338         u8 *out, size_t *outlen);
339
340 /**
341  * crypto_private_key_sign_pkcs1 - Sign with private key (PKCS #1)
342  * @key: Private key from crypto_private_key_import()
343  * @in: Plaintext buffer
344  * @inlen: Length of plaintext buffer in bytes
345  * @out: Output buffer for encrypted (signed) data
346  * @outlen: Length of output buffer in bytes; set to used length on success
347  * Returns: 0 on success, -1 on failure
348  *
349  * This function is only used with internal TLSv1 implementation
350  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
351  * to implement this.
352  */
353 int __must_check crypto_private_key_sign_pkcs1(struct crypto_private_key *key,
354                                                const u8 *in, size_t inlen,
355                                                u8 *out, size_t *outlen);
356
357 /**
358  * crypto_public_key_free - Free public key
359  * @key: Public key
360  *
361  * This function is only used with internal TLSv1 implementation
362  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
363  * to implement this.
364  */
365 void crypto_public_key_free(struct crypto_public_key *key);
366
367 /**
368  * crypto_private_key_free - Free private key
369  * @key: Private key from crypto_private_key_import()
370  *
371  * This function is only used with internal TLSv1 implementation
372  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
373  * to implement this.
374  */
375 void crypto_private_key_free(struct crypto_private_key *key);
376
377 /**
378  * crypto_public_key_decrypt_pkcs1 - Decrypt PKCS #1 signature
379  * @key: Public key
380  * @crypt: Encrypted signature data (using the private key)
381  * @crypt_len: Encrypted signature data length
382  * @plain: Buffer for plaintext (at least crypt_len bytes)
383  * @plain_len: Plaintext length (max buffer size on input, real len on output);
384  * Returns: 0 on success, -1 on failure
385  */
386 int __must_check crypto_public_key_decrypt_pkcs1(
387         struct crypto_public_key *key, const u8 *crypt, size_t crypt_len,
388         u8 *plain, size_t *plain_len);
389
390 /**
391  * crypto_global_init - Initialize crypto wrapper
392  *
393  * This function is only used with internal TLSv1 implementation
394  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
395  * to implement this.
396  */
397 int __must_check crypto_global_init(void);
398
399 /**
400  * crypto_global_deinit - Deinitialize crypto wrapper
401  *
402  * This function is only used with internal TLSv1 implementation
403  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
404  * to implement this.
405  */
406 void crypto_global_deinit(void);
407
408 /**
409  * crypto_mod_exp - Modular exponentiation of large integers
410  * @base: Base integer (big endian byte array)
411  * @base_len: Length of base integer in bytes
412  * @power: Power integer (big endian byte array)
413  * @power_len: Length of power integer in bytes
414  * @modulus: Modulus integer (big endian byte array)
415  * @modulus_len: Length of modulus integer in bytes
416  * @result: Buffer for the result
417  * @result_len: Result length (max buffer size on input, real len on output)
418  * Returns: 0 on success, -1 on failure
419  *
420  * This function calculates result = base ^ power mod modulus. modules_len is
421  * used as the maximum size of modulus buffer. It is set to the used size on
422  * success.
423  *
424  * This function is only used with internal TLSv1 implementation
425  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
426  * to implement this.
427  */
428 int __must_check crypto_mod_exp(const u8 *base, size_t base_len,
429                                 const u8 *power, size_t power_len,
430                                 const u8 *modulus, size_t modulus_len,
431                                 u8 *result, size_t *result_len);
432
433 /**
434  * rc4_skip - XOR RC4 stream to given data with skip-stream-start
435  * @key: RC4 key
436  * @keylen: RC4 key length
437  * @skip: number of bytes to skip from the beginning of the RC4 stream
438  * @data: data to be XOR'ed with RC4 stream
439  * @data_len: buf length
440  * Returns: 0 on success, -1 on failure
441  *
442  * Generate RC4 pseudo random stream for the given key, skip beginning of the
443  * stream, and XOR the end result with the data buffer to perform RC4
444  * encryption/decryption.
445  */
446 int rc4_skip(const u8 *key, size_t keylen, size_t skip,
447              u8 *data, size_t data_len);
448
449 /**
450  * crypto_get_random - Generate cryptographically strong pseudy-random bytes
451  * @buf: Buffer for data
452  * @len: Number of bytes to generate
453  * Returns: 0 on success, -1 on failure
454  *
455  * If the PRNG does not have enough entropy to ensure unpredictable byte
456  * sequence, this functions must return -1.
457  */
458 int crypto_get_random(void *buf, size_t len);
459
460
461 /**
462  * struct crypto_bignum - bignum
463  *
464  * Internal data structure for bignum implementation. The contents is specific
465  * to the used crypto library.
466  */
467 struct crypto_bignum;
468
469 /**
470  * crypto_bignum_init - Allocate memory for bignum
471  * Returns: Pointer to allocated bignum or %NULL on failure
472  */
473 struct crypto_bignum * crypto_bignum_init(void);
474
475 /**
476  * crypto_bignum_init_set - Allocate memory for bignum and set the value
477  * @buf: Buffer with unsigned binary value
478  * @len: Length of buf in octets
479  * Returns: Pointer to allocated bignum or %NULL on failure
480  */
481 struct crypto_bignum * crypto_bignum_init_set(const u8 *buf, size_t len);
482
483 /**
484  * crypto_bignum_deinit - Free bignum
485  * @n: Bignum from crypto_bignum_init() or crypto_bignum_init_set()
486  * @clear: Whether to clear the value from memory
487  */
488 void crypto_bignum_deinit(struct crypto_bignum *n, int clear);
489
490 /**
491  * crypto_bignum_to_bin - Set binary buffer to unsigned bignum
492  * @a: Bignum
493  * @buf: Buffer for the binary number
494  * @len: Length of @buf in octets
495  * @padlen: Length in octets to pad the result to or 0 to indicate no padding
496  * Returns: Number of octets written on success, -1 on failure
497  */
498 int crypto_bignum_to_bin(const struct crypto_bignum *a,
499                          u8 *buf, size_t buflen, size_t padlen);
500
501 /**
502  * crypto_bignum_add - c = a + b
503  * @a: Bignum
504  * @b: Bignum
505  * @c: Bignum; used to store the result of a + b
506  * Returns: 0 on success, -1 on failure
507  */
508 int crypto_bignum_add(const struct crypto_bignum *a,
509                       const struct crypto_bignum *b,
510                       struct crypto_bignum *c);
511
512 /**
513  * crypto_bignum_mod - c = a % b
514  * @a: Bignum
515  * @b: Bignum
516  * @c: Bignum; used to store the result of a % b
517  * Returns: 0 on success, -1 on failure
518  */
519 int crypto_bignum_mod(const struct crypto_bignum *a,
520                       const struct crypto_bignum *b,
521                       struct crypto_bignum *c);
522
523 /**
524  * crypto_bignum_exptmod - Modular exponentiation: d = a^b (mod c)
525  * @a: Bignum; base
526  * @b: Bignum; exponent
527  * @c: Bignum; modulus
528  * @d: Bignum; used to store the result of a^b (mod c)
529  * Returns: 0 on success, -1 on failure
530  */
531 int crypto_bignum_exptmod(const struct crypto_bignum *a,
532                           const struct crypto_bignum *b,
533                           const struct crypto_bignum *c,
534                           struct crypto_bignum *d);
535
536 /**
537  * crypto_bignum_rshift - b = a >> n
538  * @a: Bignum
539  * @n: Number of bits to shift
540  * @b: Bignum; used to store the result of a >> n
541  * Returns: 0 on success, -1 on failure
542  */
543 int crypto_bignum_rshift(const struct crypto_bignum *a, int n,
544                          struct crypto_bignum *b);
545
546 /**
547  * crypto_bignum_inverse - Inverse a bignum so that a * c = 1 (mod b)
548  * @a: Bignum
549  * @b: Bignum
550  * @c: Bignum; used to store the result
551  * Returns: 0 on success, -1 on failure
552  */
553 int crypto_bignum_inverse(const struct crypto_bignum *a,
554                           const struct crypto_bignum *b,
555                           struct crypto_bignum *c);
556
557 /**
558  * crypto_bignum_sub - c = a - b
559  * @a: Bignum
560  * @b: Bignum
561  * @c: Bignum; used to store the result of a - b
562  * Returns: 0 on success, -1 on failure
563  */
564 int crypto_bignum_sub(const struct crypto_bignum *a,
565                       const struct crypto_bignum *b,
566                       struct crypto_bignum *c);
567
568 /**
569  * crypto_bignum_div - c = a / b
570  * @a: Bignum
571  * @b: Bignum
572  * @c: Bignum; used to store the result of a / b
573  * Returns: 0 on success, -1 on failure
574  */
575 int crypto_bignum_div(const struct crypto_bignum *a,
576                       const struct crypto_bignum *b,
577                       struct crypto_bignum *c);
578
579 /**
580  * crypto_bignum_mulmod - d = a * b (mod c)
581  * @a: Bignum
582  * @b: Bignum
583  * @c: Bignum
584  * @d: Bignum; used to store the result of (a * b) % c
585  * Returns: 0 on success, -1 on failure
586  */
587 int crypto_bignum_mulmod(const struct crypto_bignum *a,
588                          const struct crypto_bignum *b,
589                          const struct crypto_bignum *c,
590                          struct crypto_bignum *d);
591
592 /**
593  * crypto_bignum_cmp - Compare two bignums
594  * @a: Bignum
595  * @b: Bignum
596  * Returns: -1 if a < b, 0 if a == b, or 1 if a > b
597  */
598 int crypto_bignum_cmp(const struct crypto_bignum *a,
599                       const struct crypto_bignum *b);
600
601 /**
602  * crypto_bignum_bits - Get size of a bignum in bits
603  * @a: Bignum
604  * Returns: Number of bits in the bignum
605  */
606 int crypto_bignum_bits(const struct crypto_bignum *a);
607
608 /**
609  * crypto_bignum_is_zero - Is the given bignum zero
610  * @a: Bignum
611  * Returns: 1 if @a is zero or 0 if not
612  */
613 int crypto_bignum_is_zero(const struct crypto_bignum *a);
614
615 /**
616  * crypto_bignum_is_one - Is the given bignum one
617  * @a: Bignum
618  * Returns: 1 if @a is one or 0 if not
619  */
620 int crypto_bignum_is_one(const struct crypto_bignum *a);
621
622 /**
623  * struct crypto_ec - Elliptic curve context
624  *
625  * Internal data structure for EC implementation. The contents is specific
626  * to the used crypto library.
627  */
628 struct crypto_ec;
629
630 /**
631  * crypto_ec_init - Initialize elliptic curve context
632  * @group: Identifying number for the ECC group (IANA "Group Description"
633  *      attribute registrty for RFC 2409)
634  * Returns: Pointer to EC context or %NULL on failure
635  */
636 struct crypto_ec * crypto_ec_init(int group);
637
638 /**
639  * crypto_ec_deinit - Deinitialize elliptic curve context
640  * @e: EC context from crypto_ec_init()
641  */
642 void crypto_ec_deinit(struct crypto_ec *e);
643
644 /**
645  * crypto_ec_prime_len - Get length of the prime in octets
646  * @e: EC context from crypto_ec_init()
647  * Returns: Length of the prime defining the group
648  */
649 size_t crypto_ec_prime_len(struct crypto_ec *e);
650
651 /**
652  * crypto_ec_prime_len_bits - Get length of the prime in bits
653  * @e: EC context from crypto_ec_init()
654  * Returns: Length of the prime defining the group in bits
655  */
656 size_t crypto_ec_prime_len_bits(struct crypto_ec *e);
657
658 /**
659  * crypto_ec_get_prime - Get prime defining an EC group
660  * @e: EC context from crypto_ec_init()
661  * Returns: Prime (bignum) defining the group
662  */
663 const struct crypto_bignum * crypto_ec_get_prime(struct crypto_ec *e);
664
665 /**
666  * crypto_ec_get_order - Get order of an EC group
667  * @e: EC context from crypto_ec_init()
668  * Returns: Order (bignum) of the group
669  */
670 const struct crypto_bignum * crypto_ec_get_order(struct crypto_ec *e);
671
672 /**
673  * struct crypto_ec_point - Elliptic curve point
674  *
675  * Internal data structure for EC implementation to represent a point. The
676  * contents is specific to the used crypto library.
677  */
678 struct crypto_ec_point;
679
680 /**
681  * crypto_ec_point_init - Initialize data for an EC point
682  * @e: EC context from crypto_ec_init()
683  * Returns: Pointer to EC point data or %NULL on failure
684  */
685 struct crypto_ec_point * crypto_ec_point_init(struct crypto_ec *e);
686
687 /**
688  * crypto_ec_point_deinit - Deinitialize EC point data
689  * @p: EC point data from crypto_ec_point_init()
690  * @clear: Whether to clear the EC point value from memory
691  */
692 void crypto_ec_point_deinit(struct crypto_ec_point *p, int clear);
693
694 /**
695  * crypto_ec_point_to_bin - Write EC point value as binary data
696  * @e: EC context from crypto_ec_init()
697  * @p: EC point data from crypto_ec_point_init()
698  * @x: Buffer for writing the binary data for x coordinate or %NULL if not used
699  * @y: Buffer for writing the binary data for y coordinate or %NULL if not used
700  * Returns: 0 on success, -1 on failure
701  *
702  * This function can be used to write an EC point as binary data in a format
703  * that has the x and y coordinates in big endian byte order fields padded to
704  * the length of the prime defining the group.
705  */
706 int crypto_ec_point_to_bin(struct crypto_ec *e,
707                            const struct crypto_ec_point *point, u8 *x, u8 *y);
708
709 /**
710  * crypto_ec_point_from_bin - Create EC point from binary data
711  * @e: EC context from crypto_ec_init()
712  * @val: Binary data to read the EC point from
713  * Returns: Pointer to EC point data or %NULL on failure
714  *
715  * This function readers x and y coordinates of the EC point from the provided
716  * buffer assuming the values are in big endian byte order with fields padded to
717  * the length of the prime defining the group.
718  */
719 struct crypto_ec_point * crypto_ec_point_from_bin(struct crypto_ec *e,
720                                                   const u8 *val);
721
722 /**
723  * crypto_bignum_add - c = a + b
724  * @e: EC context from crypto_ec_init()
725  * @a: Bignum
726  * @b: Bignum
727  * @c: Bignum; used to store the result of a + b
728  * Returns: 0 on success, -1 on failure
729  */
730 int crypto_ec_point_add(struct crypto_ec *e, const struct crypto_ec_point *a,
731                         const struct crypto_ec_point *b,
732                         struct crypto_ec_point *c);
733
734 /**
735  * crypto_bignum_mul - res = b * p
736  * @e: EC context from crypto_ec_init()
737  * @p: EC point
738  * @b: Bignum
739  * @res: EC point; used to store the result of b * p
740  * Returns: 0 on success, -1 on failure
741  */
742 int crypto_ec_point_mul(struct crypto_ec *e, const struct crypto_ec_point *p,
743                         const struct crypto_bignum *b,
744                         struct crypto_ec_point *res);
745
746 /**
747  * crypto_ec_point_invert - Compute inverse of an EC point
748  * @e: EC context from crypto_ec_init()
749  * @p: EC point to invert (and result of the operation)
750  * Returns: 0 on success, -1 on failure
751  */
752 int crypto_ec_point_invert(struct crypto_ec *e, struct crypto_ec_point *p);
753
754 /**
755  * crypto_ec_point_solve_y_coord - Solve y coordinate for an x coordinate
756  * @e: EC context from crypto_ec_init()
757  * @p: EC point to use for the returning the result
758  * @x: x coordinate
759  * @y_bit: y-bit (0 or 1) for selecting the y value to use
760  * Returns: 0 on success, -1 on failure
761  */
762 int crypto_ec_point_solve_y_coord(struct crypto_ec *e,
763                                   struct crypto_ec_point *p,
764                                   const struct crypto_bignum *x, int y_bit);
765
766 /**
767  * crypto_ec_point_is_at_infinity - Check whether EC point is neutral element
768  * @e: EC context from crypto_ec_init()
769  * @p: EC point
770  * Returns: 1 if the specified EC point is the neutral element of the group or
771  *      0 if not
772  */
773 int crypto_ec_point_is_at_infinity(struct crypto_ec *e,
774                                    const struct crypto_ec_point *p);
775
776 /**
777  * crypto_ec_point_is_on_curve - Check whether EC point is on curve
778  * @e: EC context from crypto_ec_init()
779  * @p: EC point
780  * Returns: 1 if the specified EC point is on the curve or 0 if not
781  */
782 int crypto_ec_point_is_on_curve(struct crypto_ec *e,
783                                 const struct crypto_ec_point *p);
784
785 #endif /* CRYPTO_H */