i915_gem_mmap_ioctl - Align the mmap to 256KB
[dragonfly.git] / sys / dev / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  * Copyright (c) 2011 The FreeBSD Foundation
27  * All rights reserved.
28  *
29  * This software was developed by Konstantin Belousov under sponsorship from
30  * the FreeBSD Foundation.
31  *
32  * Redistribution and use in source and binary forms, with or without
33  * modification, are permitted provided that the following conditions
34  * are met:
35  * 1. Redistributions of source code must retain the above copyright
36  *    notice, this list of conditions and the following disclaimer.
37  * 2. Redistributions in binary form must reproduce the above copyright
38  *    notice, this list of conditions and the following disclaimer in the
39  *    documentation and/or other materials provided with the distribution.
40  *
41  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51  * SUCH DAMAGE.
52  *
53  */
54
55 #include <machine/md_var.h>
56
57 #include <drm/drmP.h>
58 #include <drm/drm_vma_manager.h>
59 #include <drm/i915_drm.h>
60 #include "i915_drv.h"
61 #include "i915_trace.h"
62 #include "intel_drv.h"
63 #include <linux/shmem_fs.h>
64 #include <linux/slab.h>
65 #include <linux/swap.h>
66 #include <linux/pci.h>
67
68 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
69 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
70                                                    bool force);
71 static __must_check int
72 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
73                                bool readonly);
74 static __must_check int
75 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
76                            struct i915_address_space *vm,
77                            unsigned alignment,
78                            bool map_and_fenceable,
79                            bool nonblocking);
80 static int i915_gem_phys_pwrite(struct drm_device *dev,
81                                 struct drm_i915_gem_object *obj,
82                                 struct drm_i915_gem_pwrite *args,
83                                 struct drm_file *file);
84
85 static void i915_gem_write_fence(struct drm_device *dev, int reg,
86                                  struct drm_i915_gem_object *obj);
87 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
88                                          struct drm_i915_fence_reg *fence,
89                                          bool enable);
90
91 static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
92 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
93 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
94
95 static bool cpu_cache_is_coherent(struct drm_device *dev,
96                                   enum i915_cache_level level)
97 {
98         return HAS_LLC(dev) || level != I915_CACHE_NONE;
99 }
100
101 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
102 {
103         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
104                 return true;
105
106         return obj->pin_display;
107 }
108
109 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
110 {
111         if (obj->tiling_mode)
112                 i915_gem_release_mmap(obj);
113
114         /* As we do not have an associated fence register, we will force
115          * a tiling change if we ever need to acquire one.
116          */
117         obj->fence_dirty = false;
118         obj->fence_reg = I915_FENCE_REG_NONE;
119 }
120
121 /* some bookkeeping */
122 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
123                                   size_t size)
124 {
125         spin_lock(&dev_priv->mm.object_stat_lock);
126         dev_priv->mm.object_count++;
127         dev_priv->mm.object_memory += size;
128         spin_unlock(&dev_priv->mm.object_stat_lock);
129 }
130
131 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
132                                      size_t size)
133 {
134         spin_lock(&dev_priv->mm.object_stat_lock);
135         dev_priv->mm.object_count--;
136         dev_priv->mm.object_memory -= size;
137         spin_unlock(&dev_priv->mm.object_stat_lock);
138 }
139
140 static int
141 i915_gem_wait_for_error(struct i915_gpu_error *error)
142 {
143         int ret;
144
145 #define EXIT_COND (!i915_reset_in_progress(error) || \
146                    i915_terminally_wedged(error))
147         if (EXIT_COND)
148                 return 0;
149
150         /*
151          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
152          * userspace. If it takes that long something really bad is going on and
153          * we should simply try to bail out and fail as gracefully as possible.
154          */
155         ret = wait_event_interruptible_timeout(error->reset_queue,
156                                                EXIT_COND,
157                                                10*HZ);
158         if (ret == 0) {
159                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
160                 return -EIO;
161         } else if (ret < 0) {
162                 return ret;
163         }
164 #undef EXIT_COND
165
166         return 0;
167 }
168
169 int i915_mutex_lock_interruptible(struct drm_device *dev)
170 {
171         struct drm_i915_private *dev_priv = dev->dev_private;
172         int ret;
173
174         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
175         if (ret)
176                 return ret;
177
178         ret = lockmgr(&dev->struct_mutex, LK_EXCLUSIVE|LK_SLEEPFAIL);
179         if (ret)
180                 return -EINTR;
181
182         WARN_ON(i915_verify_lists(dev));
183         return 0;
184 }
185
186 static inline bool
187 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
188 {
189         return i915_gem_obj_bound_any(obj) && !obj->active;
190 }
191
192 int
193 i915_gem_init_ioctl(struct drm_device *dev, void *data,
194                     struct drm_file *file)
195 {
196         struct drm_i915_private *dev_priv = dev->dev_private;
197         struct drm_i915_gem_init *args = data;
198
199         if (drm_core_check_feature(dev, DRIVER_MODESET))
200                 return -ENODEV;
201
202         if (args->gtt_start >= args->gtt_end ||
203             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
204                 return -EINVAL;
205
206         /* GEM with user mode setting was never supported on ilk and later. */
207         if (INTEL_INFO(dev)->gen >= 5)
208                 return -ENODEV;
209
210         mutex_lock(&dev->struct_mutex);
211         dev_priv->gtt.mappable_end = args->gtt_end;
212         kprintf("INITGLOBALGTT GTT_START %016jx\n", (uintmax_t)args->gtt_start);
213         i915_gem_init_global_gtt(dev);
214 #if 0
215         i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
216                                   args->gtt_end);
217 #endif
218         mutex_unlock(&dev->struct_mutex);
219
220         return 0;
221 }
222
223 int
224 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
225                             struct drm_file *file)
226 {
227         struct drm_i915_private *dev_priv = dev->dev_private;
228         struct drm_i915_gem_get_aperture *args = data;
229         struct drm_i915_gem_object *obj;
230         size_t pinned;
231
232         pinned = 0;
233         mutex_lock(&dev->struct_mutex);
234         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
235                 if (obj->pin_count)
236                         pinned += i915_gem_obj_ggtt_size(obj);
237         mutex_unlock(&dev->struct_mutex);
238
239         args->aper_size = dev_priv->gtt.base.total;
240         args->aper_available_size = args->aper_size - pinned;
241
242         return 0;
243 }
244
245 void *i915_gem_object_alloc(struct drm_device *dev)
246 {
247         return kmalloc(sizeof(struct drm_i915_gem_object),
248             M_DRM, M_WAITOK | M_ZERO);
249 }
250
251 void i915_gem_object_free(struct drm_i915_gem_object *obj)
252 {
253         kfree(obj);
254 }
255
256 static int
257 i915_gem_create(struct drm_file *file,
258                 struct drm_device *dev,
259                 uint64_t size,
260                 uint32_t *handle_p)
261 {
262         struct drm_i915_gem_object *obj;
263         int ret;
264         u32 handle;
265
266         size = roundup(size, PAGE_SIZE);
267         if (size == 0)
268                 return -EINVAL;
269
270         /* Allocate the new object */
271         obj = i915_gem_alloc_object(dev, size);
272         if (obj == NULL)
273                 return -ENOMEM;
274
275         ret = drm_gem_handle_create(file, &obj->base, &handle);
276         /* drop reference from allocate - handle holds it now */
277         drm_gem_object_unreference_unlocked(&obj->base);
278         if (ret)
279                 return ret;
280
281         *handle_p = handle;
282         return 0;
283 }
284
285 int
286 i915_gem_dumb_create(struct drm_file *file,
287                      struct drm_device *dev,
288                      struct drm_mode_create_dumb *args)
289 {
290         /* have to work out size/pitch and return them */
291         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
292         args->size = args->pitch * args->height;
293         return i915_gem_create(file, dev,
294                                args->size, &args->handle);
295 }
296
297 /**
298  * Creates a new mm object and returns a handle to it.
299  */
300 int
301 i915_gem_create_ioctl(struct drm_device *dev, void *data,
302                       struct drm_file *file)
303 {
304         struct drm_i915_gem_create *args = data;
305
306         return i915_gem_create(file, dev,
307                                args->size, &args->handle);
308 }
309
310 static inline int
311 __copy_to_user_swizzled(char __user *cpu_vaddr,
312                         const char *gpu_vaddr, int gpu_offset,
313                         int length)
314 {
315         int ret, cpu_offset = 0;
316
317         while (length > 0) {
318                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
319                 int this_length = min(cacheline_end - gpu_offset, length);
320                 int swizzled_gpu_offset = gpu_offset ^ 64;
321
322                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
323                                      gpu_vaddr + swizzled_gpu_offset,
324                                      this_length);
325                 if (ret)
326                         return ret + length;
327
328                 cpu_offset += this_length;
329                 gpu_offset += this_length;
330                 length -= this_length;
331         }
332
333         return 0;
334 }
335
336 static inline int
337 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
338                           const char __user *cpu_vaddr,
339                           int length)
340 {
341         int ret, cpu_offset = 0;
342
343         while (length > 0) {
344                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
345                 int this_length = min(cacheline_end - gpu_offset, length);
346                 int swizzled_gpu_offset = gpu_offset ^ 64;
347
348                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
349                                        cpu_vaddr + cpu_offset,
350                                        this_length);
351                 if (ret)
352                         return ret + length;
353
354                 cpu_offset += this_length;
355                 gpu_offset += this_length;
356                 length -= this_length;
357         }
358
359         return 0;
360 }
361
362 /* Per-page copy function for the shmem pread fastpath.
363  * Flushes invalid cachelines before reading the target if
364  * needs_clflush is set. */
365 static int
366 shmem_pread_fast(struct vm_page *page, int shmem_page_offset, int page_length,
367                  char __user *user_data,
368                  bool page_do_bit17_swizzling, bool needs_clflush)
369 {
370         char *vaddr;
371         int ret;
372
373         if (unlikely(page_do_bit17_swizzling))
374                 return -EINVAL;
375
376         vaddr = kmap_atomic(page);
377         if (needs_clflush)
378                 drm_clflush_virt_range(vaddr + shmem_page_offset,
379                                        page_length);
380         ret = __copy_to_user_inatomic(user_data,
381                                       vaddr + shmem_page_offset,
382                                       page_length);
383         kunmap_atomic(vaddr);
384
385         return ret ? -EFAULT : 0;
386 }
387
388 static void
389 shmem_clflush_swizzled_range(char *addr, unsigned long length,
390                              bool swizzled)
391 {
392         if (unlikely(swizzled)) {
393                 unsigned long start = (unsigned long) addr;
394                 unsigned long end = (unsigned long) addr + length;
395
396                 /* For swizzling simply ensure that we always flush both
397                  * channels. Lame, but simple and it works. Swizzled
398                  * pwrite/pread is far from a hotpath - current userspace
399                  * doesn't use it at all. */
400                 start = round_down(start, 128);
401                 end = round_up(end, 128);
402
403                 drm_clflush_virt_range((void *)start, end - start);
404         } else {
405                 drm_clflush_virt_range(addr, length);
406         }
407
408 }
409
410 /* Only difference to the fast-path function is that this can handle bit17
411  * and uses non-atomic copy and kmap functions. */
412 static int
413 shmem_pread_slow(struct vm_page *page, int shmem_page_offset, int page_length,
414                  char __user *user_data,
415                  bool page_do_bit17_swizzling, bool needs_clflush)
416 {
417         char *vaddr;
418         int ret;
419
420         vaddr = kmap(page);
421         if (needs_clflush)
422                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
423                                              page_length,
424                                              page_do_bit17_swizzling);
425
426         if (page_do_bit17_swizzling)
427                 ret = __copy_to_user_swizzled(user_data,
428                                               vaddr, shmem_page_offset,
429                                               page_length);
430         else
431                 ret = __copy_to_user(user_data,
432                                      vaddr + shmem_page_offset,
433                                      page_length);
434         kunmap(page);
435
436         return ret ? - EFAULT : 0;
437 }
438
439 static int
440 i915_gem_shmem_pread(struct drm_device *dev,
441                      struct drm_i915_gem_object *obj,
442                      struct drm_i915_gem_pread *args,
443                      struct drm_file *file)
444 {
445         char __user *user_data;
446         ssize_t remain;
447         loff_t offset;
448         int shmem_page_offset, page_length, ret = 0;
449         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
450         int prefaulted = 0;
451         int needs_clflush = 0;
452         int i;
453
454         user_data = to_user_ptr(args->data_ptr);
455         remain = args->size;
456
457         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
458
459         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
460                 /* If we're not in the cpu read domain, set ourself into the gtt
461                  * read domain and manually flush cachelines (if required). This
462                  * optimizes for the case when the gpu will dirty the data
463                  * anyway again before the next pread happens. */
464                 needs_clflush = !cpu_cache_is_coherent(dev, obj->cache_level);
465                 ret = i915_gem_object_wait_rendering(obj, true);
466                 if (ret)
467                         return ret;
468         }
469
470         ret = i915_gem_object_get_pages(obj);
471         if (ret)
472                 return ret;
473
474         i915_gem_object_pin_pages(obj);
475
476         offset = args->offset;
477
478         for (i = 0; i < (obj->base.size >> PAGE_SHIFT); i++) {
479                 struct vm_page *page = obj->pages[i];
480
481                 if (remain <= 0)
482                         break;
483
484                 /* Operation in this page
485                  *
486                  * shmem_page_offset = offset within page in shmem file
487                  * page_length = bytes to copy for this page
488                  */
489                 shmem_page_offset = offset_in_page(offset);
490                 page_length = remain;
491                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
492                         page_length = PAGE_SIZE - shmem_page_offset;
493
494                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
495                         (page_to_phys(page) & (1 << 17)) != 0;
496
497                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
498                                        user_data, page_do_bit17_swizzling,
499                                        needs_clflush);
500                 if (ret == 0)
501                         goto next_page;
502
503                 mutex_unlock(&dev->struct_mutex);
504
505                 if (likely(!i915_prefault_disable) && !prefaulted) {
506                         ret = fault_in_multipages_writeable(user_data, remain);
507                         /* Userspace is tricking us, but we've already clobbered
508                          * its pages with the prefault and promised to write the
509                          * data up to the first fault. Hence ignore any errors
510                          * and just continue. */
511                         (void)ret;
512                         prefaulted = 1;
513                 }
514
515                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
516                                        user_data, page_do_bit17_swizzling,
517                                        needs_clflush);
518
519                 mutex_lock(&dev->struct_mutex);
520
521 next_page:
522                 mark_page_accessed(page);
523
524                 if (ret)
525                         goto out;
526
527                 remain -= page_length;
528                 user_data += page_length;
529                 offset += page_length;
530         }
531
532 out:
533         i915_gem_object_unpin_pages(obj);
534
535         return ret;
536 }
537
538 /**
539  * Reads data from the object referenced by handle.
540  *
541  * On error, the contents of *data are undefined.
542  */
543 int
544 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
545                      struct drm_file *file)
546 {
547         struct drm_i915_gem_pread *args = data;
548         struct drm_i915_gem_object *obj;
549         int ret = 0;
550
551         if (args->size == 0)
552                 return 0;
553
554         ret = i915_mutex_lock_interruptible(dev);
555         if (ret)
556                 return ret;
557
558         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
559         if (&obj->base == NULL) {
560                 ret = -ENOENT;
561                 goto unlock;
562         }
563
564         /* Bounds check source.  */
565         if (args->offset > obj->base.size ||
566             args->size > obj->base.size - args->offset) {
567                 ret = -EINVAL;
568                 goto out;
569         }
570
571         trace_i915_gem_object_pread(obj, args->offset, args->size);
572
573         ret = i915_gem_shmem_pread(dev, obj, args, file);
574
575 out:
576         drm_gem_object_unreference(&obj->base);
577 unlock:
578         mutex_unlock(&dev->struct_mutex);
579         return ret;
580 }
581
582 /* This is the fast write path which cannot handle
583  * page faults in the source data
584  */
585
586 #if 0   /* XXX: buggy on core2 machines */
587 static inline int
588 fast_user_write(struct io_mapping *mapping,
589                 loff_t page_base, int page_offset,
590                 char __user *user_data,
591                 int length)
592 {
593         void __iomem *vaddr_atomic;
594         void *vaddr;
595         unsigned long unwritten;
596
597         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
598         /* We can use the cpu mem copy function because this is X86. */
599         vaddr = (char __force*)vaddr_atomic + page_offset;
600         unwritten = __copy_from_user_inatomic_nocache(vaddr,
601                                                       user_data, length);
602         io_mapping_unmap_atomic(vaddr_atomic);
603         return unwritten;
604 }
605 #endif
606
607 static int
608 i915_gem_gtt_write(struct drm_device *dev, struct drm_i915_gem_object *obj,
609     uint64_t data_ptr, uint64_t size, uint64_t offset, struct drm_file *file)
610 {
611         vm_offset_t mkva;
612         int ret;
613
614         /*
615          * Pass the unaligned physical address and size to pmap_mapdev_attr()
616          * so it can properly calculate whether an extra page needs to be
617          * mapped or not to cover the requested range.  The function will
618          * add the page offset into the returned mkva for us.
619          */
620         mkva = (vm_offset_t)pmap_mapdev_attr(dev->agp->base +
621             i915_gem_obj_ggtt_offset(obj) + offset, size, PAT_WRITE_COMBINING);
622         ret = -copyin_nofault((void *)(uintptr_t)data_ptr, (char *)mkva, size);
623         pmap_unmapdev(mkva, size);
624         return ret;
625 }
626
627 /**
628  * This is the fast pwrite path, where we copy the data directly from the
629  * user into the GTT, uncached.
630  */
631 static int
632 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
633                          struct drm_i915_gem_object *obj,
634                          struct drm_i915_gem_pwrite *args,
635                          struct drm_file *file)
636 {
637         ssize_t remain;
638         loff_t offset, page_base;
639         char __user *user_data;
640         int page_offset, page_length, ret;
641
642         ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
643         if (ret)
644                 goto out;
645
646         ret = i915_gem_object_set_to_gtt_domain(obj, true);
647         if (ret)
648                 goto out_unpin;
649
650         ret = i915_gem_object_put_fence(obj);
651         if (ret)
652                 goto out_unpin;
653
654         user_data = to_user_ptr(args->data_ptr);
655         remain = args->size;
656
657         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
658
659         while (remain > 0) {
660                 /* Operation in this page
661                  *
662                  * page_base = page offset within aperture
663                  * page_offset = offset within page
664                  * page_length = bytes to copy for this page
665                  */
666                 page_base = offset & ~PAGE_MASK;
667                 page_offset = offset_in_page(offset);
668                 page_length = remain;
669                 if ((page_offset + remain) > PAGE_SIZE)
670                         page_length = PAGE_SIZE - page_offset;
671
672                 /* If we get a fault while copying data, then (presumably) our
673                  * source page isn't available.  Return the error and we'll
674                  * retry in the slow path.
675                  */
676 #if 0
677                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
678                                     page_offset, user_data, page_length)) {
679 #else
680                 if (i915_gem_gtt_write(dev, obj, args->data_ptr, args->size, args->offset, file)) {
681 #endif
682                         ret = -EFAULT;
683                         goto out_unpin;
684                 }
685
686                 remain -= page_length;
687                 user_data += page_length;
688                 offset += page_length;
689         }
690
691 out_unpin:
692         i915_gem_object_unpin(obj);
693 out:
694         return ret;
695 }
696
697 /* Per-page copy function for the shmem pwrite fastpath.
698  * Flushes invalid cachelines before writing to the target if
699  * needs_clflush_before is set and flushes out any written cachelines after
700  * writing if needs_clflush is set. */
701 static int
702 shmem_pwrite_fast(struct vm_page *page, int shmem_page_offset, int page_length,
703                   char __user *user_data,
704                   bool page_do_bit17_swizzling,
705                   bool needs_clflush_before,
706                   bool needs_clflush_after)
707 {
708         char *vaddr;
709         int ret;
710
711         if (unlikely(page_do_bit17_swizzling))
712                 return -EINVAL;
713
714         vaddr = kmap_atomic(page);
715         if (needs_clflush_before)
716                 drm_clflush_virt_range(vaddr + shmem_page_offset,
717                                        page_length);
718         ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
719                                                 user_data,
720                                                 page_length);
721         if (needs_clflush_after)
722                 drm_clflush_virt_range(vaddr + shmem_page_offset,
723                                        page_length);
724         kunmap_atomic(vaddr);
725
726         return ret ? -EFAULT : 0;
727 }
728
729 /* Only difference to the fast-path function is that this can handle bit17
730  * and uses non-atomic copy and kmap functions. */
731 static int
732 shmem_pwrite_slow(struct vm_page *page, int shmem_page_offset, int page_length,
733                   char __user *user_data,
734                   bool page_do_bit17_swizzling,
735                   bool needs_clflush_before,
736                   bool needs_clflush_after)
737 {
738         char *vaddr;
739         int ret;
740
741         vaddr = kmap(page);
742         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
743                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
744                                              page_length,
745                                              page_do_bit17_swizzling);
746         if (page_do_bit17_swizzling)
747                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
748                                                 user_data,
749                                                 page_length);
750         else
751                 ret = __copy_from_user(vaddr + shmem_page_offset,
752                                        user_data,
753                                        page_length);
754         if (needs_clflush_after)
755                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
756                                              page_length,
757                                              page_do_bit17_swizzling);
758         kunmap(page);
759
760         return ret ? -EFAULT : 0;
761 }
762
763 static int
764 i915_gem_shmem_pwrite(struct drm_device *dev,
765                       struct drm_i915_gem_object *obj,
766                       struct drm_i915_gem_pwrite *args,
767                       struct drm_file *file)
768 {
769         ssize_t remain;
770         loff_t offset;
771         char __user *user_data;
772         int shmem_page_offset, page_length, ret = 0;
773         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
774         int hit_slowpath = 0;
775         int needs_clflush_after = 0;
776         int needs_clflush_before = 0;
777         int i;
778
779         user_data = to_user_ptr(args->data_ptr);
780         remain = args->size;
781
782         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
783
784         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
785                 /* If we're not in the cpu write domain, set ourself into the gtt
786                  * write domain and manually flush cachelines (if required). This
787                  * optimizes for the case when the gpu will use the data
788                  * right away and we therefore have to clflush anyway. */
789                 needs_clflush_after = cpu_write_needs_clflush(obj);
790                 ret = i915_gem_object_wait_rendering(obj, false);
791                 if (ret)
792                         return ret;
793         }
794         /* Same trick applies to invalidate partially written cachelines read
795          * before writing. */
796         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
797                 needs_clflush_before =
798                         !cpu_cache_is_coherent(dev, obj->cache_level);
799
800         ret = i915_gem_object_get_pages(obj);
801         if (ret)
802                 return ret;
803
804         i915_gem_object_pin_pages(obj);
805
806         offset = args->offset;
807         obj->dirty = 1;
808
809         VM_OBJECT_LOCK(obj->base.vm_obj);
810         vm_object_pip_add(obj->base.vm_obj, 1);
811         for (i = 0; i < (obj->base.size >> PAGE_SHIFT); i++) {
812                 struct vm_page *page = obj->pages[i];
813                 int partial_cacheline_write;
814
815                 if (i < offset >> PAGE_SHIFT)
816                         continue;
817
818                 if (remain <= 0)
819                         break;
820
821                 /* Operation in this page
822                  *
823                  * shmem_page_offset = offset within page in shmem file
824                  * page_length = bytes to copy for this page
825                  */
826                 shmem_page_offset = offset_in_page(offset);
827
828                 page_length = remain;
829                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
830                         page_length = PAGE_SIZE - shmem_page_offset;
831
832                 /* If we don't overwrite a cacheline completely we need to be
833                  * careful to have up-to-date data by first clflushing. Don't
834                  * overcomplicate things and flush the entire patch. */
835                 partial_cacheline_write = needs_clflush_before &&
836                         ((shmem_page_offset | page_length)
837                                 & (cpu_clflush_line_size - 1));
838
839                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
840                         (page_to_phys(page) & (1 << 17)) != 0;
841
842                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
843                                         user_data, page_do_bit17_swizzling,
844                                         partial_cacheline_write,
845                                         needs_clflush_after);
846                 if (ret == 0)
847                         goto next_page;
848
849                 hit_slowpath = 1;
850                 mutex_unlock(&dev->struct_mutex);
851                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
852                                         user_data, page_do_bit17_swizzling,
853                                         partial_cacheline_write,
854                                         needs_clflush_after);
855
856                 mutex_lock(&dev->struct_mutex);
857  
858 next_page:
859                 set_page_dirty(page);
860                 mark_page_accessed(page);
861
862                 if (ret)
863                         goto out;
864
865                 remain -= page_length;
866                 user_data += page_length;
867                 offset += page_length;
868         }
869         vm_object_pip_wakeup(obj->base.vm_obj);
870         VM_OBJECT_UNLOCK(obj->base.vm_obj);
871
872 out:
873         i915_gem_object_unpin_pages(obj);
874
875         if (hit_slowpath) {
876                 /*
877                  * Fixup: Flush cpu caches in case we didn't flush the dirty
878                  * cachelines in-line while writing and the object moved
879                  * out of the cpu write domain while we've dropped the lock.
880                  */
881                 if (!needs_clflush_after &&
882                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
883                         if (i915_gem_clflush_object(obj, obj->pin_display))
884                                 i915_gem_chipset_flush(dev);
885                 }
886         }
887
888         if (needs_clflush_after)
889                 i915_gem_chipset_flush(dev);
890
891         return ret;
892 }
893
894 /**
895  * Writes data to the object referenced by handle.
896  *
897  * On error, the contents of the buffer that were to be modified are undefined.
898  */
899 int
900 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
901                       struct drm_file *file)
902 {
903         struct drm_i915_gem_pwrite *args = data;
904         struct drm_i915_gem_object *obj;
905         int ret;
906
907         if (args->size == 0)
908                 return 0;
909
910         if (likely(!i915_prefault_disable)) {
911                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
912                                                    args->size);
913                 if (ret)
914                         return -EFAULT;
915         }
916
917         ret = i915_mutex_lock_interruptible(dev);
918         if (ret)
919                 return ret;
920
921         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
922         if (&obj->base == NULL) {
923                 ret = -ENOENT;
924                 goto unlock;
925         }
926
927         /* Bounds check destination. */
928         if (args->offset > obj->base.size ||
929             args->size > obj->base.size - args->offset) {
930                 ret = -EINVAL;
931                 goto out;
932         }
933
934         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
935
936         ret = -EFAULT;
937         /* We can only do the GTT pwrite on untiled buffers, as otherwise
938          * it would end up going through the fenced access, and we'll get
939          * different detiling behavior between reading and writing.
940          * pread/pwrite currently are reading and writing from the CPU
941          * perspective, requiring manual detiling by the client.
942          */
943         if (obj->phys_obj) {
944                 ret = i915_gem_phys_pwrite(dev, obj, args, file);
945                 goto out;
946         }
947
948         if (obj->tiling_mode == I915_TILING_NONE &&
949             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
950             cpu_write_needs_clflush(obj)) {
951                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
952                 /* Note that the gtt paths might fail with non-page-backed user
953                  * pointers (e.g. gtt mappings when moving data between
954                  * textures). Fallback to the shmem path in that case. */
955         }
956
957         if (ret == -EFAULT || ret == -ENOSPC)
958                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
959
960 out:
961         drm_gem_object_unreference(&obj->base);
962 unlock:
963         mutex_unlock(&dev->struct_mutex);
964         return ret;
965 }
966
967 int
968 i915_gem_check_wedge(struct i915_gpu_error *error,
969                      bool interruptible)
970 {
971         if (i915_reset_in_progress(error)) {
972                 /* Non-interruptible callers can't handle -EAGAIN, hence return
973                  * -EIO unconditionally for these. */
974                 if (!interruptible)
975                         return -EIO;
976
977                 /* Recovery complete, but the reset failed ... */
978                 if (i915_terminally_wedged(error))
979                         return -EIO;
980
981                 return -EAGAIN;
982         }
983
984         return 0;
985 }
986
987 /*
988  * Compare seqno against outstanding lazy request. Emit a request if they are
989  * equal.
990  */
991 static int
992 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
993 {
994         int ret;
995
996         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
997
998         ret = 0;
999         if (seqno == ring->outstanding_lazy_seqno)
1000                 ret = i915_add_request(ring, NULL);
1001
1002         return ret;
1003 }
1004
1005 #if 0
1006 static void fake_irq(unsigned long data)
1007 {
1008         wake_up_process((struct task_struct *)data);
1009 }
1010
1011 static bool missed_irq(struct drm_i915_private *dev_priv,
1012                        struct intel_ring_buffer *ring)
1013 {
1014         return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1015 }
1016
1017 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1018 {
1019         if (file_priv == NULL)
1020                 return true;
1021
1022         return !atomic_xchg(&file_priv->rps_wait_boost, true);
1023 }
1024 #endif
1025
1026 /**
1027  * __wait_seqno - wait until execution of seqno has finished
1028  * @ring: the ring expected to report seqno
1029  * @seqno: duh!
1030  * @reset_counter: reset sequence associated with the given seqno
1031  * @interruptible: do an interruptible wait (normally yes)
1032  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1033  *
1034  * Note: It is of utmost importance that the passed in seqno and reset_counter
1035  * values have been read by the caller in an smp safe manner. Where read-side
1036  * locks are involved, it is sufficient to read the reset_counter before
1037  * unlocking the lock that protects the seqno. For lockless tricks, the
1038  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1039  * inserted.
1040  *
1041  * Returns 0 if the seqno was found within the alloted time. Else returns the
1042  * errno with remaining time filled in timeout argument.
1043  */
1044 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1045                         unsigned reset_counter,
1046                         bool interruptible, struct timespec *timeout)
1047 {
1048         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1049         struct timespec before, now, wait_time={1,0};
1050         unsigned long timeout_jiffies;
1051         long end;
1052         bool wait_forever = true;
1053         int ret;
1054
1055         WARN(dev_priv->pc8.irqs_disabled, "IRQs disabled\n");
1056
1057         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1058                 return 0;
1059
1060         trace_i915_gem_request_wait_begin(ring, seqno);
1061
1062         if (timeout != NULL) {
1063                 wait_time = *timeout;
1064                 wait_forever = false;
1065         }
1066
1067         timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
1068
1069         if (WARN_ON(!ring->irq_get(ring)))
1070                 return -ENODEV;
1071
1072         /* Record current time in case interrupted by signal, or wedged * */
1073         getrawmonotonic(&before);
1074
1075 #define EXIT_COND \
1076         (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1077          i915_reset_in_progress(&dev_priv->gpu_error) || \
1078          reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1079         do {
1080                 if (interruptible)
1081                         end = wait_event_interruptible_timeout(ring->irq_queue,
1082                                                                EXIT_COND,
1083                                                                timeout_jiffies);
1084                 else
1085                         end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1086                                                  timeout_jiffies);
1087
1088                 /* We need to check whether any gpu reset happened in between
1089                  * the caller grabbing the seqno and now ... */
1090                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1091                         end = -EAGAIN;
1092
1093                 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1094                  * gone. */
1095                 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1096                 if (ret)
1097                         end = ret;
1098         } while (end == 0 && wait_forever);
1099
1100         getrawmonotonic(&now);
1101
1102         ring->irq_put(ring);
1103         trace_i915_gem_request_wait_end(ring, seqno);
1104 #undef EXIT_COND
1105
1106         if (timeout) {
1107                 struct timespec sleep_time = timespec_sub(now, before);
1108                 *timeout = timespec_sub(*timeout, sleep_time);
1109                 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1110                         set_normalized_timespec(timeout, 0, 0);
1111         }
1112
1113         switch (end) {
1114         case -EIO:
1115         case -EAGAIN: /* Wedged */
1116         case -ERESTARTSYS: /* Signal */
1117                 return (int)end;
1118         case 0: /* Timeout */
1119                 return -ETIMEDOUT;      /* -ETIME on Linux */
1120         default: /* Completed */
1121                 WARN_ON(end < 0); /* We're not aware of other errors */
1122                 return 0;
1123         }
1124 }
1125
1126 /**
1127  * Waits for a sequence number to be signaled, and cleans up the
1128  * request and object lists appropriately for that event.
1129  */
1130 int
1131 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1132 {
1133         struct drm_device *dev = ring->dev;
1134         struct drm_i915_private *dev_priv = dev->dev_private;
1135         bool interruptible = dev_priv->mm.interruptible;
1136         int ret;
1137
1138         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1139         BUG_ON(seqno == 0);
1140
1141         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1142         if (ret)
1143                 return ret;
1144
1145         ret = i915_gem_check_olr(ring, seqno);
1146         if (ret)
1147                 return ret;
1148
1149         return __wait_seqno(ring, seqno,
1150                             atomic_read(&dev_priv->gpu_error.reset_counter),
1151                             interruptible, NULL);
1152 }
1153
1154 static int
1155 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1156                                      struct intel_ring_buffer *ring)
1157 {
1158         i915_gem_retire_requests_ring(ring);
1159
1160         /* Manually manage the write flush as we may have not yet
1161          * retired the buffer.
1162          *
1163          * Note that the last_write_seqno is always the earlier of
1164          * the two (read/write) seqno, so if we haved successfully waited,
1165          * we know we have passed the last write.
1166          */
1167         obj->last_write_seqno = 0;
1168         obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1169
1170         return 0;
1171 }
1172
1173 /**
1174  * Ensures that all rendering to the object has completed and the object is
1175  * safe to unbind from the GTT or access from the CPU.
1176  */
1177 static __must_check int
1178 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1179                                bool readonly)
1180 {
1181         struct intel_ring_buffer *ring = obj->ring;
1182         u32 seqno;
1183         int ret;
1184
1185         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1186         if (seqno == 0)
1187                 return 0;
1188
1189         ret = i915_wait_seqno(ring, seqno);
1190         if (ret)
1191                 return ret;
1192
1193         return i915_gem_object_wait_rendering__tail(obj, ring);
1194 }
1195
1196 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1197  * as the object state may change during this call.
1198  */
1199 static __must_check int
1200 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1201                                             bool readonly)
1202 {
1203         struct drm_device *dev = obj->base.dev;
1204         struct drm_i915_private *dev_priv = dev->dev_private;
1205         struct intel_ring_buffer *ring = obj->ring;
1206         unsigned reset_counter;
1207         u32 seqno;
1208         int ret;
1209
1210         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1211         BUG_ON(!dev_priv->mm.interruptible);
1212
1213         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1214         if (seqno == 0)
1215                 return 0;
1216
1217         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1218         if (ret)
1219                 return ret;
1220
1221         ret = i915_gem_check_olr(ring, seqno);
1222         if (ret)
1223                 return ret;
1224
1225         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1226         mutex_unlock(&dev->struct_mutex);
1227         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
1228         mutex_lock(&dev->struct_mutex);
1229         if (ret)
1230                 return ret;
1231
1232         return i915_gem_object_wait_rendering__tail(obj, ring);
1233 }
1234
1235 /**
1236  * Called when user space prepares to use an object with the CPU, either
1237  * through the mmap ioctl's mapping or a GTT mapping.
1238  */
1239 int
1240 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1241                           struct drm_file *file)
1242 {
1243         struct drm_i915_gem_set_domain *args = data;
1244         struct drm_i915_gem_object *obj;
1245         uint32_t read_domains = args->read_domains;
1246         uint32_t write_domain = args->write_domain;
1247         int ret;
1248
1249         /* Only handle setting domains to types used by the CPU. */
1250         if (write_domain & I915_GEM_GPU_DOMAINS)
1251                 return -EINVAL;
1252
1253         if (read_domains & I915_GEM_GPU_DOMAINS)
1254                 return -EINVAL;
1255
1256         /* Having something in the write domain implies it's in the read
1257          * domain, and only that read domain.  Enforce that in the request.
1258          */
1259         if (write_domain != 0 && read_domains != write_domain)
1260                 return -EINVAL;
1261
1262         ret = i915_mutex_lock_interruptible(dev);
1263         if (ret)
1264                 return ret;
1265
1266         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1267         if (&obj->base == NULL) {
1268                 ret = -ENOENT;
1269                 goto unlock;
1270         }
1271
1272         /* Try to flush the object off the GPU without holding the lock.
1273          * We will repeat the flush holding the lock in the normal manner
1274          * to catch cases where we are gazumped.
1275          */
1276         ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1277         if (ret)
1278                 goto unref;
1279
1280         if (read_domains & I915_GEM_DOMAIN_GTT) {
1281                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1282
1283                 /* Silently promote "you're not bound, there was nothing to do"
1284                  * to success, since the client was just asking us to
1285                  * make sure everything was done.
1286                  */
1287                 if (ret == -EINVAL)
1288                         ret = 0;
1289         } else {
1290                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1291         }
1292
1293 unref:
1294         drm_gem_object_unreference(&obj->base);
1295 unlock:
1296         mutex_unlock(&dev->struct_mutex);
1297         return ret;
1298 }
1299
1300 /**
1301  * Called when user space has done writes to this buffer
1302  */
1303 int
1304 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1305                          struct drm_file *file)
1306 {
1307         struct drm_i915_gem_sw_finish *args = data;
1308         struct drm_i915_gem_object *obj;
1309         int ret = 0;
1310
1311         ret = i915_mutex_lock_interruptible(dev);
1312         if (ret)
1313                 return ret;
1314
1315         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1316         if (&obj->base == NULL) {
1317                 ret = -ENOENT;
1318                 goto unlock;
1319         }
1320
1321         /* Pinned buffers may be scanout, so flush the cache */
1322         if (obj->pin_display)
1323                 i915_gem_object_flush_cpu_write_domain(obj, true);
1324
1325         drm_gem_object_unreference(&obj->base);
1326 unlock:
1327         mutex_unlock(&dev->struct_mutex);
1328         return ret;
1329 }
1330
1331 /**
1332  * Maps the contents of an object, returning the address it is mapped
1333  * into.
1334  *
1335  * While the mapping holds a reference on the contents of the object, it doesn't
1336  * imply a ref on the object itself.
1337  */
1338 int
1339 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1340                     struct drm_file *file)
1341 {
1342         struct drm_i915_gem_mmap *args = data;
1343         struct drm_gem_object *obj;
1344         unsigned long addr;
1345         struct proc *p = curproc;
1346         vm_map_t map = &p->p_vmspace->vm_map;
1347         vm_size_t size;
1348         int error = 0, rv;
1349
1350         obj = drm_gem_object_lookup(dev, file, args->handle);
1351         if (obj == NULL)
1352                 return -ENOENT;
1353
1354         if (args->size == 0)
1355                 goto out;
1356
1357         size = round_page(args->size);
1358         if (map->size + size > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
1359                 error = -ENOMEM;
1360                 goto out;
1361         }
1362
1363         /*
1364          * Call hint to ensure that NULL is not returned as a valid address
1365          * and to reduce vm_map traversals.
1366          */
1367         addr = vm_map_hint(p, 0, PROT_READ|PROT_WRITE);
1368
1369         /*
1370          * Use 256KB alignment.  It is unclear why this matters for a
1371          * virtual address but it appears to fix a number of application/X
1372          * crashes and kms console switching is much faster.
1373          */
1374         vm_object_hold(obj->vm_obj);
1375         vm_object_reference_locked(obj->vm_obj);
1376         vm_object_drop(obj->vm_obj);
1377
1378         rv = vm_map_find(map, obj->vm_obj, NULL,
1379                          args->offset, &addr, args->size,
1380                          256 * 1024, /* align */
1381                          TRUE, /* fitit */
1382                          VM_MAPTYPE_NORMAL, /* maptype */
1383                          VM_PROT_READ | VM_PROT_WRITE, /* prot */
1384                          VM_PROT_READ | VM_PROT_WRITE, /* max */
1385                          MAP_SHARED /* cow */);
1386         if (rv != KERN_SUCCESS) {
1387                 vm_object_deallocate(obj->vm_obj);
1388                 error = -vm_mmap_to_errno(rv);
1389         } else {
1390                 args->addr_ptr = (uint64_t)addr;
1391         }
1392 out:
1393         drm_gem_object_unreference(obj);
1394         return (error);
1395 }
1396
1397 /**
1398  * i915_gem_fault - fault a page into the GTT
1399  * vma: VMA in question
1400  * vmf: fault info
1401  *
1402  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1403  * from userspace.  The fault handler takes care of binding the object to
1404  * the GTT (if needed), allocating and programming a fence register (again,
1405  * only if needed based on whether the old reg is still valid or the object
1406  * is tiled) and inserting a new PTE into the faulting process.
1407  *
1408  * Note that the faulting process may involve evicting existing objects
1409  * from the GTT and/or fence registers to make room.  So performance may
1410  * suffer if the GTT working set is large or there are few fence registers
1411  * left.
1412  */
1413 int i915_gem_fault(vm_object_t vm_obj, vm_ooffset_t offset, int prot, vm_page_t *mres)
1414 {
1415         struct drm_i915_gem_object *obj = to_intel_bo(vm_obj->handle);
1416         struct drm_device *dev = obj->base.dev;
1417         drm_i915_private_t *dev_priv = dev->dev_private;
1418         unsigned long page_offset;
1419         vm_page_t m, oldm = NULL;
1420         int ret = 0;
1421         bool write = !!(prot & VM_PROT_WRITE);
1422
1423         intel_runtime_pm_get(dev_priv);
1424
1425         /* We don't use vmf->pgoff since that has the fake offset */
1426         page_offset = (unsigned long)offset;
1427
1428 /* Magic FreeBSD VM stuff */
1429         vm_object_pip_add(vm_obj, 1);
1430
1431         /*
1432          * Remove the placeholder page inserted by vm_fault() from the
1433          * object before dropping the object lock. If
1434          * i915_gem_release_mmap() is active in parallel on this gem
1435          * object, then it owns the drm device sx and might find the
1436          * placeholder already. Then, since the page is busy,
1437          * i915_gem_release_mmap() sleeps waiting for the busy state
1438          * of the page cleared. We will be not able to acquire drm
1439          * device lock until i915_gem_release_mmap() is able to make a
1440          * progress.
1441          */
1442         if (*mres != NULL) {
1443                 oldm = *mres;
1444                 vm_page_remove(oldm);
1445                 *mres = NULL;
1446         } else
1447                 oldm = NULL;
1448 retry:
1449         VM_OBJECT_UNLOCK(vm_obj);
1450 unlocked_vmobj:
1451         ret = 0;
1452         m = NULL;
1453
1454         mutex_lock(&dev->struct_mutex);
1455
1456         /*
1457          * Since the object lock was dropped, other thread might have
1458          * faulted on the same GTT address and instantiated the
1459          * mapping for the page.  Recheck.
1460          */
1461         VM_OBJECT_LOCK(vm_obj);
1462         m = vm_page_lookup(vm_obj, OFF_TO_IDX(offset));
1463         if (m != NULL) {
1464                 if ((m->flags & PG_BUSY) != 0) {
1465                         mutex_unlock(&dev->struct_mutex);
1466                         goto retry;
1467                 }
1468                 goto have_page;
1469         } else
1470                 VM_OBJECT_UNLOCK(vm_obj);
1471 /* End magic VM stuff */
1472
1473         trace_i915_gem_object_fault(obj, page_offset, true, write);
1474
1475         /* Access to snoopable pages through the GTT is incoherent. */
1476         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1477                 ret = -EINVAL;
1478                 goto unlock;
1479         }
1480
1481         /* Now bind it into the GTT if needed */
1482         ret = i915_gem_obj_ggtt_pin(obj,  0, true, false);
1483         if (ret)
1484                 goto unlock;
1485
1486         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1487         if (ret)
1488                 goto unpin;
1489
1490         ret = i915_gem_object_get_fence(obj);
1491         if (ret)
1492                 goto unpin;
1493
1494         obj->fault_mappable = true;
1495
1496         VM_OBJECT_LOCK(vm_obj);
1497         m = vm_phys_fictitious_to_vm_page(dev->agp->base +
1498             i915_gem_obj_ggtt_offset(obj) + offset);
1499         if (m == NULL) {
1500                 ret = -EFAULT;
1501                 goto unpin;
1502         }
1503         KASSERT((m->flags & PG_FICTITIOUS) != 0,
1504             ("not fictitious %p", m));
1505         KASSERT(m->wire_count == 1, ("wire_count not 1 %p", m));
1506
1507         if ((m->flags & PG_BUSY) != 0) {
1508                 i915_gem_object_unpin(obj);
1509                 mutex_unlock(&dev->struct_mutex);
1510                 goto retry;
1511         }
1512         m->valid = VM_PAGE_BITS_ALL;
1513
1514         /* Finally, remap it using the new GTT offset */
1515         vm_page_insert(m, vm_obj, OFF_TO_IDX(offset));
1516 have_page:
1517         *mres = m;
1518         vm_page_busy_try(m, false);
1519
1520         i915_gem_object_unpin(obj);
1521         mutex_unlock(&dev->struct_mutex);
1522         if (oldm != NULL) {
1523                 vm_page_free(oldm);
1524         }
1525         vm_object_pip_wakeup(vm_obj);
1526         return (VM_PAGER_OK);
1527
1528 unpin:
1529         i915_gem_object_unpin(obj);
1530 unlock:
1531         mutex_unlock(&dev->struct_mutex);
1532
1533         KASSERT(ret != 0, ("i915_gem_pager_fault: wrong return"));
1534         switch (ret) {
1535         case -EIO:
1536         case -EAGAIN:
1537         case -EINTR:
1538                 goto unlocked_vmobj;
1539         default:
1540                 VM_OBJECT_LOCK(vm_obj);
1541                 vm_object_pip_wakeup(vm_obj);
1542                 ret = VM_PAGER_ERROR;
1543         }
1544
1545         intel_runtime_pm_put(dev_priv);
1546         return ret;
1547 }
1548
1549 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1550 {
1551         struct i915_vma *vma;
1552
1553         /*
1554          * Only the global gtt is relevant for gtt memory mappings, so restrict
1555          * list traversal to objects bound into the global address space. Note
1556          * that the active list should be empty, but better safe than sorry.
1557          */
1558         WARN_ON(!list_empty(&dev_priv->gtt.base.active_list));
1559         list_for_each_entry(vma, &dev_priv->gtt.base.active_list, mm_list)
1560                 i915_gem_release_mmap(vma->obj);
1561         list_for_each_entry(vma, &dev_priv->gtt.base.inactive_list, mm_list)
1562                 i915_gem_release_mmap(vma->obj);
1563 }
1564
1565 /**
1566  * i915_gem_release_mmap - remove physical page mappings
1567  * @obj: obj in question
1568  *
1569  * Preserve the reservation of the mmapping with the DRM core code, but
1570  * relinquish ownership of the pages back to the system.
1571  *
1572  * It is vital that we remove the page mapping if we have mapped a tiled
1573  * object through the GTT and then lose the fence register due to
1574  * resource pressure. Similarly if the object has been moved out of the
1575  * aperture, than pages mapped into userspace must be revoked. Removing the
1576  * mapping will then trigger a page fault on the next user access, allowing
1577  * fixup by i915_gem_fault().
1578  */
1579 void
1580 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1581 {
1582         vm_object_t devobj;
1583         vm_page_t m;
1584         int i, page_count;
1585
1586         if (!obj->fault_mappable)
1587                 return;
1588
1589         devobj = cdev_pager_lookup(obj);
1590         if (devobj != NULL) {
1591                 page_count = OFF_TO_IDX(obj->base.size);
1592
1593                 VM_OBJECT_LOCK(devobj);
1594                 for (i = 0; i < page_count; i++) {
1595                         m = vm_page_lookup_busy_wait(devobj, i, TRUE, "915unm");
1596                         if (m == NULL)
1597                                 continue;
1598                         cdev_pager_free_page(devobj, m);
1599                 }
1600                 VM_OBJECT_UNLOCK(devobj);
1601                 vm_object_deallocate(devobj);
1602         }
1603
1604         obj->fault_mappable = false;
1605 }
1606
1607 uint32_t
1608 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1609 {
1610         uint32_t gtt_size;
1611
1612         if (INTEL_INFO(dev)->gen >= 4 ||
1613             tiling_mode == I915_TILING_NONE)
1614                 return size;
1615
1616         /* Previous chips need a power-of-two fence region when tiling */
1617         if (INTEL_INFO(dev)->gen == 3)
1618                 gtt_size = 1024*1024;
1619         else
1620                 gtt_size = 512*1024;
1621
1622         while (gtt_size < size)
1623                 gtt_size <<= 1;
1624
1625         return gtt_size;
1626 }
1627
1628 /**
1629  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1630  * @obj: object to check
1631  *
1632  * Return the required GTT alignment for an object, taking into account
1633  * potential fence register mapping.
1634  */
1635 uint32_t
1636 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1637                            int tiling_mode, bool fenced)
1638 {
1639         /*
1640          * Minimum alignment is 4k (GTT page size), but might be greater
1641          * if a fence register is needed for the object.
1642          */
1643         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1644             tiling_mode == I915_TILING_NONE)
1645                 return 4096;
1646
1647         /*
1648          * Previous chips need to be aligned to the size of the smallest
1649          * fence register that can contain the object.
1650          */
1651         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1652 }
1653
1654 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1655 {
1656         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1657         int ret;
1658
1659 #if 0
1660         if (drm_vma_node_has_offset(&obj->base.vma_node))
1661                 return 0;
1662 #endif
1663
1664         dev_priv->mm.shrinker_no_lock_stealing = true;
1665
1666         ret = drm_gem_create_mmap_offset(&obj->base);
1667         if (ret != -ENOSPC)
1668                 goto out;
1669
1670         /* Badly fragmented mmap space? The only way we can recover
1671          * space is by destroying unwanted objects. We can't randomly release
1672          * mmap_offsets as userspace expects them to be persistent for the
1673          * lifetime of the objects. The closest we can is to release the
1674          * offsets on purgeable objects by truncating it and marking it purged,
1675          * which prevents userspace from ever using that object again.
1676          */
1677         i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1678         ret = drm_gem_create_mmap_offset(&obj->base);
1679         if (ret != -ENOSPC)
1680                 goto out;
1681
1682         i915_gem_shrink_all(dev_priv);
1683         ret = drm_gem_create_mmap_offset(&obj->base);
1684 out:
1685         dev_priv->mm.shrinker_no_lock_stealing = false;
1686
1687         return ret;
1688 }
1689
1690 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1691 {
1692         drm_gem_free_mmap_offset(&obj->base);
1693 }
1694
1695 int
1696 i915_gem_mmap_gtt(struct drm_file *file,
1697                   struct drm_device *dev,
1698                   uint32_t handle,
1699                   uint64_t *offset)
1700 {
1701         struct drm_i915_private *dev_priv = dev->dev_private;
1702         struct drm_i915_gem_object *obj;
1703         int ret;
1704
1705         ret = i915_mutex_lock_interruptible(dev);
1706         if (ret)
1707                 return ret;
1708
1709         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1710         if (&obj->base == NULL) {
1711                 ret = -ENOENT;
1712                 goto unlock;
1713         }
1714
1715         if (obj->base.size > dev_priv->gtt.mappable_end) {
1716                 ret = -E2BIG;
1717                 goto out;
1718         }
1719
1720         if (obj->madv != I915_MADV_WILLNEED) {
1721                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1722                 ret = -EINVAL;
1723                 goto out;
1724         }
1725
1726         ret = i915_gem_object_create_mmap_offset(obj);
1727         if (ret)
1728                 goto out;
1729
1730         *offset = DRM_GEM_MAPPING_OFF(obj->base.map_list.key) |
1731             DRM_GEM_MAPPING_KEY;
1732
1733 out:
1734         drm_gem_object_unreference(&obj->base);
1735 unlock:
1736         mutex_unlock(&dev->struct_mutex);
1737         return ret;
1738 }
1739
1740 /**
1741  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1742  * @dev: DRM device
1743  * @data: GTT mapping ioctl data
1744  * @file: GEM object info
1745  *
1746  * Simply returns the fake offset to userspace so it can mmap it.
1747  * The mmap call will end up in drm_gem_mmap(), which will set things
1748  * up so we can get faults in the handler above.
1749  *
1750  * The fault handler will take care of binding the object into the GTT
1751  * (since it may have been evicted to make room for something), allocating
1752  * a fence register, and mapping the appropriate aperture address into
1753  * userspace.
1754  */
1755 int
1756 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1757                         struct drm_file *file)
1758 {
1759         struct drm_i915_gem_mmap_gtt *args = data;
1760
1761         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1762 }
1763
1764 /* Immediately discard the backing storage */
1765 static void
1766 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1767 {
1768         vm_object_t vm_obj;
1769
1770         vm_obj = obj->base.vm_obj;
1771         VM_OBJECT_LOCK(vm_obj);
1772         vm_object_page_remove(vm_obj, 0, 0, false);
1773         VM_OBJECT_UNLOCK(vm_obj);
1774
1775         obj->madv = __I915_MADV_PURGED;
1776 }
1777
1778 static inline int
1779 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1780 {
1781         return obj->madv == I915_MADV_DONTNEED;
1782 }
1783
1784 static void
1785 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1786 {
1787         int page_count = obj->base.size / PAGE_SIZE;
1788         int i, ret;
1789
1790         if (!obj->pages)
1791                 return;
1792
1793         BUG_ON(obj->madv == __I915_MADV_PURGED);
1794
1795         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1796         if (ret) {
1797                 /* In the event of a disaster, abandon all caches and
1798                  * hope for the best.
1799                  */
1800                 WARN_ON(ret != -EIO);
1801                 i915_gem_clflush_object(obj, true);
1802                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1803         }
1804
1805         if (i915_gem_object_needs_bit17_swizzle(obj))
1806                 i915_gem_object_save_bit_17_swizzle(obj);
1807
1808         if (obj->madv == I915_MADV_DONTNEED)
1809                 obj->dirty = 0;
1810
1811         for (i = 0; i < page_count; i++) {
1812                 struct vm_page *page = obj->pages[i];
1813
1814                 if (obj->dirty)
1815                         set_page_dirty(page);
1816
1817                 if (obj->madv == I915_MADV_WILLNEED)
1818                         mark_page_accessed(page);
1819
1820                 vm_page_busy_wait(obj->pages[i], FALSE, "i915gem");
1821                 vm_page_unwire(obj->pages[i], 1);
1822                 vm_page_wakeup(obj->pages[i]);
1823         }
1824         obj->dirty = 0;
1825
1826         kfree(obj->pages);
1827         obj->pages = NULL;
1828 }
1829
1830 int
1831 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1832 {
1833         const struct drm_i915_gem_object_ops *ops = obj->ops;
1834
1835         if (obj->pages == NULL)
1836                 return 0;
1837
1838         if (obj->pages_pin_count)
1839                 return -EBUSY;
1840
1841         BUG_ON(i915_gem_obj_bound_any(obj));
1842
1843         /* ->put_pages might need to allocate memory for the bit17 swizzle
1844          * array, hence protect them from being reaped by removing them from gtt
1845          * lists early. */
1846         list_del(&obj->global_list);
1847
1848         ops->put_pages(obj);
1849         obj->pages = NULL;
1850
1851         if (i915_gem_object_is_purgeable(obj))
1852                 i915_gem_object_truncate(obj);
1853
1854         return 0;
1855 }
1856
1857 static unsigned long
1858 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1859                   bool purgeable_only)
1860 {
1861         struct drm_i915_gem_object *obj, *next;
1862         unsigned long count = 0;
1863
1864         list_for_each_entry_safe(obj, next,
1865                                  &dev_priv->mm.unbound_list,
1866                                  global_list) {
1867                 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1868                     i915_gem_object_put_pages(obj) == 0) {
1869                         count += obj->base.size >> PAGE_SHIFT;
1870                         if (count >= target)
1871                                 return count;
1872                 }
1873         }
1874
1875         list_for_each_entry_safe(obj, next, &dev_priv->mm.bound_list,
1876                                  global_list) {
1877                 struct i915_vma *vma, *v;
1878
1879                 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1880                         continue;
1881
1882                 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1883                         if (i915_vma_unbind(vma))
1884                                 break;
1885
1886                 if (!i915_gem_object_put_pages(obj)) {
1887                         count += obj->base.size >> PAGE_SHIFT;
1888                         if (count >= target)
1889                                 return count;
1890                 }
1891         }
1892
1893         return count;
1894 }
1895
1896 static unsigned long
1897 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1898 {
1899         return __i915_gem_shrink(dev_priv, target, true);
1900 }
1901
1902 static unsigned long
1903 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1904 {
1905         struct drm_i915_gem_object *obj, *next;
1906         long freed = 0;
1907
1908         i915_gem_evict_everything(dev_priv->dev);
1909
1910         list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1911                                  global_list) {
1912                 if (i915_gem_object_put_pages(obj) == 0)
1913                         freed += obj->base.size >> PAGE_SHIFT;
1914         }
1915         return freed;
1916 }
1917
1918 static int
1919 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1920 {
1921         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1922         int page_count, i, j;
1923         vm_object_t vm_obj;
1924         struct vm_page *page;
1925
1926         /* Assert that the object is not currently in any GPU domain. As it
1927          * wasn't in the GTT, there shouldn't be any way it could have been in
1928          * a GPU cache
1929          */
1930         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1931         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1932
1933         page_count = obj->base.size / PAGE_SIZE;
1934         obj->pages = kmalloc(page_count * sizeof(vm_page_t), M_DRM,
1935             M_WAITOK);
1936
1937         /* Get the list of pages out of our struct file.  They'll be pinned
1938          * at this point until we release them.
1939          *
1940          * Fail silently without starting the shrinker
1941          */
1942         vm_obj = obj->base.vm_obj;
1943         VM_OBJECT_LOCK(vm_obj);
1944         for (i = 0; i < page_count; i++) {
1945                 page = shmem_read_mapping_page(vm_obj, i);
1946                 if (IS_ERR(page)) {
1947                         i915_gem_purge(dev_priv, page_count);
1948                         page = shmem_read_mapping_page(vm_obj, i);
1949                 }
1950                 if (IS_ERR(page)) {
1951                         /* We've tried hard to allocate the memory by reaping
1952                          * our own buffer, now let the real VM do its job and
1953                          * go down in flames if truly OOM.
1954                          */
1955
1956                         i915_gem_shrink_all(dev_priv);
1957                         page = shmem_read_mapping_page(vm_obj, i);
1958                         if (IS_ERR(page))
1959                                 goto err_pages;
1960                 }
1961 #ifdef CONFIG_SWIOTLB
1962                 if (swiotlb_nr_tbl()) {
1963                         st->nents++;
1964                         sg_set_page(sg, page, PAGE_SIZE, 0);
1965                         sg = sg_next(sg);
1966                         continue;
1967                 }
1968 #endif
1969                 obj->pages[i] = page;
1970         }
1971 #ifdef CONFIG_SWIOTLB
1972         if (!swiotlb_nr_tbl())
1973 #endif
1974         VM_OBJECT_UNLOCK(vm_obj);
1975
1976         if (i915_gem_object_needs_bit17_swizzle(obj))
1977                 i915_gem_object_do_bit_17_swizzle(obj);
1978
1979         return 0;
1980
1981 err_pages:
1982         for (j = 0; j < i; j++) {
1983                 page = obj->pages[j];
1984                 vm_page_busy_wait(page, FALSE, "i915gem");
1985                 vm_page_unwire(page, 0);
1986                 vm_page_wakeup(page);
1987         }
1988         VM_OBJECT_UNLOCK(vm_obj);
1989         kfree(obj->pages);
1990         obj->pages = NULL;
1991         return (-EIO);
1992 }
1993
1994 /* Ensure that the associated pages are gathered from the backing storage
1995  * and pinned into our object. i915_gem_object_get_pages() may be called
1996  * multiple times before they are released by a single call to
1997  * i915_gem_object_put_pages() - once the pages are no longer referenced
1998  * either as a result of memory pressure (reaping pages under the shrinker)
1999  * or as the object is itself released.
2000  */
2001 int
2002 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2003 {
2004         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2005         const struct drm_i915_gem_object_ops *ops = obj->ops;
2006         int ret;
2007
2008         if (obj->pages)
2009                 return 0;
2010
2011         if (obj->madv != I915_MADV_WILLNEED) {
2012                 DRM_ERROR("Attempting to obtain a purgeable object\n");
2013                 return -EINVAL;
2014         }
2015
2016         BUG_ON(obj->pages_pin_count);
2017
2018         ret = ops->get_pages(obj);
2019         if (ret)
2020                 return ret;
2021
2022         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2023         return 0;
2024 }
2025
2026 static void
2027 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2028                                struct intel_ring_buffer *ring)
2029 {
2030         struct drm_device *dev = obj->base.dev;
2031         struct drm_i915_private *dev_priv = dev->dev_private;
2032         u32 seqno = intel_ring_get_seqno(ring);
2033
2034         BUG_ON(ring == NULL);
2035         if (obj->ring != ring && obj->last_write_seqno) {
2036                 /* Keep the seqno relative to the current ring */
2037                 obj->last_write_seqno = seqno;
2038         }
2039         obj->ring = ring;
2040
2041         /* Add a reference if we're newly entering the active list. */
2042         if (!obj->active) {
2043                 drm_gem_object_reference(&obj->base);
2044                 obj->active = 1;
2045         }
2046
2047         list_move_tail(&obj->ring_list, &ring->active_list);
2048
2049         obj->last_read_seqno = seqno;
2050
2051         if (obj->fenced_gpu_access) {
2052                 obj->last_fenced_seqno = seqno;
2053
2054                 /* Bump MRU to take account of the delayed flush */
2055                 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2056                         struct drm_i915_fence_reg *reg;
2057
2058                         reg = &dev_priv->fence_regs[obj->fence_reg];
2059                         list_move_tail(&reg->lru_list,
2060                                        &dev_priv->mm.fence_list);
2061                 }
2062         }
2063 }
2064
2065 void i915_vma_move_to_active(struct i915_vma *vma,
2066                              struct intel_ring_buffer *ring)
2067 {
2068         list_move_tail(&vma->mm_list, &vma->vm->active_list);
2069         return i915_gem_object_move_to_active(vma->obj, ring);
2070 }
2071
2072 static void
2073 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2074 {
2075         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2076         struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
2077         struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
2078
2079         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2080         BUG_ON(!obj->active);
2081
2082         list_move_tail(&vma->mm_list, &ggtt_vm->inactive_list);
2083
2084         list_del_init(&obj->ring_list);
2085         obj->ring = NULL;
2086
2087         obj->last_read_seqno = 0;
2088         obj->last_write_seqno = 0;
2089         obj->base.write_domain = 0;
2090
2091         obj->last_fenced_seqno = 0;
2092         obj->fenced_gpu_access = false;
2093
2094         obj->active = 0;
2095         drm_gem_object_unreference(&obj->base);
2096
2097         WARN_ON(i915_verify_lists(dev));
2098 }
2099
2100 static int
2101 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2102 {
2103         struct drm_i915_private *dev_priv = dev->dev_private;
2104         struct intel_ring_buffer *ring;
2105         int ret, i, j;
2106
2107         /* Carefully retire all requests without writing to the rings */
2108         for_each_ring(ring, dev_priv, i) {
2109                 ret = intel_ring_idle(ring);
2110                 if (ret)
2111                         return ret;
2112         }
2113         i915_gem_retire_requests(dev);
2114
2115         /* Finally reset hw state */
2116         for_each_ring(ring, dev_priv, i) {
2117                 intel_ring_init_seqno(ring, seqno);
2118
2119                 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2120                         ring->sync_seqno[j] = 0;
2121         }
2122
2123         return 0;
2124 }
2125
2126 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2127 {
2128         struct drm_i915_private *dev_priv = dev->dev_private;
2129         int ret;
2130
2131         if (seqno == 0)
2132                 return -EINVAL;
2133
2134         /* HWS page needs to be set less than what we
2135          * will inject to ring
2136          */
2137         ret = i915_gem_init_seqno(dev, seqno - 1);
2138         if (ret)
2139                 return ret;
2140
2141         /* Carefully set the last_seqno value so that wrap
2142          * detection still works
2143          */
2144         dev_priv->next_seqno = seqno;
2145         dev_priv->last_seqno = seqno - 1;
2146         if (dev_priv->last_seqno == 0)
2147                 dev_priv->last_seqno--;
2148
2149         return 0;
2150 }
2151
2152 int
2153 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2154 {
2155         struct drm_i915_private *dev_priv = dev->dev_private;
2156
2157         /* reserve 0 for non-seqno */
2158         if (dev_priv->next_seqno == 0) {
2159                 int ret = i915_gem_init_seqno(dev, 0);
2160                 if (ret)
2161                         return ret;
2162
2163                 dev_priv->next_seqno = 1;
2164         }
2165
2166         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2167         return 0;
2168 }
2169
2170 int __i915_add_request(struct intel_ring_buffer *ring,
2171                        struct drm_file *file,
2172                        struct drm_i915_gem_object *obj,
2173                        u32 *out_seqno)
2174 {
2175         drm_i915_private_t *dev_priv = ring->dev->dev_private;
2176         struct drm_i915_gem_request *request;
2177         u32 request_ring_position, request_start;
2178         int was_empty;
2179         int ret;
2180
2181         request_start = intel_ring_get_tail(ring);
2182         /*
2183          * Emit any outstanding flushes - execbuf can fail to emit the flush
2184          * after having emitted the batchbuffer command. Hence we need to fix
2185          * things up similar to emitting the lazy request. The difference here
2186          * is that the flush _must_ happen before the next request, no matter
2187          * what.
2188          */
2189         ret = intel_ring_flush_all_caches(ring);
2190         if (ret)
2191                 return ret;
2192
2193         request = ring->preallocated_lazy_request;
2194         if (WARN_ON(request == NULL))
2195                 return -ENOMEM;
2196
2197         /* Record the position of the start of the request so that
2198          * should we detect the updated seqno part-way through the
2199          * GPU processing the request, we never over-estimate the
2200          * position of the head.
2201          */
2202         request_ring_position = intel_ring_get_tail(ring);
2203
2204         ret = ring->add_request(ring);
2205         if (ret)
2206                 return ret;
2207
2208         request->seqno = intel_ring_get_seqno(ring);
2209         request->ring = ring;
2210         request->head = request_start;
2211         request->tail = request_ring_position;
2212
2213         /* Whilst this request exists, batch_obj will be on the
2214          * active_list, and so will hold the active reference. Only when this
2215          * request is retired will the the batch_obj be moved onto the
2216          * inactive_list and lose its active reference. Hence we do not need
2217          * to explicitly hold another reference here.
2218          */
2219         request->batch_obj = obj;
2220
2221         /* Hold a reference to the current context so that we can inspect
2222          * it later in case a hangcheck error event fires.
2223          */
2224         request->ctx = ring->last_context;
2225         if (request->ctx)
2226                 i915_gem_context_reference(request->ctx);
2227
2228         request->emitted_jiffies = jiffies;
2229         was_empty = list_empty(&ring->request_list);
2230         list_add_tail(&request->list, &ring->request_list);
2231         request->file_priv = NULL;
2232
2233         if (file) {
2234                 struct drm_i915_file_private *file_priv = file->driver_priv;
2235
2236                 spin_lock(&file_priv->mm.lock);
2237                 request->file_priv = file_priv;
2238                 list_add_tail(&request->client_list,
2239                               &file_priv->mm.request_list);
2240                 spin_unlock(&file_priv->mm.lock);
2241         }
2242
2243         trace_i915_gem_request_add(ring, request->seqno);
2244         ring->outstanding_lazy_seqno = 0;
2245         ring->preallocated_lazy_request = NULL;
2246
2247         if (!dev_priv->ums.mm_suspended) {
2248                 i915_queue_hangcheck(ring->dev);
2249
2250                 if (was_empty) {
2251                         cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2252                         queue_delayed_work(dev_priv->wq,
2253                                            &dev_priv->mm.retire_work,
2254                                            round_jiffies_up_relative(HZ));
2255                         intel_mark_busy(dev_priv->dev);
2256                 }
2257         }
2258
2259         if (out_seqno)
2260                 *out_seqno = request->seqno;
2261         return 0;
2262 }
2263
2264 static inline void
2265 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2266 {
2267         struct drm_i915_file_private *file_priv = request->file_priv;
2268
2269         if (!file_priv)
2270                 return;
2271
2272         spin_lock(&file_priv->mm.lock);
2273         if (request->file_priv) {
2274                 list_del(&request->client_list);
2275                 request->file_priv = NULL;
2276         }
2277         spin_unlock(&file_priv->mm.lock);
2278 }
2279
2280 static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj,
2281                                     struct i915_address_space *vm)
2282 {
2283         if (acthd >= i915_gem_obj_offset(obj, vm) &&
2284             acthd < i915_gem_obj_offset(obj, vm) + obj->base.size)
2285                 return true;
2286
2287         return false;
2288 }
2289
2290 static bool i915_head_inside_request(const u32 acthd_unmasked,
2291                                      const u32 request_start,
2292                                      const u32 request_end)
2293 {
2294         const u32 acthd = acthd_unmasked & HEAD_ADDR;
2295
2296         if (request_start < request_end) {
2297                 if (acthd >= request_start && acthd < request_end)
2298                         return true;
2299         } else if (request_start > request_end) {
2300                 if (acthd >= request_start || acthd < request_end)
2301                         return true;
2302         }
2303
2304         return false;
2305 }
2306
2307 static struct i915_address_space *
2308 request_to_vm(struct drm_i915_gem_request *request)
2309 {
2310         struct drm_i915_private *dev_priv = request->ring->dev->dev_private;
2311         struct i915_address_space *vm;
2312
2313         vm = &dev_priv->gtt.base;
2314
2315         return vm;
2316 }
2317
2318 static bool i915_request_guilty(struct drm_i915_gem_request *request,
2319                                 const u32 acthd, bool *inside)
2320 {
2321         /* There is a possibility that unmasked head address
2322          * pointing inside the ring, matches the batch_obj address range.
2323          * However this is extremely unlikely.
2324          */
2325         if (request->batch_obj) {
2326                 if (i915_head_inside_object(acthd, request->batch_obj,
2327                                             request_to_vm(request))) {
2328                         *inside = true;
2329                         return true;
2330                 }
2331         }
2332
2333         if (i915_head_inside_request(acthd, request->head, request->tail)) {
2334                 *inside = false;
2335                 return true;
2336         }
2337
2338         return false;
2339 }
2340
2341 static bool i915_context_is_banned(const struct i915_ctx_hang_stats *hs)
2342 {
2343         const unsigned long elapsed = get_seconds() - hs->guilty_ts;
2344
2345         if (hs->banned)
2346                 return true;
2347
2348         if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2349                 DRM_ERROR("context hanging too fast, declaring banned!\n");
2350                 return true;
2351         }
2352
2353         return false;
2354 }
2355
2356 static void i915_set_reset_status(struct intel_ring_buffer *ring,
2357                                   struct drm_i915_gem_request *request,
2358                                   u32 acthd)
2359 {
2360         struct i915_ctx_hang_stats *hs = NULL;
2361         bool inside, guilty;
2362         unsigned long offset = 0;
2363
2364         /* Innocent until proven guilty */
2365         guilty = false;
2366
2367         if (request->batch_obj)
2368                 offset = i915_gem_obj_offset(request->batch_obj,
2369                                              request_to_vm(request));
2370
2371         if (ring->hangcheck.action != HANGCHECK_WAIT &&
2372             i915_request_guilty(request, acthd, &inside)) {
2373                 DRM_DEBUG("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
2374                           ring->name,
2375                           inside ? "inside" : "flushing",
2376                           offset,
2377                           request->ctx ? request->ctx->id : 0,
2378                           acthd);
2379
2380                 guilty = true;
2381         }
2382
2383         /* If contexts are disabled or this is the default context, use
2384          * file_priv->reset_state
2385          */
2386         if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2387                 hs = &request->ctx->hang_stats;
2388         else if (request->file_priv)
2389                 hs = &request->file_priv->hang_stats;
2390
2391         if (hs) {
2392                 if (guilty) {
2393                         hs->banned = i915_context_is_banned(hs);
2394                         hs->batch_active++;
2395                         hs->guilty_ts = get_seconds();
2396                 } else {
2397                         hs->batch_pending++;
2398                 }
2399         }
2400 }
2401
2402 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2403 {
2404         list_del(&request->list);
2405         i915_gem_request_remove_from_client(request);
2406
2407         if (request->ctx)
2408                 i915_gem_context_unreference(request->ctx);
2409
2410         kfree(request);
2411 }
2412
2413 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2414                                        struct intel_ring_buffer *ring)
2415 {
2416         u32 completed_seqno = ring->get_seqno(ring, false);
2417         u32 acthd = intel_ring_get_active_head(ring);
2418         struct drm_i915_gem_request *request;
2419
2420         list_for_each_entry(request, &ring->request_list, list) {
2421                 if (i915_seqno_passed(completed_seqno, request->seqno))
2422                         continue;
2423
2424                 i915_set_reset_status(ring, request, acthd);
2425         }
2426 }
2427
2428 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2429                                         struct intel_ring_buffer *ring)
2430 {
2431         while (!list_empty(&ring->active_list)) {
2432                 struct drm_i915_gem_object *obj;
2433
2434                 obj = list_first_entry(&ring->active_list,
2435                                        struct drm_i915_gem_object,
2436                                        ring_list);
2437
2438                 i915_gem_object_move_to_inactive(obj);
2439         }
2440
2441         /*
2442          * We must free the requests after all the corresponding objects have
2443          * been moved off active lists. Which is the same order as the normal
2444          * retire_requests function does. This is important if object hold
2445          * implicit references on things like e.g. ppgtt address spaces through
2446          * the request.
2447          */
2448         while (!list_empty(&ring->request_list)) {
2449                 struct drm_i915_gem_request *request;
2450
2451                 request = list_first_entry(&ring->request_list,
2452                                            struct drm_i915_gem_request,
2453                                            list);
2454
2455                 i915_gem_free_request(request);
2456         }
2457 }
2458
2459 void i915_gem_restore_fences(struct drm_device *dev)
2460 {
2461         struct drm_i915_private *dev_priv = dev->dev_private;
2462         int i;
2463
2464         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2465                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2466
2467                 /*
2468                  * Commit delayed tiling changes if we have an object still
2469                  * attached to the fence, otherwise just clear the fence.
2470                  */
2471                 if (reg->obj) {
2472                         i915_gem_object_update_fence(reg->obj, reg,
2473                                                      reg->obj->tiling_mode);
2474                 } else {
2475                         i915_gem_write_fence(dev, i, NULL);
2476                 }
2477         }
2478 }
2479
2480 void i915_gem_reset(struct drm_device *dev)
2481 {
2482         struct drm_i915_private *dev_priv = dev->dev_private;
2483         struct intel_ring_buffer *ring;
2484         int i;
2485
2486         /*
2487          * Before we free the objects from the requests, we need to inspect
2488          * them for finding the guilty party. As the requests only borrow
2489          * their reference to the objects, the inspection must be done first.
2490          */
2491         for_each_ring(ring, dev_priv, i)
2492                 i915_gem_reset_ring_status(dev_priv, ring);
2493
2494         for_each_ring(ring, dev_priv, i)
2495                 i915_gem_reset_ring_cleanup(dev_priv, ring);
2496
2497         i915_gem_cleanup_ringbuffer(dev);
2498
2499         i915_gem_restore_fences(dev);
2500 }
2501
2502 /**
2503  * This function clears the request list as sequence numbers are passed.
2504  */
2505 void
2506 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2507 {
2508         uint32_t seqno;
2509
2510         if (list_empty(&ring->request_list))
2511                 return;
2512
2513         WARN_ON(i915_verify_lists(ring->dev));
2514
2515         seqno = ring->get_seqno(ring, true);
2516
2517         while (!list_empty(&ring->request_list)) {
2518                 struct drm_i915_gem_request *request;
2519
2520                 request = list_first_entry(&ring->request_list,
2521                                            struct drm_i915_gem_request,
2522                                            list);
2523
2524                 if (!i915_seqno_passed(seqno, request->seqno))
2525                         break;
2526
2527                 trace_i915_gem_request_retire(ring, request->seqno);
2528                 /* We know the GPU must have read the request to have
2529                  * sent us the seqno + interrupt, so use the position
2530                  * of tail of the request to update the last known position
2531                  * of the GPU head.
2532                  */
2533                 ring->last_retired_head = request->tail;
2534
2535                 i915_gem_free_request(request);
2536         }
2537
2538         /* Move any buffers on the active list that are no longer referenced
2539          * by the ringbuffer to the flushing/inactive lists as appropriate.
2540          */
2541         while (!list_empty(&ring->active_list)) {
2542                 struct drm_i915_gem_object *obj;
2543
2544                 obj = list_first_entry(&ring->active_list,
2545                                       struct drm_i915_gem_object,
2546                                       ring_list);
2547
2548                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2549                         break;
2550
2551                 i915_gem_object_move_to_inactive(obj);
2552         }
2553
2554         if (unlikely(ring->trace_irq_seqno &&
2555                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2556                 ring->irq_put(ring);
2557                 ring->trace_irq_seqno = 0;
2558         }
2559
2560         WARN_ON(i915_verify_lists(ring->dev));
2561 }
2562
2563 bool
2564 i915_gem_retire_requests(struct drm_device *dev)
2565 {
2566         drm_i915_private_t *dev_priv = dev->dev_private;
2567         struct intel_ring_buffer *ring;
2568         bool idle = true;
2569         int i;
2570
2571         for_each_ring(ring, dev_priv, i) {
2572                 i915_gem_retire_requests_ring(ring);
2573                 idle &= list_empty(&ring->request_list);
2574         }
2575
2576         return idle;
2577 }
2578
2579 static void
2580 i915_gem_retire_work_handler(struct work_struct *work)
2581 {
2582         drm_i915_private_t *dev_priv;
2583         struct drm_device *dev;
2584         struct intel_ring_buffer *ring;
2585         bool idle;
2586         int i;
2587
2588         dev_priv = container_of(work, drm_i915_private_t,
2589                                 mm.retire_work.work);
2590         dev = dev_priv->dev;
2591
2592         /* Come back later if the device is busy... */
2593         if (lockmgr(&dev->struct_mutex, LK_EXCLUSIVE|LK_NOWAIT)) {
2594                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2595                                    round_jiffies_up_relative(HZ));
2596                 return;
2597         }
2598
2599         i915_gem_retire_requests(dev);
2600
2601         /* Send a periodic flush down the ring so we don't hold onto GEM
2602          * objects indefinitely.
2603          */
2604         idle = true;
2605         for_each_ring(ring, dev_priv, i) {
2606                 if (ring->gpu_caches_dirty)
2607                         i915_add_request(ring, NULL);
2608
2609                 idle &= list_empty(&ring->request_list);
2610         }
2611
2612         if (!dev_priv->ums.mm_suspended && !idle)
2613                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2614                                    round_jiffies_up_relative(HZ));
2615         if (idle)
2616                 intel_mark_idle(dev);
2617
2618         mutex_unlock(&dev->struct_mutex);
2619 }
2620
2621 static void
2622 i915_gem_idle_work_handler(struct work_struct *work)
2623 {
2624         struct drm_i915_private *dev_priv =
2625                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2626
2627         intel_mark_idle(dev_priv->dev);
2628 }
2629
2630 /**
2631  * Ensures that an object will eventually get non-busy by flushing any required
2632  * write domains, emitting any outstanding lazy request and retiring and
2633  * completed requests.
2634  */
2635 static int
2636 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2637 {
2638         int ret;
2639
2640         if (obj->active) {
2641                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2642                 if (ret)
2643                         return ret;
2644
2645                 i915_gem_retire_requests_ring(obj->ring);
2646         }
2647
2648         return 0;
2649 }
2650
2651 /**
2652  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2653  * @DRM_IOCTL_ARGS: standard ioctl arguments
2654  *
2655  * Returns 0 if successful, else an error is returned with the remaining time in
2656  * the timeout parameter.
2657  *  -ETIME: object is still busy after timeout
2658  *  -ERESTARTSYS: signal interrupted the wait
2659  *  -ENONENT: object doesn't exist
2660  * Also possible, but rare:
2661  *  -EAGAIN: GPU wedged
2662  *  -ENOMEM: damn
2663  *  -ENODEV: Internal IRQ fail
2664  *  -E?: The add request failed
2665  *
2666  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2667  * non-zero timeout parameter the wait ioctl will wait for the given number of
2668  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2669  * without holding struct_mutex the object may become re-busied before this
2670  * function completes. A similar but shorter * race condition exists in the busy
2671  * ioctl
2672  */
2673 int
2674 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2675 {
2676         drm_i915_private_t *dev_priv = dev->dev_private;
2677         struct drm_i915_gem_wait *args = data;
2678         struct drm_i915_gem_object *obj;
2679         struct intel_ring_buffer *ring = NULL;
2680         struct timespec timeout_stack, *timeout = NULL;
2681         unsigned reset_counter;
2682         u32 seqno = 0;
2683         int ret = 0;
2684
2685         if (args->timeout_ns >= 0) {
2686                 timeout_stack = ns_to_timespec(args->timeout_ns);
2687                 timeout = &timeout_stack;
2688         }
2689
2690         ret = i915_mutex_lock_interruptible(dev);
2691         if (ret)
2692                 return ret;
2693
2694         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2695         if (&obj->base == NULL) {
2696                 mutex_unlock(&dev->struct_mutex);
2697                 return -ENOENT;
2698         }
2699
2700         /* Need to make sure the object gets inactive eventually. */
2701         ret = i915_gem_object_flush_active(obj);
2702         if (ret)
2703                 goto out;
2704
2705         if (obj->active) {
2706                 seqno = obj->last_read_seqno;
2707                 ring = obj->ring;
2708         }
2709
2710         if (seqno == 0)
2711                  goto out;
2712
2713         /* Do this after OLR check to make sure we make forward progress polling
2714          * on this IOCTL with a 0 timeout (like busy ioctl)
2715          */
2716         if (!args->timeout_ns) {
2717                 ret = -ETIMEDOUT;
2718                 goto out;
2719         }
2720
2721         drm_gem_object_unreference(&obj->base);
2722         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2723         mutex_unlock(&dev->struct_mutex);
2724
2725         ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
2726         if (timeout)
2727                 args->timeout_ns = timespec_to_ns(timeout);
2728         return ret;
2729
2730 out:
2731         drm_gem_object_unreference(&obj->base);
2732         mutex_unlock(&dev->struct_mutex);
2733         return ret;
2734 }
2735
2736 /**
2737  * i915_gem_object_sync - sync an object to a ring.
2738  *
2739  * @obj: object which may be in use on another ring.
2740  * @to: ring we wish to use the object on. May be NULL.
2741  *
2742  * This code is meant to abstract object synchronization with the GPU.
2743  * Calling with NULL implies synchronizing the object with the CPU
2744  * rather than a particular GPU ring.
2745  *
2746  * Returns 0 if successful, else propagates up the lower layer error.
2747  */
2748 int
2749 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2750                      struct intel_ring_buffer *to)
2751 {
2752         struct intel_ring_buffer *from = obj->ring;
2753         u32 seqno;
2754         int ret, idx;
2755
2756         if (from == NULL || to == from)
2757                 return 0;
2758
2759         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2760                 return i915_gem_object_wait_rendering(obj, false);
2761
2762         idx = intel_ring_sync_index(from, to);
2763
2764         seqno = obj->last_read_seqno;
2765         if (seqno <= from->sync_seqno[idx])
2766                 return 0;
2767
2768         ret = i915_gem_check_olr(obj->ring, seqno);
2769         if (ret)
2770                 return ret;
2771
2772         trace_i915_gem_ring_sync_to(from, to, seqno);
2773         ret = to->sync_to(to, from, seqno);
2774         if (!ret)
2775                 /* We use last_read_seqno because sync_to()
2776                  * might have just caused seqno wrap under
2777                  * the radar.
2778                  */
2779                 from->sync_seqno[idx] = obj->last_read_seqno;
2780
2781         return ret;
2782 }
2783
2784 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2785 {
2786         u32 old_write_domain, old_read_domains;
2787
2788         /* Force a pagefault for domain tracking on next user access */
2789         i915_gem_release_mmap(obj);
2790
2791         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2792                 return;
2793
2794         /* Wait for any direct GTT access to complete */
2795         mb();
2796
2797         old_read_domains = obj->base.read_domains;
2798         old_write_domain = obj->base.write_domain;
2799
2800         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2801         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2802
2803         trace_i915_gem_object_change_domain(obj,
2804                                             old_read_domains,
2805                                             old_write_domain);
2806 }
2807
2808 int i915_vma_unbind(struct i915_vma *vma)
2809 {
2810         struct drm_i915_gem_object *obj = vma->obj;
2811         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2812         int ret;
2813
2814         /* For now we only ever use 1 vma per object */
2815 #if 0
2816         WARN_ON(!list_is_singular(&obj->vma_list));
2817 #endif
2818
2819         if (list_empty(&vma->vma_link))
2820                 return 0;
2821
2822         if (!drm_mm_node_allocated(&vma->node)) {
2823                 i915_gem_vma_destroy(vma);
2824
2825                 return 0;
2826         }
2827
2828         if (obj->pin_count)
2829                 return -EBUSY;
2830
2831         BUG_ON(obj->pages == NULL);
2832
2833         ret = i915_gem_object_finish_gpu(obj);
2834         if (ret)
2835                 return ret;
2836         /* Continue on if we fail due to EIO, the GPU is hung so we
2837          * should be safe and we need to cleanup or else we might
2838          * cause memory corruption through use-after-free.
2839          */
2840
2841         i915_gem_object_finish_gtt(obj);
2842
2843         /* release the fence reg _after_ flushing */
2844         ret = i915_gem_object_put_fence(obj);
2845         if (ret)
2846                 return ret;
2847
2848         trace_i915_vma_unbind(vma);
2849
2850         if (obj->has_global_gtt_mapping)
2851                 i915_gem_gtt_unbind_object(obj);
2852         if (obj->has_aliasing_ppgtt_mapping) {
2853                 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2854                 obj->has_aliasing_ppgtt_mapping = 0;
2855         }
2856         i915_gem_gtt_finish_object(obj);
2857
2858         list_del(&vma->mm_list);
2859         /* Avoid an unnecessary call to unbind on rebind. */
2860         if (i915_is_ggtt(vma->vm))
2861                 obj->map_and_fenceable = true;
2862
2863         drm_mm_remove_node(&vma->node);
2864         i915_gem_vma_destroy(vma);
2865
2866         /* Since the unbound list is global, only move to that list if
2867          * no more VMAs exist. */
2868         if (list_empty(&obj->vma_list))
2869                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2870
2871         /* And finally now the object is completely decoupled from this vma,
2872          * we can drop its hold on the backing storage and allow it to be
2873          * reaped by the shrinker.
2874          */
2875         i915_gem_object_unpin_pages(obj);
2876
2877         return 0;
2878 }
2879
2880 /**
2881  * Unbinds an object from the global GTT aperture.
2882  */
2883 int
2884 i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
2885 {
2886         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2887         struct i915_address_space *ggtt = &dev_priv->gtt.base;
2888
2889         if (!i915_gem_obj_ggtt_bound(obj))
2890                 return 0;
2891
2892         if (obj->pin_count)
2893                 return -EBUSY;
2894
2895         BUG_ON(obj->pages == NULL);
2896
2897         return i915_vma_unbind(i915_gem_obj_to_vma(obj, ggtt));
2898 }
2899
2900 int i915_gpu_idle(struct drm_device *dev)
2901 {
2902         drm_i915_private_t *dev_priv = dev->dev_private;
2903         struct intel_ring_buffer *ring;
2904         int ret, i;
2905
2906         /* Flush everything onto the inactive list. */
2907         for_each_ring(ring, dev_priv, i) {
2908                 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2909                 if (ret)
2910                         return ret;
2911
2912                 ret = intel_ring_idle(ring);
2913                 if (ret)
2914                         return ret;
2915         }
2916
2917         return 0;
2918 }
2919
2920 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2921                                  struct drm_i915_gem_object *obj)
2922 {
2923         drm_i915_private_t *dev_priv = dev->dev_private;
2924         int fence_reg;
2925         int fence_pitch_shift;
2926
2927         if (INTEL_INFO(dev)->gen >= 6) {
2928                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2929                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2930         } else {
2931                 fence_reg = FENCE_REG_965_0;
2932                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2933         }
2934
2935         fence_reg += reg * 8;
2936
2937         /* To w/a incoherency with non-atomic 64-bit register updates,
2938          * we split the 64-bit update into two 32-bit writes. In order
2939          * for a partial fence not to be evaluated between writes, we
2940          * precede the update with write to turn off the fence register,
2941          * and only enable the fence as the last step.
2942          *
2943          * For extra levels of paranoia, we make sure each step lands
2944          * before applying the next step.
2945          */
2946         I915_WRITE(fence_reg, 0);
2947         POSTING_READ(fence_reg);
2948
2949         if (obj) {
2950                 u32 size = i915_gem_obj_ggtt_size(obj);
2951                 uint64_t val;
2952
2953                 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2954                                  0xfffff000) << 32;
2955                 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2956                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2957                 if (obj->tiling_mode == I915_TILING_Y)
2958                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2959                 val |= I965_FENCE_REG_VALID;
2960
2961                 I915_WRITE(fence_reg + 4, val >> 32);
2962                 POSTING_READ(fence_reg + 4);
2963
2964                 I915_WRITE(fence_reg + 0, val);
2965                 POSTING_READ(fence_reg);
2966         } else {
2967                 I915_WRITE(fence_reg + 4, 0);
2968                 POSTING_READ(fence_reg + 4);
2969         }
2970 }
2971
2972 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2973                                  struct drm_i915_gem_object *obj)
2974 {
2975         drm_i915_private_t *dev_priv = dev->dev_private;
2976         u32 val;
2977
2978         if (obj) {
2979                 u32 size = i915_gem_obj_ggtt_size(obj);
2980                 int pitch_val;
2981                 int tile_width;
2982
2983                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
2984                      (size & -size) != size ||
2985                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2986                      "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2987                      i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2988
2989                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2990                         tile_width = 128;
2991                 else
2992                         tile_width = 512;
2993
2994                 /* Note: pitch better be a power of two tile widths */
2995                 pitch_val = obj->stride / tile_width;
2996                 pitch_val = ffs(pitch_val) - 1;
2997
2998                 val = i915_gem_obj_ggtt_offset(obj);
2999                 if (obj->tiling_mode == I915_TILING_Y)
3000                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3001                 val |= I915_FENCE_SIZE_BITS(size);
3002                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3003                 val |= I830_FENCE_REG_VALID;
3004         } else
3005                 val = 0;
3006
3007         if (reg < 8)
3008                 reg = FENCE_REG_830_0 + reg * 4;
3009         else
3010                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3011
3012         I915_WRITE(reg, val);
3013         POSTING_READ(reg);
3014 }
3015
3016 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3017                                 struct drm_i915_gem_object *obj)
3018 {
3019         drm_i915_private_t *dev_priv = dev->dev_private;
3020         uint32_t val;
3021
3022         if (obj) {
3023                 u32 size = i915_gem_obj_ggtt_size(obj);
3024                 uint32_t pitch_val;
3025
3026                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3027                      (size & -size) != size ||
3028                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3029                      "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3030                      i915_gem_obj_ggtt_offset(obj), size);
3031
3032                 pitch_val = obj->stride / 128;
3033                 pitch_val = ffs(pitch_val) - 1;
3034
3035                 val = i915_gem_obj_ggtt_offset(obj);
3036                 if (obj->tiling_mode == I915_TILING_Y)
3037                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3038                 val |= I830_FENCE_SIZE_BITS(size);
3039                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3040                 val |= I830_FENCE_REG_VALID;
3041         } else
3042                 val = 0;
3043
3044         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3045         POSTING_READ(FENCE_REG_830_0 + reg * 4);
3046 }
3047
3048 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3049 {
3050         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3051 }
3052
3053 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3054                                  struct drm_i915_gem_object *obj)
3055 {
3056         struct drm_i915_private *dev_priv = dev->dev_private;
3057
3058         /* Ensure that all CPU reads are completed before installing a fence
3059          * and all writes before removing the fence.
3060          */
3061         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3062                 mb();
3063
3064         WARN(obj && (!obj->stride || !obj->tiling_mode),
3065              "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3066              obj->stride, obj->tiling_mode);
3067
3068         switch (INTEL_INFO(dev)->gen) {
3069         case 8:
3070         case 7:
3071         case 6:
3072         case 5:
3073         case 4: i965_write_fence_reg(dev, reg, obj); break;
3074         case 3: i915_write_fence_reg(dev, reg, obj); break;
3075         case 2: i830_write_fence_reg(dev, reg, obj); break;
3076         default: BUG();
3077         }
3078
3079         /* And similarly be paranoid that no direct access to this region
3080          * is reordered to before the fence is installed.
3081          */
3082         if (i915_gem_object_needs_mb(obj))
3083                 mb();
3084 }
3085
3086 static inline int fence_number(struct drm_i915_private *dev_priv,
3087                                struct drm_i915_fence_reg *fence)
3088 {
3089         return fence - dev_priv->fence_regs;
3090 }
3091
3092 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3093                                          struct drm_i915_fence_reg *fence,
3094                                          bool enable)
3095 {
3096         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3097         int reg = fence_number(dev_priv, fence);
3098
3099         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3100
3101         if (enable) {
3102                 obj->fence_reg = reg;
3103                 fence->obj = obj;
3104                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3105         } else {
3106                 obj->fence_reg = I915_FENCE_REG_NONE;
3107                 fence->obj = NULL;
3108                 list_del_init(&fence->lru_list);
3109         }
3110         obj->fence_dirty = false;
3111 }
3112
3113 static int
3114 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3115 {
3116         if (obj->last_fenced_seqno) {
3117                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3118                 if (ret)
3119                         return ret;
3120
3121                 obj->last_fenced_seqno = 0;
3122         }
3123
3124         obj->fenced_gpu_access = false;
3125         return 0;
3126 }
3127
3128 int
3129 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3130 {
3131         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3132         struct drm_i915_fence_reg *fence;
3133         int ret;
3134
3135         ret = i915_gem_object_wait_fence(obj);
3136         if (ret)
3137                 return ret;
3138
3139         if (obj->fence_reg == I915_FENCE_REG_NONE)
3140                 return 0;
3141
3142         fence = &dev_priv->fence_regs[obj->fence_reg];
3143
3144         i915_gem_object_fence_lost(obj);
3145         i915_gem_object_update_fence(obj, fence, false);
3146
3147         return 0;
3148 }
3149
3150 static struct drm_i915_fence_reg *
3151 i915_find_fence_reg(struct drm_device *dev)
3152 {
3153         struct drm_i915_private *dev_priv = dev->dev_private;
3154         struct drm_i915_fence_reg *reg, *avail;
3155         int i;
3156
3157         /* First try to find a free reg */
3158         avail = NULL;
3159         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3160                 reg = &dev_priv->fence_regs[i];
3161                 if (!reg->obj)
3162                         return reg;
3163
3164                 if (!reg->pin_count)
3165                         avail = reg;
3166         }
3167
3168         if (avail == NULL)
3169                 goto deadlock;
3170
3171         /* None available, try to steal one or wait for a user to finish */
3172         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3173                 if (reg->pin_count)
3174                         continue;
3175
3176                 return reg;
3177         }
3178
3179 deadlock:
3180         /* Wait for completion of pending flips which consume fences */
3181         if (intel_has_pending_fb_unpin(dev))
3182                 return ERR_PTR(-EAGAIN);
3183
3184         return ERR_PTR(-EDEADLK);
3185 }
3186
3187 /**
3188  * i915_gem_object_get_fence - set up fencing for an object
3189  * @obj: object to map through a fence reg
3190  *
3191  * When mapping objects through the GTT, userspace wants to be able to write
3192  * to them without having to worry about swizzling if the object is tiled.
3193  * This function walks the fence regs looking for a free one for @obj,
3194  * stealing one if it can't find any.
3195  *
3196  * It then sets up the reg based on the object's properties: address, pitch
3197  * and tiling format.
3198  *
3199  * For an untiled surface, this removes any existing fence.
3200  */
3201 int
3202 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3203 {
3204         struct drm_device *dev = obj->base.dev;
3205         struct drm_i915_private *dev_priv = dev->dev_private;
3206         bool enable = obj->tiling_mode != I915_TILING_NONE;
3207         struct drm_i915_fence_reg *reg;
3208         int ret;
3209
3210         /* Have we updated the tiling parameters upon the object and so
3211          * will need to serialise the write to the associated fence register?
3212          */
3213         if (obj->fence_dirty) {
3214                 ret = i915_gem_object_wait_fence(obj);
3215                 if (ret)
3216                         return ret;
3217         }
3218
3219         /* Just update our place in the LRU if our fence is getting reused. */
3220         if (obj->fence_reg != I915_FENCE_REG_NONE) {
3221                 reg = &dev_priv->fence_regs[obj->fence_reg];
3222                 if (!obj->fence_dirty) {
3223                         list_move_tail(&reg->lru_list,
3224                                        &dev_priv->mm.fence_list);
3225                         return 0;
3226                 }
3227         } else if (enable) {
3228                 reg = i915_find_fence_reg(dev);
3229                 if (IS_ERR(reg))
3230                         return PTR_ERR(reg);
3231
3232                 if (reg->obj) {
3233                         struct drm_i915_gem_object *old = reg->obj;
3234
3235                         ret = i915_gem_object_wait_fence(old);
3236                         if (ret)
3237                                 return ret;
3238
3239                         i915_gem_object_fence_lost(old);
3240                 }
3241         } else
3242                 return 0;
3243
3244         i915_gem_object_update_fence(obj, reg, enable);
3245
3246         return 0;
3247 }
3248
3249 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3250                                      struct drm_mm_node *gtt_space,
3251                                      unsigned long cache_level)
3252 {
3253         struct drm_mm_node *other;
3254
3255         /* On non-LLC machines we have to be careful when putting differing
3256          * types of snoopable memory together to avoid the prefetcher
3257          * crossing memory domains and dying.
3258          */
3259         if (HAS_LLC(dev))
3260                 return true;
3261
3262         if (!drm_mm_node_allocated(gtt_space))
3263                 return true;
3264
3265         if (list_empty(&gtt_space->node_list))
3266                 return true;
3267
3268         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3269         if (other->allocated && !other->hole_follows && other->color != cache_level)
3270                 return false;
3271
3272         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3273         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3274                 return false;
3275
3276         return true;
3277 }
3278
3279 static void i915_gem_verify_gtt(struct drm_device *dev)
3280 {
3281 #if WATCH_GTT
3282         struct drm_i915_private *dev_priv = dev->dev_private;
3283         struct drm_i915_gem_object *obj;
3284         int err = 0;
3285
3286         list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3287                 if (obj->gtt_space == NULL) {
3288                         printk(KERN_ERR "object found on GTT list with no space reserved\n");
3289                         err++;
3290                         continue;
3291                 }
3292
3293                 if (obj->cache_level != obj->gtt_space->color) {
3294                         printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3295                                i915_gem_obj_ggtt_offset(obj),
3296                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3297                                obj->cache_level,
3298                                obj->gtt_space->color);
3299                         err++;
3300                         continue;
3301                 }
3302
3303                 if (!i915_gem_valid_gtt_space(dev,
3304                                               obj->gtt_space,
3305                                               obj->cache_level)) {
3306                         printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3307                                i915_gem_obj_ggtt_offset(obj),
3308                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3309                                obj->cache_level);
3310                         err++;
3311                         continue;
3312                 }
3313         }
3314
3315         WARN_ON(err);
3316 #endif
3317 }
3318
3319 /**
3320  * Finds free space in the GTT aperture and binds the object there.
3321  */
3322 static int
3323 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3324                            struct i915_address_space *vm,
3325                            unsigned alignment,
3326                            bool map_and_fenceable,
3327                            bool nonblocking)
3328 {
3329         struct drm_device *dev = obj->base.dev;
3330         drm_i915_private_t *dev_priv = dev->dev_private;
3331         u32 size, fence_size, fence_alignment, unfenced_alignment;
3332         size_t gtt_max =
3333                 map_and_fenceable ? dev_priv->gtt.mappable_end : vm->total;
3334         struct i915_vma *vma;
3335         int ret;
3336
3337         fence_size = i915_gem_get_gtt_size(dev,
3338                                            obj->base.size,
3339                                            obj->tiling_mode);
3340         fence_alignment = i915_gem_get_gtt_alignment(dev,
3341                                                      obj->base.size,
3342                                                      obj->tiling_mode, true);
3343         unfenced_alignment =
3344                 i915_gem_get_gtt_alignment(dev,
3345                                                     obj->base.size,
3346                                                     obj->tiling_mode, false);
3347
3348         if (alignment == 0)
3349                 alignment = map_and_fenceable ? fence_alignment :
3350                                                 unfenced_alignment;
3351         if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3352                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3353                 return -EINVAL;
3354         }
3355
3356         size = map_and_fenceable ? fence_size : obj->base.size;
3357
3358         /* If the object is bigger than the entire aperture, reject it early
3359          * before evicting everything in a vain attempt to find space.
3360          */
3361         if (obj->base.size > gtt_max) {
3362                 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3363                           obj->base.size,
3364                           map_and_fenceable ? "mappable" : "total",
3365                           gtt_max);
3366                 return -E2BIG;
3367         }
3368
3369         ret = i915_gem_object_get_pages(obj);
3370         if (ret)
3371                 return ret;
3372
3373         i915_gem_object_pin_pages(obj);
3374
3375         BUG_ON(!i915_is_ggtt(vm));
3376
3377         vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3378         if (IS_ERR(vma)) {
3379                 ret = PTR_ERR(vma);
3380                 goto err_unpin;
3381         }
3382
3383         /* For now we only ever use 1 vma per object */
3384 #if 0
3385         WARN_ON(!list_is_singular(&obj->vma_list));
3386 #endif
3387
3388 search_free:
3389         ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3390                                                   size, alignment,
3391                                                   obj->cache_level, 0, gtt_max,
3392                                                   DRM_MM_SEARCH_DEFAULT);
3393         if (ret) {
3394                 ret = i915_gem_evict_something(dev, vm, size, alignment,
3395                                                obj->cache_level,
3396                                                map_and_fenceable,
3397                                                nonblocking);
3398                 if (ret == 0)
3399                         goto search_free;
3400
3401                 goto err_free_vma;
3402         }
3403         if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3404                                               obj->cache_level))) {
3405                 ret = -EINVAL;
3406                 goto err_remove_node;
3407         }
3408
3409         ret = i915_gem_gtt_prepare_object(obj);
3410         if (ret)
3411                 goto err_remove_node;
3412
3413         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3414         list_add_tail(&vma->mm_list, &vm->inactive_list);
3415
3416         if (i915_is_ggtt(vm)) {
3417                 bool mappable, fenceable;
3418
3419                 fenceable = (vma->node.size == fence_size &&
3420                              (vma->node.start & (fence_alignment - 1)) == 0);
3421
3422                 mappable = (vma->node.start + obj->base.size <=
3423                             dev_priv->gtt.mappable_end);
3424
3425                 obj->map_and_fenceable = mappable && fenceable;
3426         }
3427
3428         WARN_ON(map_and_fenceable && !obj->map_and_fenceable);
3429
3430         trace_i915_vma_bind(vma, map_and_fenceable);
3431         i915_gem_verify_gtt(dev);
3432         return 0;
3433
3434 err_remove_node:
3435         drm_mm_remove_node(&vma->node);
3436 err_free_vma:
3437         i915_gem_vma_destroy(vma);
3438 err_unpin:
3439         i915_gem_object_unpin_pages(obj);
3440         return ret;
3441 }
3442
3443 bool
3444 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3445                         bool force)
3446 {
3447         /* If we don't have a page list set up, then we're not pinned
3448          * to GPU, and we can ignore the cache flush because it'll happen
3449          * again at bind time.
3450          */
3451         if (obj->pages == NULL)
3452                 return false;
3453
3454         /*
3455          * Stolen memory is always coherent with the GPU as it is explicitly
3456          * marked as wc by the system, or the system is cache-coherent.
3457          */
3458         if (obj->stolen)
3459                 return false;
3460
3461         /* If the GPU is snooping the contents of the CPU cache,
3462          * we do not need to manually clear the CPU cache lines.  However,
3463          * the caches are only snooped when the render cache is
3464          * flushed/invalidated.  As we always have to emit invalidations
3465          * and flushes when moving into and out of the RENDER domain, correct
3466          * snooping behaviour occurs naturally as the result of our domain
3467          * tracking.
3468          */
3469         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3470                 return false;
3471
3472         trace_i915_gem_object_clflush(obj);
3473         drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
3474
3475         return true;
3476 }
3477
3478 /** Flushes the GTT write domain for the object if it's dirty. */
3479 static void
3480 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3481 {
3482         uint32_t old_write_domain;
3483
3484         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3485                 return;
3486
3487         /* No actual flushing is required for the GTT write domain.  Writes
3488          * to it immediately go to main memory as far as we know, so there's
3489          * no chipset flush.  It also doesn't land in render cache.
3490          *
3491          * However, we do have to enforce the order so that all writes through
3492          * the GTT land before any writes to the device, such as updates to
3493          * the GATT itself.
3494          */
3495         wmb();
3496
3497         old_write_domain = obj->base.write_domain;
3498         obj->base.write_domain = 0;
3499
3500         trace_i915_gem_object_change_domain(obj,
3501                                             obj->base.read_domains,
3502                                             old_write_domain);
3503 }
3504
3505 /** Flushes the CPU write domain for the object if it's dirty. */
3506 static void
3507 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3508                                        bool force)
3509 {
3510         uint32_t old_write_domain;
3511
3512         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3513                 return;
3514
3515         if (i915_gem_clflush_object(obj, force))
3516                 i915_gem_chipset_flush(obj->base.dev);
3517
3518         old_write_domain = obj->base.write_domain;
3519         obj->base.write_domain = 0;
3520
3521         trace_i915_gem_object_change_domain(obj,
3522                                             obj->base.read_domains,
3523                                             old_write_domain);
3524 }
3525
3526 /**
3527  * Moves a single object to the GTT read, and possibly write domain.
3528  *
3529  * This function returns when the move is complete, including waiting on
3530  * flushes to occur.
3531  */
3532 int
3533 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3534 {
3535         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3536         uint32_t old_write_domain, old_read_domains;
3537         int ret;
3538
3539         /* Not valid to be called on unbound objects. */
3540         if (!i915_gem_obj_bound_any(obj))
3541                 return -EINVAL;
3542
3543         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3544                 return 0;
3545
3546         ret = i915_gem_object_wait_rendering(obj, !write);
3547         if (ret)
3548                 return ret;
3549
3550         i915_gem_object_flush_cpu_write_domain(obj, false);
3551
3552         /* Serialise direct access to this object with the barriers for
3553          * coherent writes from the GPU, by effectively invalidating the
3554          * GTT domain upon first access.
3555          */
3556         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3557                 mb();
3558
3559         old_write_domain = obj->base.write_domain;
3560         old_read_domains = obj->base.read_domains;
3561
3562         /* It should now be out of any other write domains, and we can update
3563          * the domain values for our changes.
3564          */
3565         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3566         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3567         if (write) {
3568                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3569                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3570                 obj->dirty = 1;
3571         }
3572
3573         trace_i915_gem_object_change_domain(obj,
3574                                             old_read_domains,
3575                                             old_write_domain);
3576
3577         /* And bump the LRU for this access */
3578         if (i915_gem_object_is_inactive(obj)) {
3579                 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3580                 if (vma)
3581                         list_move_tail(&vma->mm_list,
3582                                        &dev_priv->gtt.base.inactive_list);
3583
3584         }
3585
3586         return 0;
3587 }
3588
3589 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3590                                     enum i915_cache_level cache_level)
3591 {
3592         struct drm_device *dev = obj->base.dev;
3593         drm_i915_private_t *dev_priv = dev->dev_private;
3594         struct i915_vma *vma;
3595         int ret;
3596
3597         if (obj->cache_level == cache_level)
3598                 return 0;
3599
3600         if (obj->pin_count) {
3601                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3602                 return -EBUSY;
3603         }
3604
3605         list_for_each_entry(vma, &obj->vma_list, vma_link) {
3606                 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3607                         ret = i915_vma_unbind(vma);
3608                         if (ret)
3609                                 return ret;
3610
3611                         break;
3612                 }
3613         }
3614
3615         if (i915_gem_obj_bound_any(obj)) {
3616                 ret = i915_gem_object_finish_gpu(obj);
3617                 if (ret)
3618                         return ret;
3619
3620                 i915_gem_object_finish_gtt(obj);
3621
3622                 /* Before SandyBridge, you could not use tiling or fence
3623                  * registers with snooped memory, so relinquish any fences
3624                  * currently pointing to our region in the aperture.
3625                  */
3626                 if (INTEL_INFO(dev)->gen < 6) {
3627                         ret = i915_gem_object_put_fence(obj);
3628                         if (ret)
3629                                 return ret;
3630                 }
3631
3632                 if (obj->has_global_gtt_mapping)
3633                         i915_gem_gtt_bind_object(obj, cache_level);
3634                 if (obj->has_aliasing_ppgtt_mapping)
3635                         i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3636                                                obj, cache_level);
3637         }
3638
3639         list_for_each_entry(vma, &obj->vma_list, vma_link)
3640                 vma->node.color = cache_level;
3641         obj->cache_level = cache_level;
3642
3643         if (cpu_write_needs_clflush(obj)) {
3644                 u32 old_read_domains, old_write_domain;
3645
3646                 /* If we're coming from LLC cached, then we haven't
3647                  * actually been tracking whether the data is in the
3648                  * CPU cache or not, since we only allow one bit set
3649                  * in obj->write_domain and have been skipping the clflushes.
3650                  * Just set it to the CPU cache for now.
3651                  */
3652                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3653
3654                 old_read_domains = obj->base.read_domains;
3655                 old_write_domain = obj->base.write_domain;
3656
3657                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3658                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3659
3660                 trace_i915_gem_object_change_domain(obj,
3661                                                     old_read_domains,
3662                                                     old_write_domain);
3663         }
3664
3665         i915_gem_verify_gtt(dev);
3666         return 0;
3667 }
3668
3669 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3670                                struct drm_file *file)
3671 {
3672         struct drm_i915_gem_caching *args = data;
3673         struct drm_i915_gem_object *obj;
3674         int ret;
3675
3676         ret = i915_mutex_lock_interruptible(dev);
3677         if (ret)
3678                 return ret;
3679
3680         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3681         if (&obj->base == NULL) {
3682                 ret = -ENOENT;
3683                 goto unlock;
3684         }
3685
3686         switch (obj->cache_level) {
3687         case I915_CACHE_LLC:
3688         case I915_CACHE_L3_LLC:
3689                 args->caching = I915_CACHING_CACHED;
3690                 break;
3691
3692         case I915_CACHE_WT:
3693                 args->caching = I915_CACHING_DISPLAY;
3694                 break;
3695
3696         default:
3697                 args->caching = I915_CACHING_NONE;
3698                 break;
3699         }
3700
3701         drm_gem_object_unreference(&obj->base);
3702 unlock:
3703         mutex_unlock(&dev->struct_mutex);
3704         return ret;
3705 }
3706
3707 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3708                                struct drm_file *file)
3709 {
3710         struct drm_i915_gem_caching *args = data;
3711         struct drm_i915_gem_object *obj;
3712         enum i915_cache_level level;
3713         int ret;
3714
3715         switch (args->caching) {
3716         case I915_CACHING_NONE:
3717                 level = I915_CACHE_NONE;
3718                 break;
3719         case I915_CACHING_CACHED:
3720                 level = I915_CACHE_LLC;
3721                 break;
3722         case I915_CACHING_DISPLAY:
3723                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3724                 break;
3725         default:
3726                 return -EINVAL;
3727         }
3728
3729         ret = i915_mutex_lock_interruptible(dev);
3730         if (ret)
3731                 return ret;
3732
3733         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3734         if (&obj->base == NULL) {
3735                 ret = -ENOENT;
3736                 goto unlock;
3737         }
3738
3739         ret = i915_gem_object_set_cache_level(obj, level);
3740
3741         drm_gem_object_unreference(&obj->base);
3742 unlock:
3743         mutex_unlock(&dev->struct_mutex);
3744         return ret;
3745 }
3746
3747 static bool is_pin_display(struct drm_i915_gem_object *obj)
3748 {
3749         /* There are 3 sources that pin objects:
3750          *   1. The display engine (scanouts, sprites, cursors);
3751          *   2. Reservations for execbuffer;
3752          *   3. The user.
3753          *
3754          * We can ignore reservations as we hold the struct_mutex and
3755          * are only called outside of the reservation path.  The user
3756          * can only increment pin_count once, and so if after
3757          * subtracting the potential reference by the user, any pin_count
3758          * remains, it must be due to another use by the display engine.
3759          */
3760         return obj->pin_count - !!obj->user_pin_count;
3761 }
3762
3763 /*
3764  * Prepare buffer for display plane (scanout, cursors, etc).
3765  * Can be called from an uninterruptible phase (modesetting) and allows
3766  * any flushes to be pipelined (for pageflips).
3767  */
3768 int
3769 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3770                                      u32 alignment,
3771                                      struct intel_ring_buffer *pipelined)
3772 {
3773         u32 old_read_domains, old_write_domain;
3774         int ret;
3775
3776         if (pipelined != obj->ring) {
3777                 ret = i915_gem_object_sync(obj, pipelined);
3778                 if (ret)
3779                         return ret;
3780         }
3781
3782         /* Mark the pin_display early so that we account for the
3783          * display coherency whilst setting up the cache domains.
3784          */
3785         obj->pin_display = true;
3786
3787         /* The display engine is not coherent with the LLC cache on gen6.  As
3788          * a result, we make sure that the pinning that is about to occur is
3789          * done with uncached PTEs. This is lowest common denominator for all
3790          * chipsets.
3791          *
3792          * However for gen6+, we could do better by using the GFDT bit instead
3793          * of uncaching, which would allow us to flush all the LLC-cached data
3794          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3795          */
3796         ret = i915_gem_object_set_cache_level(obj,
3797                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3798         if (ret)
3799                 goto err_unpin_display;
3800
3801         /* As the user may map the buffer once pinned in the display plane
3802          * (e.g. libkms for the bootup splash), we have to ensure that we
3803          * always use map_and_fenceable for all scanout buffers.
3804          */
3805         ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
3806         if (ret)
3807                 goto err_unpin_display;
3808
3809         i915_gem_object_flush_cpu_write_domain(obj, true);
3810
3811         old_write_domain = obj->base.write_domain;
3812         old_read_domains = obj->base.read_domains;
3813
3814         /* It should now be out of any other write domains, and we can update
3815          * the domain values for our changes.
3816          */
3817         obj->base.write_domain = 0;
3818         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3819
3820         trace_i915_gem_object_change_domain(obj,
3821                                             old_read_domains,
3822                                             old_write_domain);
3823
3824         return 0;
3825
3826 err_unpin_display:
3827         obj->pin_display = is_pin_display(obj);
3828         return ret;
3829 }
3830
3831 void
3832 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3833 {
3834         i915_gem_object_unpin(obj);
3835         obj->pin_display = is_pin_display(obj);
3836 }
3837
3838 int
3839 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3840 {
3841         int ret;
3842
3843         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3844                 return 0;
3845
3846         ret = i915_gem_object_wait_rendering(obj, false);
3847         if (ret)
3848                 return ret;
3849
3850         /* Ensure that we invalidate the GPU's caches and TLBs. */
3851         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3852         return 0;
3853 }
3854
3855 /**
3856  * Moves a single object to the CPU read, and possibly write domain.
3857  *
3858  * This function returns when the move is complete, including waiting on
3859  * flushes to occur.
3860  */
3861 int
3862 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3863 {
3864         uint32_t old_write_domain, old_read_domains;
3865         int ret;
3866
3867         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3868                 return 0;
3869
3870         ret = i915_gem_object_wait_rendering(obj, !write);
3871         if (ret)
3872                 return ret;
3873
3874         i915_gem_object_flush_gtt_write_domain(obj);
3875
3876         old_write_domain = obj->base.write_domain;
3877         old_read_domains = obj->base.read_domains;
3878
3879         /* Flush the CPU cache if it's still invalid. */
3880         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3881                 i915_gem_clflush_object(obj, false);
3882
3883                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3884         }
3885
3886         /* It should now be out of any other write domains, and we can update
3887          * the domain values for our changes.
3888          */
3889         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3890
3891         /* If we're writing through the CPU, then the GPU read domains will
3892          * need to be invalidated at next use.
3893          */
3894         if (write) {
3895                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3896                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3897         }
3898
3899         trace_i915_gem_object_change_domain(obj,
3900                                             old_read_domains,
3901                                             old_write_domain);
3902
3903         return 0;
3904 }
3905
3906 /* Throttle our rendering by waiting until the ring has completed our requests
3907  * emitted over 20 msec ago.
3908  *
3909  * Note that if we were to use the current jiffies each time around the loop,
3910  * we wouldn't escape the function with any frames outstanding if the time to
3911  * render a frame was over 20ms.
3912  *
3913  * This should get us reasonable parallelism between CPU and GPU but also
3914  * relatively low latency when blocking on a particular request to finish.
3915  */
3916 static int
3917 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3918 {
3919         struct drm_i915_private *dev_priv = dev->dev_private;
3920         struct drm_i915_file_private *file_priv = file->driver_priv;
3921         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3922         struct drm_i915_gem_request *request;
3923         struct intel_ring_buffer *ring = NULL;
3924         unsigned reset_counter;
3925         u32 seqno = 0;
3926         int ret;
3927
3928         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3929         if (ret)
3930                 return ret;
3931
3932         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3933         if (ret)
3934                 return ret;
3935
3936         spin_lock(&file_priv->mm.lock);
3937         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3938                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3939                         break;
3940
3941                 ring = request->ring;
3942                 seqno = request->seqno;
3943         }
3944         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3945         spin_unlock(&file_priv->mm.lock);
3946
3947         if (seqno == 0)
3948                 return 0;
3949
3950         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3951         if (ret == 0)
3952                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3953
3954         return ret;
3955 }
3956
3957 int
3958 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3959                     struct i915_address_space *vm,
3960                     uint32_t alignment,
3961                     bool map_and_fenceable,
3962                     bool nonblocking)
3963 {
3964         struct i915_vma *vma;
3965         int ret;
3966
3967         if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3968                 return -EBUSY;
3969
3970         WARN_ON(map_and_fenceable && !i915_is_ggtt(vm));
3971
3972         vma = i915_gem_obj_to_vma(obj, vm);
3973
3974         if (vma) {
3975                 if ((alignment &&
3976                      vma->node.start & (alignment - 1)) ||
3977                     (map_and_fenceable && !obj->map_and_fenceable)) {
3978                         WARN(obj->pin_count,
3979                              "bo is already pinned with incorrect alignment:"
3980                              " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
3981                              " obj->map_and_fenceable=%d\n",
3982                              i915_gem_obj_offset(obj, vm), alignment,
3983                              map_and_fenceable,
3984                              obj->map_and_fenceable);
3985                         ret = i915_vma_unbind(vma);
3986                         if (ret)
3987                                 return ret;
3988                 }
3989         }
3990
3991         if (!i915_gem_obj_bound(obj, vm)) {
3992                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3993
3994                 ret = i915_gem_object_bind_to_vm(obj, vm, alignment,
3995                                                  map_and_fenceable,
3996                                                  nonblocking);
3997                 if (ret)
3998                         return ret;
3999
4000                 if (!dev_priv->mm.aliasing_ppgtt)
4001                         i915_gem_gtt_bind_object(obj, obj->cache_level);
4002         }
4003
4004         if (!obj->has_global_gtt_mapping && map_and_fenceable)
4005                 i915_gem_gtt_bind_object(obj, obj->cache_level);
4006
4007         obj->pin_count++;
4008         obj->pin_mappable |= map_and_fenceable;
4009
4010         return 0;
4011 }
4012
4013 void
4014 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
4015 {
4016         BUG_ON(obj->pin_count == 0);
4017         BUG_ON(!i915_gem_obj_bound_any(obj));
4018
4019         if (--obj->pin_count == 0)
4020                 obj->pin_mappable = false;
4021 }
4022
4023 int
4024 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4025                    struct drm_file *file)
4026 {
4027         struct drm_i915_gem_pin *args = data;
4028         struct drm_i915_gem_object *obj;
4029         int ret;
4030
4031         ret = i915_mutex_lock_interruptible(dev);
4032         if (ret)
4033                 return ret;
4034
4035         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4036         if (&obj->base == NULL) {
4037                 ret = -ENOENT;
4038                 goto unlock;
4039         }
4040
4041         if (obj->madv != I915_MADV_WILLNEED) {
4042                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4043                 ret = -EINVAL;
4044                 goto out;
4045         }
4046
4047         if (obj->pin_filp != NULL && obj->pin_filp != file) {
4048                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4049                           args->handle);
4050                 ret = -EINVAL;
4051                 goto out;
4052         }
4053
4054         if (obj->user_pin_count == ULONG_MAX) {
4055                 ret = -EBUSY;
4056                 goto out;
4057         }
4058
4059         if (obj->user_pin_count == 0) {
4060                 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
4061                 if (ret)
4062                         goto out;
4063         }
4064
4065         obj->user_pin_count++;
4066         obj->pin_filp = file;
4067
4068         args->offset = i915_gem_obj_ggtt_offset(obj);
4069 out:
4070         drm_gem_object_unreference(&obj->base);
4071 unlock:
4072         mutex_unlock(&dev->struct_mutex);
4073         return ret;
4074 }
4075
4076 int
4077 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4078                      struct drm_file *file)
4079 {
4080         struct drm_i915_gem_pin *args = data;
4081         struct drm_i915_gem_object *obj;
4082         int ret;
4083
4084         ret = i915_mutex_lock_interruptible(dev);
4085         if (ret)
4086                 return ret;
4087
4088         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4089         if (&obj->base == NULL) {
4090                 ret = -ENOENT;
4091                 goto unlock;
4092         }
4093
4094         if (obj->pin_filp != file) {
4095                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4096                           args->handle);
4097                 ret = -EINVAL;
4098                 goto out;
4099         }
4100         obj->user_pin_count--;
4101         if (obj->user_pin_count == 0) {
4102                 obj->pin_filp = NULL;
4103                 i915_gem_object_unpin(obj);
4104         }
4105
4106 out:
4107         drm_gem_object_unreference(&obj->base);
4108 unlock:
4109         mutex_unlock(&dev->struct_mutex);
4110         return ret;
4111 }
4112
4113 int
4114 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4115                     struct drm_file *file)
4116 {
4117         struct drm_i915_gem_busy *args = data;
4118         struct drm_i915_gem_object *obj;
4119         int ret;
4120
4121         ret = i915_mutex_lock_interruptible(dev);
4122         if (ret)
4123                 return ret;
4124
4125         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4126         if (&obj->base == NULL) {
4127                 ret = -ENOENT;
4128                 goto unlock;
4129         }
4130
4131         /* Count all active objects as busy, even if they are currently not used
4132          * by the gpu. Users of this interface expect objects to eventually
4133          * become non-busy without any further actions, therefore emit any
4134          * necessary flushes here.
4135          */
4136         ret = i915_gem_object_flush_active(obj);
4137
4138         args->busy = obj->active;
4139         if (obj->ring) {
4140                 args->busy |= intel_ring_flag(obj->ring) << 16;
4141         }
4142
4143         drm_gem_object_unreference(&obj->base);
4144 unlock:
4145         mutex_unlock(&dev->struct_mutex);
4146         return ret;
4147 }
4148
4149 int
4150 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4151                         struct drm_file *file_priv)
4152 {
4153         return i915_gem_ring_throttle(dev, file_priv);
4154 }
4155
4156 int
4157 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4158                        struct drm_file *file_priv)
4159 {
4160         struct drm_i915_gem_madvise *args = data;
4161         struct drm_i915_gem_object *obj;
4162         int ret;
4163
4164         switch (args->madv) {
4165         case I915_MADV_DONTNEED:
4166         case I915_MADV_WILLNEED:
4167             break;
4168         default:
4169             return -EINVAL;
4170         }
4171
4172         ret = i915_mutex_lock_interruptible(dev);
4173         if (ret)
4174                 return ret;
4175
4176         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4177         if (&obj->base == NULL) {
4178                 ret = -ENOENT;
4179                 goto unlock;
4180         }
4181
4182         if (obj->pin_count) {
4183                 ret = -EINVAL;
4184                 goto out;
4185         }
4186
4187         if (obj->madv != __I915_MADV_PURGED)
4188                 obj->madv = args->madv;
4189
4190         /* if the object is no longer attached, discard its backing storage */
4191         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4192                 i915_gem_object_truncate(obj);
4193
4194         args->retained = obj->madv != __I915_MADV_PURGED;
4195
4196 out:
4197         drm_gem_object_unreference(&obj->base);
4198 unlock:
4199         mutex_unlock(&dev->struct_mutex);
4200         return ret;
4201 }
4202
4203 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4204                           const struct drm_i915_gem_object_ops *ops)
4205 {
4206         INIT_LIST_HEAD(&obj->global_list);
4207         INIT_LIST_HEAD(&obj->ring_list);
4208         INIT_LIST_HEAD(&obj->obj_exec_link);
4209         INIT_LIST_HEAD(&obj->vma_list);
4210
4211         obj->ops = ops;
4212
4213         obj->fence_reg = I915_FENCE_REG_NONE;
4214         obj->madv = I915_MADV_WILLNEED;
4215         /* Avoid an unnecessary call to unbind on the first bind. */
4216         obj->map_and_fenceable = true;
4217
4218         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4219 }
4220
4221 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4222         .get_pages = i915_gem_object_get_pages_gtt,
4223         .put_pages = i915_gem_object_put_pages_gtt,
4224 };
4225
4226 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4227                                                   size_t size)
4228 {
4229         struct drm_i915_gem_object *obj;
4230 #if 0
4231         struct address_space *mapping;
4232         gfp_t mask;
4233 #endif
4234
4235         obj = i915_gem_object_alloc(dev);
4236         if (obj == NULL)
4237                 return NULL;
4238
4239         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4240                 i915_gem_object_free(obj);
4241                 return NULL;
4242         }
4243
4244 #if 0
4245         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4246         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4247                 /* 965gm cannot relocate objects above 4GiB. */
4248                 mask &= ~__GFP_HIGHMEM;
4249                 mask |= __GFP_DMA32;
4250         }
4251
4252         mapping = file_inode(obj->base.filp)->i_mapping;
4253         mapping_set_gfp_mask(mapping, mask);
4254 #endif
4255
4256         i915_gem_object_init(obj, &i915_gem_object_ops);
4257
4258         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4259         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4260
4261         if (HAS_LLC(dev)) {
4262                 /* On some devices, we can have the GPU use the LLC (the CPU
4263                  * cache) for about a 10% performance improvement
4264                  * compared to uncached.  Graphics requests other than
4265                  * display scanout are coherent with the CPU in
4266                  * accessing this cache.  This means in this mode we
4267                  * don't need to clflush on the CPU side, and on the
4268                  * GPU side we only need to flush internal caches to
4269                  * get data visible to the CPU.
4270                  *
4271                  * However, we maintain the display planes as UC, and so
4272                  * need to rebind when first used as such.
4273                  */
4274                 obj->cache_level = I915_CACHE_LLC;
4275         } else
4276                 obj->cache_level = I915_CACHE_NONE;
4277
4278         trace_i915_gem_object_create(obj);
4279
4280         return obj;
4281 }
4282
4283 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4284 {
4285         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4286         struct drm_device *dev = obj->base.dev;
4287         drm_i915_private_t *dev_priv = dev->dev_private;
4288         struct i915_vma *vma, *next;
4289
4290         intel_runtime_pm_get(dev_priv);
4291
4292         trace_i915_gem_object_destroy(obj);
4293
4294         if (obj->phys_obj)
4295                 i915_gem_detach_phys_object(dev, obj);
4296
4297         obj->pin_count = 0;
4298         /* NB: 0 or 1 elements */
4299 #if 0
4300         WARN_ON(!list_empty(&obj->vma_list) &&
4301                 !list_is_singular(&obj->vma_list));
4302 #endif
4303         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4304                 int ret = i915_vma_unbind(vma);
4305                 if (WARN_ON(ret == -ERESTARTSYS)) {
4306                         bool was_interruptible;
4307
4308                         was_interruptible = dev_priv->mm.interruptible;
4309                         dev_priv->mm.interruptible = false;
4310
4311                         WARN_ON(i915_vma_unbind(vma));
4312
4313                         dev_priv->mm.interruptible = was_interruptible;
4314                 }
4315         }
4316
4317         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4318          * before progressing. */
4319         if (obj->stolen)
4320                 i915_gem_object_unpin_pages(obj);
4321
4322         if (WARN_ON(obj->pages_pin_count))
4323                 obj->pages_pin_count = 0;
4324         i915_gem_object_put_pages(obj);
4325         i915_gem_object_free_mmap_offset(obj);
4326
4327         BUG_ON(obj->pages);
4328
4329 #if 0
4330         if (obj->base.import_attach)
4331                 drm_prime_gem_destroy(&obj->base, NULL);
4332 #endif
4333
4334         drm_gem_object_release(&obj->base);
4335         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4336
4337         kfree(obj->bit_17);
4338         i915_gem_object_free(obj);
4339
4340         intel_runtime_pm_put(dev_priv);
4341 }
4342
4343 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4344                                      struct i915_address_space *vm)
4345 {
4346         struct i915_vma *vma;
4347         list_for_each_entry(vma, &obj->vma_list, vma_link)
4348                 if (vma->vm == vm)
4349                         return vma;
4350
4351         return NULL;
4352 }
4353
4354 static struct i915_vma *__i915_gem_vma_create(struct drm_i915_gem_object *obj,
4355                                               struct i915_address_space *vm)
4356 {
4357         struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
4358         if (vma == NULL)
4359                 return ERR_PTR(-ENOMEM);
4360
4361         INIT_LIST_HEAD(&vma->vma_link);
4362         INIT_LIST_HEAD(&vma->mm_list);
4363         INIT_LIST_HEAD(&vma->exec_list);
4364         vma->vm = vm;
4365         vma->obj = obj;
4366
4367         /* Keep GGTT vmas first to make debug easier */
4368         if (i915_is_ggtt(vm))
4369                 list_add(&vma->vma_link, &obj->vma_list);
4370         else
4371                 list_add_tail(&vma->vma_link, &obj->vma_list);
4372
4373         return vma;
4374 }
4375
4376 struct i915_vma *
4377 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
4378                                   struct i915_address_space *vm)
4379 {
4380         struct i915_vma *vma;
4381
4382         vma = i915_gem_obj_to_vma(obj, vm);
4383         if (!vma)
4384                 vma = __i915_gem_vma_create(obj, vm);
4385
4386         return vma;
4387 }
4388
4389 void i915_gem_vma_destroy(struct i915_vma *vma)
4390 {
4391         WARN_ON(vma->node.allocated);
4392
4393         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4394         if (!list_empty(&vma->exec_list))
4395                 return;
4396
4397         list_del(&vma->vma_link);
4398
4399         kfree(vma);
4400 }
4401
4402 int
4403 i915_gem_suspend(struct drm_device *dev)
4404 {
4405         drm_i915_private_t *dev_priv = dev->dev_private;
4406         int ret = 0;
4407
4408         mutex_lock(&dev->struct_mutex);
4409         if (dev_priv->ums.mm_suspended)
4410                 goto err;
4411
4412         ret = i915_gpu_idle(dev);
4413         if (ret)
4414                 goto err;
4415
4416         i915_gem_retire_requests(dev);
4417
4418         /* Under UMS, be paranoid and evict. */
4419         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4420                 i915_gem_evict_everything(dev);
4421
4422         i915_kernel_lost_context(dev);
4423         i915_gem_cleanup_ringbuffer(dev);
4424
4425         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4426          * We need to replace this with a semaphore, or something.
4427          * And not confound ums.mm_suspended!
4428          */
4429         dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4430                                                              DRIVER_MODESET);
4431         mutex_unlock(&dev->struct_mutex);
4432
4433         del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4434         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4435         cancel_delayed_work_sync(&dev_priv->mm.idle_work);
4436
4437         return 0;
4438
4439 err:
4440         mutex_unlock(&dev->struct_mutex);
4441         return ret;
4442 }
4443
4444 int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
4445 {
4446         struct drm_device *dev = ring->dev;
4447         drm_i915_private_t *dev_priv = dev->dev_private;
4448         u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4449         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4450         int i, ret;
4451
4452         if (!HAS_L3_DPF(dev) || !remap_info)
4453                 return 0;
4454
4455         ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4456         if (ret)
4457                 return ret;
4458
4459         /*
4460          * Note: We do not worry about the concurrent register cacheline hang
4461          * here because no other code should access these registers other than
4462          * at initialization time.
4463          */
4464         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4465                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4466                 intel_ring_emit(ring, reg_base + i);
4467                 intel_ring_emit(ring, remap_info[i/4]);
4468         }
4469
4470         intel_ring_advance(ring);
4471
4472         return ret;
4473 }
4474
4475 void i915_gem_init_swizzling(struct drm_device *dev)
4476 {
4477         drm_i915_private_t *dev_priv = dev->dev_private;
4478
4479         if (INTEL_INFO(dev)->gen < 5 ||
4480             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4481                 return;
4482
4483         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4484                                  DISP_TILE_SURFACE_SWIZZLING);
4485
4486         if (IS_GEN5(dev))
4487                 return;
4488
4489         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4490         if (IS_GEN6(dev))
4491                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4492         else if (IS_GEN7(dev))
4493                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4494         else if (IS_GEN8(dev))
4495                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4496         else
4497                 BUG();
4498 }
4499
4500 static bool
4501 intel_enable_blt(struct drm_device *dev)
4502 {
4503         int revision;
4504
4505         if (!HAS_BLT(dev))
4506                 return false;
4507
4508         /* The blitter was dysfunctional on early prototypes */
4509         revision = pci_read_config(dev->dev, PCIR_REVID, 1);
4510         if (IS_GEN6(dev) && revision < 8) {
4511                 DRM_INFO("BLT not supported on this pre-production hardware;"
4512                          " graphics performance will be degraded.\n");
4513                 return false;
4514         }
4515
4516         return true;
4517 }
4518
4519 static int i915_gem_init_rings(struct drm_device *dev)
4520 {
4521         struct drm_i915_private *dev_priv = dev->dev_private;
4522         int ret;
4523
4524         ret = intel_init_render_ring_buffer(dev);
4525         if (ret)
4526                 return ret;
4527
4528         if (HAS_BSD(dev)) {
4529                 ret = intel_init_bsd_ring_buffer(dev);
4530                 if (ret)
4531                         goto cleanup_render_ring;
4532         }
4533
4534         if (intel_enable_blt(dev)) {
4535                 ret = intel_init_blt_ring_buffer(dev);
4536                 if (ret)
4537                         goto cleanup_bsd_ring;
4538         }
4539
4540         if (HAS_VEBOX(dev)) {
4541                 ret = intel_init_vebox_ring_buffer(dev);
4542                 if (ret)
4543                         goto cleanup_blt_ring;
4544         }
4545
4546
4547         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4548         if (ret)
4549                 goto cleanup_vebox_ring;
4550
4551         return 0;
4552
4553 cleanup_vebox_ring:
4554         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4555 cleanup_blt_ring:
4556         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4557 cleanup_bsd_ring:
4558         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4559 cleanup_render_ring:
4560         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4561
4562         return ret;
4563 }
4564
4565 int
4566 i915_gem_init_hw(struct drm_device *dev)
4567 {
4568         drm_i915_private_t *dev_priv = dev->dev_private;
4569         int ret, i;
4570
4571 #if 0
4572         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4573                 return -EIO;
4574 #endif
4575
4576         if (dev_priv->ellc_size)
4577                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4578
4579         if (IS_HASWELL(dev))
4580                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4581                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4582
4583         if (HAS_PCH_NOP(dev)) {
4584                 u32 temp = I915_READ(GEN7_MSG_CTL);
4585                 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4586                 I915_WRITE(GEN7_MSG_CTL, temp);
4587         }
4588
4589         i915_gem_init_swizzling(dev);
4590
4591         ret = i915_gem_init_rings(dev);
4592         if (ret)
4593                 return ret;
4594
4595         for (i = 0; i < NUM_L3_SLICES(dev); i++)
4596                 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4597
4598         /*
4599          * XXX: There was some w/a described somewhere suggesting loading
4600          * contexts before PPGTT.
4601          */
4602         ret = i915_gem_context_init(dev);
4603         if (ret) {
4604                 i915_gem_cleanup_ringbuffer(dev);
4605                 DRM_ERROR("Context initialization failed %d\n", ret);
4606                 return ret;
4607         }
4608
4609         if (dev_priv->mm.aliasing_ppgtt) {
4610                 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4611                 if (ret) {
4612                         i915_gem_cleanup_aliasing_ppgtt(dev);
4613                         DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4614                 }
4615         }
4616
4617         return 0;
4618 }
4619
4620 int i915_gem_init(struct drm_device *dev)
4621 {
4622         struct drm_i915_private *dev_priv = dev->dev_private;
4623         int ret;
4624
4625         mutex_lock(&dev->struct_mutex);
4626
4627         if (IS_VALLEYVIEW(dev)) {
4628                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4629                 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4630                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4631                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4632         }
4633
4634         i915_gem_init_global_gtt(dev);
4635
4636         ret = i915_gem_init_hw(dev);
4637         mutex_unlock(&dev->struct_mutex);
4638         if (ret) {
4639                 i915_gem_cleanup_aliasing_ppgtt(dev);
4640                 return ret;
4641         }
4642
4643         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4644         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4645                 dev_priv->dri1.allow_batchbuffer = 1;
4646         return 0;
4647 }
4648
4649 void
4650 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4651 {
4652         drm_i915_private_t *dev_priv = dev->dev_private;
4653         struct intel_ring_buffer *ring;
4654         int i;
4655
4656         for_each_ring(ring, dev_priv, i)
4657                 intel_cleanup_ring_buffer(ring);
4658 }
4659
4660 int
4661 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4662                        struct drm_file *file_priv)
4663 {
4664         struct drm_i915_private *dev_priv = dev->dev_private;
4665         int ret;
4666
4667         if (drm_core_check_feature(dev, DRIVER_MODESET))
4668                 return 0;
4669
4670         if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4671                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4672                 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4673         }
4674
4675         mutex_lock(&dev->struct_mutex);
4676         dev_priv->ums.mm_suspended = 0;
4677
4678         ret = i915_gem_init_hw(dev);
4679         if (ret != 0) {
4680                 mutex_unlock(&dev->struct_mutex);
4681                 return ret;
4682         }
4683
4684         BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4685         mutex_unlock(&dev->struct_mutex);
4686
4687         ret = drm_irq_install(dev);
4688         if (ret)
4689                 goto cleanup_ringbuffer;
4690
4691         return 0;
4692
4693 cleanup_ringbuffer:
4694         mutex_lock(&dev->struct_mutex);
4695         i915_gem_cleanup_ringbuffer(dev);
4696         dev_priv->ums.mm_suspended = 1;
4697         mutex_unlock(&dev->struct_mutex);
4698
4699         return ret;
4700 }
4701
4702 int
4703 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4704                        struct drm_file *file_priv)
4705 {
4706         if (drm_core_check_feature(dev, DRIVER_MODESET))
4707                 return 0;
4708
4709         drm_irq_uninstall(dev);
4710
4711         return i915_gem_suspend(dev);
4712 }
4713
4714 void
4715 i915_gem_lastclose(struct drm_device *dev)
4716 {
4717         int ret;
4718
4719         if (drm_core_check_feature(dev, DRIVER_MODESET))
4720                 return;
4721
4722         ret = i915_gem_suspend(dev);
4723         if (ret)
4724                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4725 }
4726
4727 static void
4728 init_ring_lists(struct intel_ring_buffer *ring)
4729 {
4730         INIT_LIST_HEAD(&ring->active_list);
4731         INIT_LIST_HEAD(&ring->request_list);
4732 }
4733
4734 static void i915_init_vm(struct drm_i915_private *dev_priv,
4735                          struct i915_address_space *vm)
4736 {
4737         vm->dev = dev_priv->dev;
4738         INIT_LIST_HEAD(&vm->active_list);
4739         INIT_LIST_HEAD(&vm->inactive_list);
4740         INIT_LIST_HEAD(&vm->global_link);
4741         list_add(&vm->global_link, &dev_priv->vm_list);
4742 }
4743
4744 void
4745 i915_gem_load(struct drm_device *dev)
4746 {
4747         drm_i915_private_t *dev_priv = dev->dev_private;
4748         int i;
4749
4750         INIT_LIST_HEAD(&dev_priv->vm_list);
4751         i915_init_vm(dev_priv, &dev_priv->gtt.base);
4752
4753         INIT_LIST_HEAD(&dev_priv->context_list);
4754         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4755         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4756         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4757         for (i = 0; i < I915_NUM_RINGS; i++)
4758                 init_ring_lists(&dev_priv->ring[i]);
4759         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4760                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4761         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4762                           i915_gem_retire_work_handler);
4763         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4764                           i915_gem_idle_work_handler);
4765         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4766
4767         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4768         if (IS_GEN3(dev)) {
4769                 I915_WRITE(MI_ARB_STATE,
4770                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4771         }
4772
4773         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4774
4775         /* Old X drivers will take 0-2 for front, back, depth buffers */
4776         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4777                 dev_priv->fence_reg_start = 3;
4778
4779         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4780                 dev_priv->num_fence_regs = 32;
4781         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4782                 dev_priv->num_fence_regs = 16;
4783         else
4784                 dev_priv->num_fence_regs = 8;
4785
4786         /* Initialize fence registers to zero */
4787         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4788         i915_gem_restore_fences(dev);
4789
4790         i915_gem_detect_bit_6_swizzle(dev);
4791         init_waitqueue_head(&dev_priv->pending_flip_queue);
4792
4793         dev_priv->mm.interruptible = true;
4794
4795 #if 0
4796         dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
4797         dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
4798         dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4799         register_shrinker(&dev_priv->mm.inactive_shrinker);
4800         /* Old FreeBSD code */
4801         dev_priv->mm.inactive_shrinker = EVENTHANDLER_REGISTER(vm_lowmem,
4802             i915_gem_inactive_shrink, dev, EVENTHANDLER_PRI_ANY);
4803 #endif
4804 }
4805
4806 /*
4807  * Create a physically contiguous memory object for this object
4808  * e.g. for cursor + overlay regs
4809  */
4810 static int i915_gem_init_phys_object(struct drm_device *dev,
4811                                      int id, int size, int align)
4812 {
4813         drm_i915_private_t *dev_priv = dev->dev_private;
4814         struct drm_i915_gem_phys_object *phys_obj;
4815         int ret;
4816
4817         if (dev_priv->mm.phys_objs[id - 1] || !size)
4818                 return 0;
4819
4820         phys_obj = kzalloc(sizeof(*phys_obj), GFP_KERNEL);
4821         if (!phys_obj)
4822                 return -ENOMEM;
4823
4824         phys_obj->id = id;
4825
4826         phys_obj->handle = drm_pci_alloc(dev, size, align);
4827         if (!phys_obj->handle) {
4828                 ret = -ENOMEM;
4829                 goto kfree_obj;
4830         }
4831 #ifdef CONFIG_X86
4832         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4833 #endif
4834         pmap_change_attr((vm_offset_t)phys_obj->handle->vaddr,
4835             size / PAGE_SIZE, PAT_WRITE_COMBINING);
4836
4837         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4838
4839         return 0;
4840 kfree_obj:
4841         kfree(phys_obj);
4842         return ret;
4843 }
4844
4845 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4846 {
4847         drm_i915_private_t *dev_priv = dev->dev_private;
4848         struct drm_i915_gem_phys_object *phys_obj;
4849
4850         if (!dev_priv->mm.phys_objs[id - 1])
4851                 return;
4852
4853         phys_obj = dev_priv->mm.phys_objs[id - 1];
4854         if (phys_obj->cur_obj) {
4855                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4856         }
4857
4858 #ifdef CONFIG_X86
4859         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4860 #endif
4861         drm_pci_free(dev, phys_obj->handle);
4862         kfree(phys_obj);
4863         dev_priv->mm.phys_objs[id - 1] = NULL;
4864 }
4865
4866 void i915_gem_free_all_phys_object(struct drm_device *dev)
4867 {
4868         int i;
4869
4870         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4871                 i915_gem_free_phys_object(dev, i);
4872 }
4873
4874 void i915_gem_detach_phys_object(struct drm_device *dev,
4875                                  struct drm_i915_gem_object *obj)
4876 {
4877         struct vm_object *mapping = obj->base.vm_obj;
4878         char *vaddr;
4879         int i;
4880         int page_count;
4881
4882         if (!obj->phys_obj)
4883                 return;
4884         vaddr = obj->phys_obj->handle->vaddr;
4885
4886         page_count = obj->base.size / PAGE_SIZE;
4887         for (i = 0; i < page_count; i++) {
4888                 struct vm_page *page = shmem_read_mapping_page(mapping, i);
4889                 if (!IS_ERR(page)) {
4890                         char *dst = kmap_atomic(page);
4891                         memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4892                         kunmap_atomic(dst);
4893
4894                         drm_clflush_pages(&page, 1);
4895
4896                         set_page_dirty(page);
4897                         mark_page_accessed(page);
4898 #if 0
4899                         page_cache_release(page);
4900 #endif
4901                         vm_page_busy_wait(page, FALSE, "i915gem");
4902                         vm_page_unwire(page, 0);
4903                         vm_page_wakeup(page);
4904                 }
4905         }
4906         i915_gem_chipset_flush(dev);
4907
4908         obj->phys_obj->cur_obj = NULL;
4909         obj->phys_obj = NULL;
4910 }
4911
4912 int
4913 i915_gem_attach_phys_object(struct drm_device *dev,
4914                             struct drm_i915_gem_object *obj,
4915                             int id,
4916                             int align)
4917 {
4918         struct vm_object *mapping = obj->base.vm_obj;
4919         drm_i915_private_t *dev_priv = dev->dev_private;
4920         int ret = 0;
4921         int page_count;
4922         int i;
4923
4924         if (id > I915_MAX_PHYS_OBJECT)
4925                 return -EINVAL;
4926
4927         if (obj->phys_obj) {
4928                 if (obj->phys_obj->id == id)
4929                         return 0;
4930                 i915_gem_detach_phys_object(dev, obj);
4931         }
4932
4933         /* create a new object */
4934         if (!dev_priv->mm.phys_objs[id - 1]) {
4935                 ret = i915_gem_init_phys_object(dev, id,
4936                                                 obj->base.size, align);
4937                 if (ret) {
4938                         DRM_ERROR("failed to init phys object %d size: %zu\n",
4939                                   id, obj->base.size);
4940                         return ret;
4941                 }
4942         }
4943
4944         /* bind to the object */
4945         obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4946         obj->phys_obj->cur_obj = obj;
4947
4948         page_count = obj->base.size / PAGE_SIZE;
4949
4950         for (i = 0; i < page_count; i++) {
4951                 struct vm_page *page;
4952                 char *dst, *src;
4953
4954                 page = shmem_read_mapping_page(mapping, i);
4955                 if (IS_ERR(page))
4956                         return PTR_ERR(page);
4957
4958                 src = kmap_atomic(page);
4959                 dst = (char*)obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4960                 memcpy(dst, src, PAGE_SIZE);
4961                 kunmap_atomic(src);
4962
4963                 mark_page_accessed(page);
4964 #if 0
4965                 page_cache_release(page);
4966 #endif
4967                 vm_page_busy_wait(page, FALSE, "i915gem");
4968                 vm_page_unwire(page, 0);
4969                 vm_page_wakeup(page);
4970         }
4971
4972         return 0;
4973 }
4974
4975 static int
4976 i915_gem_phys_pwrite(struct drm_device *dev,
4977                      struct drm_i915_gem_object *obj,
4978                      struct drm_i915_gem_pwrite *args,
4979                      struct drm_file *file_priv)
4980 {
4981         void *vaddr = (char *)obj->phys_obj->handle->vaddr + args->offset;
4982         char __user *user_data = to_user_ptr(args->data_ptr);
4983
4984         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4985                 unsigned long unwritten;
4986
4987                 /* The physical object once assigned is fixed for the lifetime
4988                  * of the obj, so we can safely drop the lock and continue
4989                  * to access vaddr.
4990                  */
4991                 mutex_unlock(&dev->struct_mutex);
4992                 unwritten = copy_from_user(vaddr, user_data, args->size);
4993                 mutex_lock(&dev->struct_mutex);
4994                 if (unwritten)
4995                         return -EFAULT;
4996         }
4997
4998         i915_gem_chipset_flush(dev);
4999         return 0;
5000 }
5001
5002 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5003 {
5004         struct drm_i915_file_private *file_priv = file->driver_priv;
5005
5006         /* Clean up our request list when the client is going away, so that
5007          * later retire_requests won't dereference our soon-to-be-gone
5008          * file_priv.
5009          */
5010         spin_lock(&file_priv->mm.lock);
5011         while (!list_empty(&file_priv->mm.request_list)) {
5012                 struct drm_i915_gem_request *request;
5013
5014                 request = list_first_entry(&file_priv->mm.request_list,
5015                                            struct drm_i915_gem_request,
5016                                            client_list);
5017                 list_del(&request->client_list);
5018                 request->file_priv = NULL;
5019         }
5020         spin_unlock(&file_priv->mm.lock);
5021 }
5022
5023 int
5024 i915_gem_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
5025     vm_ooffset_t foff, struct ucred *cred, u_short *color)
5026 {
5027         *color = 0; /* XXXKIB */
5028         return (0);
5029 }
5030
5031 void
5032 i915_gem_pager_dtor(void *handle)
5033 {
5034         struct drm_gem_object *obj;
5035         struct drm_device *dev;
5036
5037         obj = handle;
5038         dev = obj->dev;
5039
5040         mutex_lock(&dev->struct_mutex);
5041         drm_gem_free_mmap_offset(obj);
5042         i915_gem_release_mmap(to_intel_bo(obj));
5043         drm_gem_object_unreference(obj);
5044         mutex_unlock(&dev->struct_mutex);
5045 }
5046
5047 static void
5048 i915_gem_file_idle_work_handler(struct work_struct *work)
5049 {
5050         struct drm_i915_file_private *file_priv =
5051                 container_of(work, typeof(*file_priv), mm.idle_work.work);
5052
5053         atomic_set(&file_priv->rps_wait_boost, false);
5054 }
5055
5056 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5057 {
5058         struct drm_i915_file_private *file_priv;
5059
5060         DRM_DEBUG_DRIVER("\n");
5061
5062         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5063         if (!file_priv)
5064                 return -ENOMEM;
5065
5066         file->driver_priv = file_priv;
5067         file_priv->dev_priv = dev->dev_private;
5068
5069         spin_init(&file_priv->mm.lock, "i915_priv");
5070         INIT_LIST_HEAD(&file_priv->mm.request_list);
5071         INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5072                           i915_gem_file_idle_work_handler);
5073
5074         idr_init(&file_priv->context_idr);
5075
5076         return 0;
5077 }
5078
5079 #if 0
5080 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5081 {
5082         if (!mutex_is_locked(mutex))
5083                 return false;
5084
5085 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5086         return mutex->owner == task;
5087 #else
5088         /* Since UP may be pre-empted, we cannot assume that we own the lock */
5089         return false;
5090 #endif
5091 }
5092 #endif
5093
5094 #if 0
5095 static unsigned long
5096 i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
5097 {
5098         struct drm_i915_private *dev_priv =
5099                 container_of(shrinker,
5100                              struct drm_i915_private,
5101                              mm.inactive_shrinker);
5102         struct drm_device *dev = dev_priv->dev;
5103         struct drm_i915_gem_object *obj;
5104         bool unlock = true;
5105         unsigned long count;
5106
5107         if (!mutex_trylock(&dev->struct_mutex)) {
5108                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5109                         return 0;
5110
5111                 if (dev_priv->mm.shrinker_no_lock_stealing)
5112                         return 0;
5113
5114                 unlock = false;
5115         }
5116
5117         count = 0;
5118         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5119                 if (obj->pages_pin_count == 0)
5120                         count += obj->base.size >> PAGE_SHIFT;
5121
5122         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5123                 if (obj->active)
5124                         continue;
5125
5126                 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
5127                         count += obj->base.size >> PAGE_SHIFT;
5128         }
5129
5130         if (unlock)
5131                 mutex_unlock(&dev->struct_mutex);
5132
5133         return count;
5134 }
5135 #endif
5136
5137 /* All the new VM stuff */
5138 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5139                                   struct i915_address_space *vm)
5140 {
5141         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5142         struct i915_vma *vma;
5143
5144         if (vm == &dev_priv->mm.aliasing_ppgtt->base)
5145                 vm = &dev_priv->gtt.base;
5146
5147         BUG_ON(list_empty(&o->vma_list));
5148         list_for_each_entry(vma, &o->vma_list, vma_link) {
5149                 if (vma->vm == vm)
5150                         return vma->node.start;
5151
5152         }
5153         return -1;
5154 }
5155
5156 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5157                         struct i915_address_space *vm)
5158 {
5159         struct i915_vma *vma;
5160
5161         list_for_each_entry(vma, &o->vma_list, vma_link)
5162                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5163                         return true;
5164
5165         return false;
5166 }
5167
5168 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5169 {
5170         struct i915_vma *vma;
5171
5172         list_for_each_entry(vma, &o->vma_list, vma_link)
5173                 if (drm_mm_node_allocated(&vma->node))
5174                         return true;
5175
5176         return false;
5177 }
5178
5179 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5180                                 struct i915_address_space *vm)
5181 {
5182         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5183         struct i915_vma *vma;
5184
5185         if (vm == &dev_priv->mm.aliasing_ppgtt->base)
5186                 vm = &dev_priv->gtt.base;
5187
5188         BUG_ON(list_empty(&o->vma_list));
5189
5190         list_for_each_entry(vma, &o->vma_list, vma_link)
5191                 if (vma->vm == vm)
5192                         return vma->node.size;
5193
5194         return 0;
5195 }
5196
5197 #if 0
5198 static unsigned long
5199 i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
5200 {
5201         struct drm_i915_private *dev_priv =
5202                 container_of(shrinker,
5203                              struct drm_i915_private,
5204                              mm.inactive_shrinker);
5205         struct drm_device *dev = dev_priv->dev;
5206         unsigned long freed;
5207         bool unlock = true;
5208
5209         if (!mutex_trylock(&dev->struct_mutex)) {
5210                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5211                         return SHRINK_STOP;
5212
5213                 if (dev_priv->mm.shrinker_no_lock_stealing)
5214                         return SHRINK_STOP;
5215
5216                 unlock = false;
5217         }
5218
5219         freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5220         if (freed < sc->nr_to_scan)
5221                 freed += __i915_gem_shrink(dev_priv,
5222                                            sc->nr_to_scan - freed,
5223                                            false);
5224         if (freed < sc->nr_to_scan)
5225                 freed += i915_gem_shrink_all(dev_priv);
5226
5227         if (unlock)
5228                 mutex_unlock(&dev->struct_mutex);
5229
5230         return freed;
5231 }
5232 #endif
5233
5234 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5235 {
5236         struct i915_vma *vma;
5237
5238         if (WARN_ON(list_empty(&obj->vma_list)))
5239                 return NULL;
5240
5241         vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5242         if (WARN_ON(vma->vm != obj_to_ggtt(obj)))
5243                 return NULL;
5244
5245         return vma;
5246 }