Upgrade GDB from 7.4.1 to 7.6.1 on the vendor branch
[dragonfly.git] / contrib / gdb-7 / gdb / ax-general.c
1 /* Functions for manipulating expressions designed to be executed on the agent
2    Copyright (C) 1998-2013 Free Software Foundation, Inc.
3
4    This file is part of GDB.
5
6    This program is free software; you can redistribute it and/or modify
7    it under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 3 of the License, or
9    (at your option) any later version.
10
11    This program is distributed in the hope that it will be useful,
12    but WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14    GNU General Public License for more details.
15
16    You should have received a copy of the GNU General Public License
17    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
18
19 /* Despite what the above comment says about this file being part of
20    GDB, we would like to keep these functions free of GDB
21    dependencies, since we want to be able to use them in contexts
22    outside of GDB (test suites, the stub, etc.)  */
23
24 #include "defs.h"
25 #include "ax.h"
26
27 #include "value.h"
28 #include "gdb_string.h"
29
30 #include "user-regs.h"
31
32 static void grow_expr (struct agent_expr *x, int n);
33
34 static void append_const (struct agent_expr *x, LONGEST val, int n);
35
36 static LONGEST read_const (struct agent_expr *x, int o, int n);
37
38 static void generic_ext (struct agent_expr *x, enum agent_op op, int n);
39 \f
40 /* Functions for building expressions.  */
41
42 /* Allocate a new, empty agent expression.  */
43 struct agent_expr *
44 new_agent_expr (struct gdbarch *gdbarch, CORE_ADDR scope)
45 {
46   struct agent_expr *x = xmalloc (sizeof (*x));
47
48   x->len = 0;
49   x->size = 1;                  /* Change this to a larger value once
50                                    reallocation code is tested.  */
51   x->buf = xmalloc (x->size);
52
53   x->gdbarch = gdbarch;
54   x->scope = scope;
55
56   /* Bit vector for registers used.  */
57   x->reg_mask_len = 1;
58   x->reg_mask = xmalloc (x->reg_mask_len * sizeof (x->reg_mask[0]));
59   memset (x->reg_mask, 0, x->reg_mask_len * sizeof (x->reg_mask[0]));
60
61   return x;
62 }
63
64 /* Free a agent expression.  */
65 void
66 free_agent_expr (struct agent_expr *x)
67 {
68   xfree (x->buf);
69   xfree (x->reg_mask);
70   xfree (x);
71 }
72
73 static void
74 do_free_agent_expr_cleanup (void *x)
75 {
76   free_agent_expr (x);
77 }
78
79 struct cleanup *
80 make_cleanup_free_agent_expr (struct agent_expr *x)
81 {
82   return make_cleanup (do_free_agent_expr_cleanup, x);
83 }
84
85
86 /* Make sure that X has room for at least N more bytes.  This doesn't
87    affect the length, just the allocated size.  */
88 static void
89 grow_expr (struct agent_expr *x, int n)
90 {
91   if (x->len + n > x->size)
92     {
93       x->size *= 2;
94       if (x->size < x->len + n)
95         x->size = x->len + n + 10;
96       x->buf = xrealloc (x->buf, x->size);
97     }
98 }
99
100
101 /* Append the low N bytes of VAL as an N-byte integer to the
102    expression X, in big-endian order.  */
103 static void
104 append_const (struct agent_expr *x, LONGEST val, int n)
105 {
106   int i;
107
108   grow_expr (x, n);
109   for (i = n - 1; i >= 0; i--)
110     {
111       x->buf[x->len + i] = val & 0xff;
112       val >>= 8;
113     }
114   x->len += n;
115 }
116
117
118 /* Extract an N-byte big-endian unsigned integer from expression X at
119    offset O.  */
120 static LONGEST
121 read_const (struct agent_expr *x, int o, int n)
122 {
123   int i;
124   LONGEST accum = 0;
125
126   /* Make sure we're not reading off the end of the expression.  */
127   if (o + n > x->len)
128     error (_("GDB bug: ax-general.c (read_const): incomplete constant"));
129
130   for (i = 0; i < n; i++)
131     accum = (accum << 8) | x->buf[o + i];
132
133   return accum;
134 }
135
136
137 /* Append a simple operator OP to EXPR.  */
138 void
139 ax_simple (struct agent_expr *x, enum agent_op op)
140 {
141   grow_expr (x, 1);
142   x->buf[x->len++] = op;
143 }
144
145 /* Append a pick operator to EXPR.  DEPTH is the stack item to pick,
146    with 0 being top of stack.  */
147
148 void
149 ax_pick (struct agent_expr *x, int depth)
150 {
151   if (depth < 0 || depth > 255)
152     error (_("GDB bug: ax-general.c (ax_pick): stack depth out of range"));
153   ax_simple (x, aop_pick);
154   append_const (x, 1, depth);
155 }
156
157
158 /* Append a sign-extension or zero-extension instruction to EXPR, to
159    extend an N-bit value.  */
160 static void
161 generic_ext (struct agent_expr *x, enum agent_op op, int n)
162 {
163   /* N must fit in a byte.  */
164   if (n < 0 || n > 255)
165     error (_("GDB bug: ax-general.c (generic_ext): bit count out of range"));
166   /* That had better be enough range.  */
167   if (sizeof (LONGEST) * 8 > 255)
168     error (_("GDB bug: ax-general.c (generic_ext): "
169              "opcode has inadequate range"));
170
171   grow_expr (x, 2);
172   x->buf[x->len++] = op;
173   x->buf[x->len++] = n;
174 }
175
176
177 /* Append a sign-extension instruction to EXPR, to extend an N-bit value.  */
178 void
179 ax_ext (struct agent_expr *x, int n)
180 {
181   generic_ext (x, aop_ext, n);
182 }
183
184
185 /* Append a zero-extension instruction to EXPR, to extend an N-bit value.  */
186 void
187 ax_zero_ext (struct agent_expr *x, int n)
188 {
189   generic_ext (x, aop_zero_ext, n);
190 }
191
192
193 /* Append a trace_quick instruction to EXPR, to record N bytes.  */
194 void
195 ax_trace_quick (struct agent_expr *x, int n)
196 {
197   /* N must fit in a byte.  */
198   if (n < 0 || n > 255)
199     error (_("GDB bug: ax-general.c (ax_trace_quick): "
200              "size out of range for trace_quick"));
201
202   grow_expr (x, 2);
203   x->buf[x->len++] = aop_trace_quick;
204   x->buf[x->len++] = n;
205 }
206
207
208 /* Append a goto op to EXPR.  OP is the actual op (must be aop_goto or
209    aop_if_goto).  We assume we don't know the target offset yet,
210    because it's probably a forward branch, so we leave space in EXPR
211    for the target, and return the offset in EXPR of that space, so we
212    can backpatch it once we do know the target offset.  Use ax_label
213    to do the backpatching.  */
214 int
215 ax_goto (struct agent_expr *x, enum agent_op op)
216 {
217   grow_expr (x, 3);
218   x->buf[x->len + 0] = op;
219   x->buf[x->len + 1] = 0xff;
220   x->buf[x->len + 2] = 0xff;
221   x->len += 3;
222   return x->len - 2;
223 }
224
225 /* Suppose a given call to ax_goto returns some value PATCH.  When you
226    know the offset TARGET that goto should jump to, call
227    ax_label (EXPR, PATCH, TARGET)
228    to patch TARGET into the ax_goto instruction.  */
229 void
230 ax_label (struct agent_expr *x, int patch, int target)
231 {
232   /* Make sure the value is in range.  Don't accept 0xffff as an
233      offset; that's our magic sentinel value for unpatched branches.  */
234   if (target < 0 || target >= 0xffff)
235     error (_("GDB bug: ax-general.c (ax_label): label target out of range"));
236
237   x->buf[patch] = (target >> 8) & 0xff;
238   x->buf[patch + 1] = target & 0xff;
239 }
240
241
242 /* Assemble code to push a constant on the stack.  */
243 void
244 ax_const_l (struct agent_expr *x, LONGEST l)
245 {
246   static enum agent_op ops[]
247   =
248   {aop_const8, aop_const16, aop_const32, aop_const64};
249   int size;
250   int op;
251
252   /* How big is the number?  'op' keeps track of which opcode to use.
253      Notice that we don't really care whether the original number was
254      signed or unsigned; we always reproduce the value exactly, and
255      use the shortest representation.  */
256   for (op = 0, size = 8; size < 64; size *= 2, op++)
257     {
258       LONGEST lim = ((LONGEST) 1) << (size - 1);
259
260       if (-lim <= l && l <= lim - 1)
261         break;
262     }
263
264   /* Emit the right opcode...  */
265   ax_simple (x, ops[op]);
266
267   /* Emit the low SIZE bytes as an unsigned number.  We know that
268      sign-extending this will yield l.  */
269   append_const (x, l, size / 8);
270
271   /* Now, if it was negative, and not full-sized, sign-extend it.  */
272   if (l < 0 && size < 64)
273     ax_ext (x, size);
274 }
275
276
277 void
278 ax_const_d (struct agent_expr *x, LONGEST d)
279 {
280   /* FIXME: floating-point support not present yet.  */
281   error (_("GDB bug: ax-general.c (ax_const_d): "
282            "floating point not supported yet"));
283 }
284
285
286 /* Assemble code to push the value of register number REG on the
287    stack.  */
288 void
289 ax_reg (struct agent_expr *x, int reg)
290 {
291   if (reg >= gdbarch_num_regs (x->gdbarch))
292     {
293       /* This is a pseudo-register.  */
294       if (!gdbarch_ax_pseudo_register_push_stack_p (x->gdbarch))
295         error (_("'%s' is a pseudo-register; "
296                  "GDB cannot yet trace its contents."),
297                user_reg_map_regnum_to_name (x->gdbarch, reg));
298       if (gdbarch_ax_pseudo_register_push_stack (x->gdbarch, x, reg))
299         error (_("Trace '%s' failed."),
300                user_reg_map_regnum_to_name (x->gdbarch, reg));
301     }
302   else
303     {
304       /* Make sure the register number is in range.  */
305       if (reg < 0 || reg > 0xffff)
306         error (_("GDB bug: ax-general.c (ax_reg): "
307                  "register number out of range"));
308       grow_expr (x, 3);
309       x->buf[x->len] = aop_reg;
310       x->buf[x->len + 1] = (reg >> 8) & 0xff;
311       x->buf[x->len + 2] = (reg) & 0xff;
312       x->len += 3;
313     }
314 }
315
316 /* Assemble code to operate on a trace state variable.  */
317
318 void
319 ax_tsv (struct agent_expr *x, enum agent_op op, int num)
320 {
321   /* Make sure the tsv number is in range.  */
322   if (num < 0 || num > 0xffff)
323     internal_error (__FILE__, __LINE__, 
324                     _("ax-general.c (ax_tsv): variable "
325                       "number is %d, out of range"), num);
326
327   grow_expr (x, 3);
328   x->buf[x->len] = op;
329   x->buf[x->len + 1] = (num >> 8) & 0xff;
330   x->buf[x->len + 2] = (num) & 0xff;
331   x->len += 3;
332 }
333
334 /* Append a string to the expression.  Note that the string is going
335    into the bytecodes directly, not on the stack.  As a precaution,
336    include both length as prefix, and terminate with a NUL.  (The NUL
337    is counted in the length.)  */
338
339 void
340 ax_string (struct agent_expr *x, const char *str, int slen)
341 {
342   int i;
343
344   /* Make sure the string length is reasonable.  */
345   if (slen < 0 || slen > 0xffff)
346     internal_error (__FILE__, __LINE__, 
347                     _("ax-general.c (ax_string): string "
348                       "length is %d, out of allowed range"), slen);
349
350   grow_expr (x, 2 + slen + 1);
351   x->buf[x->len++] = ((slen + 1) >> 8) & 0xff;
352   x->buf[x->len++] = (slen + 1) & 0xff;
353   for (i = 0; i < slen; ++i)
354     x->buf[x->len++] = str[i];
355   x->buf[x->len++] = '\0';
356 }
357 \f
358
359
360 /* Functions for disassembling agent expressions, and otherwise
361    debugging the expression compiler.  */
362
363 struct aop_map aop_map[] =
364 {
365   {0, 0, 0, 0, 0}
366 #define DEFOP(NAME, SIZE, DATA_SIZE, CONSUMED, PRODUCED, VALUE) \
367   , { # NAME, SIZE, DATA_SIZE, CONSUMED, PRODUCED }
368 #include "ax.def"
369 #undef DEFOP
370 };
371
372
373 /* Disassemble the expression EXPR, writing to F.  */
374 void
375 ax_print (struct ui_file *f, struct agent_expr *x)
376 {
377   int i;
378
379   fprintf_filtered (f, _("Scope: %s\n"), paddress (x->gdbarch, x->scope));
380   fprintf_filtered (f, _("Reg mask:"));
381   for (i = 0; i < x->reg_mask_len; ++i)
382     fprintf_filtered (f, _(" %02x"), x->reg_mask[i]);
383   fprintf_filtered (f, _("\n"));
384
385   /* Check the size of the name array against the number of entries in
386      the enum, to catch additions that people didn't sync.  */
387   if ((sizeof (aop_map) / sizeof (aop_map[0]))
388       != aop_last)
389     error (_("GDB bug: ax-general.c (ax_print): opcode map out of sync"));
390
391   for (i = 0; i < x->len;)
392     {
393       enum agent_op op = x->buf[i];
394
395       if (op >= (sizeof (aop_map) / sizeof (aop_map[0]))
396           || !aop_map[op].name)
397         {
398           fprintf_filtered (f, _("%3d  <bad opcode %02x>\n"), i, op);
399           i++;
400           continue;
401         }
402       if (i + 1 + aop_map[op].op_size > x->len)
403         {
404           fprintf_filtered (f, _("%3d  <incomplete opcode %s>\n"),
405                             i, aop_map[op].name);
406           break;
407         }
408
409       fprintf_filtered (f, "%3d  %s", i, aop_map[op].name);
410       if (aop_map[op].op_size > 0)
411         {
412           fputs_filtered (" ", f);
413
414           print_longest (f, 'd', 0,
415                          read_const (x, i + 1, aop_map[op].op_size));
416         }
417       /* Handle the complicated printf arguments specially.  */
418       else if (op == aop_printf)
419         {
420           int slen, nargs;
421
422           i++;
423           nargs = x->buf[i++];
424           slen = x->buf[i++];
425           slen = slen * 256 + x->buf[i++];
426           fprintf_filtered (f, _(" \"%s\", %d args"),
427                             &(x->buf[i]), nargs);
428           i += slen - 1;
429         }
430       fprintf_filtered (f, "\n");
431       i += 1 + aop_map[op].op_size;
432     }
433 }
434
435 /* Add register REG to the register mask for expression AX.  */
436 void
437 ax_reg_mask (struct agent_expr *ax, int reg)
438 {
439   if (reg >= gdbarch_num_regs (ax->gdbarch))
440     {
441       /* This is a pseudo-register.  */
442       if (!gdbarch_ax_pseudo_register_collect_p (ax->gdbarch))
443         error (_("'%s' is a pseudo-register; "
444                  "GDB cannot yet trace its contents."),
445                user_reg_map_regnum_to_name (ax->gdbarch, reg));
446       if (gdbarch_ax_pseudo_register_collect (ax->gdbarch, ax, reg))
447         error (_("Trace '%s' failed."),
448                user_reg_map_regnum_to_name (ax->gdbarch, reg));
449     }
450   else
451     {
452       int byte = reg / 8;
453
454       /* Grow the bit mask if necessary.  */
455       if (byte >= ax->reg_mask_len)
456         {
457           /* It's not appropriate to double here.  This isn't a
458              string buffer.  */
459           int new_len = byte + 1;
460           unsigned char *new_reg_mask = xrealloc (ax->reg_mask,
461                                                   new_len
462                                                   * sizeof (ax->reg_mask[0]));
463           memset (new_reg_mask + ax->reg_mask_len, 0,
464                   (new_len - ax->reg_mask_len) * sizeof (ax->reg_mask[0]));
465           ax->reg_mask_len = new_len;
466           ax->reg_mask = new_reg_mask;
467         }
468
469       ax->reg_mask[byte] |= 1 << (reg % 8);
470     }
471 }
472
473 /* Given an agent expression AX, fill in requirements and other descriptive
474    bits.  */
475 void
476 ax_reqs (struct agent_expr *ax)
477 {
478   int i;
479   int height;
480
481   /* Jump target table.  targets[i] is non-zero iff we have found a
482      jump to offset i.  */
483   char *targets = (char *) alloca (ax->len * sizeof (targets[0]));
484
485   /* Instruction boundary table.  boundary[i] is non-zero iff our scan
486      has reached an instruction starting at offset i.  */
487   char *boundary = (char *) alloca (ax->len * sizeof (boundary[0]));
488
489   /* Stack height record.  If either targets[i] or boundary[i] is
490      non-zero, heights[i] is the height the stack should have before
491      executing the bytecode at that point.  */
492   int *heights = (int *) alloca (ax->len * sizeof (heights[0]));
493
494   /* Pointer to a description of the present op.  */
495   struct aop_map *op;
496
497   memset (targets, 0, ax->len * sizeof (targets[0]));
498   memset (boundary, 0, ax->len * sizeof (boundary[0]));
499
500   ax->max_height = ax->min_height = height = 0;
501   ax->flaw = agent_flaw_none;
502   ax->max_data_size = 0;
503
504   for (i = 0; i < ax->len; i += 1 + op->op_size)
505     {
506       if (ax->buf[i] > (sizeof (aop_map) / sizeof (aop_map[0])))
507         {
508           ax->flaw = agent_flaw_bad_instruction;
509           return;
510         }
511
512       op = &aop_map[ax->buf[i]];
513
514       if (!op->name)
515         {
516           ax->flaw = agent_flaw_bad_instruction;
517           return;
518         }
519
520       if (i + 1 + op->op_size > ax->len)
521         {
522           ax->flaw = agent_flaw_incomplete_instruction;
523           return;
524         }
525
526       /* If this instruction is a forward jump target, does the
527          current stack height match the stack height at the jump
528          source?  */
529       if (targets[i] && (heights[i] != height))
530         {
531           ax->flaw = agent_flaw_height_mismatch;
532           return;
533         }
534
535       boundary[i] = 1;
536       heights[i] = height;
537
538       height -= op->consumed;
539       if (height < ax->min_height)
540         ax->min_height = height;
541       height += op->produced;
542       if (height > ax->max_height)
543         ax->max_height = height;
544
545       if (op->data_size > ax->max_data_size)
546         ax->max_data_size = op->data_size;
547
548       /* For jump instructions, check that the target is a valid
549          offset.  If it is, record the fact that that location is a
550          jump target, and record the height we expect there.  */
551       if (aop_goto == op - aop_map
552           || aop_if_goto == op - aop_map)
553         {
554           int target = read_const (ax, i + 1, 2);
555           if (target < 0 || target >= ax->len)
556             {
557               ax->flaw = agent_flaw_bad_jump;
558               return;
559             }
560
561           /* Do we have any information about what the stack height
562              should be at the target?  */
563           if (targets[target] || boundary[target])
564             {
565               if (heights[target] != height)
566                 {
567                   ax->flaw = agent_flaw_height_mismatch;
568                   return;
569                 }
570             }
571
572           /* Record the target, along with the stack height we expect.  */
573           targets[target] = 1;
574           heights[target] = height;
575         }
576
577       /* For unconditional jumps with a successor, check that the
578          successor is a target, and pick up its stack height.  */
579       if (aop_goto == op - aop_map
580           && i + 3 < ax->len)
581         {
582           if (!targets[i + 3])
583             {
584               ax->flaw = agent_flaw_hole;
585               return;
586             }
587
588           height = heights[i + 3];
589         }
590
591       /* For reg instructions, record the register in the bit mask.  */
592       if (aop_reg == op - aop_map)
593         {
594           int reg = read_const (ax, i + 1, 2);
595
596           ax_reg_mask (ax, reg);
597         }
598     }
599
600   /* Check that all the targets are on boundaries.  */
601   for (i = 0; i < ax->len; i++)
602     if (targets[i] && !boundary[i])
603       {
604         ax->flaw = agent_flaw_bad_jump;
605         return;
606       }
607
608   ax->final_height = height;
609 }