if: Multiple TX queue support step 1 of many; introduce ifaltq subqueue
[dragonfly.git] / sys / dev / netif / age / if_age.c
1 /*-
2  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  * $FreeBSD: src/sys/dev/age/if_age.c,v 1.6 2008/11/07 07:02:28 yongari Exp $
28  */
29
30 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
31
32 #include <sys/param.h>
33 #include <sys/endian.h>
34 #include <sys/kernel.h>
35 #include <sys/bus.h>
36 #include <sys/interrupt.h>
37 #include <sys/malloc.h>
38 #include <sys/proc.h>
39 #include <sys/rman.h>
40 #include <sys/serialize.h>
41 #include <sys/socket.h>
42 #include <sys/sockio.h>
43 #include <sys/sysctl.h>
44
45 #include <net/ethernet.h>
46 #include <net/if.h>
47 #include <net/bpf.h>
48 #include <net/if_arp.h>
49 #include <net/if_dl.h>
50 #include <net/if_media.h>
51 #include <net/ifq_var.h>
52 #include <net/vlan/if_vlan_var.h>
53 #include <net/vlan/if_vlan_ether.h>
54
55 #include <dev/netif/mii_layer/miivar.h>
56 #include <dev/netif/mii_layer/jmphyreg.h>
57
58 #include <bus/pci/pcireg.h>
59 #include <bus/pci/pcivar.h>
60 #include <bus/pci/pcidevs.h>
61
62 #include <dev/netif/age/if_agereg.h>
63 #include <dev/netif/age/if_agevar.h>
64
65 /* "device miibus" required.  See GENERIC if you get errors here. */
66 #include "miibus_if.h"
67
68 #define AGE_CSUM_FEATURES       (CSUM_TCP | CSUM_UDP)
69
70 struct age_dmamap_ctx {
71         int                     nsegs;
72         bus_dma_segment_t       *segs;
73 };
74
75 static int      age_probe(device_t);
76 static int      age_attach(device_t);
77 static int      age_detach(device_t);
78 static int      age_shutdown(device_t);
79 static int      age_suspend(device_t);
80 static int      age_resume(device_t);
81
82 static int      age_miibus_readreg(device_t, int, int);
83 static int      age_miibus_writereg(device_t, int, int, int);
84 static void     age_miibus_statchg(device_t);
85
86 static void     age_init(void *);
87 static int      age_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
88 static void     age_start(struct ifnet *, struct ifaltq_subque *);
89 static void     age_watchdog(struct ifnet *);
90 static void     age_mediastatus(struct ifnet *, struct ifmediareq *);
91 static int      age_mediachange(struct ifnet *);
92
93 static void     age_intr(void *);
94 static void     age_txintr(struct age_softc *, int);
95 static void     age_rxintr(struct age_softc *, int);
96 static void     age_rxeof(struct age_softc *sc, struct rx_rdesc *);
97
98 static int      age_dma_alloc(struct age_softc *);
99 static void     age_dma_free(struct age_softc *);
100 static void     age_dmamap_cb(void *, bus_dma_segment_t *, int, int);
101 static void     age_dmamap_buf_cb(void *, bus_dma_segment_t *, int,
102                     bus_size_t, int);
103 static int      age_check_boundary(struct age_softc *);
104 static int      age_newbuf(struct age_softc *, struct age_rxdesc *, int);
105 static int      age_encap(struct age_softc *, struct mbuf **);
106 static void     age_init_tx_ring(struct age_softc *);
107 static int      age_init_rx_ring(struct age_softc *);
108 static void     age_init_rr_ring(struct age_softc *);
109 static void     age_init_cmb_block(struct age_softc *);
110 static void     age_init_smb_block(struct age_softc *);
111
112 static void     age_tick(void *);
113 static void     age_stop(struct age_softc *);
114 static void     age_reset(struct age_softc *);
115 static int      age_read_vpd_word(struct age_softc *, uint32_t, uint32_t,
116                     uint32_t *);
117 static void     age_get_macaddr(struct age_softc *);
118 static void     age_phy_reset(struct age_softc *);
119 static void     age_mac_config(struct age_softc *);
120 static void     age_stats_update(struct age_softc *);
121 static void     age_stop_txmac(struct age_softc *);
122 static void     age_stop_rxmac(struct age_softc *);
123 static void     age_rxvlan(struct age_softc *);
124 static void     age_rxfilter(struct age_softc *);
125 #ifdef wol_notyet
126 static void age_setwol(struct age_softc *);
127 #endif
128
129 static void     age_sysctl_node(struct age_softc *);
130 static int      sysctl_age_stats(SYSCTL_HANDLER_ARGS);
131 static int      sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS);
132
133 /*
134  * Devices supported by this driver.
135  */
136 static struct age_dev {
137         uint16_t        age_vendorid;
138         uint16_t        age_deviceid;
139         const char      *age_name;
140 } age_devs[] = {
141         { VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L1,
142             "Attansic Technology Corp, L1 Gigabit Ethernet" },
143 };
144
145 static device_method_t age_methods[] = {
146         /* Device interface. */
147         DEVMETHOD(device_probe,         age_probe),
148         DEVMETHOD(device_attach,        age_attach),
149         DEVMETHOD(device_detach,        age_detach),
150         DEVMETHOD(device_shutdown,      age_shutdown),
151         DEVMETHOD(device_suspend,       age_suspend),
152         DEVMETHOD(device_resume,        age_resume),
153
154         /* Bus interface. */
155         DEVMETHOD(bus_print_child,      bus_generic_print_child),
156         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
157
158         /* MII interface. */
159         DEVMETHOD(miibus_readreg,       age_miibus_readreg),
160         DEVMETHOD(miibus_writereg,      age_miibus_writereg),
161         DEVMETHOD(miibus_statchg,       age_miibus_statchg),
162
163         { NULL, NULL }
164 };
165
166 static driver_t age_driver = {
167         "age",
168         age_methods,
169         sizeof(struct age_softc)
170 };
171
172 static devclass_t age_devclass;
173
174 DECLARE_DUMMY_MODULE(if_age);
175 MODULE_DEPEND(if_age, miibus, 1, 1, 1);
176 DRIVER_MODULE(if_age, pci, age_driver, age_devclass, NULL, NULL);
177 DRIVER_MODULE(miibus, age, miibus_driver, miibus_devclass, NULL, NULL);
178
179 /*
180  *      Read a PHY register on the MII of the L1.
181  */
182 static int
183 age_miibus_readreg(device_t dev, int phy, int reg)
184 {
185         struct age_softc *sc;
186         uint32_t v;
187         int i;
188
189         sc = device_get_softc(dev);
190         if (phy != sc->age_phyaddr)
191                 return (0);
192
193         CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
194             MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
195         for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
196                 DELAY(1);
197                 v = CSR_READ_4(sc, AGE_MDIO);
198                 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
199                         break;
200         }
201
202         if (i == 0) {
203                 device_printf(sc->age_dev, "phy read timeout : %d\n", reg);
204                 return (0);
205         }
206
207         return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
208 }
209
210 /*
211  *      Write a PHY register on the MII of the L1.
212  */
213 static int
214 age_miibus_writereg(device_t dev, int phy, int reg, int val)
215 {
216         struct age_softc *sc;
217         uint32_t v;
218         int i;
219
220         sc = device_get_softc(dev);
221         if (phy != sc->age_phyaddr)
222                 return (0);
223
224         CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
225             (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
226             MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
227         for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
228                 DELAY(1);
229                 v = CSR_READ_4(sc, AGE_MDIO);
230                 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
231                         break;
232         }
233
234         if (i == 0)
235                 device_printf(sc->age_dev, "phy write timeout : %d\n", reg);
236
237         return (0);
238 }
239
240 /*
241  *      Callback from MII layer when media changes.
242  */
243 static void
244 age_miibus_statchg(device_t dev)
245 {
246         struct age_softc *sc = device_get_softc(dev);
247         struct ifnet *ifp = &sc->arpcom.ac_if;
248         struct mii_data *mii;
249
250         ASSERT_SERIALIZED(ifp->if_serializer);
251
252         if ((ifp->if_flags & IFF_RUNNING) == 0)
253                 return;
254
255         mii = device_get_softc(sc->age_miibus);
256
257         sc->age_flags &= ~AGE_FLAG_LINK;
258         if ((mii->mii_media_status & IFM_AVALID) != 0) {
259                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
260                 case IFM_10_T:
261                 case IFM_100_TX:
262                 case IFM_1000_T:
263                         sc->age_flags |= AGE_FLAG_LINK;
264                         break;
265                 default:
266                         break;
267                 }
268         }
269
270         /* Stop Rx/Tx MACs. */
271         age_stop_rxmac(sc);
272         age_stop_txmac(sc);
273
274         /* Program MACs with resolved speed/duplex/flow-control. */
275         if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
276                 uint32_t reg;
277
278                 age_mac_config(sc);
279
280                 reg = CSR_READ_4(sc, AGE_MAC_CFG);
281                 /* Restart DMA engine and Tx/Rx MAC. */
282                 CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
283                     DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
284                 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
285                 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
286         }
287 }
288
289 /*
290  *      Get the current interface media status.
291  */
292 static void
293 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
294 {
295         struct age_softc *sc = ifp->if_softc;
296         struct mii_data *mii = device_get_softc(sc->age_miibus);
297
298         ASSERT_SERIALIZED(ifp->if_serializer);
299
300         mii_pollstat(mii);
301         ifmr->ifm_status = mii->mii_media_status;
302         ifmr->ifm_active = mii->mii_media_active;
303 }
304
305 /*
306  *      Set hardware to newly-selected media.
307  */
308 static int
309 age_mediachange(struct ifnet *ifp)
310 {
311         struct age_softc *sc = ifp->if_softc;
312         struct mii_data *mii = device_get_softc(sc->age_miibus);
313         int error;
314
315         ASSERT_SERIALIZED(ifp->if_serializer);
316
317         if (mii->mii_instance != 0) {
318                 struct mii_softc *miisc;
319
320                 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
321                         mii_phy_reset(miisc);
322         }
323         error = mii_mediachg(mii);
324
325         return (error);
326 }
327
328 static int
329 age_read_vpd_word(struct age_softc *sc, uint32_t vpdc, uint32_t offset,
330     uint32_t *word)
331 {
332         int i;
333
334         pci_write_config(sc->age_dev, vpdc + PCIR_VPD_ADDR, offset, 2);
335         for (i = AGE_TIMEOUT; i > 0; i--) {
336                 DELAY(10);
337                 if ((pci_read_config(sc->age_dev, vpdc + PCIR_VPD_ADDR, 2) &
338                     0x8000) == 0x8000)
339                         break;
340         }
341         if (i == 0) {
342                 device_printf(sc->age_dev, "VPD read timeout!\n");
343                 *word = 0;
344                 return (ETIMEDOUT);
345         }
346
347         *word = pci_read_config(sc->age_dev, vpdc + PCIR_VPD_DATA, 4);
348         return (0);
349 }
350
351 static int
352 age_probe(device_t dev)
353 {
354         struct age_dev *sp;
355         int i;
356         uint16_t vendor, devid;
357
358         vendor = pci_get_vendor(dev);
359         devid = pci_get_device(dev);
360         sp = age_devs;
361         for (i = 0; i < NELEM(age_devs); i++, sp++) {
362                 if (vendor == sp->age_vendorid &&
363                     devid == sp->age_deviceid) {
364                         device_set_desc(dev, sp->age_name);
365                         return (0);
366                 }
367         }
368         return (ENXIO);
369 }
370
371 static void
372 age_get_macaddr(struct age_softc *sc)
373 {
374         uint32_t ea[2], off, reg, word;
375         int vpd_error, match, vpdc;
376
377         reg = CSR_READ_4(sc, AGE_SPI_CTRL);
378         if ((reg & SPI_VPD_ENB) != 0) {
379                 /* Get VPD stored in TWSI EEPROM. */
380                 reg &= ~SPI_VPD_ENB;
381                 CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
382         }
383
384         ea[0] = ea[1] = 0;
385         vpdc = pci_get_vpdcap_ptr(sc->age_dev);
386         if (vpdc) {
387                 vpd_error = 0;
388
389                 /*
390                  * PCI VPD capability exists, but it seems that it's
391                  * not in the standard form as stated in PCI VPD
392                  * specification such that driver could not use
393                  * pci_get_vpd_readonly(9) with keyword 'NA'.
394                  * Search VPD data starting at address 0x0100. The data
395                  * should be used as initializers to set AGE_PAR0,
396                  * AGE_PAR1 register including other PCI configuration
397                  * registers.
398                  */
399                 word = 0;
400                 match = 0;
401                 reg = 0;
402                 for (off = AGE_VPD_REG_CONF_START; off < AGE_VPD_REG_CONF_END;
403                     off += sizeof(uint32_t)) {
404                         vpd_error = age_read_vpd_word(sc, vpdc, off, &word);
405                         if (vpd_error != 0)
406                                 break;
407                         if (match != 0) {
408                                 switch (reg) {
409                                 case AGE_PAR0:
410                                         ea[0] = word;
411                                         break;
412                                 case AGE_PAR1:
413                                         ea[1] = word;
414                                         break;
415                                 default:
416                                         break;
417                                 }
418                                 match = 0;
419                         } else if ((word & 0xFF) == AGE_VPD_REG_CONF_SIG) {
420                                 match = 1;
421                                 reg = word >> 16;
422                         } else
423                                 break;
424                 }
425                 if (off >= AGE_VPD_REG_CONF_END)
426                         vpd_error = ENOENT;
427                 if (vpd_error == 0) {
428                         /*
429                          * Don't blindly trust ethernet address obtained
430                          * from VPD. Check whether ethernet address is
431                          * valid one. Otherwise fall-back to reading
432                          * PAR register.
433                          */
434                         ea[1] &= 0xFFFF;
435                         if ((ea[0] == 0 && ea[1] == 0) ||
436                             (ea[0] == 0xFFFFFFFF && ea[1] == 0xFFFF)) {
437                                 if (bootverbose)
438                                         device_printf(sc->age_dev,
439                                             "invalid ethernet address "
440                                             "returned from VPD.\n");
441                                 vpd_error = EINVAL;
442                         }
443                 }
444                 if (vpd_error != 0 && (bootverbose))
445                         device_printf(sc->age_dev, "VPD access failure!\n");
446         } else {
447                 vpd_error = ENOENT;
448                 if (bootverbose)
449                         device_printf(sc->age_dev,
450                             "PCI VPD capability not found!\n");
451         }
452
453         /*
454          * It seems that L1 also provides a way to extract ethernet
455          * address via SPI flash interface. Because SPI flash memory
456          * device of different vendors vary in their instruction
457          * codes for read ID instruction, it's very hard to get
458          * instructions codes without detailed information for the
459          * flash memory device used on ethernet controller. To simplify
460          * code, just read AGE_PAR0/AGE_PAR1 register to get ethernet
461          * address which is supposed to be set by hardware during
462          * power on reset.
463          */
464         if (vpd_error != 0) {
465                 /*
466                  * VPD is mapped to SPI flash memory or BIOS set it.
467                  */
468                 ea[0] = CSR_READ_4(sc, AGE_PAR0);
469                 ea[1] = CSR_READ_4(sc, AGE_PAR1);
470         }
471
472         ea[1] &= 0xFFFF;
473         if ((ea[0] == 0 && ea[1]  == 0) ||
474             (ea[0] == 0xFFFFFFFF && ea[1] == 0xFFFF)) {
475                 device_printf(sc->age_dev,
476                     "generating fake ethernet address.\n");
477                 ea[0] = karc4random();
478                 /* Set OUI to ASUSTek COMPUTER INC. */
479                 sc->age_eaddr[0] = 0x00;
480                 sc->age_eaddr[1] = 0x1B;
481                 sc->age_eaddr[2] = 0xFC;
482                 sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
483                 sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
484                 sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
485         } else {
486                 sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
487                 sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
488                 sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
489                 sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
490                 sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
491                 sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
492         }
493 }
494
495 static void
496 age_phy_reset(struct age_softc *sc)
497 {
498         /* Reset PHY. */
499         CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
500         DELAY(1000);
501         CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
502         DELAY(1000);
503 }
504
505 static int
506 age_attach(device_t dev)
507 {
508         struct age_softc *sc = device_get_softc(dev);
509         struct ifnet *ifp = &sc->arpcom.ac_if;
510         uint8_t pcie_ptr;
511         int error;
512
513         error = 0;
514         sc->age_dev = dev;
515         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
516
517         callout_init(&sc->age_tick_ch);
518
519 #ifndef BURN_BRIDGES
520         if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
521                 uint32_t irq, mem;
522
523                 irq = pci_read_config(dev, PCIR_INTLINE, 4);
524                 mem = pci_read_config(dev, AGE_PCIR_BAR, 4);
525
526                 device_printf(dev, "chip is in D%d power mode "
527                     "-- setting to D0\n", pci_get_powerstate(dev));
528
529                 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
530
531                 pci_write_config(dev, PCIR_INTLINE, irq, 4);
532                 pci_write_config(dev, AGE_PCIR_BAR, mem, 4);
533         }
534 #endif  /* !BURN_BRIDGE */
535
536         /* Enable bus mastering */
537         pci_enable_busmaster(dev);
538
539         /*
540          * Allocate memory mapped IO
541          */
542         sc->age_mem_rid = AGE_PCIR_BAR;
543         sc->age_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
544                                                  &sc->age_mem_rid, RF_ACTIVE);
545         if (sc->age_mem_res == NULL) {
546                 device_printf(dev, "can't allocate IO memory\n");
547                 return ENXIO;
548         }
549         sc->age_mem_bt = rman_get_bustag(sc->age_mem_res);
550         sc->age_mem_bh = rman_get_bushandle(sc->age_mem_res);
551
552         /*
553          * Allocate IRQ
554          */
555         sc->age_irq_rid = 0;
556         sc->age_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
557                                                  &sc->age_irq_rid,
558                                                  RF_SHAREABLE | RF_ACTIVE);
559         if (sc->age_irq_res == NULL) {
560                 device_printf(dev, "can't allocate irq\n");
561                 error = ENXIO;
562                 goto fail;
563         }
564
565         /* Set PHY address. */
566         sc->age_phyaddr = AGE_PHY_ADDR;
567
568         /* Reset PHY. */
569         age_phy_reset(sc);
570
571         /* Reset the ethernet controller. */
572         age_reset(sc);
573
574         /* Get PCI and chip id/revision. */
575         sc->age_rev = pci_get_revid(dev);
576         sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
577             MASTER_CHIP_REV_SHIFT;
578         if (bootverbose) {
579                 device_printf(dev, "PCI device revision : 0x%04x\n", sc->age_rev);
580                 device_printf(dev, "Chip id/revision : 0x%04x\n",
581                     sc->age_chip_rev);
582         }
583
584         /*
585          * XXX
586          * Unintialized hardware returns an invalid chip id/revision
587          * as well as 0xFFFFFFFF for Tx/Rx fifo length. It seems that
588          * unplugged cable results in putting hardware into automatic
589          * power down mode which in turn returns invalld chip revision.
590          */
591         if (sc->age_chip_rev == 0xFFFF) {
592                 device_printf(dev,"invalid chip revision : 0x%04x -- "
593                     "not initialized?\n", sc->age_chip_rev);
594                 error = ENXIO;
595                 goto fail;
596         }
597         device_printf(dev, "%d Tx FIFO, %d Rx FIFO\n",
598             CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
599             CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
600
601         /* Get DMA parameters from PCIe device control register. */
602         pcie_ptr = pci_get_pciecap_ptr(dev);
603         if (pcie_ptr) {
604                 uint16_t devctl;
605
606                 sc->age_flags |= AGE_FLAG_PCIE;
607                 devctl = pci_read_config(dev, pcie_ptr + PCIER_DEVCTRL, 2);
608                 /* Max read request size. */
609                 sc->age_dma_rd_burst = ((devctl >> 12) & 0x07) <<
610                     DMA_CFG_RD_BURST_SHIFT;
611                 /* Max payload size. */
612                 sc->age_dma_wr_burst = ((devctl >> 5) & 0x07) <<
613                     DMA_CFG_WR_BURST_SHIFT;
614                 if (bootverbose) {
615                         device_printf(dev, "Read request size : %d bytes.\n",
616                             128 << ((devctl >> 12) & 0x07));
617                         device_printf(dev, "TLP payload size : %d bytes.\n",
618                             128 << ((devctl >> 5) & 0x07));
619                 }
620         } else {
621                 sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
622                 sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
623         }
624
625         /* Create device sysctl node. */
626         age_sysctl_node(sc);
627
628         if ((error = age_dma_alloc(sc) != 0))
629                 goto fail;
630
631         /* Load station address. */
632         age_get_macaddr(sc);
633
634         ifp->if_softc = sc;
635         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
636         ifp->if_ioctl = age_ioctl;
637         ifp->if_start = age_start;
638         ifp->if_init = age_init;
639         ifp->if_watchdog = age_watchdog;
640         ifq_set_maxlen(&ifp->if_snd, AGE_TX_RING_CNT - 1);
641         ifq_set_ready(&ifp->if_snd);
642
643         ifp->if_capabilities = IFCAP_HWCSUM |
644                                IFCAP_VLAN_MTU |
645                                IFCAP_VLAN_HWTAGGING;
646         ifp->if_hwassist = AGE_CSUM_FEATURES;
647         ifp->if_capenable = ifp->if_capabilities;
648
649         /* Set up MII bus. */
650         if ((error = mii_phy_probe(dev, &sc->age_miibus, age_mediachange,
651             age_mediastatus)) != 0) {
652                 device_printf(dev, "no PHY found!\n");
653                 goto fail;
654         }
655
656         ether_ifattach(ifp, sc->age_eaddr, NULL);
657
658         /* Tell the upper layer(s) we support long frames. */
659         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
660
661         error = bus_setup_intr(dev, sc->age_irq_res, INTR_MPSAFE, age_intr, sc,
662                                &sc->age_irq_handle, ifp->if_serializer);
663         if (error) {
664                 device_printf(dev, "could not set up interrupt handler.\n");
665                 ether_ifdetach(ifp);
666                 goto fail;
667         }
668
669         ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->age_irq_res));
670         return 0;
671 fail:
672         age_detach(dev);
673         return (error);
674 }
675
676 static int
677 age_detach(device_t dev)
678 {
679         struct age_softc *sc = device_get_softc(dev);
680
681         if (device_is_attached(dev)) {
682                 struct ifnet *ifp = &sc->arpcom.ac_if;
683
684                 lwkt_serialize_enter(ifp->if_serializer);
685                 sc->age_flags |= AGE_FLAG_DETACH;
686                 age_stop(sc);
687                 bus_teardown_intr(dev, sc->age_irq_res, sc->age_irq_handle);
688                 lwkt_serialize_exit(ifp->if_serializer);
689
690                 ether_ifdetach(ifp);
691         }
692
693         if (sc->age_sysctl_tree != NULL)
694                 sysctl_ctx_free(&sc->age_sysctl_ctx);
695
696         if (sc->age_miibus != NULL)
697                 device_delete_child(dev, sc->age_miibus);
698         bus_generic_detach(dev);
699
700         if (sc->age_irq_res != NULL) {
701                 bus_release_resource(dev, SYS_RES_IRQ, sc->age_irq_rid,
702                                      sc->age_irq_res);
703         }
704         if (sc->age_mem_res != NULL) {
705                 bus_release_resource(dev, SYS_RES_MEMORY, sc->age_mem_rid,
706                                      sc->age_mem_res);
707         }
708
709         age_dma_free(sc);
710
711         return (0);
712 }
713
714 static void
715 age_sysctl_node(struct age_softc *sc)
716 {
717         int error;
718
719         sysctl_ctx_init(&sc->age_sysctl_ctx);
720         sc->age_sysctl_tree = SYSCTL_ADD_NODE(&sc->age_sysctl_ctx,
721                                 SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
722                                 device_get_nameunit(sc->age_dev),
723                                 CTLFLAG_RD, 0, "");
724         if (sc->age_sysctl_tree == NULL) {
725                 device_printf(sc->age_dev, "can't add sysctl node\n");
726                 return;
727         }
728
729         SYSCTL_ADD_PROC(&sc->age_sysctl_ctx,
730             SYSCTL_CHILDREN(sc->age_sysctl_tree), OID_AUTO,
731             "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_age_stats,
732             "I", "Statistics");
733
734         SYSCTL_ADD_PROC(&sc->age_sysctl_ctx,
735             SYSCTL_CHILDREN(sc->age_sysctl_tree), OID_AUTO,
736             "int_mod", CTLTYPE_INT | CTLFLAG_RW, &sc->age_int_mod, 0,
737             sysctl_hw_age_int_mod, "I", "age interrupt moderation");
738
739         /* Pull in device tunables. */
740         sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
741         error = resource_int_value(device_get_name(sc->age_dev),
742             device_get_unit(sc->age_dev), "int_mod", &sc->age_int_mod);
743         if (error == 0) {
744                 if (sc->age_int_mod < AGE_IM_TIMER_MIN ||
745                     sc->age_int_mod > AGE_IM_TIMER_MAX) {
746                         device_printf(sc->age_dev,
747                             "int_mod value out of range; using default: %d\n",
748                             AGE_IM_TIMER_DEFAULT);
749                         sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
750                 }
751         }
752 }
753
754 struct age_dmamap_arg {
755         bus_addr_t      age_busaddr;
756 };
757
758 static void
759 age_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
760 {
761         struct age_dmamap_arg *ctx;
762
763         if (error != 0)
764                 return;
765
766         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
767
768         ctx = (struct age_dmamap_arg *)arg;
769         ctx->age_busaddr = segs[0].ds_addr;
770 }
771
772 /*
773  * Attansic L1 controller have single register to specify high
774  * address part of DMA blocks. So all descriptor structures and
775  * DMA memory blocks should have the same high address of given
776  * 4GB address space(i.e. crossing 4GB boundary is not allowed).
777  */
778 static int
779 age_check_boundary(struct age_softc *sc)
780 {
781         bus_addr_t rx_ring_end, rr_ring_end, tx_ring_end;
782         bus_addr_t cmb_block_end, smb_block_end;
783
784         /* Tx/Rx descriptor queue should reside within 4GB boundary. */
785         tx_ring_end = sc->age_rdata.age_tx_ring_paddr + AGE_TX_RING_SZ;
786         rx_ring_end = sc->age_rdata.age_rx_ring_paddr + AGE_RX_RING_SZ;
787         rr_ring_end = sc->age_rdata.age_rr_ring_paddr + AGE_RR_RING_SZ;
788         cmb_block_end = sc->age_rdata.age_cmb_block_paddr + AGE_CMB_BLOCK_SZ;
789         smb_block_end = sc->age_rdata.age_smb_block_paddr + AGE_SMB_BLOCK_SZ;
790
791         if ((AGE_ADDR_HI(tx_ring_end) !=
792             AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr)) ||
793             (AGE_ADDR_HI(rx_ring_end) !=
794             AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)) ||
795             (AGE_ADDR_HI(rr_ring_end) !=
796             AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)) ||
797             (AGE_ADDR_HI(cmb_block_end) !=
798             AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)) ||
799             (AGE_ADDR_HI(smb_block_end) !=
800             AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr)))
801                 return (EFBIG);
802
803         if ((AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rx_ring_end)) ||
804             (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rr_ring_end)) ||
805             (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(cmb_block_end)) ||
806             (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(smb_block_end)))
807                 return (EFBIG);
808
809         return (0);
810 }
811
812 static int
813 age_dma_alloc(struct age_softc *sc)
814 {
815         struct age_txdesc *txd;
816         struct age_rxdesc *rxd;
817         bus_addr_t lowaddr;
818         struct age_dmamap_arg ctx;
819         int error, i;
820
821         lowaddr = BUS_SPACE_MAXADDR;
822 again:
823         /* Create parent ring/DMA block tag. */
824         error = bus_dma_tag_create(
825             NULL,                       /* parent */
826             1, 0,                       /* alignment, boundary */
827             lowaddr,                    /* lowaddr */
828             BUS_SPACE_MAXADDR,          /* highaddr */
829             NULL, NULL,                 /* filter, filterarg */
830             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
831             0,                          /* nsegments */
832             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
833             0,                          /* flags */
834             &sc->age_cdata.age_parent_tag);
835         if (error != 0) {
836                 device_printf(sc->age_dev,
837                     "could not create parent DMA tag.\n");
838                 goto fail;
839         }
840
841         /* Create tag for Tx ring. */
842         error = bus_dma_tag_create(
843             sc->age_cdata.age_parent_tag, /* parent */
844             AGE_TX_RING_ALIGN, 0,       /* alignment, boundary */
845             BUS_SPACE_MAXADDR,          /* lowaddr */
846             BUS_SPACE_MAXADDR,          /* highaddr */
847             NULL, NULL,                 /* filter, filterarg */
848             AGE_TX_RING_SZ,             /* maxsize */
849             1,                          /* nsegments */
850             AGE_TX_RING_SZ,             /* maxsegsize */
851             0,                          /* flags */
852             &sc->age_cdata.age_tx_ring_tag);
853         if (error != 0) {
854                 device_printf(sc->age_dev,
855                     "could not create Tx ring DMA tag.\n");
856                 goto fail;
857         }
858
859         /* Create tag for Rx ring. */
860         error = bus_dma_tag_create(
861             sc->age_cdata.age_parent_tag, /* parent */
862             AGE_RX_RING_ALIGN, 0,       /* alignment, boundary */
863             BUS_SPACE_MAXADDR,          /* lowaddr */
864             BUS_SPACE_MAXADDR,          /* highaddr */
865             NULL, NULL,                 /* filter, filterarg */
866             AGE_RX_RING_SZ,             /* maxsize */
867             1,                          /* nsegments */
868             AGE_RX_RING_SZ,             /* maxsegsize */
869             0,                          /* flags */
870             &sc->age_cdata.age_rx_ring_tag);
871         if (error != 0) {
872                 device_printf(sc->age_dev,
873                     "could not create Rx ring DMA tag.\n");
874                 goto fail;
875         }
876
877         /* Create tag for Rx return ring. */
878         error = bus_dma_tag_create(
879             sc->age_cdata.age_parent_tag, /* parent */
880             AGE_RR_RING_ALIGN, 0,       /* alignment, boundary */
881             BUS_SPACE_MAXADDR,          /* lowaddr */
882             BUS_SPACE_MAXADDR,          /* highaddr */
883             NULL, NULL,                 /* filter, filterarg */
884             AGE_RR_RING_SZ,             /* maxsize */
885             1,                          /* nsegments */
886             AGE_RR_RING_SZ,             /* maxsegsize */
887             0,                          /* flags */
888             &sc->age_cdata.age_rr_ring_tag);
889         if (error != 0) {
890                 device_printf(sc->age_dev,
891                     "could not create Rx return ring DMA tag.\n");
892                 goto fail;
893         }
894
895         /* Create tag for coalesing message block. */
896         error = bus_dma_tag_create(
897             sc->age_cdata.age_parent_tag, /* parent */
898             AGE_CMB_ALIGN, 0,           /* alignment, boundary */
899             BUS_SPACE_MAXADDR,          /* lowaddr */
900             BUS_SPACE_MAXADDR,          /* highaddr */
901             NULL, NULL,                 /* filter, filterarg */
902             AGE_CMB_BLOCK_SZ,           /* maxsize */
903             1,                          /* nsegments */
904             AGE_CMB_BLOCK_SZ,           /* maxsegsize */
905             0,                          /* flags */
906             &sc->age_cdata.age_cmb_block_tag);
907         if (error != 0) {
908                 device_printf(sc->age_dev,
909                     "could not create CMB DMA tag.\n");
910                 goto fail;
911         }
912
913         /* Create tag for statistics message block. */
914         error = bus_dma_tag_create(
915             sc->age_cdata.age_parent_tag, /* parent */
916             AGE_SMB_ALIGN, 0,           /* alignment, boundary */
917             BUS_SPACE_MAXADDR,          /* lowaddr */
918             BUS_SPACE_MAXADDR,          /* highaddr */
919             NULL, NULL,                 /* filter, filterarg */
920             AGE_SMB_BLOCK_SZ,           /* maxsize */
921             1,                          /* nsegments */
922             AGE_SMB_BLOCK_SZ,           /* maxsegsize */
923             0,                          /* flags */
924             &sc->age_cdata.age_smb_block_tag);
925         if (error != 0) {
926                 device_printf(sc->age_dev,
927                     "could not create SMB DMA tag.\n");
928                 goto fail;
929         }
930
931         /* Allocate DMA'able memory and load the DMA map. */
932         error = bus_dmamem_alloc(sc->age_cdata.age_tx_ring_tag,
933             (void **)&sc->age_rdata.age_tx_ring,
934             BUS_DMA_WAITOK | BUS_DMA_ZERO,
935             &sc->age_cdata.age_tx_ring_map);
936         if (error != 0) {
937                 device_printf(sc->age_dev,
938                     "could not allocate DMA'able memory for Tx ring.\n");
939                 goto fail;
940         }
941         ctx.age_busaddr = 0;
942         error = bus_dmamap_load(sc->age_cdata.age_tx_ring_tag,
943             sc->age_cdata.age_tx_ring_map, sc->age_rdata.age_tx_ring,
944             AGE_TX_RING_SZ, age_dmamap_cb, &ctx, 0);
945         if (error != 0 || ctx.age_busaddr == 0) {
946                 device_printf(sc->age_dev,
947                     "could not load DMA'able memory for Tx ring.\n");
948                 goto fail;
949         }
950         sc->age_rdata.age_tx_ring_paddr = ctx.age_busaddr;
951         /* Rx ring */
952         error = bus_dmamem_alloc(sc->age_cdata.age_rx_ring_tag,
953             (void **)&sc->age_rdata.age_rx_ring,
954             BUS_DMA_WAITOK | BUS_DMA_ZERO,
955             &sc->age_cdata.age_rx_ring_map);
956         if (error != 0) {
957                 device_printf(sc->age_dev,
958                     "could not allocate DMA'able memory for Rx ring.\n");
959                 goto fail;
960         }
961         ctx.age_busaddr = 0;
962         error = bus_dmamap_load(sc->age_cdata.age_rx_ring_tag,
963             sc->age_cdata.age_rx_ring_map, sc->age_rdata.age_rx_ring,
964             AGE_RX_RING_SZ, age_dmamap_cb, &ctx, 0);
965         if (error != 0 || ctx.age_busaddr == 0) {
966                 device_printf(sc->age_dev,
967                     "could not load DMA'able memory for Rx ring.\n");
968                 goto fail;
969         }
970         sc->age_rdata.age_rx_ring_paddr = ctx.age_busaddr;
971         /* Rx return ring */
972         error = bus_dmamem_alloc(sc->age_cdata.age_rr_ring_tag,
973             (void **)&sc->age_rdata.age_rr_ring,
974             BUS_DMA_WAITOK | BUS_DMA_ZERO,
975             &sc->age_cdata.age_rr_ring_map);
976         if (error != 0) {
977                 device_printf(sc->age_dev,
978                     "could not allocate DMA'able memory for Rx return ring.\n");
979                 goto fail;
980         }
981         ctx.age_busaddr = 0;
982         error = bus_dmamap_load(sc->age_cdata.age_rr_ring_tag,
983             sc->age_cdata.age_rr_ring_map, sc->age_rdata.age_rr_ring,
984             AGE_RR_RING_SZ, age_dmamap_cb, &ctx, 0);
985         if (error != 0 || ctx.age_busaddr == 0) {
986                 device_printf(sc->age_dev,
987                     "could not load DMA'able memory for Rx return ring.\n");
988                 goto fail;
989         }
990         sc->age_rdata.age_rr_ring_paddr = ctx.age_busaddr;
991         /* CMB block */
992         error = bus_dmamem_alloc(sc->age_cdata.age_cmb_block_tag,
993             (void **)&sc->age_rdata.age_cmb_block,
994             BUS_DMA_WAITOK | BUS_DMA_ZERO,
995             &sc->age_cdata.age_cmb_block_map);
996         if (error != 0) {
997                 device_printf(sc->age_dev,
998                     "could not allocate DMA'able memory for CMB block.\n");
999                 goto fail;
1000         }
1001         ctx.age_busaddr = 0;
1002         error = bus_dmamap_load(sc->age_cdata.age_cmb_block_tag,
1003             sc->age_cdata.age_cmb_block_map, sc->age_rdata.age_cmb_block,
1004             AGE_CMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1005         if (error != 0 || ctx.age_busaddr == 0) {
1006                 device_printf(sc->age_dev,
1007                     "could not load DMA'able memory for CMB block.\n");
1008                 goto fail;
1009         }
1010         sc->age_rdata.age_cmb_block_paddr = ctx.age_busaddr;
1011         /* SMB block */
1012         error = bus_dmamem_alloc(sc->age_cdata.age_smb_block_tag,
1013             (void **)&sc->age_rdata.age_smb_block,
1014             BUS_DMA_WAITOK | BUS_DMA_ZERO,
1015             &sc->age_cdata.age_smb_block_map);
1016         if (error != 0) {
1017                 device_printf(sc->age_dev,
1018                     "could not allocate DMA'able memory for SMB block.\n");
1019                 goto fail;
1020         }
1021         ctx.age_busaddr = 0;
1022         error = bus_dmamap_load(sc->age_cdata.age_smb_block_tag,
1023             sc->age_cdata.age_smb_block_map, sc->age_rdata.age_smb_block,
1024             AGE_SMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1025         if (error != 0 || ctx.age_busaddr == 0) {
1026                 device_printf(sc->age_dev,
1027                     "could not load DMA'able memory for SMB block.\n");
1028                 goto fail;
1029         }
1030         sc->age_rdata.age_smb_block_paddr = ctx.age_busaddr;
1031
1032         /*
1033          * All ring buffer and DMA blocks should have the same
1034          * high address part of 64bit DMA address space.
1035          */
1036         if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1037             (error = age_check_boundary(sc)) != 0) {
1038                 device_printf(sc->age_dev, "4GB boundary crossed, "
1039                     "switching to 32bit DMA addressing mode.\n");
1040                 age_dma_free(sc);
1041                 /* Limit DMA address space to 32bit and try again. */
1042                 lowaddr = BUS_SPACE_MAXADDR_32BIT;
1043                 goto again;
1044         }
1045
1046         /*
1047          * Create Tx/Rx buffer parent tag.
1048          * L1 supports full 64bit DMA addressing in Tx/Rx buffers
1049          * so it needs separate parent DMA tag.
1050          */
1051         error = bus_dma_tag_create(
1052             NULL,                       /* parent */
1053             1, 0,                       /* alignment, boundary */
1054             BUS_SPACE_MAXADDR,          /* lowaddr */
1055             BUS_SPACE_MAXADDR,          /* highaddr */
1056             NULL, NULL,                 /* filter, filterarg */
1057             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
1058             0,                          /* nsegments */
1059             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
1060             0,                          /* flags */
1061             &sc->age_cdata.age_buffer_tag);
1062         if (error != 0) {
1063                 device_printf(sc->age_dev,
1064                     "could not create parent buffer DMA tag.\n");
1065                 goto fail;
1066         }
1067
1068         /* Create tag for Tx buffers. */
1069         error = bus_dma_tag_create(
1070             sc->age_cdata.age_buffer_tag, /* parent */
1071             1, 0,                       /* alignment, boundary */
1072             BUS_SPACE_MAXADDR,          /* lowaddr */
1073             BUS_SPACE_MAXADDR,          /* highaddr */
1074             NULL, NULL,                 /* filter, filterarg */
1075             AGE_TSO_MAXSIZE,            /* maxsize */
1076             AGE_MAXTXSEGS,              /* nsegments */
1077             AGE_TSO_MAXSEGSIZE,         /* maxsegsize */
1078             0,                          /* flags */
1079             &sc->age_cdata.age_tx_tag);
1080         if (error != 0) {
1081                 device_printf(sc->age_dev, "could not create Tx DMA tag.\n");
1082                 goto fail;
1083         }
1084
1085         /* Create tag for Rx buffers. */
1086         error = bus_dma_tag_create(
1087             sc->age_cdata.age_buffer_tag, /* parent */
1088             1, 0,                       /* alignment, boundary */
1089             BUS_SPACE_MAXADDR,          /* lowaddr */
1090             BUS_SPACE_MAXADDR,          /* highaddr */
1091             NULL, NULL,                 /* filter, filterarg */
1092             MCLBYTES,                   /* maxsize */
1093             1,                          /* nsegments */
1094             MCLBYTES,                   /* maxsegsize */
1095             0,                          /* flags */
1096             &sc->age_cdata.age_rx_tag);
1097         if (error != 0) {
1098                 device_printf(sc->age_dev, "could not create Rx DMA tag.\n");
1099                 goto fail;
1100         }
1101
1102         /* Create DMA maps for Tx buffers. */
1103         for (i = 0; i < AGE_TX_RING_CNT; i++) {
1104                 txd = &sc->age_cdata.age_txdesc[i];
1105                 txd->tx_m = NULL;
1106                 txd->tx_dmamap = NULL;
1107                 error = bus_dmamap_create(sc->age_cdata.age_tx_tag, 0,
1108                     &txd->tx_dmamap);
1109                 if (error != 0) {
1110                         device_printf(sc->age_dev,
1111                             "could not create Tx dmamap.\n");
1112                         goto fail;
1113                 }
1114         }
1115         /* Create DMA maps for Rx buffers. */
1116         if ((error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1117             &sc->age_cdata.age_rx_sparemap)) != 0) {
1118                 device_printf(sc->age_dev,
1119                     "could not create spare Rx dmamap.\n");
1120                 goto fail;
1121         }
1122         for (i = 0; i < AGE_RX_RING_CNT; i++) {
1123                 rxd = &sc->age_cdata.age_rxdesc[i];
1124                 rxd->rx_m = NULL;
1125                 rxd->rx_dmamap = NULL;
1126                 error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1127                     &rxd->rx_dmamap);
1128                 if (error != 0) {
1129                         device_printf(sc->age_dev,
1130                             "could not create Rx dmamap.\n");
1131                         goto fail;
1132                 }
1133         }
1134 fail:
1135         return (error);
1136 }
1137
1138 static void
1139 age_dma_free(struct age_softc *sc)
1140 {
1141         struct age_txdesc *txd;
1142         struct age_rxdesc *rxd;
1143         int i;
1144
1145         /* Tx buffers */
1146         if (sc->age_cdata.age_tx_tag != NULL) {
1147                 for (i = 0; i < AGE_TX_RING_CNT; i++) {
1148                         txd = &sc->age_cdata.age_txdesc[i];
1149                         if (txd->tx_dmamap != NULL) {
1150                                 bus_dmamap_destroy(sc->age_cdata.age_tx_tag,
1151                                     txd->tx_dmamap);
1152                                 txd->tx_dmamap = NULL;
1153                         }
1154                 }
1155                 bus_dma_tag_destroy(sc->age_cdata.age_tx_tag);
1156                 sc->age_cdata.age_tx_tag = NULL;
1157         }
1158         /* Rx buffers */
1159         if (sc->age_cdata.age_rx_tag != NULL) {
1160                 for (i = 0; i < AGE_RX_RING_CNT; i++) {
1161                         rxd = &sc->age_cdata.age_rxdesc[i];
1162                         if (rxd->rx_dmamap != NULL) {
1163                                 bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1164                                     rxd->rx_dmamap);
1165                                 rxd->rx_dmamap = NULL;
1166                         }
1167                 }
1168                 if (sc->age_cdata.age_rx_sparemap != NULL) {
1169                         bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1170                             sc->age_cdata.age_rx_sparemap);
1171                         sc->age_cdata.age_rx_sparemap = NULL;
1172                 }
1173                 bus_dma_tag_destroy(sc->age_cdata.age_rx_tag);
1174                 sc->age_cdata.age_rx_tag = NULL;
1175         }
1176         /* Tx ring. */
1177         if (sc->age_cdata.age_tx_ring_tag != NULL) {
1178                 if (sc->age_cdata.age_tx_ring_map != NULL)
1179                         bus_dmamap_unload(sc->age_cdata.age_tx_ring_tag,
1180                             sc->age_cdata.age_tx_ring_map);
1181                 if (sc->age_cdata.age_tx_ring_map != NULL &&
1182                     sc->age_rdata.age_tx_ring != NULL)
1183                         bus_dmamem_free(sc->age_cdata.age_tx_ring_tag,
1184                             sc->age_rdata.age_tx_ring,
1185                             sc->age_cdata.age_tx_ring_map);
1186                 sc->age_rdata.age_tx_ring = NULL;
1187                 sc->age_cdata.age_tx_ring_map = NULL;
1188                 bus_dma_tag_destroy(sc->age_cdata.age_tx_ring_tag);
1189                 sc->age_cdata.age_tx_ring_tag = NULL;
1190         }
1191         /* Rx ring. */
1192         if (sc->age_cdata.age_rx_ring_tag != NULL) {
1193                 if (sc->age_cdata.age_rx_ring_map != NULL)
1194                         bus_dmamap_unload(sc->age_cdata.age_rx_ring_tag,
1195                             sc->age_cdata.age_rx_ring_map);
1196                 if (sc->age_cdata.age_rx_ring_map != NULL &&
1197                     sc->age_rdata.age_rx_ring != NULL)
1198                         bus_dmamem_free(sc->age_cdata.age_rx_ring_tag,
1199                             sc->age_rdata.age_rx_ring,
1200                             sc->age_cdata.age_rx_ring_map);
1201                 sc->age_rdata.age_rx_ring = NULL;
1202                 sc->age_cdata.age_rx_ring_map = NULL;
1203                 bus_dma_tag_destroy(sc->age_cdata.age_rx_ring_tag);
1204                 sc->age_cdata.age_rx_ring_tag = NULL;
1205         }
1206         /* Rx return ring. */
1207         if (sc->age_cdata.age_rr_ring_tag != NULL) {
1208                 if (sc->age_cdata.age_rr_ring_map != NULL)
1209                         bus_dmamap_unload(sc->age_cdata.age_rr_ring_tag,
1210                             sc->age_cdata.age_rr_ring_map);
1211                 if (sc->age_cdata.age_rr_ring_map != NULL &&
1212                     sc->age_rdata.age_rr_ring != NULL)
1213                         bus_dmamem_free(sc->age_cdata.age_rr_ring_tag,
1214                             sc->age_rdata.age_rr_ring,
1215                             sc->age_cdata.age_rr_ring_map);
1216                 sc->age_rdata.age_rr_ring = NULL;
1217                 sc->age_cdata.age_rr_ring_map = NULL;
1218                 bus_dma_tag_destroy(sc->age_cdata.age_rr_ring_tag);
1219                 sc->age_cdata.age_rr_ring_tag = NULL;
1220         }
1221         /* CMB block */
1222         if (sc->age_cdata.age_cmb_block_tag != NULL) {
1223                 if (sc->age_cdata.age_cmb_block_map != NULL)
1224                         bus_dmamap_unload(sc->age_cdata.age_cmb_block_tag,
1225                             sc->age_cdata.age_cmb_block_map);
1226                 if (sc->age_cdata.age_cmb_block_map != NULL &&
1227                     sc->age_rdata.age_cmb_block != NULL)
1228                         bus_dmamem_free(sc->age_cdata.age_cmb_block_tag,
1229                             sc->age_rdata.age_cmb_block,
1230                             sc->age_cdata.age_cmb_block_map);
1231                 sc->age_rdata.age_cmb_block = NULL;
1232                 sc->age_cdata.age_cmb_block_map = NULL;
1233                 bus_dma_tag_destroy(sc->age_cdata.age_cmb_block_tag);
1234                 sc->age_cdata.age_cmb_block_tag = NULL;
1235         }
1236         /* SMB block */
1237         if (sc->age_cdata.age_smb_block_tag != NULL) {
1238                 if (sc->age_cdata.age_smb_block_map != NULL)
1239                         bus_dmamap_unload(sc->age_cdata.age_smb_block_tag,
1240                             sc->age_cdata.age_smb_block_map);
1241                 if (sc->age_cdata.age_smb_block_map != NULL &&
1242                     sc->age_rdata.age_smb_block != NULL)
1243                         bus_dmamem_free(sc->age_cdata.age_smb_block_tag,
1244                             sc->age_rdata.age_smb_block,
1245                             sc->age_cdata.age_smb_block_map);
1246                 sc->age_rdata.age_smb_block = NULL;
1247                 sc->age_cdata.age_smb_block_map = NULL;
1248                 bus_dma_tag_destroy(sc->age_cdata.age_smb_block_tag);
1249                 sc->age_cdata.age_smb_block_tag = NULL;
1250         }
1251
1252         if (sc->age_cdata.age_buffer_tag != NULL) {
1253                 bus_dma_tag_destroy(sc->age_cdata.age_buffer_tag);
1254                 sc->age_cdata.age_buffer_tag = NULL;
1255         }
1256         if (sc->age_cdata.age_parent_tag != NULL) {
1257                 bus_dma_tag_destroy(sc->age_cdata.age_parent_tag);
1258                 sc->age_cdata.age_parent_tag = NULL;
1259         }
1260 }
1261
1262 /*
1263  *      Make sure the interface is stopped at reboot time.
1264  */
1265 static int
1266 age_shutdown(device_t dev)
1267 {
1268         return age_suspend(dev);
1269 }
1270
1271 #ifdef wol_notyet
1272
1273 static void
1274 age_setwol(struct age_softc *sc)
1275 {
1276         struct ifnet *ifp;
1277         struct mii_data *mii;
1278         uint32_t reg, pmcs;
1279         uint16_t pmstat;
1280         int aneg, i, pmc;
1281
1282         AGE_LOCK_ASSERT(sc);
1283
1284         if (pci_find_extcap(sc->age_dev, PCIY_PMG, &pmc) == 0) {
1285                 CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1286                 /*
1287                  * No PME capability, PHY power down.
1288                  * XXX
1289                  * Due to an unknown reason powering down PHY resulted
1290                  * in unexpected results such as inaccessbility of
1291                  * hardware of freshly rebooted system. Disable
1292                  * powering down PHY until I got more information for
1293                  * Attansic/Atheros PHY hardwares.
1294                  */
1295 #ifdef notyet
1296                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1297                     MII_BMCR, BMCR_PDOWN);
1298 #endif
1299                 return;
1300         }
1301
1302         ifp = sc->age_ifp;
1303         if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1304                 /*
1305                  * Note, this driver resets the link speed to 10/100Mbps with
1306                  * auto-negotiation but we don't know whether that operation
1307                  * would succeed or not as it have no control after powering
1308                  * off. If the renegotiation fail WOL may not work. Running
1309                  * at 1Gbps will draw more power than 375mA at 3.3V which is
1310                  * specified in PCI specification and that would result in
1311                  * complete shutdowning power to ethernet controller.
1312                  *
1313                  * TODO
1314                  *  Save current negotiated media speed/duplex/flow-control
1315                  *  to softc and restore the same link again after resuming.
1316                  *  PHY handling such as power down/resetting to 100Mbps
1317                  *  may be better handled in suspend method in phy driver.
1318                  */
1319                 mii = device_get_softc(sc->age_miibus);
1320                 mii_pollstat(mii);
1321                 aneg = 0;
1322                 if ((mii->mii_media_status & IFM_AVALID) != 0) {
1323                         switch IFM_SUBTYPE(mii->mii_media_active) {
1324                         case IFM_10_T:
1325                         case IFM_100_TX:
1326                                 goto got_link;
1327                         case IFM_1000_T:
1328                                 aneg++;
1329                         default:
1330                                 break;
1331                         }
1332                 }
1333                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1334                     MII_100T2CR, 0);
1335                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1336                     MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD |
1337                     ANAR_10 | ANAR_CSMA);
1338                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1339                     MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1340                 DELAY(1000);
1341                 if (aneg != 0) {
1342                         /* Poll link state until age(4) get a 10/100 link. */
1343                         for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1344                                 mii_pollstat(mii);
1345                                 if ((mii->mii_media_status & IFM_AVALID) != 0) {
1346                                         switch (IFM_SUBTYPE(
1347                                             mii->mii_media_active)) {
1348                                         case IFM_10_T:
1349                                         case IFM_100_TX:
1350                                                 age_mac_config(sc);
1351                                                 goto got_link;
1352                                         default:
1353                                                 break;
1354                                         }
1355                                 }
1356                                 AGE_UNLOCK(sc);
1357                                 pause("agelnk", hz);
1358                                 AGE_LOCK(sc);
1359                         }
1360                         if (i == MII_ANEGTICKS_GIGE)
1361                                 device_printf(sc->age_dev,
1362                                     "establishing link failed, "
1363                                     "WOL may not work!");
1364                 }
1365                 /*
1366                  * No link, force MAC to have 100Mbps, full-duplex link.
1367                  * This is the last resort and may/may not work.
1368                  */
1369                 mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1370                 mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1371                 age_mac_config(sc);
1372         }
1373
1374 got_link:
1375         pmcs = 0;
1376         if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1377                 pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1378         CSR_WRITE_4(sc, AGE_WOL_CFG, pmcs);
1379         reg = CSR_READ_4(sc, AGE_MAC_CFG);
1380         reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC);
1381         reg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST);
1382         if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1383                 reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1384         if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1385                 reg |= MAC_CFG_RX_ENB;
1386                 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1387         }
1388
1389         /* Request PME. */
1390         pmstat = pci_read_config(sc->age_dev, pmc + PCIR_POWER_STATUS, 2);
1391         pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1392         if ((ifp->if_capenable & IFCAP_WOL) != 0)
1393                 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1394         pci_write_config(sc->age_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1395 #ifdef notyet
1396         /* See above for powering down PHY issues. */
1397         if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1398                 /* No WOL, PHY power down. */
1399                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1400                     MII_BMCR, BMCR_PDOWN);
1401         }
1402 #endif
1403 }
1404
1405 #endif  /* wol_notyet */
1406
1407 static int
1408 age_suspend(device_t dev)
1409 {
1410         struct age_softc *sc = device_get_softc(dev);
1411         struct ifnet *ifp = &sc->arpcom.ac_if;
1412
1413         lwkt_serialize_enter(ifp->if_serializer);
1414         age_stop(sc);
1415 #ifdef wol_notyet
1416         age_setwol(sc);
1417 #endif
1418         lwkt_serialize_exit(ifp->if_serializer);
1419
1420         return (0);
1421 }
1422
1423 static int
1424 age_resume(device_t dev)
1425 {
1426         struct age_softc *sc = device_get_softc(dev);
1427         struct ifnet *ifp = &sc->arpcom.ac_if;
1428         uint16_t cmd;
1429
1430         lwkt_serialize_enter(ifp->if_serializer);
1431
1432         /*
1433          * Clear INTx emulation disable for hardwares that
1434          * is set in resume event. From Linux.
1435          */
1436         cmd = pci_read_config(sc->age_dev, PCIR_COMMAND, 2);
1437         if ((cmd & 0x0400) != 0) {
1438                 cmd &= ~0x0400;
1439                 pci_write_config(sc->age_dev, PCIR_COMMAND, cmd, 2);
1440         }
1441         if ((ifp->if_flags & IFF_UP) != 0)
1442                 age_init(sc);
1443
1444         lwkt_serialize_exit(ifp->if_serializer);
1445
1446         return (0);
1447 }
1448
1449 static int
1450 age_encap(struct age_softc *sc, struct mbuf **m_head)
1451 {
1452         struct age_txdesc *txd, *txd_last;
1453         struct tx_desc *desc;
1454         struct mbuf *m;
1455         struct age_dmamap_ctx ctx;
1456         bus_dma_segment_t txsegs[AGE_MAXTXSEGS];
1457         bus_dmamap_t map;
1458         uint32_t cflags, poff, vtag;
1459         int error, i, nsegs, prod;
1460
1461         M_ASSERTPKTHDR((*m_head));
1462
1463         m = *m_head;
1464         cflags = vtag = 0;
1465         poff = 0;
1466
1467         prod = sc->age_cdata.age_tx_prod;
1468         txd = &sc->age_cdata.age_txdesc[prod];
1469         txd_last = txd;
1470         map = txd->tx_dmamap;
1471
1472         ctx.nsegs = AGE_MAXTXSEGS;
1473         ctx.segs = txsegs;
1474         error = bus_dmamap_load_mbuf(sc->age_cdata.age_tx_tag, map,
1475                                      *m_head, age_dmamap_buf_cb, &ctx,
1476                                      BUS_DMA_NOWAIT);
1477         if (!error && ctx.nsegs == 0) {
1478                 bus_dmamap_unload(sc->age_cdata.age_tx_tag, map);
1479                 error = EFBIG;
1480         }
1481         if (error == EFBIG) {
1482                 m = m_defrag(*m_head, MB_DONTWAIT);
1483                 if (m == NULL) {
1484                         m_freem(*m_head);
1485                         *m_head = NULL;
1486                         return (ENOBUFS);
1487                 }
1488                 *m_head = m;
1489
1490                 ctx.nsegs = AGE_MAXTXSEGS;
1491                 ctx.segs = txsegs;
1492                 error = bus_dmamap_load_mbuf(sc->age_cdata.age_tx_tag, map,
1493                                              *m_head, age_dmamap_buf_cb, &ctx,
1494                                              BUS_DMA_NOWAIT);
1495                 if (error || ctx.nsegs == 0) {
1496                         if (!error) {
1497                                 bus_dmamap_unload(sc->age_cdata.age_tx_tag,
1498                                                   map);
1499                                 error = EFBIG;
1500                         }
1501                         m_freem(*m_head);
1502                         *m_head = NULL;
1503                         return (error);
1504                 }
1505         } else if (error != 0) {
1506                 return (error);
1507         }
1508         nsegs = ctx.nsegs;
1509
1510         if (nsegs == 0) {
1511                 m_freem(*m_head);
1512                 *m_head = NULL;
1513                 return (EIO);
1514         }
1515
1516         /* Check descriptor overrun. */
1517         if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1518                 bus_dmamap_unload(sc->age_cdata.age_tx_tag, map);
1519                 return (ENOBUFS);
1520         }
1521
1522         m = *m_head;
1523         /* Configure Tx IP/TCP/UDP checksum offload. */
1524         if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1525                 cflags |= AGE_TD_CSUM;
1526                 if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1527                         cflags |= AGE_TD_TCPCSUM;
1528                 if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1529                         cflags |= AGE_TD_UDPCSUM;
1530                 /* Set checksum start offset. */
1531                 cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1532                 /* Set checksum insertion position of TCP/UDP. */
1533                 cflags |= ((poff + m->m_pkthdr.csum_data) <<
1534                     AGE_TD_CSUM_XSUMOFFSET_SHIFT);
1535         }
1536
1537         /* Configure VLAN hardware tag insertion. */
1538         if ((m->m_flags & M_VLANTAG) != 0) {
1539                 vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vlantag);
1540                 vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1541                 cflags |= AGE_TD_INSERT_VLAN_TAG;
1542         }
1543
1544         desc = NULL;
1545         for (i = 0; i < nsegs; i++) {
1546                 desc = &sc->age_rdata.age_tx_ring[prod];
1547                 desc->addr = htole64(txsegs[i].ds_addr);
1548                 desc->len = htole32(AGE_TX_BYTES(txsegs[i].ds_len) | vtag);
1549                 desc->flags = htole32(cflags);
1550                 sc->age_cdata.age_tx_cnt++;
1551                 AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1552         }
1553         /* Update producer index. */
1554         sc->age_cdata.age_tx_prod = prod;
1555
1556         /* Set EOP on the last descriptor. */
1557         prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1558         desc = &sc->age_rdata.age_tx_ring[prod];
1559         desc->flags |= htole32(AGE_TD_EOP);
1560
1561         /* Swap dmamap of the first and the last. */
1562         txd = &sc->age_cdata.age_txdesc[prod];
1563         map = txd_last->tx_dmamap;
1564         txd_last->tx_dmamap = txd->tx_dmamap;
1565         txd->tx_dmamap = map;
1566         txd->tx_m = m;
1567
1568         /* Sync descriptors. */
1569         bus_dmamap_sync(sc->age_cdata.age_tx_tag, map, BUS_DMASYNC_PREWRITE);
1570         bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
1571             sc->age_cdata.age_tx_ring_map, BUS_DMASYNC_PREWRITE);
1572
1573         return (0);
1574 }
1575
1576 static void
1577 age_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1578 {
1579         struct age_softc *sc = ifp->if_softc;
1580         struct mbuf *m_head;
1581         int enq;
1582
1583         ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1584         ASSERT_SERIALIZED(ifp->if_serializer);
1585
1586         if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1587                 ifq_purge(&ifp->if_snd);
1588                 return;
1589         }
1590
1591         if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
1592                 return;
1593
1594         enq = 0;
1595         while (!ifq_is_empty(&ifp->if_snd)) {
1596                 m_head = ifq_dequeue(&ifp->if_snd, NULL);
1597                 if (m_head == NULL)
1598                         break;
1599
1600                 /*
1601                  * Pack the data into the transmit ring. If we
1602                  * don't have room, set the OACTIVE flag and wait
1603                  * for the NIC to drain the ring.
1604                  */
1605                 if (age_encap(sc, &m_head)) {
1606                         if (m_head == NULL)
1607                                 break;
1608                         ifq_prepend(&ifp->if_snd, m_head);
1609                         ifq_set_oactive(&ifp->if_snd);
1610                         break;
1611                 }
1612                 enq = 1;
1613
1614                 /*
1615                  * If there's a BPF listener, bounce a copy of this frame
1616                  * to him.
1617                  */
1618                 ETHER_BPF_MTAP(ifp, m_head);
1619         }
1620
1621         if (enq) {
1622                 /* Update mbox. */
1623                 AGE_COMMIT_MBOX(sc);
1624                 /* Set a timeout in case the chip goes out to lunch. */
1625                 ifp->if_timer = AGE_TX_TIMEOUT;
1626         }
1627 }
1628
1629 static void
1630 age_watchdog(struct ifnet *ifp)
1631 {
1632         struct age_softc *sc = ifp->if_softc;
1633
1634         ASSERT_SERIALIZED(ifp->if_serializer);
1635
1636         if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1637                 if_printf(ifp, "watchdog timeout (missed link)\n");
1638                 ifp->if_oerrors++;
1639                 age_init(sc);
1640                 return;
1641         }
1642
1643         if (sc->age_cdata.age_tx_cnt == 0) {
1644                 if_printf(ifp,
1645                     "watchdog timeout (missed Tx interrupts) -- recovering\n");
1646                 if (!ifq_is_empty(&ifp->if_snd))
1647                         if_devstart(ifp);
1648                 return;
1649         }
1650
1651         if_printf(ifp, "watchdog timeout\n");
1652         ifp->if_oerrors++;
1653         age_init(sc);
1654         if (!ifq_is_empty(&ifp->if_snd))
1655                 if_devstart(ifp);
1656 }
1657
1658 static int
1659 age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
1660 {
1661         struct age_softc *sc = ifp->if_softc;
1662         struct ifreq *ifr;
1663         struct mii_data *mii;
1664         uint32_t reg;
1665         int error, mask;
1666
1667         ASSERT_SERIALIZED(ifp->if_serializer);
1668
1669         ifr = (struct ifreq *)data;
1670         error = 0;
1671         switch (cmd) {
1672         case SIOCSIFMTU:
1673                 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > AGE_JUMBO_MTU) {
1674                         error = EINVAL;
1675                 } else if (ifp->if_mtu != ifr->ifr_mtu) {
1676                         ifp->if_mtu = ifr->ifr_mtu;
1677                         if ((ifp->if_flags & IFF_RUNNING) != 0)
1678                                 age_init(sc);
1679                 }
1680                 break;
1681
1682         case SIOCSIFFLAGS:
1683                 if ((ifp->if_flags & IFF_UP) != 0) {
1684                         if ((ifp->if_flags & IFF_RUNNING) != 0) {
1685                                 if (((ifp->if_flags ^ sc->age_if_flags)
1686                                     & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1687                                         age_rxfilter(sc);
1688                         } else {
1689                                 if ((sc->age_flags & AGE_FLAG_DETACH) == 0)
1690                                         age_init(sc);
1691                         }
1692                 } else {
1693                         if ((ifp->if_flags & IFF_RUNNING) != 0)
1694                                 age_stop(sc);
1695                 }
1696                 sc->age_if_flags = ifp->if_flags;
1697                 break;
1698
1699         case SIOCADDMULTI:
1700         case SIOCDELMULTI:
1701                 if ((ifp->if_flags & IFF_RUNNING) != 0)
1702                         age_rxfilter(sc);
1703                 break;
1704
1705         case SIOCSIFMEDIA:
1706         case SIOCGIFMEDIA:
1707                 mii = device_get_softc(sc->age_miibus);
1708                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1709                 break;
1710
1711         case SIOCSIFCAP:
1712                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1713
1714                 if ((mask & IFCAP_TXCSUM) != 0 &&
1715                     (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1716                         ifp->if_capenable ^= IFCAP_TXCSUM;
1717                         if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1718                                 ifp->if_hwassist |= AGE_CSUM_FEATURES;
1719                         else
1720                                 ifp->if_hwassist &= ~AGE_CSUM_FEATURES;
1721                 }
1722
1723                 if ((mask & IFCAP_RXCSUM) != 0 &&
1724                     (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
1725                         ifp->if_capenable ^= IFCAP_RXCSUM;
1726                         reg = CSR_READ_4(sc, AGE_MAC_CFG);
1727                         reg &= ~MAC_CFG_RXCSUM_ENB;
1728                         if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1729                                 reg |= MAC_CFG_RXCSUM_ENB;
1730                         CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1731                 }
1732
1733                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1734                     (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
1735                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1736                         age_rxvlan(sc);
1737                 }
1738                 break;
1739
1740         default:
1741                 error = ether_ioctl(ifp, cmd, data);
1742                 break;
1743         }
1744         return (error);
1745 }
1746
1747 static void
1748 age_mac_config(struct age_softc *sc)
1749 {
1750         struct mii_data *mii = device_get_softc(sc->age_miibus);
1751         uint32_t reg;
1752
1753         reg = CSR_READ_4(sc, AGE_MAC_CFG);
1754         reg &= ~MAC_CFG_FULL_DUPLEX;
1755         reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1756         reg &= ~MAC_CFG_SPEED_MASK;
1757
1758         /* Reprogram MAC with resolved speed/duplex. */
1759         switch (IFM_SUBTYPE(mii->mii_media_active)) {
1760         case IFM_10_T:
1761         case IFM_100_TX:
1762                 reg |= MAC_CFG_SPEED_10_100;
1763                 break;
1764         case IFM_1000_T:
1765                 reg |= MAC_CFG_SPEED_1000;
1766                 break;
1767         }
1768         if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1769                 reg |= MAC_CFG_FULL_DUPLEX;
1770 #ifdef notyet
1771                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1772                         reg |= MAC_CFG_TX_FC;
1773                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1774                         reg |= MAC_CFG_RX_FC;
1775 #endif
1776         }
1777         CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1778 }
1779
1780 static void
1781 age_stats_update(struct age_softc *sc)
1782 {
1783         struct ifnet *ifp = &sc->arpcom.ac_if;
1784         struct age_stats *stat;
1785         struct smb *smb;
1786
1787         stat = &sc->age_stat;
1788
1789         bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
1790             sc->age_cdata.age_smb_block_map, BUS_DMASYNC_POSTREAD);
1791
1792         smb = sc->age_rdata.age_smb_block;
1793         if (smb->updated == 0)
1794                 return;
1795
1796         /* Rx stats. */
1797         stat->rx_frames += smb->rx_frames;
1798         stat->rx_bcast_frames += smb->rx_bcast_frames;
1799         stat->rx_mcast_frames += smb->rx_mcast_frames;
1800         stat->rx_pause_frames += smb->rx_pause_frames;
1801         stat->rx_control_frames += smb->rx_control_frames;
1802         stat->rx_crcerrs += smb->rx_crcerrs;
1803         stat->rx_lenerrs += smb->rx_lenerrs;
1804         stat->rx_bytes += smb->rx_bytes;
1805         stat->rx_runts += smb->rx_runts;
1806         stat->rx_fragments += smb->rx_fragments;
1807         stat->rx_pkts_64 += smb->rx_pkts_64;
1808         stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1809         stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1810         stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
1811         stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
1812         stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
1813         stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
1814         stat->rx_pkts_truncated += smb->rx_pkts_truncated;
1815         stat->rx_fifo_oflows += smb->rx_fifo_oflows;
1816         stat->rx_desc_oflows += smb->rx_desc_oflows;
1817         stat->rx_alignerrs += smb->rx_alignerrs;
1818         stat->rx_bcast_bytes += smb->rx_bcast_bytes;
1819         stat->rx_mcast_bytes += smb->rx_mcast_bytes;
1820         stat->rx_pkts_filtered += smb->rx_pkts_filtered;
1821
1822         /* Tx stats. */
1823         stat->tx_frames += smb->tx_frames;
1824         stat->tx_bcast_frames += smb->tx_bcast_frames;
1825         stat->tx_mcast_frames += smb->tx_mcast_frames;
1826         stat->tx_pause_frames += smb->tx_pause_frames;
1827         stat->tx_excess_defer += smb->tx_excess_defer;
1828         stat->tx_control_frames += smb->tx_control_frames;
1829         stat->tx_deferred += smb->tx_deferred;
1830         stat->tx_bytes += smb->tx_bytes;
1831         stat->tx_pkts_64 += smb->tx_pkts_64;
1832         stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
1833         stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
1834         stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
1835         stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
1836         stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
1837         stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
1838         stat->tx_single_colls += smb->tx_single_colls;
1839         stat->tx_multi_colls += smb->tx_multi_colls;
1840         stat->tx_late_colls += smb->tx_late_colls;
1841         stat->tx_excess_colls += smb->tx_excess_colls;
1842         stat->tx_underrun += smb->tx_underrun;
1843         stat->tx_desc_underrun += smb->tx_desc_underrun;
1844         stat->tx_lenerrs += smb->tx_lenerrs;
1845         stat->tx_pkts_truncated += smb->tx_pkts_truncated;
1846         stat->tx_bcast_bytes += smb->tx_bcast_bytes;
1847         stat->tx_mcast_bytes += smb->tx_mcast_bytes;
1848
1849         /* Update counters in ifnet. */
1850         ifp->if_opackets += smb->tx_frames;
1851
1852         ifp->if_collisions += smb->tx_single_colls +
1853             smb->tx_multi_colls + smb->tx_late_colls +
1854             smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
1855
1856         ifp->if_oerrors += smb->tx_excess_colls +
1857             smb->tx_late_colls + smb->tx_underrun +
1858             smb->tx_pkts_truncated;
1859
1860         ifp->if_ipackets += smb->rx_frames;
1861
1862         ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
1863             smb->rx_runts + smb->rx_pkts_truncated +
1864             smb->rx_fifo_oflows + smb->rx_desc_oflows +
1865             smb->rx_alignerrs;
1866
1867         /* Update done, clear. */
1868         smb->updated = 0;
1869
1870         bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
1871             sc->age_cdata.age_smb_block_map, BUS_DMASYNC_PREWRITE);
1872 }
1873
1874 static void
1875 age_intr(void *xsc)
1876 {
1877         struct age_softc *sc = xsc;
1878         struct ifnet *ifp = &sc->arpcom.ac_if;
1879         struct cmb *cmb;
1880         uint32_t status;
1881
1882         ASSERT_SERIALIZED(ifp->if_serializer);
1883
1884         status = CSR_READ_4(sc, AGE_INTR_STATUS);
1885         if (status == 0 || (status & AGE_INTRS) == 0)
1886                 return;
1887
1888         /* Disable and acknowledge interrupts. */
1889         CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
1890
1891         cmb = sc->age_rdata.age_cmb_block;
1892
1893         bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
1894             sc->age_cdata.age_cmb_block_map, BUS_DMASYNC_POSTREAD);
1895         status = le32toh(cmb->intr_status);
1896         if ((status & AGE_INTRS) == 0)
1897                 goto done;
1898 again:
1899         sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
1900             TPD_CONS_SHIFT;
1901         sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
1902             RRD_PROD_SHIFT;
1903
1904         /* Let hardware know CMB was served. */
1905         cmb->intr_status = 0;
1906         bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
1907             sc->age_cdata.age_cmb_block_map, BUS_DMASYNC_PREWRITE);
1908
1909 #if 0
1910         kprintf("INTR: 0x%08x\n", status);
1911         status &= ~INTR_DIS_DMA;
1912         CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
1913 #endif
1914
1915         if ((ifp->if_flags & IFF_RUNNING) != 0) {
1916                 if ((status & INTR_CMB_RX) != 0)
1917                         age_rxintr(sc, sc->age_rr_prod);
1918
1919                 if ((status & INTR_CMB_TX) != 0)
1920                         age_txintr(sc, sc->age_tpd_cons);
1921
1922                 if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
1923                         if ((status & INTR_DMA_RD_TO_RST) != 0)
1924                                 device_printf(sc->age_dev,
1925                                     "DMA read error! -- resetting\n");
1926                         if ((status & INTR_DMA_WR_TO_RST) != 0)
1927                                 device_printf(sc->age_dev,
1928                                     "DMA write error! -- resetting\n");
1929                         age_init(sc);
1930                         /* XXX return? */
1931                 }
1932
1933                 if (!ifq_is_empty(&ifp->if_snd))
1934                         if_devstart(ifp);
1935
1936                 if ((status & INTR_SMB) != 0)
1937                         age_stats_update(sc);
1938         }
1939
1940         /* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
1941         bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
1942             sc->age_cdata.age_cmb_block_map, BUS_DMASYNC_POSTREAD);
1943         status = le32toh(cmb->intr_status);
1944         if ((status & AGE_INTRS) != 0)
1945                 goto again;
1946 done:
1947         /* Re-enable interrupts. */
1948         CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
1949 }
1950
1951 static void
1952 age_txintr(struct age_softc *sc, int tpd_cons)
1953 {
1954         struct ifnet *ifp = &sc->arpcom.ac_if;
1955         struct age_txdesc *txd;
1956         int cons, prog;
1957
1958         bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
1959             sc->age_cdata.age_tx_ring_map, BUS_DMASYNC_POSTREAD);
1960
1961         /*
1962          * Go through our Tx list and free mbufs for those
1963          * frames which have been transmitted.
1964          */
1965         cons = sc->age_cdata.age_tx_cons;
1966         for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
1967                 if (sc->age_cdata.age_tx_cnt <= 0)
1968                         break;
1969                 prog++;
1970                 ifq_clr_oactive(&ifp->if_snd);
1971                 sc->age_cdata.age_tx_cnt--;
1972                 txd = &sc->age_cdata.age_txdesc[cons];
1973                 /*
1974                  * Clear Tx descriptors, it's not required but would
1975                  * help debugging in case of Tx issues.
1976                  */
1977                 txd->tx_desc->addr = 0;
1978                 txd->tx_desc->len = 0;
1979                 txd->tx_desc->flags = 0;
1980
1981                 if (txd->tx_m == NULL)
1982                         continue;
1983                 /* Reclaim transmitted mbufs. */
1984                 bus_dmamap_unload(sc->age_cdata.age_tx_tag, txd->tx_dmamap);
1985                 m_freem(txd->tx_m);
1986                 txd->tx_m = NULL;
1987         }
1988
1989         if (prog > 0) {
1990                 sc->age_cdata.age_tx_cons = cons;
1991
1992                 /*
1993                  * Unarm watchdog timer only when there are no pending
1994                  * Tx descriptors in queue.
1995                  */
1996                 if (sc->age_cdata.age_tx_cnt == 0)
1997                         ifp->if_timer = 0;
1998                 bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
1999                     sc->age_cdata.age_tx_ring_map, BUS_DMASYNC_PREWRITE);
2000         }
2001 }
2002
2003 /* Receive a frame. */
2004 static void
2005 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
2006 {
2007         struct ifnet *ifp = &sc->arpcom.ac_if;
2008         struct age_rxdesc *rxd;
2009         struct rx_desc *desc;
2010         struct mbuf *mp, *m;
2011         uint32_t status, index, vtag;
2012         int count, nsegs, pktlen;
2013         int rx_cons;
2014
2015         status = le32toh(rxrd->flags);
2016         index = le32toh(rxrd->index);
2017         rx_cons = AGE_RX_CONS(index);
2018         nsegs = AGE_RX_NSEGS(index);
2019
2020         sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
2021         if ((status & AGE_RRD_ERROR) != 0 &&
2022             (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
2023             AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
2024                 /*
2025                  * We want to pass the following frames to upper
2026                  * layer regardless of error status of Rx return
2027                  * ring.
2028                  *
2029                  *  o IP/TCP/UDP checksum is bad.
2030                  *  o frame length and protocol specific length
2031                  *     does not match.
2032                  */
2033                 sc->age_cdata.age_rx_cons += nsegs;
2034                 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2035                 return;
2036         }
2037
2038         pktlen = 0;
2039         for (count = 0; count < nsegs; count++,
2040             AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
2041                 rxd = &sc->age_cdata.age_rxdesc[rx_cons];
2042                 mp = rxd->rx_m;
2043                 desc = rxd->rx_desc;
2044                 /* Add a new receive buffer to the ring. */
2045                 if (age_newbuf(sc, rxd, 0) != 0) {
2046                         ifp->if_iqdrops++;
2047                         /* Reuse Rx buffers. */
2048                         if (sc->age_cdata.age_rxhead != NULL) {
2049                                 m_freem(sc->age_cdata.age_rxhead);
2050                                 AGE_RXCHAIN_RESET(sc);
2051                         }
2052                         break;
2053                 }
2054
2055                 /* The length of the first mbuf is computed last. */
2056                 if (count != 0) {
2057                         mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
2058                         pktlen += mp->m_len;
2059                 }
2060
2061                 /* Chain received mbufs. */
2062                 if (sc->age_cdata.age_rxhead == NULL) {
2063                         sc->age_cdata.age_rxhead = mp;
2064                         sc->age_cdata.age_rxtail = mp;
2065                 } else {
2066                         mp->m_flags &= ~M_PKTHDR;
2067                         sc->age_cdata.age_rxprev_tail =
2068                             sc->age_cdata.age_rxtail;
2069                         sc->age_cdata.age_rxtail->m_next = mp;
2070                         sc->age_cdata.age_rxtail = mp;
2071                 }
2072
2073                 if (count == nsegs - 1) {
2074                         /*
2075                          * It seems that L1 controller has no way
2076                          * to tell hardware to strip CRC bytes.
2077                          */
2078                         sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
2079                         if (nsegs > 1) {
2080                                 /* Remove the CRC bytes in chained mbufs. */
2081                                 pktlen -= ETHER_CRC_LEN;
2082                                 if (mp->m_len <= ETHER_CRC_LEN) {
2083                                         sc->age_cdata.age_rxtail =
2084                                             sc->age_cdata.age_rxprev_tail;
2085                                         sc->age_cdata.age_rxtail->m_len -=
2086                                             (ETHER_CRC_LEN - mp->m_len);
2087                                         sc->age_cdata.age_rxtail->m_next = NULL;
2088                                         m_freem(mp);
2089                                 } else {
2090                                         mp->m_len -= ETHER_CRC_LEN;
2091                                 }
2092                         }
2093
2094                         m = sc->age_cdata.age_rxhead;
2095                         m->m_flags |= M_PKTHDR;
2096                         m->m_pkthdr.rcvif = ifp;
2097                         m->m_pkthdr.len = sc->age_cdata.age_rxlen;
2098                         /* Set the first mbuf length. */
2099                         m->m_len = sc->age_cdata.age_rxlen - pktlen;
2100
2101                         /*
2102                          * Set checksum information.
2103                          * It seems that L1 controller can compute partial
2104                          * checksum. The partial checksum value can be used
2105                          * to accelerate checksum computation for fragmented
2106                          * TCP/UDP packets. Upper network stack already
2107                          * takes advantage of the partial checksum value in
2108                          * IP reassembly stage. But I'm not sure the
2109                          * correctness of the partial hardware checksum
2110                          * assistance due to lack of data sheet. If it is
2111                          * proven to work on L1 I'll enable it.
2112                          */
2113                         if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2114                             (status & AGE_RRD_IPV4) != 0) {
2115                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2116                                 if ((status & AGE_RRD_IPCSUM_NOK) == 0)
2117                                         m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2118                                 if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
2119                                     (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
2120                                         m->m_pkthdr.csum_flags |=
2121                                             CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2122                                         m->m_pkthdr.csum_data = 0xffff;
2123                                 }
2124                                 /*
2125                                  * Don't mark bad checksum for TCP/UDP frames
2126                                  * as fragmented frames may always have set
2127                                  * bad checksummed bit of descriptor status.
2128                                  */
2129                         }
2130
2131                         /* Check for VLAN tagged frames. */
2132                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2133                             (status & AGE_RRD_VLAN) != 0) {
2134                                 vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
2135                                 m->m_pkthdr.ether_vlantag =
2136                                     AGE_RX_VLAN_TAG(vtag);
2137                                 m->m_flags |= M_VLANTAG;
2138                         }
2139
2140                         /* Pass it on. */
2141                         ifp->if_input(ifp, m);
2142
2143                         /* Reset mbuf chains. */
2144                         AGE_RXCHAIN_RESET(sc);
2145                 }
2146         }
2147
2148         if (count != nsegs) {
2149                 sc->age_cdata.age_rx_cons += nsegs;
2150                 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2151         } else {
2152                 sc->age_cdata.age_rx_cons = rx_cons;
2153         }
2154 }
2155
2156 static void
2157 age_rxintr(struct age_softc *sc, int rr_prod)
2158 {
2159         struct rx_rdesc *rxrd;
2160         int rr_cons, nsegs, pktlen, prog;
2161
2162         rr_cons = sc->age_cdata.age_rr_cons;
2163         if (rr_cons == rr_prod)
2164                 return;
2165
2166         bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2167             sc->age_cdata.age_rr_ring_map, BUS_DMASYNC_POSTREAD);
2168
2169         for (prog = 0; rr_cons != rr_prod; prog++) {
2170                 rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
2171                 nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
2172                 if (nsegs == 0)
2173                         break;
2174
2175                 /*
2176                  * Check number of segments against received bytes.
2177                  * Non-matching value would indicate that hardware
2178                  * is still trying to update Rx return descriptors.
2179                  * I'm not sure whether this check is really needed.
2180                  */
2181                 pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
2182                 if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
2183                     (MCLBYTES - ETHER_ALIGN)))
2184                         break;
2185
2186                 /* Received a frame. */
2187                 age_rxeof(sc, rxrd);
2188
2189                 /* Clear return ring. */
2190                 rxrd->index = 0;
2191                 AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
2192         }
2193
2194         if (prog > 0) {
2195                 /* Update the consumer index. */
2196                 sc->age_cdata.age_rr_cons = rr_cons;
2197
2198                 /* Sync descriptors. */
2199                 bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2200                     sc->age_cdata.age_rr_ring_map, BUS_DMASYNC_PREWRITE);
2201
2202                 /* Notify hardware availability of new Rx buffers. */
2203                 AGE_COMMIT_MBOX(sc);
2204         }
2205 }
2206
2207 static void
2208 age_tick(void *xsc)
2209 {
2210         struct age_softc *sc = xsc;
2211         struct ifnet *ifp = &sc->arpcom.ac_if;
2212         struct mii_data *mii = device_get_softc(sc->age_miibus);
2213
2214         lwkt_serialize_enter(ifp->if_serializer);
2215
2216         mii_tick(mii);
2217         callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2218
2219         lwkt_serialize_exit(ifp->if_serializer);
2220 }
2221
2222 static void
2223 age_reset(struct age_softc *sc)
2224 {
2225         uint32_t reg;
2226         int i;
2227
2228         CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
2229         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2230                 DELAY(1);
2231                 if ((CSR_READ_4(sc, AGE_MASTER_CFG) & MASTER_RESET) == 0)
2232                         break;
2233         }
2234         if (i == 0)
2235                 device_printf(sc->age_dev, "master reset timeout!\n");
2236
2237         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2238                 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2239                         break;
2240                 DELAY(10);
2241         }
2242         if (i == 0)
2243                 device_printf(sc->age_dev, "reset timeout(0x%08x)!\n", reg);
2244
2245         /* Initialize PCIe module. From Linux. */
2246         CSR_WRITE_4(sc, 0x12FC, 0x6500);
2247         CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2248 }
2249
2250 static void
2251 age_init(void *xsc)
2252 {
2253         struct age_softc *sc = xsc;
2254         struct ifnet *ifp = &sc->arpcom.ac_if;
2255         struct mii_data *mii;
2256         uint8_t eaddr[ETHER_ADDR_LEN];
2257         bus_addr_t paddr;
2258         uint32_t reg, fsize;
2259         uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
2260         int error;
2261
2262         ASSERT_SERIALIZED(ifp->if_serializer);
2263
2264         mii = device_get_softc(sc->age_miibus);
2265
2266         /*
2267          * Cancel any pending I/O.
2268          */
2269         age_stop(sc);
2270
2271         /*
2272          * Reset the chip to a known state.
2273          */
2274         age_reset(sc);
2275
2276         /* Initialize descriptors. */
2277         error = age_init_rx_ring(sc);
2278         if (error != 0) {
2279                 device_printf(sc->age_dev, "no memory for Rx buffers.\n");
2280                 age_stop(sc);
2281                 return;
2282         }
2283         age_init_rr_ring(sc);
2284         age_init_tx_ring(sc);
2285         age_init_cmb_block(sc);
2286         age_init_smb_block(sc);
2287
2288         /* Reprogram the station address. */
2289         bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2290         CSR_WRITE_4(sc, AGE_PAR0,
2291             eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2292         CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
2293
2294         /* Set descriptor base addresses. */
2295         paddr = sc->age_rdata.age_tx_ring_paddr;
2296         CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
2297         paddr = sc->age_rdata.age_rx_ring_paddr;
2298         CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
2299         paddr = sc->age_rdata.age_rr_ring_paddr;
2300         CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
2301         paddr = sc->age_rdata.age_tx_ring_paddr;
2302         CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
2303         paddr = sc->age_rdata.age_cmb_block_paddr;
2304         CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
2305         paddr = sc->age_rdata.age_smb_block_paddr;
2306         CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
2307
2308         /* Set Rx/Rx return descriptor counter. */
2309         CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
2310             ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
2311             DESC_RRD_CNT_MASK) |
2312             ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
2313
2314         /* Set Tx descriptor counter. */
2315         CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
2316             (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
2317
2318         /* Tell hardware that we're ready to load descriptors. */
2319         CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
2320
2321         /*
2322          * Initialize mailbox register.
2323          * Updated producer/consumer index information is exchanged
2324          * through this mailbox register. However Tx producer and
2325          * Rx return consumer/Rx producer are all shared such that
2326          * it's hard to separate code path between Tx and Rx without
2327          * locking. If L1 hardware have a separate mail box register
2328          * for Tx and Rx consumer/producer management we could have
2329          * indepent Tx/Rx handler which in turn Rx handler could have
2330          * been run without any locking.
2331          */
2332         AGE_COMMIT_MBOX(sc);
2333
2334         /* Configure IPG/IFG parameters. */
2335         CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
2336             ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
2337             ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2338             ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2339             ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
2340
2341         /* Set parameters for half-duplex media. */
2342         CSR_WRITE_4(sc, AGE_HDPX_CFG,
2343             ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2344             HDPX_CFG_LCOL_MASK) |
2345             ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2346             HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2347             ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2348             HDPX_CFG_ABEBT_MASK) |
2349             ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2350             HDPX_CFG_JAMIPG_MASK));
2351
2352         /* Configure interrupt moderation timer. */
2353         CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
2354         reg = CSR_READ_4(sc, AGE_MASTER_CFG);
2355         reg &= ~MASTER_MTIMER_ENB;
2356         if (AGE_USECS(sc->age_int_mod) == 0)
2357                 reg &= ~MASTER_ITIMER_ENB;
2358         else
2359                 reg |= MASTER_ITIMER_ENB;
2360         CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
2361         if (bootverbose)
2362                 device_printf(sc->age_dev, "interrupt moderation is %d us.\n",
2363                     sc->age_int_mod);
2364         CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
2365
2366         /* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
2367         if (ifp->if_mtu < ETHERMTU)
2368                 sc->age_max_frame_size = ETHERMTU;
2369         else
2370                 sc->age_max_frame_size = ifp->if_mtu;
2371         sc->age_max_frame_size += ETHER_HDR_LEN +
2372             sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
2373         CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
2374
2375         /* Configure jumbo frame. */
2376         fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
2377         CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
2378             (((fsize / sizeof(uint64_t)) <<
2379             RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
2380             ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
2381             RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
2382             ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
2383             RXQ_JUMBO_CFG_RRD_TIMER_MASK));
2384
2385         /* Configure flow-control parameters. From Linux. */
2386         if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
2387                 /*
2388                  * Magic workaround for old-L1.
2389                  * Don't know which hw revision requires this magic.
2390                  */
2391                 CSR_WRITE_4(sc, 0x12FC, 0x6500);
2392                 /*
2393                  * Another magic workaround for flow-control mode
2394                  * change. From Linux.
2395                  */
2396                 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2397         }
2398         /*
2399          * TODO
2400          *  Should understand pause parameter relationships between FIFO
2401          *  size and number of Rx descriptors and Rx return descriptors.
2402          *
2403          *  Magic parameters came from Linux.
2404          */
2405         switch (sc->age_chip_rev) {
2406         case 0x8001:
2407         case 0x9001:
2408         case 0x9002:
2409         case 0x9003:
2410                 rxf_hi = AGE_RX_RING_CNT / 16;
2411                 rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
2412                 rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
2413                 rrd_lo = AGE_RR_RING_CNT / 16;
2414                 break;
2415         default:
2416                 reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
2417                 rxf_lo = reg / 16;
2418                 if (rxf_lo < 192)
2419                         rxf_lo = 192;
2420                 rxf_hi = (reg * 7) / 8;
2421                 if (rxf_hi < rxf_lo)
2422                         rxf_hi = rxf_lo + 16;
2423                 reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
2424                 rrd_lo = reg / 8;
2425                 rrd_hi = (reg * 7) / 8;
2426                 if (rrd_lo < 2)
2427                         rrd_lo = 2;
2428                 if (rrd_hi < rrd_lo)
2429                         rrd_hi = rrd_lo + 3;
2430                 break;
2431         }
2432         CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
2433             ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
2434             RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
2435             ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
2436             RXQ_FIFO_PAUSE_THRESH_HI_MASK));
2437         CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
2438             ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
2439             RXQ_RRD_PAUSE_THRESH_LO_MASK) |
2440             ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
2441             RXQ_RRD_PAUSE_THRESH_HI_MASK));
2442
2443         /* Configure RxQ. */
2444         CSR_WRITE_4(sc, AGE_RXQ_CFG,
2445             ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
2446             RXQ_CFG_RD_BURST_MASK) |
2447             ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
2448             RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
2449             ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
2450             RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
2451             RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2452
2453         /* Configure TxQ. */
2454         CSR_WRITE_4(sc, AGE_TXQ_CFG,
2455             ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2456             TXQ_CFG_TPD_BURST_MASK) |
2457             ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
2458             TXQ_CFG_TX_FIFO_BURST_MASK) |
2459             ((TXQ_CFG_TPD_FETCH_DEFAULT <<
2460             TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
2461             TXQ_CFG_ENB);
2462
2463         CSR_WRITE_4(sc, AGE_TX_JUMBO_TPD_TH_IPG,
2464             (((fsize / sizeof(uint64_t) << TX_JUMBO_TPD_TH_SHIFT)) &
2465             TX_JUMBO_TPD_TH_MASK) |
2466             ((TX_JUMBO_TPD_IPG_DEFAULT << TX_JUMBO_TPD_IPG_SHIFT) &
2467             TX_JUMBO_TPD_IPG_MASK));
2468
2469         /* Configure DMA parameters. */
2470         CSR_WRITE_4(sc, AGE_DMA_CFG,
2471             DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
2472             sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
2473             sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
2474
2475         /* Configure CMB DMA write threshold. */
2476         CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
2477             ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
2478             CMB_WR_THRESH_RRD_MASK) |
2479             ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
2480             CMB_WR_THRESH_TPD_MASK));
2481
2482         /* Set CMB/SMB timer and enable them. */
2483         CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
2484             ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
2485             ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
2486
2487         /* Request SMB updates for every seconds. */
2488         CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
2489         CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
2490
2491         /*
2492          * Disable all WOL bits as WOL can interfere normal Rx
2493          * operation.
2494          */
2495         CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
2496
2497         /*
2498          * Configure Tx/Rx MACs.
2499          *  - Auto-padding for short frames.
2500          *  - Enable CRC generation.
2501          *  Start with full-duplex/1000Mbps media. Actual reconfiguration
2502          *  of MAC is followed after link establishment.
2503          */
2504         CSR_WRITE_4(sc, AGE_MAC_CFG,
2505             MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
2506             MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
2507             ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2508             MAC_CFG_PREAMBLE_MASK));
2509
2510         /* Set up the receive filter. */
2511         age_rxfilter(sc);
2512         age_rxvlan(sc);
2513
2514         reg = CSR_READ_4(sc, AGE_MAC_CFG);
2515         if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2516                 reg |= MAC_CFG_RXCSUM_ENB;
2517
2518         /* Ack all pending interrupts and clear it. */
2519         CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2520         CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
2521
2522         /* Finally enable Tx/Rx MAC. */
2523         CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2524
2525         sc->age_flags &= ~AGE_FLAG_LINK;
2526         /* Switch to the current media. */
2527         mii_mediachg(mii);
2528
2529         callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2530
2531         ifp->if_flags |= IFF_RUNNING;
2532         ifq_clr_oactive(&ifp->if_snd);
2533 }
2534
2535 static void
2536 age_stop(struct age_softc *sc)
2537 {
2538         struct ifnet *ifp = &sc->arpcom.ac_if;
2539         struct age_txdesc *txd;
2540         struct age_rxdesc *rxd;
2541         uint32_t reg;
2542         int i;
2543
2544         ASSERT_SERIALIZED(ifp->if_serializer);
2545
2546         /*
2547          * Mark the interface down and cancel the watchdog timer.
2548          */
2549         ifp->if_flags &= ~IFF_RUNNING;
2550         ifq_clr_oactive(&ifp->if_snd);
2551         ifp->if_timer = 0;
2552
2553         sc->age_flags &= ~AGE_FLAG_LINK;
2554         callout_stop(&sc->age_tick_ch);
2555
2556         /*
2557          * Disable interrupts.
2558          */
2559         CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
2560         CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
2561
2562         /* Stop CMB/SMB updates. */
2563         CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
2564
2565         /* Stop Rx/Tx MAC. */
2566         age_stop_rxmac(sc);
2567         age_stop_txmac(sc);
2568
2569         /* Stop DMA. */
2570         CSR_WRITE_4(sc, AGE_DMA_CFG,
2571             CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
2572
2573         /* Stop TxQ/RxQ. */
2574         CSR_WRITE_4(sc, AGE_TXQ_CFG,
2575             CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
2576         CSR_WRITE_4(sc, AGE_RXQ_CFG,
2577             CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
2578         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2579                 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2580                         break;
2581                 DELAY(10);
2582         }
2583         if (i == 0)
2584                 device_printf(sc->age_dev,
2585                     "stopping Rx/Tx MACs timed out(0x%08x)!\n", reg);
2586
2587         /* Reclaim Rx buffers that have been processed. */
2588         if (sc->age_cdata.age_rxhead != NULL)
2589                 m_freem(sc->age_cdata.age_rxhead);
2590         AGE_RXCHAIN_RESET(sc);
2591
2592         /*
2593          * Free RX and TX mbufs still in the queues.
2594          */
2595         for (i = 0; i < AGE_RX_RING_CNT; i++) {
2596                 rxd = &sc->age_cdata.age_rxdesc[i];
2597                 if (rxd->rx_m != NULL) {
2598                         bus_dmamap_unload(sc->age_cdata.age_rx_tag,
2599                             rxd->rx_dmamap);
2600                         m_freem(rxd->rx_m);
2601                         rxd->rx_m = NULL;
2602                 }
2603         }
2604         for (i = 0; i < AGE_TX_RING_CNT; i++) {
2605                 txd = &sc->age_cdata.age_txdesc[i];
2606                 if (txd->tx_m != NULL) {
2607                         bus_dmamap_unload(sc->age_cdata.age_tx_tag,
2608                             txd->tx_dmamap);
2609                         m_freem(txd->tx_m);
2610                         txd->tx_m = NULL;
2611                 }
2612         }
2613 }
2614
2615 static void
2616 age_stop_txmac(struct age_softc *sc)
2617 {
2618         uint32_t reg;
2619         int i;
2620
2621         reg = CSR_READ_4(sc, AGE_MAC_CFG);
2622         if ((reg & MAC_CFG_TX_ENB) != 0) {
2623                 reg &= ~MAC_CFG_TX_ENB;
2624                 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2625         }
2626         /* Stop Tx DMA engine. */
2627         reg = CSR_READ_4(sc, AGE_DMA_CFG);
2628         if ((reg & DMA_CFG_RD_ENB) != 0) {
2629                 reg &= ~DMA_CFG_RD_ENB;
2630                 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2631         }
2632         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2633                 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2634                     (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2635                         break;
2636                 DELAY(10);
2637         }
2638         if (i == 0)
2639                 device_printf(sc->age_dev, "stopping TxMAC timeout!\n");
2640 }
2641
2642 static void
2643 age_stop_rxmac(struct age_softc *sc)
2644 {
2645         uint32_t reg;
2646         int i;
2647
2648         reg = CSR_READ_4(sc, AGE_MAC_CFG);
2649         if ((reg & MAC_CFG_RX_ENB) != 0) {
2650                 reg &= ~MAC_CFG_RX_ENB;
2651                 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2652         }
2653         /* Stop Rx DMA engine. */
2654         reg = CSR_READ_4(sc, AGE_DMA_CFG);
2655         if ((reg & DMA_CFG_WR_ENB) != 0) {
2656                 reg &= ~DMA_CFG_WR_ENB;
2657                 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2658         }
2659         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2660                 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2661                     (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2662                         break;
2663                 DELAY(10);
2664         }
2665         if (i == 0)
2666                 device_printf(sc->age_dev, "stopping RxMAC timeout!\n");
2667 }
2668
2669 static void
2670 age_init_tx_ring(struct age_softc *sc)
2671 {
2672         struct age_ring_data *rd;
2673         struct age_txdesc *txd;
2674         int i;
2675
2676         sc->age_cdata.age_tx_prod = 0;
2677         sc->age_cdata.age_tx_cons = 0;
2678         sc->age_cdata.age_tx_cnt = 0;
2679
2680         rd = &sc->age_rdata;
2681         bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
2682         for (i = 0; i < AGE_TX_RING_CNT; i++) {
2683                 txd = &sc->age_cdata.age_txdesc[i];
2684                 txd->tx_desc = &rd->age_tx_ring[i];
2685                 txd->tx_m = NULL;
2686         }
2687
2688         bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2689             sc->age_cdata.age_tx_ring_map, BUS_DMASYNC_PREWRITE);
2690 }
2691
2692 static int
2693 age_init_rx_ring(struct age_softc *sc)
2694 {
2695         struct age_ring_data *rd;
2696         struct age_rxdesc *rxd;
2697         int i;
2698
2699         sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2700         rd = &sc->age_rdata;
2701         bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
2702         for (i = 0; i < AGE_RX_RING_CNT; i++) {
2703                 rxd = &sc->age_cdata.age_rxdesc[i];
2704                 rxd->rx_m = NULL;
2705                 rxd->rx_desc = &rd->age_rx_ring[i];
2706                 if (age_newbuf(sc, rxd, 1) != 0)
2707                         return (ENOBUFS);
2708         }
2709
2710         bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2711             sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
2712
2713         return (0);
2714 }
2715
2716 static void
2717 age_init_rr_ring(struct age_softc *sc)
2718 {
2719         struct age_ring_data *rd;
2720
2721         sc->age_cdata.age_rr_cons = 0;
2722         AGE_RXCHAIN_RESET(sc);
2723
2724         rd = &sc->age_rdata;
2725         bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
2726         bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2727             sc->age_cdata.age_rr_ring_map, BUS_DMASYNC_PREWRITE);
2728 }
2729
2730 static void
2731 age_init_cmb_block(struct age_softc *sc)
2732 {
2733         struct age_ring_data *rd;
2734
2735         rd = &sc->age_rdata;
2736         bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
2737         bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2738             sc->age_cdata.age_cmb_block_map, BUS_DMASYNC_PREWRITE);
2739 }
2740
2741 static void
2742 age_init_smb_block(struct age_softc *sc)
2743 {
2744         struct age_ring_data *rd;
2745
2746         rd = &sc->age_rdata;
2747         bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
2748         bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2749             sc->age_cdata.age_smb_block_map, BUS_DMASYNC_PREWRITE);
2750 }
2751
2752 static int
2753 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd, int init)
2754 {
2755         struct rx_desc *desc;
2756         struct mbuf *m;
2757         struct age_dmamap_ctx ctx;
2758         bus_dma_segment_t segs[1];
2759         bus_dmamap_t map;
2760         int error;
2761
2762         m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2763         if (m == NULL)
2764                 return (ENOBUFS);
2765
2766         m->m_len = m->m_pkthdr.len = MCLBYTES;
2767         m_adj(m, ETHER_ALIGN);
2768
2769         ctx.nsegs = 1;
2770         ctx.segs = segs;
2771         error = bus_dmamap_load_mbuf(sc->age_cdata.age_rx_tag,
2772                                      sc->age_cdata.age_rx_sparemap,
2773                                      m, age_dmamap_buf_cb, &ctx,
2774                                      BUS_DMA_NOWAIT);
2775         if (error || ctx.nsegs == 0) {
2776                 if (!error) {
2777                         bus_dmamap_unload(sc->age_cdata.age_rx_tag,
2778                                           sc->age_cdata.age_rx_sparemap);
2779                         error = EFBIG;
2780                         if_printf(&sc->arpcom.ac_if, "too many segments?!\n");
2781                 }
2782                 m_freem(m);
2783
2784                 if (init)
2785                         if_printf(&sc->arpcom.ac_if, "can't load RX mbuf\n");
2786                 return (error);
2787         }
2788         KASSERT(ctx.nsegs == 1,
2789                 ("%s: %d segments returned!", __func__, ctx.nsegs));
2790
2791         if (rxd->rx_m != NULL) {
2792                 bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
2793                     BUS_DMASYNC_POSTREAD);
2794                 bus_dmamap_unload(sc->age_cdata.age_rx_tag, rxd->rx_dmamap);
2795         }
2796         map = rxd->rx_dmamap;
2797         rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
2798         sc->age_cdata.age_rx_sparemap = map;
2799         rxd->rx_m = m;
2800
2801         desc = rxd->rx_desc;
2802         desc->addr = htole64(segs[0].ds_addr);
2803         desc->len = htole32((segs[0].ds_len & AGE_RD_LEN_MASK) <<
2804             AGE_RD_LEN_SHIFT);
2805         return (0);
2806 }
2807
2808 static void
2809 age_rxvlan(struct age_softc *sc)
2810 {
2811         struct ifnet *ifp = &sc->arpcom.ac_if;
2812         uint32_t reg;
2813
2814         reg = CSR_READ_4(sc, AGE_MAC_CFG);
2815         reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2816         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2817                 reg |= MAC_CFG_VLAN_TAG_STRIP;
2818         CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2819 }
2820
2821 static void
2822 age_rxfilter(struct age_softc *sc)
2823 {
2824         struct ifnet *ifp = &sc->arpcom.ac_if;
2825         struct ifmultiaddr *ifma;
2826         uint32_t crc;
2827         uint32_t mchash[2];
2828         uint32_t rxcfg;
2829
2830         rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
2831         rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2832         if ((ifp->if_flags & IFF_BROADCAST) != 0)
2833                 rxcfg |= MAC_CFG_BCAST;
2834         if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
2835                 if ((ifp->if_flags & IFF_PROMISC) != 0)
2836                         rxcfg |= MAC_CFG_PROMISC;
2837                 if ((ifp->if_flags & IFF_ALLMULTI) != 0)
2838                         rxcfg |= MAC_CFG_ALLMULTI;
2839                 CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
2840                 CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
2841                 CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2842                 return;
2843         }
2844
2845         /* Program new filter. */
2846         bzero(mchash, sizeof(mchash));
2847
2848         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2849                 if (ifma->ifma_addr->sa_family != AF_LINK)
2850                         continue;
2851                 crc = ether_crc32_le(LLADDR((struct sockaddr_dl *)
2852                     ifma->ifma_addr), ETHER_ADDR_LEN);
2853                 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2854         }
2855
2856         CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
2857         CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
2858         CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2859 }
2860
2861 static int
2862 sysctl_age_stats(SYSCTL_HANDLER_ARGS)
2863 {
2864         struct age_softc *sc;
2865         struct age_stats *stats;
2866         int error, result;
2867
2868         result = -1;
2869         error = sysctl_handle_int(oidp, &result, 0, req);
2870
2871         if (error != 0 || req->newptr == NULL)
2872                 return (error);
2873
2874         if (result != 1)
2875                 return (error);
2876
2877         sc = (struct age_softc *)arg1;
2878         stats = &sc->age_stat;
2879         kprintf("%s statistics:\n", device_get_nameunit(sc->age_dev));
2880         kprintf("Transmit good frames : %ju\n",
2881             (uintmax_t)stats->tx_frames);
2882         kprintf("Transmit good broadcast frames : %ju\n",
2883             (uintmax_t)stats->tx_bcast_frames);
2884         kprintf("Transmit good multicast frames : %ju\n",
2885             (uintmax_t)stats->tx_mcast_frames);
2886         kprintf("Transmit pause control frames : %u\n",
2887             stats->tx_pause_frames);
2888         kprintf("Transmit control frames : %u\n",
2889             stats->tx_control_frames);
2890         kprintf("Transmit frames with excessive deferrals : %u\n",
2891             stats->tx_excess_defer);
2892         kprintf("Transmit deferrals : %u\n",
2893             stats->tx_deferred);
2894         kprintf("Transmit good octets : %ju\n",
2895             (uintmax_t)stats->tx_bytes);
2896         kprintf("Transmit good broadcast octets : %ju\n",
2897             (uintmax_t)stats->tx_bcast_bytes);
2898         kprintf("Transmit good multicast octets : %ju\n",
2899             (uintmax_t)stats->tx_mcast_bytes);
2900         kprintf("Transmit frames 64 bytes : %ju\n",
2901             (uintmax_t)stats->tx_pkts_64);
2902         kprintf("Transmit frames 65 to 127 bytes : %ju\n",
2903             (uintmax_t)stats->tx_pkts_65_127);
2904         kprintf("Transmit frames 128 to 255 bytes : %ju\n",
2905             (uintmax_t)stats->tx_pkts_128_255);
2906         kprintf("Transmit frames 256 to 511 bytes : %ju\n",
2907             (uintmax_t)stats->tx_pkts_256_511);
2908         kprintf("Transmit frames 512 to 1024 bytes : %ju\n",
2909             (uintmax_t)stats->tx_pkts_512_1023);
2910         kprintf("Transmit frames 1024 to 1518 bytes : %ju\n",
2911             (uintmax_t)stats->tx_pkts_1024_1518);
2912         kprintf("Transmit frames 1519 to MTU bytes : %ju\n",
2913             (uintmax_t)stats->tx_pkts_1519_max);
2914         kprintf("Transmit single collisions : %u\n",
2915             stats->tx_single_colls);
2916         kprintf("Transmit multiple collisions : %u\n",
2917             stats->tx_multi_colls);
2918         kprintf("Transmit late collisions : %u\n",
2919             stats->tx_late_colls);
2920         kprintf("Transmit abort due to excessive collisions : %u\n",
2921             stats->tx_excess_colls);
2922         kprintf("Transmit underruns due to FIFO underruns : %u\n",
2923             stats->tx_underrun);
2924         kprintf("Transmit descriptor write-back errors : %u\n",
2925             stats->tx_desc_underrun);
2926         kprintf("Transmit frames with length mismatched frame size : %u\n",
2927             stats->tx_lenerrs);
2928         kprintf("Transmit frames with truncated due to MTU size : %u\n",
2929             stats->tx_lenerrs);
2930
2931         kprintf("Receive good frames : %ju\n",
2932             (uintmax_t)stats->rx_frames);
2933         kprintf("Receive good broadcast frames : %ju\n",
2934             (uintmax_t)stats->rx_bcast_frames);
2935         kprintf("Receive good multicast frames : %ju\n",
2936             (uintmax_t)stats->rx_mcast_frames);
2937         kprintf("Receive pause control frames : %u\n",
2938             stats->rx_pause_frames);
2939         kprintf("Receive control frames : %u\n",
2940             stats->rx_control_frames);
2941         kprintf("Receive CRC errors : %u\n",
2942             stats->rx_crcerrs);
2943         kprintf("Receive frames with length errors : %u\n",
2944             stats->rx_lenerrs);
2945         kprintf("Receive good octets : %ju\n",
2946             (uintmax_t)stats->rx_bytes);
2947         kprintf("Receive good broadcast octets : %ju\n",
2948             (uintmax_t)stats->rx_bcast_bytes);
2949         kprintf("Receive good multicast octets : %ju\n",
2950             (uintmax_t)stats->rx_mcast_bytes);
2951         kprintf("Receive frames too short : %u\n",
2952             stats->rx_runts);
2953         kprintf("Receive fragmented frames : %ju\n",
2954             (uintmax_t)stats->rx_fragments);
2955         kprintf("Receive frames 64 bytes : %ju\n",
2956             (uintmax_t)stats->rx_pkts_64);
2957         kprintf("Receive frames 65 to 127 bytes : %ju\n",
2958             (uintmax_t)stats->rx_pkts_65_127);
2959         kprintf("Receive frames 128 to 255 bytes : %ju\n",
2960             (uintmax_t)stats->rx_pkts_128_255);
2961         kprintf("Receive frames 256 to 511 bytes : %ju\n",
2962             (uintmax_t)stats->rx_pkts_256_511);
2963         kprintf("Receive frames 512 to 1024 bytes : %ju\n",
2964             (uintmax_t)stats->rx_pkts_512_1023);
2965         kprintf("Receive frames 1024 to 1518 bytes : %ju\n",
2966             (uintmax_t)stats->rx_pkts_1024_1518);
2967         kprintf("Receive frames 1519 to MTU bytes : %ju\n",
2968             (uintmax_t)stats->rx_pkts_1519_max);
2969         kprintf("Receive frames too long : %ju\n",
2970             (uint64_t)stats->rx_pkts_truncated);
2971         kprintf("Receive frames with FIFO overflow : %u\n",
2972             stats->rx_fifo_oflows);
2973         kprintf("Receive frames with return descriptor overflow : %u\n",
2974             stats->rx_desc_oflows);
2975         kprintf("Receive frames with alignment errors : %u\n",
2976             stats->rx_alignerrs);
2977         kprintf("Receive frames dropped due to address filtering : %ju\n",
2978             (uint64_t)stats->rx_pkts_filtered);
2979
2980         return (error);
2981 }
2982
2983 static int
2984 sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS)
2985 {
2986
2987         return (sysctl_int_range(oidp, arg1, arg2, req, AGE_IM_TIMER_MIN,
2988             AGE_IM_TIMER_MAX));
2989 }
2990
2991 static void
2992 age_dmamap_buf_cb(void *xctx, bus_dma_segment_t *segs, int nsegs,
2993                   bus_size_t mapsz __unused, int error)
2994 {
2995         struct age_dmamap_ctx *ctx = xctx;
2996         int i;
2997
2998         if (error)
2999                 return;
3000
3001         if (nsegs > ctx->nsegs) {
3002                 ctx->nsegs = 0;
3003                 return;
3004         }
3005
3006         ctx->nsegs = nsegs;
3007         for (i = 0; i < nsegs; ++i)
3008                 ctx->segs[i] = segs[i];
3009 }