kernel/scsi: Fix sense information printing in bootverbose.
[dragonfly.git] / sys / opencrypto / crypto.c
1 /*      $FreeBSD: src/sys/opencrypto/crypto.c,v 1.28 2007/10/20 23:23:22 julian Exp $   */
2 /*-
3  * Copyright (c) 2002-2006 Sam Leffler.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  */
25
26 /*
27  * Cryptographic Subsystem.
28  *
29  * This code is derived from the Openbsd Cryptographic Framework (OCF)
30  * that has the copyright shown below.  Very little of the original
31  * code remains.
32  */
33
34 /*-
35  * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
36  *
37  * This code was written by Angelos D. Keromytis in Athens, Greece, in
38  * February 2000. Network Security Technologies Inc. (NSTI) kindly
39  * supported the development of this code.
40  *
41  * Copyright (c) 2000, 2001 Angelos D. Keromytis
42  *
43  * Permission to use, copy, and modify this software with or without fee
44  * is hereby granted, provided that this entire notice is included in
45  * all source code copies of any software which is or includes a copy or
46  * modification of this software.
47  *
48  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
49  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
50  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
51  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
52  * PURPOSE.
53  */
54
55 #define CRYPTO_TIMING                           /* enable timing support */
56
57 #include "opt_ddb.h"
58
59 #include <sys/param.h>
60 #include <sys/systm.h>
61 #include <sys/eventhandler.h>
62 #include <sys/kernel.h>
63 #include <sys/kthread.h>
64 #include <sys/lock.h>
65 #include <sys/module.h>
66 #include <sys/malloc.h>
67 #include <sys/proc.h>
68 #include <sys/sysctl.h>
69 #include <sys/objcache.h>
70
71 #include <sys/thread2.h>
72 #include <sys/mplock2.h>
73
74 #include <ddb/ddb.h>
75
76 #include <opencrypto/cryptodev.h>
77 #include <opencrypto/xform.h>                   /* XXX for M_XDATA */
78
79 #include <sys/kobj.h>
80 #include <sys/bus.h>
81 #include "cryptodev_if.h"
82
83 /*
84  * Crypto drivers register themselves by allocating a slot in the
85  * crypto_drivers table with crypto_get_driverid() and then registering
86  * each algorithm they support with crypto_register() and crypto_kregister().
87  */
88 static  struct lock crypto_drivers_lock;        /* lock on driver table */
89 #define CRYPTO_DRIVER_LOCK()    lockmgr(&crypto_drivers_lock, LK_EXCLUSIVE)
90 #define CRYPTO_DRIVER_UNLOCK()  lockmgr(&crypto_drivers_lock, LK_RELEASE)
91 #define CRYPTO_DRIVER_ASSERT()  KKASSERT(lockstatus(&crypto_drivers_lock, curthread) != 0)
92
93 /*
94  * Crypto device/driver capabilities structure.
95  *
96  * Synchronization:
97  * (d) - protected by CRYPTO_DRIVER_LOCK()
98  * (q) - protected by CRYPTO_Q_LOCK()
99  * Not tagged fields are read-only.
100  */
101 struct cryptocap {
102         device_t        cc_dev;                 /* (d) device/driver */
103         u_int32_t       cc_sessions;            /* (d) # of sessions */
104         u_int32_t       cc_koperations;         /* (d) # os asym operations */
105         /*
106          * Largest possible operator length (in bits) for each type of
107          * encryption algorithm. XXX not used
108          */
109         u_int16_t       cc_max_op_len[CRYPTO_ALGORITHM_MAX + 1];
110         u_int8_t        cc_alg[CRYPTO_ALGORITHM_MAX + 1];
111         u_int8_t        cc_kalg[CRK_ALGORITHM_MAX + 1];
112
113         int             cc_flags;               /* (d) flags */
114 #define CRYPTOCAP_F_CLEANUP     0x80000000      /* needs resource cleanup */
115         int             cc_qblocked;            /* (q) symmetric q blocked */
116         int             cc_kqblocked;           /* (q) asymmetric q blocked */
117 };
118 static  struct cryptocap *crypto_drivers = NULL;
119 static  int crypto_drivers_num = 0;
120
121 typedef struct crypto_tdinfo {
122         TAILQ_HEAD(,cryptop)    crp_q;          /* request queues */
123         TAILQ_HEAD(,cryptkop)   crp_kq;
124         thread_t                crp_td;
125         struct lock             crp_lock;
126         int                     crp_sleep;
127 } *crypto_tdinfo_t;
128
129 /*
130  * There are two queues for crypto requests; one for symmetric (e.g.
131  * cipher) operations and one for asymmetric (e.g. MOD) operations.
132  * See below for how synchronization is handled.
133  * A single lock is used to lock access to both queues.  We could
134  * have one per-queue but having one simplifies handling of block/unblock
135  * operations.
136  */
137 static  struct crypto_tdinfo tdinfo_array[MAXCPU];
138
139 #define CRYPTO_Q_LOCK(tdinfo)   lockmgr(&tdinfo->crp_lock, LK_EXCLUSIVE)
140 #define CRYPTO_Q_UNLOCK(tdinfo) lockmgr(&tdinfo->crp_lock, LK_RELEASE)
141
142 /*
143  * There are two queues for processing completed crypto requests; one
144  * for the symmetric and one for the asymmetric ops.  We only need one
145  * but have two to avoid type futzing (cryptop vs. cryptkop).  A single
146  * lock is used to lock access to both queues.  Note that this lock
147  * must be separate from the lock on request queues to insure driver
148  * callbacks don't generate lock order reversals.
149  */
150 static  TAILQ_HEAD(,cryptop) crp_ret_q;         /* callback queues */
151 static  TAILQ_HEAD(,cryptkop) crp_ret_kq;
152 static  struct lock crypto_ret_q_lock;
153 #define CRYPTO_RETQ_LOCK()      lockmgr(&crypto_ret_q_lock, LK_EXCLUSIVE)
154 #define CRYPTO_RETQ_UNLOCK()    lockmgr(&crypto_ret_q_lock, LK_RELEASE)
155 #define CRYPTO_RETQ_EMPTY()     (TAILQ_EMPTY(&crp_ret_q) && TAILQ_EMPTY(&crp_ret_kq))
156
157 /*
158  * Crypto op and desciptor data structures are allocated
159  * from separate object caches.
160  */
161 static struct objcache *cryptop_oc, *cryptodesc_oc;
162
163 static MALLOC_DEFINE(M_CRYPTO_OP, "crypto op", "crypto op");
164 static MALLOC_DEFINE(M_CRYPTO_DESC, "crypto desc", "crypto desc");
165
166 int     crypto_userasymcrypto = 1;      /* userland may do asym crypto reqs */
167 SYSCTL_INT(_kern, OID_AUTO, userasymcrypto, CTLFLAG_RW,
168            &crypto_userasymcrypto, 0,
169            "Enable/disable user-mode access to asymmetric crypto support");
170 int     crypto_devallowsoft = 0;        /* only use hardware crypto for asym */
171 SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RW,
172            &crypto_devallowsoft, 0,
173            "Enable/disable use of software asym crypto support");
174 int     crypto_altdispatch = 0;         /* dispatch to alternative cpu */
175 SYSCTL_INT(_kern, OID_AUTO, cryptoaltdispatch, CTLFLAG_RW,
176            &crypto_altdispatch, 0,
177            "Do not queue crypto op on current cpu");
178
179 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
180
181 static  void crypto_proc(void *dummy);
182 static  void crypto_ret_proc(void *dummy);
183 static  struct thread *cryptoretthread;
184 static  void crypto_destroy(void);
185 static  int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint);
186 static  int crypto_kinvoke(struct cryptkop *krp, int flags);
187
188 static struct cryptostats cryptostats;
189 SYSCTL_STRUCT(_kern, OID_AUTO, crypto_stats, CTLFLAG_RW, &cryptostats,
190             cryptostats, "Crypto system statistics");
191
192 #ifdef CRYPTO_TIMING
193 static  int crypto_timing = 0;
194 SYSCTL_INT(_debug, OID_AUTO, crypto_timing, CTLFLAG_RW,
195            &crypto_timing, 0, "Enable/disable crypto timing support");
196 #endif
197
198 static int
199 crypto_init(void)
200 {
201         crypto_tdinfo_t tdinfo;
202         int error;
203         int n;
204
205         lockinit(&crypto_drivers_lock, "crypto driver table", 0, LK_CANRECURSE);
206
207         TAILQ_INIT(&crp_ret_q);
208         TAILQ_INIT(&crp_ret_kq);
209         lockinit(&crypto_ret_q_lock, "crypto return queues", 0, LK_CANRECURSE);
210
211         cryptop_oc = objcache_create_simple(M_CRYPTO_OP, sizeof(struct cryptop));
212         cryptodesc_oc = objcache_create_simple(M_CRYPTO_DESC,
213                                 sizeof(struct cryptodesc));
214         if (cryptodesc_oc == NULL || cryptop_oc == NULL) {
215                 kprintf("crypto_init: cannot setup crypto caches\n");
216                 error = ENOMEM;
217                 goto bad;
218         }
219
220         crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
221         crypto_drivers = kmalloc(crypto_drivers_num * sizeof(struct cryptocap),
222                                  M_CRYPTO_DATA, M_WAITOK | M_ZERO);
223
224         for (n = 0; n < ncpus; ++n) {
225                 tdinfo = &tdinfo_array[n];
226                 TAILQ_INIT(&tdinfo->crp_q);
227                 TAILQ_INIT(&tdinfo->crp_kq);
228                 lockinit(&tdinfo->crp_lock, "crypto op queues",
229                          0, LK_CANRECURSE);
230                 kthread_create_cpu(crypto_proc, tdinfo, &tdinfo->crp_td,
231                                    n, "crypto %d", n);
232         }
233         kthread_create(crypto_ret_proc, NULL,
234                        &cryptoretthread, "crypto returns");
235         return 0;
236 bad:
237         crypto_destroy();
238         return error;
239 }
240
241 /*
242  * Signal a crypto thread to terminate.  We use the driver
243  * table lock to synchronize the sleep/wakeups so that we
244  * are sure the threads have terminated before we release
245  * the data structures they use.  See crypto_finis below
246  * for the other half of this song-and-dance.
247  */
248 static void
249 crypto_terminate(struct thread **tp, void *q)
250 {
251         struct thread *t;
252
253         KKASSERT(lockstatus(&crypto_drivers_lock, curthread) != 0);
254         t = *tp;
255         *tp = NULL;
256         if (t) {
257                 kprintf("crypto_terminate: start\n");
258                 wakeup_one(q);
259                 crit_enter();
260                 tsleep_interlock(t, 0);
261                 CRYPTO_DRIVER_UNLOCK(); /* let crypto_finis progress */
262                 crit_exit();
263                 tsleep(t, PINTERLOCKED, "crypto_destroy", 0);
264                 CRYPTO_DRIVER_LOCK();
265                 kprintf("crypto_terminate: end\n");
266         }
267 }
268
269 static void
270 crypto_destroy(void)
271 {
272         crypto_tdinfo_t tdinfo;
273         int n;
274
275         /*
276          * Terminate any crypto threads.
277          */
278         CRYPTO_DRIVER_LOCK();
279         for (n = 0; n < ncpus; ++n) {
280                 tdinfo = &tdinfo_array[n];
281                 crypto_terminate(&tdinfo->crp_td, &tdinfo->crp_q);
282                 lockuninit(&tdinfo->crp_lock);
283         }
284         crypto_terminate(&cryptoretthread, &crp_ret_q);
285         CRYPTO_DRIVER_UNLOCK();
286
287         /* XXX flush queues??? */
288
289         /*
290          * Reclaim dynamically allocated resources.
291          */
292         if (crypto_drivers != NULL)
293                 kfree(crypto_drivers, M_CRYPTO_DATA);
294
295         if (cryptodesc_oc != NULL)
296                 objcache_destroy(cryptodesc_oc);
297         if (cryptop_oc != NULL)
298                 objcache_destroy(cryptop_oc);
299         lockuninit(&crypto_ret_q_lock);
300         lockuninit(&crypto_drivers_lock);
301 }
302
303 static struct cryptocap *
304 crypto_checkdriver(u_int32_t hid)
305 {
306         if (crypto_drivers == NULL)
307                 return NULL;
308         return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
309 }
310
311 /*
312  * Compare a driver's list of supported algorithms against another
313  * list; return non-zero if all algorithms are supported.
314  */
315 static int
316 driver_suitable(const struct cryptocap *cap, const struct cryptoini *cri)
317 {
318         const struct cryptoini *cr;
319
320         /* See if all the algorithms are supported. */
321         for (cr = cri; cr; cr = cr->cri_next)
322                 if (cap->cc_alg[cr->cri_alg] == 0)
323                         return 0;
324         return 1;
325 }
326
327 /*
328  * Select a driver for a new session that supports the specified
329  * algorithms and, optionally, is constrained according to the flags.
330  * The algorithm we use here is pretty stupid; just use the
331  * first driver that supports all the algorithms we need. If there
332  * are multiple drivers we choose the driver with the fewest active
333  * sessions.  We prefer hardware-backed drivers to software ones.
334  *
335  * XXX We need more smarts here (in real life too, but that's
336  * XXX another story altogether).
337  */
338 static struct cryptocap *
339 crypto_select_driver(const struct cryptoini *cri, int flags)
340 {
341         struct cryptocap *cap, *best;
342         int match, hid;
343
344         CRYPTO_DRIVER_ASSERT();
345
346         /*
347          * Look first for hardware crypto devices if permitted.
348          */
349         if (flags & CRYPTOCAP_F_HARDWARE)
350                 match = CRYPTOCAP_F_HARDWARE;
351         else
352                 match = CRYPTOCAP_F_SOFTWARE;
353         best = NULL;
354 again:
355         for (hid = 0; hid < crypto_drivers_num; hid++) {
356                 cap = &crypto_drivers[hid];
357                 /*
358                  * If it's not initialized, is in the process of
359                  * going away, or is not appropriate (hardware
360                  * or software based on match), then skip.
361                  */
362                 if (cap->cc_dev == NULL ||
363                     (cap->cc_flags & CRYPTOCAP_F_CLEANUP) ||
364                     (cap->cc_flags & match) == 0)
365                         continue;
366
367                 /* verify all the algorithms are supported. */
368                 if (driver_suitable(cap, cri)) {
369                         if (best == NULL ||
370                             cap->cc_sessions < best->cc_sessions)
371                                 best = cap;
372                 }
373         }
374         if (best != NULL)
375                 return best;
376         if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) {
377                 /* sort of an Algol 68-style for loop */
378                 match = CRYPTOCAP_F_SOFTWARE;
379                 goto again;
380         }
381         return best;
382 }
383
384 /*
385  * Create a new session.  The crid argument specifies a crypto
386  * driver to use or constraints on a driver to select (hardware
387  * only, software only, either).  Whatever driver is selected
388  * must be capable of the requested crypto algorithms.
389  */
390 int
391 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int crid)
392 {
393         struct cryptocap *cap;
394         u_int32_t hid, lid;
395         int err;
396
397         CRYPTO_DRIVER_LOCK();
398         if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
399                 /*
400                  * Use specified driver; verify it is capable.
401                  */
402                 cap = crypto_checkdriver(crid);
403                 if (cap != NULL && !driver_suitable(cap, cri))
404                         cap = NULL;
405         } else {
406                 /*
407                  * No requested driver; select based on crid flags.
408                  */
409                 cap = crypto_select_driver(cri, crid);
410                 /*
411                  * if NULL then can't do everything in one session.
412                  * XXX Fix this. We need to inject a "virtual" session
413                  * XXX layer right about here.
414                  */
415         }
416         if (cap != NULL) {
417                 /* Call the driver initialization routine. */
418                 hid = cap - crypto_drivers;
419                 lid = hid;              /* Pass the driver ID. */
420                 err = CRYPTODEV_NEWSESSION(cap->cc_dev, &lid, cri);
421                 if (err == 0) {
422                         (*sid) = (cap->cc_flags & 0xff000000)
423                                | (hid & 0x00ffffff);
424                         (*sid) <<= 32;
425                         (*sid) |= (lid & 0xffffffff);
426                         cap->cc_sessions++;
427                 }
428         } else
429                 err = EINVAL;
430         CRYPTO_DRIVER_UNLOCK();
431         return err;
432 }
433
434 static void
435 crypto_remove(struct cryptocap *cap)
436 {
437
438         KKASSERT(lockstatus(&crypto_drivers_lock, curthread) != 0);
439         if (cap->cc_sessions == 0 && cap->cc_koperations == 0)
440                 bzero(cap, sizeof(*cap));
441 }
442
443 /*
444  * Delete an existing session (or a reserved session on an unregistered
445  * driver).
446  */
447 int
448 crypto_freesession(u_int64_t sid)
449 {
450         struct cryptocap *cap;
451         u_int32_t hid;
452         int err;
453
454         CRYPTO_DRIVER_LOCK();
455
456         if (crypto_drivers == NULL) {
457                 err = EINVAL;
458                 goto done;
459         }
460
461         /* Determine two IDs. */
462         hid = CRYPTO_SESID2HID(sid);
463
464         if (hid >= crypto_drivers_num) {
465                 err = ENOENT;
466                 goto done;
467         }
468         cap = &crypto_drivers[hid];
469
470         if (cap->cc_sessions)
471                 cap->cc_sessions--;
472
473         /* Call the driver cleanup routine, if available. */
474         err = CRYPTODEV_FREESESSION(cap->cc_dev, sid);
475
476         if (cap->cc_flags & CRYPTOCAP_F_CLEANUP)
477                 crypto_remove(cap);
478
479 done:
480         CRYPTO_DRIVER_UNLOCK();
481         return err;
482 }
483
484 /*
485  * Return an unused driver id.  Used by drivers prior to registering
486  * support for the algorithms they handle.
487  */
488 int32_t
489 crypto_get_driverid(device_t dev, int flags)
490 {
491         struct cryptocap *newdrv;
492         int i;
493
494         if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
495                 kprintf("%s: no flags specified when registering driver\n",
496                     device_get_nameunit(dev));
497                 return -1;
498         }
499
500         CRYPTO_DRIVER_LOCK();
501
502         for (i = 0; i < crypto_drivers_num; i++) {
503                 if (crypto_drivers[i].cc_dev == NULL &&
504                     (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0) {
505                         break;
506                 }
507         }
508
509         /* Out of entries, allocate some more. */
510         if (i == crypto_drivers_num) {
511                 /* Be careful about wrap-around. */
512                 if (2 * crypto_drivers_num <= crypto_drivers_num) {
513                         CRYPTO_DRIVER_UNLOCK();
514                         kprintf("crypto: driver count wraparound!\n");
515                         return -1;
516                 }
517
518                 newdrv = kmalloc(2 * crypto_drivers_num *
519                                  sizeof(struct cryptocap),
520                                  M_CRYPTO_DATA, M_WAITOK|M_ZERO);
521
522                 bcopy(crypto_drivers, newdrv,
523                     crypto_drivers_num * sizeof(struct cryptocap));
524
525                 crypto_drivers_num *= 2;
526
527                 kfree(crypto_drivers, M_CRYPTO_DATA);
528                 crypto_drivers = newdrv;
529         }
530
531         /* NB: state is zero'd on free */
532         crypto_drivers[i].cc_sessions = 1;      /* Mark */
533         crypto_drivers[i].cc_dev = dev;
534         crypto_drivers[i].cc_flags = flags;
535         if (bootverbose)
536                 kprintf("crypto: assign %s driver id %u, flags %u\n",
537                     device_get_nameunit(dev), i, flags);
538
539         CRYPTO_DRIVER_UNLOCK();
540
541         return i;
542 }
543
544 /*
545  * Lookup a driver by name.  We match against the full device
546  * name and unit, and against just the name.  The latter gives
547  * us a simple widlcarding by device name.  On success return the
548  * driver/hardware identifier; otherwise return -1.
549  */
550 int
551 crypto_find_driver(const char *match)
552 {
553         int i, len = strlen(match);
554
555         CRYPTO_DRIVER_LOCK();
556         for (i = 0; i < crypto_drivers_num; i++) {
557                 device_t dev = crypto_drivers[i].cc_dev;
558                 if (dev == NULL ||
559                     (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP))
560                         continue;
561                 if (strncmp(match, device_get_nameunit(dev), len) == 0 ||
562                     strncmp(match, device_get_name(dev), len) == 0)
563                         break;
564         }
565         CRYPTO_DRIVER_UNLOCK();
566         return i < crypto_drivers_num ? i : -1;
567 }
568
569 /*
570  * Return the device_t for the specified driver or NULL
571  * if the driver identifier is invalid.
572  */
573 device_t
574 crypto_find_device_byhid(int hid)
575 {
576         struct cryptocap *cap = crypto_checkdriver(hid);
577         return cap != NULL ? cap->cc_dev : NULL;
578 }
579
580 /*
581  * Return the device/driver capabilities.
582  */
583 int
584 crypto_getcaps(int hid)
585 {
586         struct cryptocap *cap = crypto_checkdriver(hid);
587         return cap != NULL ? cap->cc_flags : 0;
588 }
589
590 /*
591  * Register support for a key-related algorithm.  This routine
592  * is called once for each algorithm supported a driver.
593  */
594 int
595 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags)
596 {
597         struct cryptocap *cap;
598         int err;
599
600         CRYPTO_DRIVER_LOCK();
601
602         cap = crypto_checkdriver(driverid);
603         if (cap != NULL &&
604             (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
605                 /*
606                  * XXX Do some performance testing to determine placing.
607                  * XXX We probably need an auxiliary data structure that
608                  * XXX describes relative performances.
609                  */
610
611                 cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
612                 if (bootverbose)
613                         kprintf("crypto: %s registers key alg %u flags %u\n"
614                                 , device_get_nameunit(cap->cc_dev)
615                                 , kalg
616                                 , flags
617                         );
618
619                 err = 0;
620         } else
621                 err = EINVAL;
622
623         CRYPTO_DRIVER_UNLOCK();
624         return err;
625 }
626
627 /*
628  * Register support for a non-key-related algorithm.  This routine
629  * is called once for each such algorithm supported by a driver.
630  */
631 int
632 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
633                 u_int32_t flags)
634 {
635         struct cryptocap *cap;
636         int err;
637
638         CRYPTO_DRIVER_LOCK();
639
640         cap = crypto_checkdriver(driverid);
641         /* NB: algorithms are in the range [1..max] */
642         if (cap != NULL &&
643             (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
644                 /*
645                  * XXX Do some performance testing to determine placing.
646                  * XXX We probably need an auxiliary data structure that
647                  * XXX describes relative performances.
648                  */
649
650                 cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
651                 cap->cc_max_op_len[alg] = maxoplen;
652                 if (bootverbose)
653                         kprintf("crypto: %s registers alg %u flags %u maxoplen %u\n"
654                                 , device_get_nameunit(cap->cc_dev)
655                                 , alg
656                                 , flags
657                                 , maxoplen
658                         );
659                 cap->cc_sessions = 0;           /* Unmark */
660                 err = 0;
661         } else
662                 err = EINVAL;
663
664         CRYPTO_DRIVER_UNLOCK();
665         return err;
666 }
667
668 static void
669 driver_finis(struct cryptocap *cap)
670 {
671         u_int32_t ses, kops;
672
673         CRYPTO_DRIVER_ASSERT();
674
675         ses = cap->cc_sessions;
676         kops = cap->cc_koperations;
677         bzero(cap, sizeof(*cap));
678         if (ses != 0 || kops != 0) {
679                 /*
680                  * If there are pending sessions,
681                  * just mark as invalid.
682                  */
683                 cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
684                 cap->cc_sessions = ses;
685                 cap->cc_koperations = kops;
686         }
687 }
688
689 /*
690  * Unregister a crypto driver. If there are pending sessions using it,
691  * leave enough information around so that subsequent calls using those
692  * sessions will correctly detect the driver has been unregistered and
693  * reroute requests.
694  */
695 int
696 crypto_unregister(u_int32_t driverid, int alg)
697 {
698         struct cryptocap *cap;
699         int i, err;
700
701         CRYPTO_DRIVER_LOCK();
702         cap = crypto_checkdriver(driverid);
703         if (cap != NULL &&
704             (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
705             cap->cc_alg[alg] != 0) {
706                 cap->cc_alg[alg] = 0;
707                 cap->cc_max_op_len[alg] = 0;
708
709                 /* Was this the last algorithm ? */
710                 for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++) {
711                         if (cap->cc_alg[i] != 0)
712                                 break;
713                 }
714
715                 if (i == CRYPTO_ALGORITHM_MAX + 1)
716                         driver_finis(cap);
717                 err = 0;
718         } else {
719                 err = EINVAL;
720         }
721         CRYPTO_DRIVER_UNLOCK();
722
723         return err;
724 }
725
726 /*
727  * Unregister all algorithms associated with a crypto driver.
728  * If there are pending sessions using it, leave enough information
729  * around so that subsequent calls using those sessions will
730  * correctly detect the driver has been unregistered and reroute
731  * requests.
732  */
733 int
734 crypto_unregister_all(u_int32_t driverid)
735 {
736         struct cryptocap *cap;
737         int err;
738
739         CRYPTO_DRIVER_LOCK();
740         cap = crypto_checkdriver(driverid);
741         if (cap != NULL) {
742                 driver_finis(cap);
743                 err = 0;
744         } else {
745                 err = EINVAL;
746         }
747         CRYPTO_DRIVER_UNLOCK();
748
749         return err;
750 }
751
752 /*
753  * Clear blockage on a driver.  The what parameter indicates whether
754  * the driver is now ready for cryptop's and/or cryptokop's.
755  */
756 int
757 crypto_unblock(u_int32_t driverid, int what)
758 {
759         crypto_tdinfo_t tdinfo;
760         struct cryptocap *cap;
761         int err;
762         int n;
763
764         CRYPTO_DRIVER_LOCK();
765         cap = crypto_checkdriver(driverid);
766         if (cap != NULL) {
767                 if (what & CRYPTO_SYMQ)
768                         cap->cc_qblocked = 0;
769                 if (what & CRYPTO_ASYMQ)
770                         cap->cc_kqblocked = 0;
771                 for (n = 0; n < ncpus; ++n) {
772                         tdinfo = &tdinfo_array[n];
773                         CRYPTO_Q_LOCK(tdinfo);
774                         if (tdinfo[n].crp_sleep)
775                                 wakeup_one(&tdinfo->crp_q);
776                         CRYPTO_Q_UNLOCK(tdinfo);
777                 }
778                 err = 0;
779         } else {
780                 err = EINVAL;
781         }
782         CRYPTO_DRIVER_UNLOCK();
783
784         return err;
785 }
786
787 static volatile int dispatch_rover;
788
789 /*
790  * Add a crypto request to a queue, to be processed by the kernel thread.
791  */
792 int
793 crypto_dispatch(struct cryptop *crp)
794 {
795         crypto_tdinfo_t tdinfo;
796         struct cryptocap *cap;
797         u_int32_t hid;
798         int result;
799         int n;
800
801         cryptostats.cs_ops++;
802
803 #ifdef CRYPTO_TIMING
804         if (crypto_timing)
805                 nanouptime(&crp->crp_tstamp);
806 #endif
807
808         hid = CRYPTO_SESID2HID(crp->crp_sid);
809
810         /*
811          * Dispatch the crypto op directly to the driver if the caller
812          * marked the request to be processed immediately or this is
813          * a synchronous callback chain occuring from within a crypto
814          * processing thread.
815          *
816          * Fall through to queueing the driver is blocked.
817          */
818         if ((crp->crp_flags & CRYPTO_F_BATCH) == 0 ||
819             curthread->td_type == TD_TYPE_CRYPTO) {
820                 cap = crypto_checkdriver(hid);
821                 /* Driver cannot disappeared when there is an active session. */
822                 KASSERT(cap != NULL, ("%s: Driver disappeared.", __func__));
823                 if (!cap->cc_qblocked) {
824                         result = crypto_invoke(cap, crp, 0);
825                         if (result != ERESTART)
826                                 return (result);
827                         /*
828                          * The driver ran out of resources, put the request on
829                          * the queue.
830                          */
831                 }
832         }
833
834         /*
835          * Dispatch to a cpu for action if possible.  Dispatch to a different
836          * cpu than the current cpu.
837          */
838         if (CRYPTO_SESID2CAPS(crp->crp_sid) & CRYPTOCAP_F_SMP) {
839                 n = atomic_fetchadd_int(&dispatch_rover, 1) & 255;
840                 if (crypto_altdispatch && mycpu->gd_cpuid == n)
841                         ++n;
842                 n = n % ncpus;
843         } else {
844                 n = 0;
845         }
846         tdinfo = &tdinfo_array[n];
847
848         CRYPTO_Q_LOCK(tdinfo);
849         TAILQ_INSERT_TAIL(&tdinfo->crp_q, crp, crp_next);
850         if (tdinfo->crp_sleep)
851                 wakeup_one(&tdinfo->crp_q);
852         CRYPTO_Q_UNLOCK(tdinfo);
853         return 0;
854 }
855
856 /*
857  * Add an asymetric crypto request to a queue,
858  * to be processed by the kernel thread.
859  */
860 int
861 crypto_kdispatch(struct cryptkop *krp)
862 {
863         crypto_tdinfo_t tdinfo;
864         int error;
865         int n;
866
867         cryptostats.cs_kops++;
868
869 #if 0
870         /* not sure how to test F_SMP here */
871         n = atomic_fetchadd_int(&dispatch_rover, 1) & 255;
872         n = n % ncpus;
873 #endif
874         n = 0;
875         tdinfo = &tdinfo_array[n];
876
877         error = crypto_kinvoke(krp, krp->krp_crid);
878
879         if (error == ERESTART) {
880                 CRYPTO_Q_LOCK(tdinfo);
881                 TAILQ_INSERT_TAIL(&tdinfo->crp_kq, krp, krp_next);
882                 if (tdinfo->crp_sleep)
883                         wakeup_one(&tdinfo->crp_q);
884                 CRYPTO_Q_UNLOCK(tdinfo);
885                 error = 0;
886         }
887         return error;
888 }
889
890 /*
891  * Verify a driver is suitable for the specified operation.
892  */
893 static __inline int
894 kdriver_suitable(const struct cryptocap *cap, const struct cryptkop *krp)
895 {
896         return (cap->cc_kalg[krp->krp_op] & CRYPTO_ALG_FLAG_SUPPORTED) != 0;
897 }
898
899 /*
900  * Select a driver for an asym operation.  The driver must
901  * support the necessary algorithm.  The caller can constrain
902  * which device is selected with the flags parameter.  The
903  * algorithm we use here is pretty stupid; just use the first
904  * driver that supports the algorithms we need. If there are
905  * multiple suitable drivers we choose the driver with the
906  * fewest active operations.  We prefer hardware-backed
907  * drivers to software ones when either may be used.
908  */
909 static struct cryptocap *
910 crypto_select_kdriver(const struct cryptkop *krp, int flags)
911 {
912         struct cryptocap *cap, *best;
913         int match, hid;
914
915         CRYPTO_DRIVER_ASSERT();
916
917         /*
918          * Look first for hardware crypto devices if permitted.
919          */
920         if (flags & CRYPTOCAP_F_HARDWARE)
921                 match = CRYPTOCAP_F_HARDWARE;
922         else
923                 match = CRYPTOCAP_F_SOFTWARE;
924         best = NULL;
925 again:
926         for (hid = 0; hid < crypto_drivers_num; hid++) {
927                 cap = &crypto_drivers[hid];
928                 /*
929                  * If it's not initialized, is in the process of
930                  * going away, or is not appropriate (hardware
931                  * or software based on match), then skip.
932                  */
933                 if (cap->cc_dev == NULL ||
934                     (cap->cc_flags & CRYPTOCAP_F_CLEANUP) ||
935                     (cap->cc_flags & match) == 0)
936                         continue;
937
938                 /* verify all the algorithms are supported. */
939                 if (kdriver_suitable(cap, krp)) {
940                         if (best == NULL ||
941                             cap->cc_koperations < best->cc_koperations)
942                                 best = cap;
943                 }
944         }
945         if (best != NULL)
946                 return best;
947         if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) {
948                 /* sort of an Algol 68-style for loop */
949                 match = CRYPTOCAP_F_SOFTWARE;
950                 goto again;
951         }
952         return best;
953 }
954
955 /*
956  * Dispatch an assymetric crypto request.
957  */
958 static int
959 crypto_kinvoke(struct cryptkop *krp, int crid)
960 {
961         struct cryptocap *cap = NULL;
962         int error;
963
964         KASSERT(krp != NULL, ("%s: krp == NULL", __func__));
965         KASSERT(krp->krp_callback != NULL,
966             ("%s: krp->crp_callback == NULL", __func__));
967
968         CRYPTO_DRIVER_LOCK();
969         if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
970                 cap = crypto_checkdriver(crid);
971                 if (cap != NULL) {
972                         /*
973                          * Driver present, it must support the necessary
974                          * algorithm and, if s/w drivers are excluded,
975                          * it must be registered as hardware-backed.
976                          */
977                         if (!kdriver_suitable(cap, krp) ||
978                             (!crypto_devallowsoft &&
979                              (cap->cc_flags & CRYPTOCAP_F_HARDWARE) == 0))
980                                 cap = NULL;
981                 }
982         } else {
983                 /*
984                  * No requested driver; select based on crid flags.
985                  */
986                 if (!crypto_devallowsoft)       /* NB: disallow s/w drivers */
987                         crid &= ~CRYPTOCAP_F_SOFTWARE;
988                 cap = crypto_select_kdriver(krp, crid);
989         }
990         if (cap != NULL && !cap->cc_kqblocked) {
991                 krp->krp_hid = cap - crypto_drivers;
992                 cap->cc_koperations++;
993                 CRYPTO_DRIVER_UNLOCK();
994                 error = CRYPTODEV_KPROCESS(cap->cc_dev, krp, 0);
995                 CRYPTO_DRIVER_LOCK();
996                 if (error == ERESTART) {
997                         cap->cc_koperations--;
998                         CRYPTO_DRIVER_UNLOCK();
999                         return (error);
1000                 }
1001         } else {
1002                 /*
1003                  * NB: cap is !NULL if device is blocked; in
1004                  *     that case return ERESTART so the operation
1005                  *     is resubmitted if possible.
1006                  */
1007                 error = (cap == NULL) ? ENODEV : ERESTART;
1008         }
1009         CRYPTO_DRIVER_UNLOCK();
1010
1011         if (error) {
1012                 krp->krp_status = error;
1013                 crypto_kdone(krp);
1014         }
1015         return 0;
1016 }
1017
1018 #ifdef CRYPTO_TIMING
1019 static void
1020 crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
1021 {
1022         struct timespec now, t;
1023
1024         nanouptime(&now);
1025         t.tv_sec = now.tv_sec - tv->tv_sec;
1026         t.tv_nsec = now.tv_nsec - tv->tv_nsec;
1027         if (t.tv_nsec < 0) {
1028                 t.tv_sec--;
1029                 t.tv_nsec += 1000000000;
1030         }
1031         timespecadd(&ts->acc, &t);
1032         if (timespeccmp(&t, &ts->min, <))
1033                 ts->min = t;
1034         if (timespeccmp(&t, &ts->max, >))
1035                 ts->max = t;
1036         ts->count++;
1037
1038         *tv = now;
1039 }
1040 #endif
1041
1042 /*
1043  * Dispatch a crypto request to the appropriate crypto devices.
1044  */
1045 static int
1046 crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint)
1047 {
1048
1049         KASSERT(crp != NULL, ("%s: crp == NULL", __func__));
1050         KASSERT(crp->crp_callback != NULL,
1051             ("%s: crp->crp_callback == NULL", __func__));
1052         KASSERT(crp->crp_desc != NULL, ("%s: crp->crp_desc == NULL", __func__));
1053
1054 #ifdef CRYPTO_TIMING
1055         if (crypto_timing)
1056                 crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
1057 #endif
1058         if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1059                 struct cryptodesc *crd;
1060                 u_int64_t nid;
1061
1062                 /*
1063                  * Driver has unregistered; migrate the session and return
1064                  * an error to the caller so they'll resubmit the op.
1065                  *
1066                  * XXX: What if there are more already queued requests for this
1067                  *      session?
1068                  */
1069                 crypto_freesession(crp->crp_sid);
1070
1071                 for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
1072                         crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
1073
1074                 /* XXX propagate flags from initial session? */
1075                 if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI),
1076                     CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0)
1077                         crp->crp_sid = nid;
1078
1079                 crp->crp_etype = EAGAIN;
1080                 crypto_done(crp);
1081                 return 0;
1082         } else {
1083                 /*
1084                  * Invoke the driver to process the request.
1085                  */
1086                 return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint);
1087         }
1088 }
1089
1090 /*
1091  * Release a set of crypto descriptors.
1092  */
1093 void
1094 crypto_freereq(struct cryptop *crp)
1095 {
1096         struct cryptodesc *crd;
1097 #ifdef DIAGNOSTIC
1098         crypto_tdinfo_t tdinfo;
1099         struct cryptop *crp2;
1100         int n;
1101 #endif
1102
1103         if (crp == NULL)
1104                 return;
1105
1106 #ifdef DIAGNOSTIC
1107         for (n = 0; n < ncpus; ++n) {
1108                 tdinfo = &tdinfo_array[n];
1109
1110                 CRYPTO_Q_LOCK(tdinfo);
1111                 TAILQ_FOREACH(crp2, &tdinfo->crp_q, crp_next) {
1112                         KASSERT(crp2 != crp,
1113                             ("Freeing cryptop from the crypto queue (%p).",
1114                             crp));
1115                 }
1116                 CRYPTO_Q_UNLOCK(tdinfo);
1117         }
1118         CRYPTO_RETQ_LOCK();
1119         TAILQ_FOREACH(crp2, &crp_ret_q, crp_next) {
1120                 KASSERT(crp2 != crp,
1121                     ("Freeing cryptop from the return queue (%p).",
1122                     crp));
1123         }
1124         CRYPTO_RETQ_UNLOCK();
1125 #endif
1126
1127         while ((crd = crp->crp_desc) != NULL) {
1128                 crp->crp_desc = crd->crd_next;
1129                 objcache_put(cryptodesc_oc, crd);
1130         }
1131         objcache_put(cryptop_oc, crp);
1132 }
1133
1134 /*
1135  * Acquire a set of crypto descriptors.
1136  */
1137 struct cryptop *
1138 crypto_getreq(int num)
1139 {
1140         struct cryptodesc *crd;
1141         struct cryptop *crp;
1142
1143         crp = objcache_get(cryptop_oc, M_WAITOK);
1144         if (crp != NULL) {
1145                 bzero(crp, sizeof (*crp));
1146                 while (num--) {
1147                         crd = objcache_get(cryptodesc_oc, M_WAITOK);
1148                         if (crd == NULL) {
1149                                 crypto_freereq(crp);
1150                                 return NULL;
1151                         }
1152                         bzero(crd, sizeof (*crd));
1153
1154                         crd->crd_next = crp->crp_desc;
1155                         crp->crp_desc = crd;
1156                 }
1157         }
1158         return crp;
1159 }
1160
1161 /*
1162  * Invoke the callback on behalf of the driver.
1163  */
1164 void
1165 crypto_done(struct cryptop *crp)
1166 {
1167         KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0,
1168                 ("crypto_done: op already done, flags 0x%x", crp->crp_flags));
1169         crp->crp_flags |= CRYPTO_F_DONE;
1170         if (crp->crp_etype != 0)
1171                 cryptostats.cs_errs++;
1172 #ifdef CRYPTO_TIMING
1173         if (crypto_timing)
1174                 crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
1175 #endif
1176         /*
1177          * CBIMM means unconditionally do the callback immediately;
1178          * CBIFSYNC means do the callback immediately only if the
1179          * operation was done synchronously.  Both are used to avoid
1180          * doing extraneous context switches; the latter is mostly
1181          * used with the software crypto driver.
1182          */
1183         if ((crp->crp_flags & CRYPTO_F_CBIMM) ||
1184             ((crp->crp_flags & CRYPTO_F_CBIFSYNC) &&
1185              (CRYPTO_SESID2CAPS(crp->crp_sid) & CRYPTOCAP_F_SYNC))) {
1186                 /*
1187                  * Do the callback directly.  This is ok when the
1188                  * callback routine does very little (e.g. the
1189                  * /dev/crypto callback method just does a wakeup).
1190                  */
1191 #ifdef CRYPTO_TIMING
1192                 if (crypto_timing) {
1193                         /*
1194                          * NB: We must copy the timestamp before
1195                          * doing the callback as the cryptop is
1196                          * likely to be reclaimed.
1197                          */
1198                         struct timespec t = crp->crp_tstamp;
1199                         crypto_tstat(&cryptostats.cs_cb, &t);
1200                         crp->crp_callback(crp);
1201                         crypto_tstat(&cryptostats.cs_finis, &t);
1202                 } else
1203 #endif
1204                         crp->crp_callback(crp);
1205         } else {
1206                 /*
1207                  * Normal case; queue the callback for the thread.
1208                  */
1209                 CRYPTO_RETQ_LOCK();
1210                 if (CRYPTO_RETQ_EMPTY())
1211                         wakeup_one(&crp_ret_q); /* shared wait channel */
1212                 TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
1213                 CRYPTO_RETQ_UNLOCK();
1214         }
1215 }
1216
1217 /*
1218  * Invoke the callback on behalf of the driver.
1219  */
1220 void
1221 crypto_kdone(struct cryptkop *krp)
1222 {
1223         struct cryptocap *cap;
1224
1225         if (krp->krp_status != 0)
1226                 cryptostats.cs_kerrs++;
1227         CRYPTO_DRIVER_LOCK();
1228         /* XXX: What if driver is loaded in the meantime? */
1229         if (krp->krp_hid < crypto_drivers_num) {
1230                 cap = &crypto_drivers[krp->krp_hid];
1231                 cap->cc_koperations--;
1232                 KASSERT(cap->cc_koperations >= 0, ("cc_koperations < 0"));
1233                 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP)
1234                         crypto_remove(cap);
1235         }
1236         CRYPTO_DRIVER_UNLOCK();
1237         CRYPTO_RETQ_LOCK();
1238         if (CRYPTO_RETQ_EMPTY())
1239                 wakeup_one(&crp_ret_q);         /* shared wait channel */
1240         TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
1241         CRYPTO_RETQ_UNLOCK();
1242 }
1243
1244 int
1245 crypto_getfeat(int *featp)
1246 {
1247         int hid, kalg, feat = 0;
1248
1249         CRYPTO_DRIVER_LOCK();
1250         for (hid = 0; hid < crypto_drivers_num; hid++) {
1251                 const struct cryptocap *cap = &crypto_drivers[hid];
1252
1253                 if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1254                     !crypto_devallowsoft) {
1255                         continue;
1256                 }
1257                 for (kalg = 0; kalg <= CRK_ALGORITHM_MAX; kalg++)
1258                         if (cap->cc_kalg[kalg] & CRYPTO_ALG_FLAG_SUPPORTED)
1259                                 feat |=  1 << kalg;
1260         }
1261         CRYPTO_DRIVER_UNLOCK();
1262         *featp = feat;
1263         return (0);
1264 }
1265
1266 /*
1267  * Terminate a thread at module unload.  The process that
1268  * initiated this is waiting for us to signal that we're gone;
1269  * wake it up and exit.  We use the driver table lock to insure
1270  * we don't do the wakeup before they're waiting.  There is no
1271  * race here because the waiter sleeps on the proc lock for the
1272  * thread so it gets notified at the right time because of an
1273  * extra wakeup that's done in exit1().
1274  */
1275 static void
1276 crypto_finis(void *chan)
1277 {
1278         CRYPTO_DRIVER_LOCK();
1279         wakeup_one(chan);
1280         CRYPTO_DRIVER_UNLOCK();
1281         kthread_exit();
1282 }
1283
1284 /*
1285  * Crypto thread, dispatches crypto requests.
1286  *
1287  * MPSAFE
1288  */
1289 static void
1290 crypto_proc(void *arg)
1291 {
1292         crypto_tdinfo_t tdinfo = arg;
1293         struct cryptop *crp, *submit;
1294         struct cryptkop *krp;
1295         struct cryptocap *cap;
1296         u_int32_t hid;
1297         int result, hint;
1298
1299         CRYPTO_Q_LOCK(tdinfo);
1300
1301         curthread->td_type = TD_TYPE_CRYPTO;
1302
1303         for (;;) {
1304                 /*
1305                  * Find the first element in the queue that can be
1306                  * processed and look-ahead to see if multiple ops
1307                  * are ready for the same driver.
1308                  */
1309                 submit = NULL;
1310                 hint = 0;
1311                 TAILQ_FOREACH(crp, &tdinfo->crp_q, crp_next) {
1312                         hid = CRYPTO_SESID2HID(crp->crp_sid);
1313                         cap = crypto_checkdriver(hid);
1314                         /*
1315                          * Driver cannot disappeared when there is an active
1316                          * session.
1317                          */
1318                         KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1319                             __func__, __LINE__));
1320                         if (cap == NULL || cap->cc_dev == NULL) {
1321                                 /* Op needs to be migrated, process it. */
1322                                 if (submit == NULL)
1323                                         submit = crp;
1324                                 break;
1325                         }
1326                         if (!cap->cc_qblocked) {
1327                                 if (submit != NULL) {
1328                                         /*
1329                                          * We stop on finding another op,
1330                                          * regardless whether its for the same
1331                                          * driver or not.  We could keep
1332                                          * searching the queue but it might be
1333                                          * better to just use a per-driver
1334                                          * queue instead.
1335                                          */
1336                                         if (CRYPTO_SESID2HID(submit->crp_sid) == hid)
1337                                                 hint = CRYPTO_HINT_MORE;
1338                                         break;
1339                                 } else {
1340                                         submit = crp;
1341                                         if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
1342                                                 break;
1343                                         /* keep scanning for more are q'd */
1344                                 }
1345                         }
1346                 }
1347                 if (submit != NULL) {
1348                         TAILQ_REMOVE(&tdinfo->crp_q, submit, crp_next);
1349                         hid = CRYPTO_SESID2HID(submit->crp_sid);
1350                         cap = crypto_checkdriver(hid);
1351                         KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1352                             __func__, __LINE__));
1353
1354                         CRYPTO_Q_UNLOCK(tdinfo);
1355                         result = crypto_invoke(cap, submit, hint);
1356                         CRYPTO_Q_LOCK(tdinfo);
1357
1358                         if (result == ERESTART) {
1359                                 /*
1360                                  * The driver ran out of resources, mark the
1361                                  * driver ``blocked'' for cryptop's and put
1362                                  * the request back in the queue.  It would
1363                                  * best to put the request back where we got
1364                                  * it but that's hard so for now we put it
1365                                  * at the front.  This should be ok; putting
1366                                  * it at the end does not work.
1367                                  */
1368                                 /* XXX validate sid again? */
1369                                 crypto_drivers[CRYPTO_SESID2HID(submit->crp_sid)].cc_qblocked = 1;
1370                                 TAILQ_INSERT_HEAD(&tdinfo->crp_q,
1371                                                   submit, crp_next);
1372                                 cryptostats.cs_blocks++;
1373                         }
1374                 }
1375
1376                 /* As above, but for key ops */
1377                 TAILQ_FOREACH(krp, &tdinfo->crp_kq, krp_next) {
1378                         cap = crypto_checkdriver(krp->krp_hid);
1379                         if (cap == NULL || cap->cc_dev == NULL) {
1380                                 /*
1381                                  * Operation needs to be migrated, invalidate
1382                                  * the assigned device so it will reselect a
1383                                  * new one below.  Propagate the original
1384                                  * crid selection flags if supplied.
1385                                  */
1386                                 krp->krp_hid = krp->krp_crid &
1387                                     (CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE);
1388                                 if (krp->krp_hid == 0)
1389                                         krp->krp_hid =
1390                                     CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE;
1391                                 break;
1392                         }
1393                         if (!cap->cc_kqblocked)
1394                                 break;
1395                 }
1396                 if (krp != NULL) {
1397                         TAILQ_REMOVE(&tdinfo->crp_kq, krp, krp_next);
1398
1399                         CRYPTO_Q_UNLOCK(tdinfo);
1400                         result = crypto_kinvoke(krp, krp->krp_hid);
1401                         CRYPTO_Q_LOCK(tdinfo);
1402
1403                         if (result == ERESTART) {
1404                                 /*
1405                                  * The driver ran out of resources, mark the
1406                                  * driver ``blocked'' for cryptkop's and put
1407                                  * the request back in the queue.  It would
1408                                  * best to put the request back where we got
1409                                  * it but that's hard so for now we put it
1410                                  * at the front.  This should be ok; putting
1411                                  * it at the end does not work.
1412                                  */
1413                                 /* XXX validate sid again? */
1414                                 crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
1415                                 TAILQ_INSERT_HEAD(&tdinfo->crp_kq,
1416                                                   krp, krp_next);
1417                                 cryptostats.cs_kblocks++;
1418                         }
1419                 }
1420
1421                 if (submit == NULL && krp == NULL) {
1422                         /*
1423                          * Nothing more to be processed.  Sleep until we're
1424                          * woken because there are more ops to process.
1425                          * This happens either by submission or by a driver
1426                          * becoming unblocked and notifying us through
1427                          * crypto_unblock.  Note that when we wakeup we
1428                          * start processing each queue again from the
1429                          * front. It's not clear that it's important to
1430                          * preserve this ordering since ops may finish
1431                          * out of order if dispatched to different devices
1432                          * and some become blocked while others do not.
1433                          */
1434                         tdinfo->crp_sleep = 1;
1435                         lksleep (&tdinfo->crp_q, &tdinfo->crp_lock,
1436                                  0, "crypto_wait", 0);
1437                         tdinfo->crp_sleep = 0;
1438                         if (tdinfo->crp_td == NULL)
1439                                 break;
1440                         cryptostats.cs_intrs++;
1441                 }
1442         }
1443         CRYPTO_Q_UNLOCK(tdinfo);
1444
1445         crypto_finis(&tdinfo->crp_q);
1446 }
1447
1448 /*
1449  * Crypto returns thread, does callbacks for processed crypto requests.
1450  * Callbacks are done here, rather than in the crypto drivers, because
1451  * callbacks typically are expensive and would slow interrupt handling.
1452  *
1453  * MPSAFE
1454  */
1455 static void
1456 crypto_ret_proc(void *dummy __unused)
1457 {
1458         struct cryptop *crpt;
1459         struct cryptkop *krpt;
1460
1461         get_mplock();
1462         CRYPTO_RETQ_LOCK();
1463         for (;;) {
1464                 /* Harvest return q's for completed ops */
1465                 crpt = TAILQ_FIRST(&crp_ret_q);
1466                 if (crpt != NULL)
1467                         TAILQ_REMOVE(&crp_ret_q, crpt, crp_next);
1468
1469                 krpt = TAILQ_FIRST(&crp_ret_kq);
1470                 if (krpt != NULL)
1471                         TAILQ_REMOVE(&crp_ret_kq, krpt, krp_next);
1472
1473                 if (crpt != NULL || krpt != NULL) {
1474                         CRYPTO_RETQ_UNLOCK();
1475                         /*
1476                          * Run callbacks unlocked.
1477                          */
1478                         if (crpt != NULL) {
1479 #ifdef CRYPTO_TIMING
1480                                 if (crypto_timing) {
1481                                         /*
1482                                          * NB: We must copy the timestamp before
1483                                          * doing the callback as the cryptop is
1484                                          * likely to be reclaimed.
1485                                          */
1486                                         struct timespec t = crpt->crp_tstamp;
1487                                         crypto_tstat(&cryptostats.cs_cb, &t);
1488                                         crpt->crp_callback(crpt);
1489                                         crypto_tstat(&cryptostats.cs_finis, &t);
1490                                 } else
1491 #endif
1492                                         crpt->crp_callback(crpt);
1493                         }
1494                         if (krpt != NULL)
1495                                 krpt->krp_callback(krpt);
1496                         CRYPTO_RETQ_LOCK();
1497                 } else {
1498                         /*
1499                          * Nothing more to be processed.  Sleep until we're
1500                          * woken because there are more returns to process.
1501                          */
1502                         lksleep (&crp_ret_q, &crypto_ret_q_lock,
1503                                  0, "crypto_ret_wait", 0);
1504                         if (cryptoretthread == NULL)
1505                                 break;
1506                         cryptostats.cs_rets++;
1507                 }
1508         }
1509         CRYPTO_RETQ_UNLOCK();
1510
1511         crypto_finis(&crp_ret_q);
1512 }
1513
1514 #ifdef DDB
1515 static void
1516 db_show_drivers(void)
1517 {
1518         int hid;
1519
1520         db_printf("%12s %4s %4s %8s %2s %2s\n"
1521                 , "Device"
1522                 , "Ses"
1523                 , "Kops"
1524                 , "Flags"
1525                 , "QB"
1526                 , "KB"
1527         );
1528         for (hid = 0; hid < crypto_drivers_num; hid++) {
1529                 const struct cryptocap *cap = &crypto_drivers[hid];
1530                 if (cap->cc_dev == NULL)
1531                         continue;
1532                 db_printf("%-12s %4u %4u %08x %2u %2u\n"
1533                     , device_get_nameunit(cap->cc_dev)
1534                     , cap->cc_sessions
1535                     , cap->cc_koperations
1536                     , cap->cc_flags
1537                     , cap->cc_qblocked
1538                     , cap->cc_kqblocked
1539                 );
1540         }
1541 }
1542
1543 DB_SHOW_COMMAND(crypto, db_show_crypto)
1544 {
1545         crypto_tdinfo_t tdinfo;
1546         struct cryptop *crp;
1547         int n;
1548
1549         db_show_drivers();
1550         db_printf("\n");
1551
1552         db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n",
1553             "HID", "Caps", "Ilen", "Olen", "Etype", "Flags",
1554             "Desc", "Callback");
1555
1556         for (n = 0; n < ncpus; ++n) {
1557                 tdinfo = &tdinfo_array[n];
1558
1559                 TAILQ_FOREACH(crp, &tdinfo->crp_q, crp_next) {
1560                         db_printf("%4u %08x %4u %4u %4u %04x %8p %8p\n"
1561                             , (int) CRYPTO_SESID2HID(crp->crp_sid)
1562                             , (int) CRYPTO_SESID2CAPS(crp->crp_sid)
1563                             , crp->crp_ilen, crp->crp_olen
1564                             , crp->crp_etype
1565                             , crp->crp_flags
1566                             , crp->crp_desc
1567                             , crp->crp_callback
1568                         );
1569                 }
1570         }
1571         if (!TAILQ_EMPTY(&crp_ret_q)) {
1572                 db_printf("\n%4s %4s %4s %8s\n",
1573                     "HID", "Etype", "Flags", "Callback");
1574                 TAILQ_FOREACH(crp, &crp_ret_q, crp_next) {
1575                         db_printf("%4u %4u %04x %8p\n"
1576                             , (int) CRYPTO_SESID2HID(crp->crp_sid)
1577                             , crp->crp_etype
1578                             , crp->crp_flags
1579                             , crp->crp_callback
1580                         );
1581                 }
1582         }
1583 }
1584
1585 DB_SHOW_COMMAND(kcrypto, db_show_kcrypto)
1586 {
1587         crypto_tdinfo_t tdinfo;
1588         struct cryptkop *krp;
1589         int n;
1590
1591         db_show_drivers();
1592         db_printf("\n");
1593
1594         db_printf("%4s %5s %4s %4s %8s %4s %8s\n",
1595             "Op", "Status", "#IP", "#OP", "CRID", "HID", "Callback");
1596
1597         for (n = 0; n < ncpus; ++n) {
1598                 tdinfo = &tdinfo_array[n];
1599
1600                 TAILQ_FOREACH(krp, &tdinfo->crp_kq, krp_next) {
1601                         db_printf("%4u %5u %4u %4u %08x %4u %8p\n"
1602                             , krp->krp_op
1603                             , krp->krp_status
1604                             , krp->krp_iparams, krp->krp_oparams
1605                             , krp->krp_crid, krp->krp_hid
1606                             , krp->krp_callback
1607                         );
1608                 }
1609         }
1610         if (!TAILQ_EMPTY(&crp_ret_q)) {
1611                 db_printf("%4s %5s %8s %4s %8s\n",
1612                     "Op", "Status", "CRID", "HID", "Callback");
1613                 TAILQ_FOREACH(krp, &crp_ret_kq, krp_next) {
1614                         db_printf("%4u %5u %08x %4u %8p\n"
1615                             , krp->krp_op
1616                             , krp->krp_status
1617                             , krp->krp_crid, krp->krp_hid
1618                             , krp->krp_callback
1619                         );
1620                 }
1621         }
1622 }
1623 #endif
1624
1625 int crypto_modevent(module_t mod, int type, void *unused);
1626
1627 /*
1628  * Initialization code, both for static and dynamic loading.
1629  * Note this is not invoked with the usual MODULE_DECLARE
1630  * mechanism but instead is listed as a dependency by the
1631  * cryptosoft driver.  This guarantees proper ordering of
1632  * calls on module load/unload.
1633  */
1634 int
1635 crypto_modevent(module_t mod, int type, void *unused)
1636 {
1637         int error = EINVAL;
1638
1639         switch (type) {
1640         case MOD_LOAD:
1641                 error = crypto_init();
1642                 if (error == 0 && bootverbose)
1643                         kprintf("crypto: <crypto core>\n");
1644                 break;
1645         case MOD_UNLOAD:
1646                 /*XXX disallow if active sessions */
1647                 error = 0;
1648                 crypto_destroy();
1649                 return 0;
1650         }
1651         return error;
1652 }
1653 MODULE_VERSION(crypto, 1);
1654 MODULE_DEPEND(crypto, zlib, 1, 1, 1);