Import flex-2.5.37 to new vendor branch
[dragonfly.git] / contrib / flex / dfa.c
1 /* dfa - DFA construction routines */
2
3 /*  Copyright (c) 1990 The Regents of the University of California. */
4 /*  All rights reserved. */
5
6 /*  This code is derived from software contributed to Berkeley by */
7 /*  Vern Paxson. */
8
9 /*  The United States Government has rights in this work pursuant */
10 /*  to contract no. DE-AC03-76SF00098 between the United States */
11 /*  Department of Energy and the University of California. */
12
13 /*  Redistribution and use in source and binary forms, with or without */
14 /*  modification, are permitted provided that the following conditions */
15 /*  are met: */
16
17 /*  1. Redistributions of source code must retain the above copyright */
18 /*     notice, this list of conditions and the following disclaimer. */
19 /*  2. Redistributions in binary form must reproduce the above copyright */
20 /*     notice, this list of conditions and the following disclaimer in the */
21 /*     documentation and/or other materials provided with the distribution. */
22
23 /*  Neither the name of the University nor the names of its contributors */
24 /*  may be used to endorse or promote products derived from this software */
25 /*  without specific prior written permission. */
26
27 /*  THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR */
28 /*  IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED */
29 /*  WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR */
30 /*  PURPOSE. */
31
32 #include "flexdef.h"
33 #include "tables.h"
34
35 /* declare functions that have forward references */
36
37 void dump_associated_rules PROTO ((FILE *, int));
38 void dump_transitions PROTO ((FILE *, int[]));
39 void sympartition PROTO ((int[], int, int[], int[]));
40 int symfollowset PROTO ((int[], int, int, int[]));
41
42
43 /* check_for_backing_up - check a DFA state for backing up
44  *
45  * synopsis
46  *     void check_for_backing_up( int ds, int state[numecs] );
47  *
48  * ds is the number of the state to check and state[] is its out-transitions,
49  * indexed by equivalence class.
50  */
51
52 void check_for_backing_up (ds, state)
53      int ds;
54      int state[];
55 {
56         if ((reject && !dfaacc[ds].dfaacc_set) || (!reject && !dfaacc[ds].dfaacc_state)) {      /* state is non-accepting */
57                 ++num_backing_up;
58
59                 if (backing_up_report) {
60                         fprintf (backing_up_file,
61                                  _("State #%d is non-accepting -\n"), ds);
62
63                         /* identify the state */
64                         dump_associated_rules (backing_up_file, ds);
65
66                         /* Now identify it further using the out- and
67                          * jam-transitions.
68                          */
69                         dump_transitions (backing_up_file, state);
70
71                         putc ('\n', backing_up_file);
72                 }
73         }
74 }
75
76
77 /* check_trailing_context - check to see if NFA state set constitutes
78  *                          "dangerous" trailing context
79  *
80  * synopsis
81  *    void check_trailing_context( int nfa_states[num_states+1], int num_states,
82  *                              int accset[nacc+1], int nacc );
83  *
84  * NOTES
85  *  Trailing context is "dangerous" if both the head and the trailing
86  *  part are of variable size \and/ there's a DFA state which contains
87  *  both an accepting state for the head part of the rule and NFA states
88  *  which occur after the beginning of the trailing context.
89  *
90  *  When such a rule is matched, it's impossible to tell if having been
91  *  in the DFA state indicates the beginning of the trailing context or
92  *  further-along scanning of the pattern.  In these cases, a warning
93  *  message is issued.
94  *
95  *    nfa_states[1 .. num_states] is the list of NFA states in the DFA.
96  *    accset[1 .. nacc] is the list of accepting numbers for the DFA state.
97  */
98
99 void check_trailing_context (nfa_states, num_states, accset, nacc)
100      int    *nfa_states, num_states;
101      int    *accset;
102      int nacc;
103 {
104         register int i, j;
105
106         for (i = 1; i <= num_states; ++i) {
107                 int     ns = nfa_states[i];
108                 register int type = state_type[ns];
109                 register int ar = assoc_rule[ns];
110
111                 if (type == STATE_NORMAL || rule_type[ar] != RULE_VARIABLE) {   /* do nothing */
112                 }
113
114                 else if (type == STATE_TRAILING_CONTEXT) {
115                         /* Potential trouble.  Scan set of accepting numbers
116                          * for the one marking the end of the "head".  We
117                          * assume that this looping will be fairly cheap
118                          * since it's rare that an accepting number set
119                          * is large.
120                          */
121                         for (j = 1; j <= nacc; ++j)
122                                 if (accset[j] & YY_TRAILING_HEAD_MASK) {
123                                         line_warning (_
124                                                       ("dangerous trailing context"),
125                                                       rule_linenum[ar]);
126                                         return;
127                                 }
128                 }
129         }
130 }
131
132
133 /* dump_associated_rules - list the rules associated with a DFA state
134  *
135  * Goes through the set of NFA states associated with the DFA and
136  * extracts the first MAX_ASSOC_RULES unique rules, sorts them,
137  * and writes a report to the given file.
138  */
139
140 void dump_associated_rules (file, ds)
141      FILE   *file;
142      int ds;
143 {
144         register int i, j;
145         register int num_associated_rules = 0;
146         int     rule_set[MAX_ASSOC_RULES + 1];
147         int    *dset = dss[ds];
148         int     size = dfasiz[ds];
149
150         for (i = 1; i <= size; ++i) {
151                 register int rule_num = rule_linenum[assoc_rule[dset[i]]];
152
153                 for (j = 1; j <= num_associated_rules; ++j)
154                         if (rule_num == rule_set[j])
155                                 break;
156
157                 if (j > num_associated_rules) { /* new rule */
158                         if (num_associated_rules < MAX_ASSOC_RULES)
159                                 rule_set[++num_associated_rules] =
160                                         rule_num;
161                 }
162         }
163
164         qsort (&rule_set [1], num_associated_rules, sizeof (rule_set [1]), intcmp);
165
166         fprintf (file, _(" associated rule line numbers:"));
167
168         for (i = 1; i <= num_associated_rules; ++i) {
169                 if (i % 8 == 1)
170                         putc ('\n', file);
171
172                 fprintf (file, "\t%d", rule_set[i]);
173         }
174
175         putc ('\n', file);
176 }
177
178
179 /* dump_transitions - list the transitions associated with a DFA state
180  *
181  * synopsis
182  *     dump_transitions( FILE *file, int state[numecs] );
183  *
184  * Goes through the set of out-transitions and lists them in human-readable
185  * form (i.e., not as equivalence classes); also lists jam transitions
186  * (i.e., all those which are not out-transitions, plus EOF).  The dump
187  * is done to the given file.
188  */
189
190 void dump_transitions (file, state)
191      FILE   *file;
192      int state[];
193 {
194         register int i, ec;
195         int     out_char_set[CSIZE];
196
197         for (i = 0; i < csize; ++i) {
198                 ec = ABS (ecgroup[i]);
199                 out_char_set[i] = state[ec];
200         }
201
202         fprintf (file, _(" out-transitions: "));
203
204         list_character_set (file, out_char_set);
205
206         /* now invert the members of the set to get the jam transitions */
207         for (i = 0; i < csize; ++i)
208                 out_char_set[i] = !out_char_set[i];
209
210         fprintf (file, _("\n jam-transitions: EOF "));
211
212         list_character_set (file, out_char_set);
213
214         putc ('\n', file);
215 }
216
217
218 /* epsclosure - construct the epsilon closure of a set of ndfa states
219  *
220  * synopsis
221  *    int *epsclosure( int t[num_states], int *numstates_addr,
222  *                      int accset[num_rules+1], int *nacc_addr,
223  *                      int *hashval_addr );
224  *
225  * NOTES
226  *  The epsilon closure is the set of all states reachable by an arbitrary
227  *  number of epsilon transitions, which themselves do not have epsilon
228  *  transitions going out, unioned with the set of states which have non-null
229  *  accepting numbers.  t is an array of size numstates of nfa state numbers.
230  *  Upon return, t holds the epsilon closure and *numstates_addr is updated.
231  *  accset holds a list of the accepting numbers, and the size of accset is
232  *  given by *nacc_addr.  t may be subjected to reallocation if it is not
233  *  large enough to hold the epsilon closure.
234  *
235  *  hashval is the hash value for the dfa corresponding to the state set.
236  */
237
238 int    *epsclosure (t, ns_addr, accset, nacc_addr, hv_addr)
239      int    *t, *ns_addr, accset[], *nacc_addr, *hv_addr;
240 {
241         register int stkpos, ns, tsp;
242         int     numstates = *ns_addr, nacc, hashval, transsym, nfaccnum;
243         int     stkend, nstate;
244         static int did_stk_init = false, *stk;
245
246 #define MARK_STATE(state) \
247 do{ trans1[state] = trans1[state] - MARKER_DIFFERENCE;} while(0)
248
249 #define IS_MARKED(state) (trans1[state] < 0)
250
251 #define UNMARK_STATE(state) \
252 do{ trans1[state] = trans1[state] + MARKER_DIFFERENCE;} while(0)
253
254 #define CHECK_ACCEPT(state) \
255 do{ \
256 nfaccnum = accptnum[state]; \
257 if ( nfaccnum != NIL ) \
258 accset[++nacc] = nfaccnum; \
259 }while(0)
260
261 #define DO_REALLOCATION() \
262 do { \
263 current_max_dfa_size += MAX_DFA_SIZE_INCREMENT; \
264 ++num_reallocs; \
265 t = reallocate_integer_array( t, current_max_dfa_size ); \
266 stk = reallocate_integer_array( stk, current_max_dfa_size ); \
267 }while(0) \
268
269 #define PUT_ON_STACK(state) \
270 do { \
271 if ( ++stkend >= current_max_dfa_size ) \
272 DO_REALLOCATION(); \
273 stk[stkend] = state; \
274 MARK_STATE(state); \
275 }while(0)
276
277 #define ADD_STATE(state) \
278 do { \
279 if ( ++numstates >= current_max_dfa_size ) \
280 DO_REALLOCATION(); \
281 t[numstates] = state; \
282 hashval += state; \
283 }while(0)
284
285 #define STACK_STATE(state) \
286 do { \
287 PUT_ON_STACK(state); \
288 CHECK_ACCEPT(state); \
289 if ( nfaccnum != NIL || transchar[state] != SYM_EPSILON ) \
290 ADD_STATE(state); \
291 }while(0)
292
293
294         if (!did_stk_init) {
295                 stk = allocate_integer_array (current_max_dfa_size);
296                 did_stk_init = true;
297         }
298
299         nacc = stkend = hashval = 0;
300
301         for (nstate = 1; nstate <= numstates; ++nstate) {
302                 ns = t[nstate];
303
304                 /* The state could be marked if we've already pushed it onto
305                  * the stack.
306                  */
307                 if (!IS_MARKED (ns)) {
308                         PUT_ON_STACK (ns);
309                         CHECK_ACCEPT (ns);
310                         hashval += ns;
311                 }
312         }
313
314         for (stkpos = 1; stkpos <= stkend; ++stkpos) {
315                 ns = stk[stkpos];
316                 transsym = transchar[ns];
317
318                 if (transsym == SYM_EPSILON) {
319                         tsp = trans1[ns] + MARKER_DIFFERENCE;
320
321                         if (tsp != NO_TRANSITION) {
322                                 if (!IS_MARKED (tsp))
323                                         STACK_STATE (tsp);
324
325                                 tsp = trans2[ns];
326
327                                 if (tsp != NO_TRANSITION
328                                     && !IS_MARKED (tsp))
329                                         STACK_STATE (tsp);
330                         }
331                 }
332         }
333
334         /* Clear out "visit" markers. */
335
336         for (stkpos = 1; stkpos <= stkend; ++stkpos) {
337                 if (IS_MARKED (stk[stkpos]))
338                         UNMARK_STATE (stk[stkpos]);
339                 else
340                         flexfatal (_
341                                    ("consistency check failed in epsclosure()"));
342         }
343
344         *ns_addr = numstates;
345         *hv_addr = hashval;
346         *nacc_addr = nacc;
347
348         return t;
349 }
350
351
352 /* increase_max_dfas - increase the maximum number of DFAs */
353
354 void increase_max_dfas ()
355 {
356         current_max_dfas += MAX_DFAS_INCREMENT;
357
358         ++num_reallocs;
359
360         base = reallocate_integer_array (base, current_max_dfas);
361         def = reallocate_integer_array (def, current_max_dfas);
362         dfasiz = reallocate_integer_array (dfasiz, current_max_dfas);
363         accsiz = reallocate_integer_array (accsiz, current_max_dfas);
364         dhash = reallocate_integer_array (dhash, current_max_dfas);
365         dss = reallocate_int_ptr_array (dss, current_max_dfas);
366         dfaacc = reallocate_dfaacc_union (dfaacc, current_max_dfas);
367
368         if (nultrans)
369                 nultrans =
370                         reallocate_integer_array (nultrans,
371                                                   current_max_dfas);
372 }
373
374
375 /* ntod - convert an ndfa to a dfa
376  *
377  * Creates the dfa corresponding to the ndfa we've constructed.  The
378  * dfa starts out in state #1.
379  */
380
381 void ntod ()
382 {
383         int    *accset, ds, nacc, newds;
384         int     sym, hashval, numstates, dsize;
385         int     num_full_table_rows=0;  /* used only for -f */
386         int    *nset, *dset;
387         int     targptr, totaltrans, i, comstate, comfreq, targ;
388         int     symlist[CSIZE + 1];
389         int     num_start_states;
390         int     todo_head, todo_next;
391
392         struct yytbl_data *yynxt_tbl = 0;
393         flex_int32_t *yynxt_data = 0, yynxt_curr = 0;
394
395         /* Note that the following are indexed by *equivalence classes*
396          * and not by characters.  Since equivalence classes are indexed
397          * beginning with 1, even if the scanner accepts NUL's, this
398          * means that (since every character is potentially in its own
399          * equivalence class) these arrays must have room for indices
400          * from 1 to CSIZE, so their size must be CSIZE + 1.
401          */
402         int     duplist[CSIZE + 1], state[CSIZE + 1];
403         int     targfreq[CSIZE + 1], targstate[CSIZE + 1];
404
405         /* accset needs to be large enough to hold all of the rules present
406          * in the input, *plus* their YY_TRAILING_HEAD_MASK variants.
407          */
408         accset = allocate_integer_array ((num_rules + 1) * 2);
409         nset = allocate_integer_array (current_max_dfa_size);
410
411         /* The "todo" queue is represented by the head, which is the DFA
412          * state currently being processed, and the "next", which is the
413          * next DFA state number available (not in use).  We depend on the
414          * fact that snstods() returns DFA's \in increasing order/, and thus
415          * need only know the bounds of the dfas to be processed.
416          */
417         todo_head = todo_next = 0;
418
419         for (i = 0; i <= csize; ++i) {
420                 duplist[i] = NIL;
421                 symlist[i] = false;
422         }
423
424         for (i = 0; i <= num_rules; ++i)
425                 accset[i] = NIL;
426
427         if (trace) {
428                 dumpnfa (scset[1]);
429                 fputs (_("\n\nDFA Dump:\n\n"), stderr);
430         }
431
432         inittbl ();
433
434         /* Check to see whether we should build a separate table for
435          * transitions on NUL characters.  We don't do this for full-speed
436          * (-F) scanners, since for them we don't have a simple state
437          * number lying around with which to index the table.  We also
438          * don't bother doing it for scanners unless (1) NUL is in its own
439          * equivalence class (indicated by a positive value of
440          * ecgroup[NUL]), (2) NUL's equivalence class is the last
441          * equivalence class, and (3) the number of equivalence classes is
442          * the same as the number of characters.  This latter case comes
443          * about when useecs is false or when it's true but every character
444          * still manages to land in its own class (unlikely, but it's
445          * cheap to check for).  If all these things are true then the
446          * character code needed to represent NUL's equivalence class for
447          * indexing the tables is going to take one more bit than the
448          * number of characters, and therefore we won't be assured of
449          * being able to fit it into a YY_CHAR variable.  This rules out
450          * storing the transitions in a compressed table, since the code
451          * for interpreting them uses a YY_CHAR variable (perhaps it
452          * should just use an integer, though; this is worth pondering ...
453          * ###).
454          *
455          * Finally, for full tables, we want the number of entries in the
456          * table to be a power of two so the array references go fast (it
457          * will just take a shift to compute the major index).  If
458          * encoding NUL's transitions in the table will spoil this, we
459          * give it its own table (note that this will be the case if we're
460          * not using equivalence classes).
461          */
462
463         /* Note that the test for ecgroup[0] == numecs below accomplishes
464          * both (1) and (2) above
465          */
466         if (!fullspd && ecgroup[0] == numecs) {
467                 /* NUL is alone in its equivalence class, which is the
468                  * last one.
469                  */
470                 int     use_NUL_table = (numecs == csize);
471
472                 if (fulltbl && !use_NUL_table) {
473                         /* We still may want to use the table if numecs
474                          * is a power of 2.
475                          */
476                         int     power_of_two;
477
478                         for (power_of_two = 1; power_of_two <= csize;
479                              power_of_two *= 2)
480                                 if (numecs == power_of_two) {
481                                         use_NUL_table = true;
482                                         break;
483                                 }
484                 }
485
486                 if (use_NUL_table)
487                         nultrans =
488                                 allocate_integer_array (current_max_dfas);
489
490                 /* From now on, nultrans != nil indicates that we're
491                  * saving null transitions for later, separate encoding.
492                  */
493         }
494
495
496         if (fullspd) {
497                 for (i = 0; i <= numecs; ++i)
498                         state[i] = 0;
499
500                 place_state (state, 0, 0);
501                 dfaacc[0].dfaacc_state = 0;
502         }
503
504         else if (fulltbl) {
505                 if (nultrans)
506                         /* We won't be including NUL's transitions in the
507                          * table, so build it for entries from 0 .. numecs - 1.
508                          */
509                         num_full_table_rows = numecs;
510
511                 else
512                         /* Take into account the fact that we'll be including
513                          * the NUL entries in the transition table.  Build it
514                          * from 0 .. numecs.
515                          */
516                         num_full_table_rows = numecs + 1;
517
518                 /* Begin generating yy_nxt[][]
519                  * This spans the entire LONG function.
520                  * This table is tricky because we don't know how big it will be.
521                  * So we'll have to realloc() on the way...
522                  * we'll wait until we can calculate yynxt_tbl->td_hilen.
523                  */
524                 yynxt_tbl =
525                         (struct yytbl_data *) calloc (1,
526                                                       sizeof (struct
527                                                               yytbl_data));
528                 yytbl_data_init (yynxt_tbl, YYTD_ID_NXT);
529                 yynxt_tbl->td_hilen = 1;
530                 yynxt_tbl->td_lolen = num_full_table_rows;
531                 yynxt_tbl->td_data = yynxt_data =
532                         (flex_int32_t *) calloc (yynxt_tbl->td_lolen *
533                                             yynxt_tbl->td_hilen,
534                                             sizeof (flex_int32_t));
535                 yynxt_curr = 0;
536
537                 buf_prints (&yydmap_buf,
538                             "\t{YYTD_ID_NXT, (void**)&yy_nxt, sizeof(%s)},\n",
539                             long_align ? "flex_int32_t" : "flex_int16_t");
540
541                 /* Unless -Ca, declare it "short" because it's a real
542                  * long-shot that that won't be large enough.
543                  */
544                 if (gentables)
545                         out_str_dec
546                                 ("static yyconst %s yy_nxt[][%d] =\n    {\n",
547                                  long_align ? "flex_int32_t" : "flex_int16_t",
548                                  num_full_table_rows);
549                 else {
550                         out_dec ("#undef YY_NXT_LOLEN\n#define YY_NXT_LOLEN (%d)\n", num_full_table_rows);
551                         out_str ("static yyconst %s *yy_nxt =0;\n",
552                                  long_align ? "flex_int32_t" : "flex_int16_t");
553                 }
554
555
556                 if (gentables)
557                         outn ("    {");
558
559                 /* Generate 0 entries for state #0. */
560                 for (i = 0; i < num_full_table_rows; ++i) {
561                         mk2data (0);
562                         yynxt_data[yynxt_curr++] = 0;
563                 }
564
565                 dataflush ();
566                 if (gentables)
567                         outn ("    },\n");
568         }
569
570         /* Create the first states. */
571
572         num_start_states = lastsc * 2;
573
574         for (i = 1; i <= num_start_states; ++i) {
575                 numstates = 1;
576
577                 /* For each start condition, make one state for the case when
578                  * we're at the beginning of the line (the '^' operator) and
579                  * one for the case when we're not.
580                  */
581                 if (i % 2 == 1)
582                         nset[numstates] = scset[(i / 2) + 1];
583                 else
584                         nset[numstates] =
585                                 mkbranch (scbol[i / 2], scset[i / 2]);
586
587                 nset = epsclosure (nset, &numstates, accset, &nacc,
588                                    &hashval);
589
590                 if (snstods (nset, numstates, accset, nacc, hashval, &ds)) {
591                         numas += nacc;
592                         totnst += numstates;
593                         ++todo_next;
594
595                         if (variable_trailing_context_rules && nacc > 0)
596                                 check_trailing_context (nset, numstates,
597                                                         accset, nacc);
598                 }
599         }
600
601         if (!fullspd) {
602                 if (!snstods (nset, 0, accset, 0, 0, &end_of_buffer_state))
603                         flexfatal (_
604                                    ("could not create unique end-of-buffer state"));
605
606                 ++numas;
607                 ++num_start_states;
608                 ++todo_next;
609         }
610
611
612         while (todo_head < todo_next) {
613                 targptr = 0;
614                 totaltrans = 0;
615
616                 for (i = 1; i <= numecs; ++i)
617                         state[i] = 0;
618
619                 ds = ++todo_head;
620
621                 dset = dss[ds];
622                 dsize = dfasiz[ds];
623
624                 if (trace)
625                         fprintf (stderr, _("state # %d:\n"), ds);
626
627                 sympartition (dset, dsize, symlist, duplist);
628
629                 for (sym = 1; sym <= numecs; ++sym) {
630                         if (symlist[sym]) {
631                                 symlist[sym] = 0;
632
633                                 if (duplist[sym] == NIL) {
634                                         /* Symbol has unique out-transitions. */
635                                         numstates =
636                                                 symfollowset (dset, dsize,
637                                                               sym, nset);
638                                         nset = epsclosure (nset,
639                                                            &numstates,
640                                                            accset, &nacc,
641                                                            &hashval);
642
643                                         if (snstods
644                                             (nset, numstates, accset, nacc,
645                                              hashval, &newds)) {
646                                                 totnst = totnst +
647                                                         numstates;
648                                                 ++todo_next;
649                                                 numas += nacc;
650
651                                                 if (variable_trailing_context_rules && nacc > 0)
652                                                         check_trailing_context
653                                                                 (nset,
654                                                                  numstates,
655                                                                  accset,
656                                                                  nacc);
657                                         }
658
659                                         state[sym] = newds;
660
661                                         if (trace)
662                                                 fprintf (stderr,
663                                                          "\t%d\t%d\n", sym,
664                                                          newds);
665
666                                         targfreq[++targptr] = 1;
667                                         targstate[targptr] = newds;
668                                         ++numuniq;
669                                 }
670
671                                 else {
672                                         /* sym's equivalence class has the same
673                                          * transitions as duplist(sym)'s
674                                          * equivalence class.
675                                          */
676                                         targ = state[duplist[sym]];
677                                         state[sym] = targ;
678
679                                         if (trace)
680                                                 fprintf (stderr,
681                                                          "\t%d\t%d\n", sym,
682                                                          targ);
683
684                                         /* Update frequency count for
685                                          * destination state.
686                                          */
687
688                                         i = 0;
689                                         while (targstate[++i] != targ) ;
690
691                                         ++targfreq[i];
692                                         ++numdup;
693                                 }
694
695                                 ++totaltrans;
696                                 duplist[sym] = NIL;
697                         }
698                 }
699
700
701                 numsnpairs += totaltrans;
702
703                 if (ds > num_start_states)
704                         check_for_backing_up (ds, state);
705
706                 if (nultrans) {
707                         nultrans[ds] = state[NUL_ec];
708                         state[NUL_ec] = 0;      /* remove transition */
709                 }
710
711                 if (fulltbl) {
712
713                         /* Each time we hit here, it's another td_hilen, so we realloc. */
714                         yynxt_tbl->td_hilen++;
715                         yynxt_tbl->td_data = yynxt_data =
716                                 (flex_int32_t *) realloc (yynxt_data,
717                                                      yynxt_tbl->td_hilen *
718                                                      yynxt_tbl->td_lolen *
719                                                      sizeof (flex_int32_t));
720
721
722                         if (gentables)
723                                 outn ("    {");
724
725                         /* Supply array's 0-element. */
726                         if (ds == end_of_buffer_state) {
727                                 mk2data (-end_of_buffer_state);
728                                 yynxt_data[yynxt_curr++] =
729                                         -end_of_buffer_state;
730                         }
731                         else {
732                                 mk2data (end_of_buffer_state);
733                                 yynxt_data[yynxt_curr++] =
734                                         end_of_buffer_state;
735                         }
736
737                         for (i = 1; i < num_full_table_rows; ++i) {
738                                 /* Jams are marked by negative of state
739                                  * number.
740                                  */
741                                 mk2data (state[i] ? state[i] : -ds);
742                                 yynxt_data[yynxt_curr++] =
743                                         state[i] ? state[i] : -ds;
744                         }
745
746                         dataflush ();
747                         if (gentables)
748                                 outn ("    },\n");
749                 }
750
751                 else if (fullspd)
752                         place_state (state, ds, totaltrans);
753
754                 else if (ds == end_of_buffer_state)
755                         /* Special case this state to make sure it does what
756                          * it's supposed to, i.e., jam on end-of-buffer.
757                          */
758                         stack1 (ds, 0, 0, JAMSTATE);
759
760                 else {          /* normal, compressed state */
761
762                         /* Determine which destination state is the most
763                          * common, and how many transitions to it there are.
764                          */
765
766                         comfreq = 0;
767                         comstate = 0;
768
769                         for (i = 1; i <= targptr; ++i)
770                                 if (targfreq[i] > comfreq) {
771                                         comfreq = targfreq[i];
772                                         comstate = targstate[i];
773                                 }
774
775                         bldtbl (state, ds, totaltrans, comstate, comfreq);
776                 }
777         }
778
779         if (fulltbl) {
780                 dataend ();
781                 if (tablesext) {
782                         yytbl_data_compress (yynxt_tbl);
783                         if (yytbl_data_fwrite (&tableswr, yynxt_tbl) < 0)
784                                 flexerror (_
785                                            ("Could not write yynxt_tbl[][]"));
786                 }
787                 if (yynxt_tbl) {
788                         yytbl_data_destroy (yynxt_tbl);
789                         yynxt_tbl = 0;
790                 }
791         }
792
793         else if (!fullspd) {
794                 cmptmps ();     /* create compressed template entries */
795
796                 /* Create tables for all the states with only one
797                  * out-transition.
798                  */
799                 while (onesp > 0) {
800                         mk1tbl (onestate[onesp], onesym[onesp],
801                                 onenext[onesp], onedef[onesp]);
802                         --onesp;
803                 }
804
805                 mkdeftbl ();
806         }
807
808         flex_free ((void *) accset);
809         flex_free ((void *) nset);
810 }
811
812
813 /* snstods - converts a set of ndfa states into a dfa state
814  *
815  * synopsis
816  *    is_new_state = snstods( int sns[numstates], int numstates,
817  *                              int accset[num_rules+1], int nacc,
818  *                              int hashval, int *newds_addr );
819  *
820  * On return, the dfa state number is in newds.
821  */
822
823 int snstods (sns, numstates, accset, nacc, hashval, newds_addr)
824      int sns[], numstates, accset[], nacc, hashval, *newds_addr;
825 {
826         int     didsort = 0;
827         register int i, j;
828         int     newds, *oldsns;
829
830         for (i = 1; i <= lastdfa; ++i)
831                 if (hashval == dhash[i]) {
832                         if (numstates == dfasiz[i]) {
833                                 oldsns = dss[i];
834
835                                 if (!didsort) {
836                                         /* We sort the states in sns so we
837                                          * can compare it to oldsns quickly.
838                                          */
839                                         qsort (&sns [1], numstates, sizeof (sns [1]), intcmp);
840                                         didsort = 1;
841                                 }
842
843                                 for (j = 1; j <= numstates; ++j)
844                                         if (sns[j] != oldsns[j])
845                                                 break;
846
847                                 if (j > numstates) {
848                                         ++dfaeql;
849                                         *newds_addr = i;
850                                         return 0;
851                                 }
852
853                                 ++hshcol;
854                         }
855
856                         else
857                                 ++hshsave;
858                 }
859
860         /* Make a new dfa. */
861
862         if (++lastdfa >= current_max_dfas)
863                 increase_max_dfas ();
864
865         newds = lastdfa;
866
867         dss[newds] = allocate_integer_array (numstates + 1);
868
869         /* If we haven't already sorted the states in sns, we do so now,
870          * so that future comparisons with it can be made quickly.
871          */
872
873         if (!didsort)
874                 qsort (&sns [1], numstates, sizeof (sns [1]), intcmp);
875
876         for (i = 1; i <= numstates; ++i)
877                 dss[newds][i] = sns[i];
878
879         dfasiz[newds] = numstates;
880         dhash[newds] = hashval;
881
882         if (nacc == 0) {
883                 if (reject)
884                         dfaacc[newds].dfaacc_set = (int *) 0;
885                 else
886                         dfaacc[newds].dfaacc_state = 0;
887
888                 accsiz[newds] = 0;
889         }
890
891         else if (reject) {
892                 /* We sort the accepting set in increasing order so the
893                  * disambiguating rule that the first rule listed is considered
894                  * match in the event of ties will work.
895                  */
896
897                 qsort (&accset [1], nacc, sizeof (accset [1]), intcmp);
898
899                 dfaacc[newds].dfaacc_set =
900                         allocate_integer_array (nacc + 1);
901
902                 /* Save the accepting set for later */
903                 for (i = 1; i <= nacc; ++i) {
904                         dfaacc[newds].dfaacc_set[i] = accset[i];
905
906                         if (accset[i] <= num_rules)
907                                 /* Who knows, perhaps a REJECT can yield
908                                  * this rule.
909                                  */
910                                 rule_useful[accset[i]] = true;
911                 }
912
913                 accsiz[newds] = nacc;
914         }
915
916         else {
917                 /* Find lowest numbered rule so the disambiguating rule
918                  * will work.
919                  */
920                 j = num_rules + 1;
921
922                 for (i = 1; i <= nacc; ++i)
923                         if (accset[i] < j)
924                                 j = accset[i];
925
926                 dfaacc[newds].dfaacc_state = j;
927
928                 if (j <= num_rules)
929                         rule_useful[j] = true;
930         }
931
932         *newds_addr = newds;
933
934         return 1;
935 }
936
937
938 /* symfollowset - follow the symbol transitions one step
939  *
940  * synopsis
941  *    numstates = symfollowset( int ds[current_max_dfa_size], int dsize,
942  *                              int transsym, int nset[current_max_dfa_size] );
943  */
944
945 int symfollowset (ds, dsize, transsym, nset)
946      int ds[], dsize, transsym, nset[];
947 {
948         int     ns, tsp, sym, i, j, lenccl, ch, numstates, ccllist;
949
950         numstates = 0;
951
952         for (i = 1; i <= dsize; ++i) {  /* for each nfa state ns in the state set of ds */
953                 ns = ds[i];
954                 sym = transchar[ns];
955                 tsp = trans1[ns];
956
957                 if (sym < 0) {  /* it's a character class */
958                         sym = -sym;
959                         ccllist = cclmap[sym];
960                         lenccl = ccllen[sym];
961
962                         if (cclng[sym]) {
963                                 for (j = 0; j < lenccl; ++j) {
964                                         /* Loop through negated character
965                                          * class.
966                                          */
967                                         ch = ccltbl[ccllist + j];
968
969                                         if (ch == 0)
970                                                 ch = NUL_ec;
971
972                                         if (ch > transsym)
973                                                 /* Transsym isn't in negated
974                                                  * ccl.
975                                                  */
976                                                 break;
977
978                                         else if (ch == transsym)
979                                                 /* next 2 */
980                                                 goto bottom;
981                                 }
982
983                                 /* Didn't find transsym in ccl. */
984                                 nset[++numstates] = tsp;
985                         }
986
987                         else
988                                 for (j = 0; j < lenccl; ++j) {
989                                         ch = ccltbl[ccllist + j];
990
991                                         if (ch == 0)
992                                                 ch = NUL_ec;
993
994                                         if (ch > transsym)
995                                                 break;
996                                         else if (ch == transsym) {
997                                                 nset[++numstates] = tsp;
998                                                 break;
999                                         }
1000                                 }
1001                 }
1002
1003                 else if (sym == SYM_EPSILON) {  /* do nothing */
1004                 }
1005
1006                 else if (ABS (ecgroup[sym]) == transsym)
1007                         nset[++numstates] = tsp;
1008
1009               bottom:;
1010         }
1011
1012         return numstates;
1013 }
1014
1015
1016 /* sympartition - partition characters with same out-transitions
1017  *
1018  * synopsis
1019  *    sympartition( int ds[current_max_dfa_size], int numstates,
1020  *                      int symlist[numecs], int duplist[numecs] );
1021  */
1022
1023 void sympartition (ds, numstates, symlist, duplist)
1024      int ds[], numstates;
1025      int symlist[], duplist[];
1026 {
1027         int     tch, i, j, k, ns, dupfwd[CSIZE + 1], lenccl, cclp, ich;
1028
1029         /* Partitioning is done by creating equivalence classes for those
1030          * characters which have out-transitions from the given state.  Thus
1031          * we are really creating equivalence classes of equivalence classes.
1032          */
1033
1034         for (i = 1; i <= numecs; ++i) { /* initialize equivalence class list */
1035                 duplist[i] = i - 1;
1036                 dupfwd[i] = i + 1;
1037         }
1038
1039         duplist[1] = NIL;
1040         dupfwd[numecs] = NIL;
1041
1042         for (i = 1; i <= numstates; ++i) {
1043                 ns = ds[i];
1044                 tch = transchar[ns];
1045
1046                 if (tch != SYM_EPSILON) {
1047                         if (tch < -lastccl || tch >= csize) {
1048                                 flexfatal (_
1049                                            ("bad transition character detected in sympartition()"));
1050                         }
1051
1052                         if (tch >= 0) { /* character transition */
1053                                 int     ec = ecgroup[tch];
1054
1055                                 mkechar (ec, dupfwd, duplist);
1056                                 symlist[ec] = 1;
1057                         }
1058
1059                         else {  /* character class */
1060                                 tch = -tch;
1061
1062                                 lenccl = ccllen[tch];
1063                                 cclp = cclmap[tch];
1064                                 mkeccl (ccltbl + cclp, lenccl, dupfwd,
1065                                         duplist, numecs, NUL_ec);
1066
1067                                 if (cclng[tch]) {
1068                                         j = 0;
1069
1070                                         for (k = 0; k < lenccl; ++k) {
1071                                                 ich = ccltbl[cclp + k];
1072
1073                                                 if (ich == 0)
1074                                                         ich = NUL_ec;
1075
1076                                                 for (++j; j < ich; ++j)
1077                                                         symlist[j] = 1;
1078                                         }
1079
1080                                         for (++j; j <= numecs; ++j)
1081                                                 symlist[j] = 1;
1082                                 }
1083
1084                                 else
1085                                         for (k = 0; k < lenccl; ++k) {
1086                                                 ich = ccltbl[cclp + k];
1087
1088                                                 if (ich == 0)
1089                                                         ich = NUL_ec;
1090
1091                                                 symlist[ich] = 1;
1092                                         }
1093                         }
1094                 }
1095         }
1096 }