/*- * Copyright (c) 2005 John Bicket * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any * redistribution must be conditioned upon including a substantially * similar Disclaimer requirement for further binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGES. * * $FreeBSD: head/sys/dev/ath/ath_rate/sample/sample.c 194135 2009-06-13 23:36:54Z sam $ */ /* * John Bicket's SampleRate control algorithm. */ #include "opt_inet.h" #include "opt_wlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #endif #include #include #include /* * This file is an implementation of the SampleRate algorithm * in "Bit-rate Selection in Wireless Networks" * (http://www.pdos.lcs.mit.edu/papers/jbicket-ms.ps) * * SampleRate chooses the bit-rate it predicts will provide the most * throughput based on estimates of the expected per-packet * transmission time for each bit-rate. SampleRate periodically sends * packets at bit-rates other than the current one to estimate when * another bit-rate will provide better performance. SampleRate * switches to another bit-rate when its estimated per-packet * transmission time becomes smaller than the current bit-rate's. * SampleRate reduces the number of bit-rates it must sample by * eliminating those that could not perform better than the one * currently being used. SampleRate also stops probing at a bit-rate * if it experiences several successive losses. * * The difference between the algorithm in the thesis and the one in this * file is that the one in this file uses a ewma instead of a window. * * Also, this implementation tracks the average transmission time for * a few different packet sizes independently for each link. */ static void ath_rate_ctl_reset(struct ath_softc *, struct ieee80211_node *); static const int packet_size_bins[NUM_PACKET_SIZE_BINS] = { 250, 1600 }; static __inline int size_to_bin(int size) { #if NUM_PACKET_SIZE_BINS > 1 if (size <= packet_size_bins[0]) return 0; #endif #if NUM_PACKET_SIZE_BINS > 2 if (size <= packet_size_bins[1]) return 1; #endif #if NUM_PACKET_SIZE_BINS > 3 if (size <= packet_size_bins[2]) return 2; #endif #if NUM_PACKET_SIZE_BINS > 4 #error "add support for more packet sizes" #endif return NUM_PACKET_SIZE_BINS-1; } static __inline int bin_to_size(int index) { return packet_size_bins[index]; } void ath_rate_node_init(struct ath_softc *sc, struct ath_node *an) { /* NB: assumed to be zero'd by caller */ } void ath_rate_node_cleanup(struct ath_softc *sc, struct ath_node *an) { } /* * Return the rix with the lowest average_tx_time, * or -1 if all the average_tx_times are 0. */ static __inline int pick_best_rate(struct sample_node *sn, const HAL_RATE_TABLE *rt, int size_bin, int require_acked_before) { int best_rate_rix, best_rate_tt; uint32_t mask; int rix, tt; best_rate_rix = 0; best_rate_tt = 0; for (mask = sn->ratemask, rix = 0; mask != 0; mask >>= 1, rix++) { if ((mask & 1) == 0) /* not a supported rate */ continue; tt = sn->stats[size_bin][rix].average_tx_time; if (tt <= 0 || (require_acked_before && !sn->stats[size_bin][rix].packets_acked)) continue; /* don't use a bit-rate that has been failing */ if (sn->stats[size_bin][rix].successive_failures > 3) continue; if (best_rate_tt == 0 || tt < best_rate_tt) { best_rate_tt = tt; best_rate_rix = rix; } } return (best_rate_tt ? best_rate_rix : -1); } /* * Pick a good "random" bit-rate to sample other than the current one. */ static __inline int pick_sample_rate(struct sample_softc *ssc , struct sample_node *sn, const HAL_RATE_TABLE *rt, int size_bin) { #define DOT11RATE(ix) (rt->info[ix].dot11Rate & IEEE80211_RATE_VAL) int current_rix, rix; unsigned current_tt; uint32_t mask; current_rix = sn->current_rix[size_bin]; if (current_rix < 0) { /* no successes yet, send at the lowest bit-rate */ return 0; } current_tt = sn->stats[size_bin][current_rix].average_tx_time; rix = sn->last_sample_rix[size_bin]+1; /* next sample rate */ mask = sn->ratemask &~ (1<= rt->rateCount) rix = 0; continue; } /* this bit-rate is always worse than the current one */ if (sn->stats[size_bin][rix].perfect_tx_time > current_tt) { mask &= ~(1<stats[size_bin][rix].successive_failures > ssc->max_successive_failures && ticks - sn->stats[size_bin][rix].last_tx < ssc->stale_failure_timeout) { mask &= ~(1< 11M */ if (DOT11RATE(rix) > 2*11 && rix > current_rix + 2) { mask &= ~(1<last_sample_rix[size_bin] = rix; return rix; } return current_rix; #undef DOT11RATE } void ath_rate_findrate(struct ath_softc *sc, struct ath_node *an, int shortPreamble, size_t frameLen, u_int8_t *rix0, int *try0, u_int8_t *txrate) { #define DOT11RATE(ix) (rt->info[ix].dot11Rate & IEEE80211_RATE_VAL) #define RATE(ix) (DOT11RATE(ix) / 2) struct sample_node *sn = ATH_NODE_SAMPLE(an); struct sample_softc *ssc = ATH_SOFTC_SAMPLE(sc); struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; const HAL_RATE_TABLE *rt = sc->sc_currates; const int size_bin = size_to_bin(frameLen); int rix, mrr, best_rix, change_rates; unsigned average_tx_time; if (sn->static_rix != -1) { rix = sn->static_rix; *try0 = ATH_TXMAXTRY; goto done; } mrr = sc->sc_mrretry && !(ic->ic_flags & IEEE80211_F_USEPROT); best_rix = pick_best_rate(sn, rt, size_bin, !mrr); if (best_rix >= 0) { average_tx_time = sn->stats[size_bin][best_rix].average_tx_time; } else { average_tx_time = 0; } /* * Limit the time measuring the performance of other tx * rates to sample_rate% of the total transmission time. */ if (sn->sample_tt[size_bin] < average_tx_time * (sn->packets_since_sample[size_bin]*ssc->sample_rate/100)) { rix = pick_sample_rate(ssc, sn, rt, size_bin); IEEE80211_NOTE(an->an_node.ni_vap, IEEE80211_MSG_RATECTL, &an->an_node, "size %u sample rate %d current rate %d", bin_to_size(size_bin), RATE(rix), RATE(sn->current_rix[size_bin])); if (rix != sn->current_rix[size_bin]) { sn->current_sample_rix[size_bin] = rix; } else { sn->current_sample_rix[size_bin] = -1; } sn->packets_since_sample[size_bin] = 0; } else { change_rates = 0; if (!sn->packets_sent[size_bin] || best_rix == -1) { /* no packet has been sent successfully yet */ for (rix = rt->rateCount-1; rix > 0; rix--) { if ((sn->ratemask & (1<stats[size_bin][rix].successive_failures == 0) { break; } } change_rates = 1; best_rix = rix; } else if (sn->packets_sent[size_bin] < 20) { /* let the bit-rate switch quickly during the first few packets */ change_rates = 1; } else if (ticks - ssc->min_switch > sn->ticks_since_switch[size_bin]) { /* min_switch seconds have gone by */ change_rates = 1; } else if (2*average_tx_time < sn->stats[size_bin][sn->current_rix[size_bin]].average_tx_time) { /* the current bit-rate is twice as slow as the best one */ change_rates = 1; } sn->packets_since_sample[size_bin]++; if (change_rates) { if (best_rix != sn->current_rix[size_bin]) { IEEE80211_NOTE(an->an_node.ni_vap, IEEE80211_MSG_RATECTL, &an->an_node, "%s: size %d switch rate %d (%d/%d) -> %d (%d/%d) after %d packets mrr %d", __func__, bin_to_size(size_bin), RATE(sn->current_rix[size_bin]), sn->stats[size_bin][sn->current_rix[size_bin]].average_tx_time, sn->stats[size_bin][sn->current_rix[size_bin]].perfect_tx_time, RATE(best_rix), sn->stats[size_bin][best_rix].average_tx_time, sn->stats[size_bin][best_rix].perfect_tx_time, sn->packets_since_switch[size_bin], mrr); } sn->packets_since_switch[size_bin] = 0; sn->current_rix[size_bin] = best_rix; sn->ticks_since_switch[size_bin] = ticks; /* * Set the visible txrate for this node. */ an->an_node.ni_txrate = DOT11RATE(best_rix); } rix = sn->current_rix[size_bin]; sn->packets_since_switch[size_bin]++; } *try0 = mrr ? sn->sched[rix].t0 : ATH_TXMAXTRY; done: KASSERT(rix >= 0 && rix < rt->rateCount, ("rix is %d", rix)); *rix0 = rix; *txrate = rt->info[rix].rateCode | (shortPreamble ? rt->info[rix].shortPreamble : 0); sn->packets_sent[size_bin]++; #undef DOT11RATE #undef RATE } #define A(_r) \ (((_r) == 6) ? 0 : (((_r) == 9) ? 1 : (((_r) == 12) ? 2 : \ (((_r) == 18) ? 3 : (((_r) == 24) ? 4 : (((_r) == 36) ? 5 : \ (((_r) == 48) ? 6 : (((_r) == 54) ? 7 : 0)))))))) static const struct txschedule series_11a[] = { { 3,A( 6), 3,A( 6), 0,A( 6), 0,A( 6) }, /* 6Mb/s */ { 4,A( 9), 3,A( 6), 4,A( 6), 0,A( 6) }, /* 9Mb/s */ { 4,A(12), 3,A( 6), 4,A( 6), 0,A( 6) }, /* 12Mb/s */ { 4,A(18), 3,A( 12), 4,A( 6), 2,A( 6) }, /* 18Mb/s */ { 4,A(24), 3,A( 18), 4,A( 12), 2,A( 6) }, /* 24Mb/s */ { 4,A(36), 3,A( 24), 4,A( 18), 2,A( 6) }, /* 36Mb/s */ { 4,A(48), 3,A( 36), 4,A( 24), 2,A(12) }, /* 48Mb/s */ { 4,A(54), 3,A( 48), 4,A( 36), 2,A(24) } /* 54Mb/s */ }; #undef A #define G(_r) \ (((_r) == 1) ? 0 : (((_r) == 2) ? 1 : (((_r) == 5.5) ? 2 : \ (((_r) == 11) ? 3 : (((_r) == 6) ? 4 : (((_r) == 9) ? 5 : \ (((_r) == 12) ? 6 : (((_r) == 18) ? 7 : (((_r) == 24) ? 8 : \ (((_r) == 36) ? 9 : (((_r) == 48) ? 10 : (((_r) == 54) ? 11 : 0)))))))))))) static const struct txschedule series_11g[] = { { 3,G( 1), 3,G( 1), 0,G( 1), 0,G( 1) }, /* 1Mb/s */ { 4,G( 2), 3,G( 1), 4,G( 1), 0,G( 1) }, /* 2Mb/s */ { 4,G(5.5),3,G( 2), 4,G( 1), 2,G( 1) }, /* 5.5Mb/s */ { 4,G(11), 3,G(5.5), 4,G( 2), 2,G( 1) }, /* 11Mb/s */ { 4,G( 6), 3,G(5.5), 4,G( 2), 2,G( 1) }, /* 6Mb/s */ { 4,G( 9), 3,G( 6), 4,G(5.5), 2,G( 1) }, /* 9Mb/s */ { 4,G(12), 3,G( 11), 4,G(5.5), 2,G( 1) }, /* 12Mb/s */ { 4,G(18), 3,G( 12), 4,G( 11), 2,G( 1) }, /* 18Mb/s */ { 4,G(24), 3,G( 18), 4,G( 12), 2,G( 1) }, /* 24Mb/s */ { 4,G(36), 3,G( 24), 4,G( 18), 2,G( 1) }, /* 36Mb/s */ { 4,G(48), 3,G( 36), 4,G( 24), 2,G( 1) }, /* 48Mb/s */ { 4,G(54), 3,G( 48), 4,G( 36), 2,G( 1) } /* 54Mb/s */ }; #undef G #define H(_r) \ (((_r) == 3) ? 0 : (((_r) == 4.5) ? 1 : (((_r) == 6) ? 2 : \ (((_r) == 9) ? 3 : (((_r) == 12) ? 4 : (((_r) == 18) ? 5 : \ (((_r) == 24) ? 6 : (((_r) == 27) ? 7 : 0)))))))) static const struct txschedule series_half[] = { { 3,H( 3), 3,H( 3), 0,H( 3), 0,H( 3) }, /* 3Mb/s */ { 4,H(4.5),3,H( 3), 4,H( 3), 0,H( 3) }, /* 4.5Mb/s */ { 4,H( 6), 3,H( 3), 4,H( 3), 0,H( 3) }, /* 6Mb/s */ { 4,H( 9), 3,H( 6), 4,H( 3), 2,H( 3) }, /* 9Mb/s */ { 4,H(12), 3,H( 9), 4,H( 6), 2,H( 3) }, /* 12Mb/s */ { 4,H(18), 3,H( 12), 4,H( 9), 2,H( 3) }, /* 18Mb/s */ { 4,H(24), 3,H( 18), 4,H( 12), 2,H( 6) }, /* 24Mb/s */ { 4,H(27), 3,H( 24), 4,H( 18), 2,H(12) } /* 27Mb/s */ }; #undef H #ifdef Q #undef Q /* sun4v bogosity */ #endif #define Q(_r) \ (((_r) == 1.5) ? 0 : (((_r) ==2.25) ? 1 : (((_r) == 3) ? 2 : \ (((_r) == 4.5) ? 3 : (((_r) == 6) ? 4 : (((_r) == 9) ? 5 : \ (((_r) == 12) ? 6 : (((_r) == 13.5)? 7 : 0)))))))) static const struct txschedule series_quarter[] = { { 3,Q( 1.5),3,Q(1.5), 0,Q(1.5), 0,Q(1.5) }, /* 1.5Mb/s */ { 4,Q(2.25),3,Q(1.5), 4,Q(1.5), 0,Q(1.5) }, /*2.25Mb/s */ { 4,Q( 3),3,Q(1.5), 4,Q(1.5), 0,Q(1.5) }, /* 3Mb/s */ { 4,Q( 4.5),3,Q( 3), 4,Q(1.5), 2,Q(1.5) }, /* 4.5Mb/s */ { 4,Q( 6),3,Q(4.5), 4,Q( 3), 2,Q(1.5) }, /* 6Mb/s */ { 4,Q( 9),3,Q( 6), 4,Q(4.5), 2,Q(1.5) }, /* 9Mb/s */ { 4,Q( 12),3,Q( 9), 4,Q( 6), 2,Q( 3) }, /* 12Mb/s */ { 4,Q(13.5),3,Q( 12), 4,Q( 9), 2,Q( 6) } /*13.5Mb/s */ }; #undef Q void ath_rate_setupxtxdesc(struct ath_softc *sc, struct ath_node *an, struct ath_desc *ds, int shortPreamble, u_int8_t rix) { struct sample_node *sn = ATH_NODE_SAMPLE(an); const struct txschedule *sched = &sn->sched[rix]; const HAL_RATE_TABLE *rt = sc->sc_currates; uint8_t rix1, s1code, rix2, s2code, rix3, s3code; /* XXX precalculate short preamble tables */ rix1 = sched->r1; s1code = rt->info[rix1].rateCode | (shortPreamble ? rt->info[rix1].shortPreamble : 0); rix2 = sched->r2; s2code = rt->info[rix2].rateCode | (shortPreamble ? rt->info[rix2].shortPreamble : 0); rix3 = sched->r3; s3code = rt->info[rix3].rateCode | (shortPreamble ? rt->info[rix3].shortPreamble : 0); ath_hal_setupxtxdesc(sc->sc_ah, ds, s1code, sched->t1, /* series 1 */ s2code, sched->t2, /* series 2 */ s3code, sched->t3); /* series 3 */ } static void update_stats(struct ath_softc *sc, struct ath_node *an, int frame_size, int rix0, int tries0, int rix1, int tries1, int rix2, int tries2, int rix3, int tries3, int short_tries, int tries, int status) { struct sample_node *sn = ATH_NODE_SAMPLE(an); struct sample_softc *ssc = ATH_SOFTC_SAMPLE(sc); const int size_bin = size_to_bin(frame_size); const int size = bin_to_size(size_bin); int tt, tries_so_far; if (!IS_RATE_DEFINED(sn, rix0)) return; tt = calc_usecs_unicast_packet(sc, size, rix0, short_tries, MIN(tries0, tries) - 1); tries_so_far = tries0; if (tries1 && tries_so_far < tries) { if (!IS_RATE_DEFINED(sn, rix1)) return; tt += calc_usecs_unicast_packet(sc, size, rix1, short_tries, MIN(tries1 + tries_so_far, tries) - tries_so_far - 1); tries_so_far += tries1; } if (tries2 && tries_so_far < tries) { if (!IS_RATE_DEFINED(sn, rix2)) return; tt += calc_usecs_unicast_packet(sc, size, rix2, short_tries, MIN(tries2 + tries_so_far, tries) - tries_so_far - 1); tries_so_far += tries2; } if (tries3 && tries_so_far < tries) { if (!IS_RATE_DEFINED(sn, rix3)) return; tt += calc_usecs_unicast_packet(sc, size, rix3, short_tries, MIN(tries3 + tries_so_far, tries) - tries_so_far - 1); } if (sn->stats[size_bin][rix0].total_packets < ssc->smoothing_minpackets) { /* just average the first few packets */ int avg_tx = sn->stats[size_bin][rix0].average_tx_time; int packets = sn->stats[size_bin][rix0].total_packets; sn->stats[size_bin][rix0].average_tx_time = (tt+(avg_tx*packets))/(packets+1); } else { /* use a ewma */ sn->stats[size_bin][rix0].average_tx_time = ((sn->stats[size_bin][rix0].average_tx_time * ssc->smoothing_rate) + (tt * (100 - ssc->smoothing_rate))) / 100; } if (status != 0) { int y; sn->stats[size_bin][rix0].successive_failures++; for (y = size_bin+1; y < NUM_PACKET_SIZE_BINS; y++) { /* * Also say larger packets failed since we * assume if a small packet fails at a * bit-rate then a larger one will also. */ sn->stats[y][rix0].successive_failures++; sn->stats[y][rix0].last_tx = ticks; sn->stats[y][rix0].tries += tries; sn->stats[y][rix0].total_packets++; } } else { sn->stats[size_bin][rix0].packets_acked++; sn->stats[size_bin][rix0].successive_failures = 0; } sn->stats[size_bin][rix0].tries += tries; sn->stats[size_bin][rix0].last_tx = ticks; sn->stats[size_bin][rix0].total_packets++; if (rix0 == sn->current_sample_rix[size_bin]) { IEEE80211_NOTE(an->an_node.ni_vap, IEEE80211_MSG_RATECTL, &an->an_node, "%s: size %d %s sample rate %d tries (%d/%d) tt %d avg_tt (%d/%d)", __func__, size, status ? "FAIL" : "OK", rix0, short_tries, tries, tt, sn->stats[size_bin][rix0].average_tx_time, sn->stats[size_bin][rix0].perfect_tx_time); sn->sample_tt[size_bin] = tt; sn->current_sample_rix[size_bin] = -1; } } static void badrate(struct ifnet *ifp, int series, int hwrate, int tries, int status) { if_printf(ifp, "bad series%d hwrate 0x%x, tries %u ts_status 0x%x\n", series, hwrate, tries, status); } void ath_rate_tx_complete(struct ath_softc *sc, struct ath_node *an, const struct ath_buf *bf) { struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; struct sample_node *sn = ATH_NODE_SAMPLE(an); const struct ath_tx_status *ts = &bf->bf_status.ds_txstat; const struct ath_desc *ds0 = &bf->bf_desc[0]; int final_rix, short_tries, long_tries, frame_size; const HAL_RATE_TABLE *rt = sc->sc_currates; int mrr; final_rix = rt->rateCodeToIndex[ts->ts_rate]; short_tries = ts->ts_shortretry; long_tries = ts->ts_longretry + 1; frame_size = ds0->ds_ctl0 & 0x0fff; /* low-order 12 bits of ds_ctl0 */ if (frame_size == 0) /* NB: should not happen */ frame_size = 1500; if (sn->ratemask == 0) { IEEE80211_NOTE(an->an_node.ni_vap, IEEE80211_MSG_RATECTL, &an->an_node, "%s: size %d %s rate/try %d/%d no rates yet", __func__, bin_to_size(size_to_bin(frame_size)), ts->ts_status ? "FAIL" : "OK", short_tries, long_tries); return; } mrr = sc->sc_mrretry && !(ic->ic_flags & IEEE80211_F_USEPROT); if (!mrr || ts->ts_finaltsi == 0) { if (!IS_RATE_DEFINED(sn, final_rix)) { badrate(ifp, 0, ts->ts_rate, long_tries, ts->ts_status); return; } /* * Only one rate was used; optimize work. */ IEEE80211_NOTE(an->an_node.ni_vap, IEEE80211_MSG_RATECTL, &an->an_node, "%s: size %d %s rate/try %d/%d/%d", __func__, bin_to_size(size_to_bin(frame_size)), ts->ts_status ? "FAIL" : "OK", final_rix, short_tries, long_tries); update_stats(sc, an, frame_size, final_rix, long_tries, 0, 0, 0, 0, 0, 0, short_tries, long_tries, ts->ts_status); } else { int hwrate0, rix0, tries0; int hwrate1, rix1, tries1; int hwrate2, rix2, tries2; int hwrate3, rix3, tries3; int finalTSIdx = ts->ts_finaltsi; /* * Process intermediate rates that failed. */ if (sc->sc_ah->ah_magic != 0x20065416) { hwrate0 = MS(ds0->ds_ctl3, AR_XmitRate0); hwrate1 = MS(ds0->ds_ctl3, AR_XmitRate1); hwrate2 = MS(ds0->ds_ctl3, AR_XmitRate2); hwrate3 = MS(ds0->ds_ctl3, AR_XmitRate3); } else { hwrate0 = MS(ds0->ds_ctl3, AR5416_XmitRate0); hwrate1 = MS(ds0->ds_ctl3, AR5416_XmitRate1); hwrate2 = MS(ds0->ds_ctl3, AR5416_XmitRate2); hwrate3 = MS(ds0->ds_ctl3, AR5416_XmitRate3); } rix0 = rt->rateCodeToIndex[hwrate0]; tries0 = MS(ds0->ds_ctl2, AR_XmitDataTries0); rix1 = rt->rateCodeToIndex[hwrate1]; tries1 = MS(ds0->ds_ctl2, AR_XmitDataTries1); rix2 = rt->rateCodeToIndex[hwrate2]; tries2 = MS(ds0->ds_ctl2, AR_XmitDataTries2); rix3 = rt->rateCodeToIndex[hwrate3]; tries3 = MS(ds0->ds_ctl2, AR_XmitDataTries3); IEEE80211_NOTE(an->an_node.ni_vap, IEEE80211_MSG_RATECTL, &an->an_node, "%s: size %d finaltsidx %d tries %d %s rate/try [%d/%d %d/%d %d/%d %d/%d]", __func__, bin_to_size(size_to_bin(frame_size)), finalTSIdx, long_tries, ts->ts_status ? "FAIL" : "OK", rix0, tries0, rix1, tries1, rix2, tries2, rix3, tries3); if (tries0 && !IS_RATE_DEFINED(sn, rix0)) badrate(ifp, 0, hwrate0, tries0, ts->ts_status); if (tries1 && !IS_RATE_DEFINED(sn, rix1)) badrate(ifp, 1, hwrate1, tries1, ts->ts_status); if (tries2 && !IS_RATE_DEFINED(sn, rix2)) badrate(ifp, 2, hwrate2, tries2, ts->ts_status); if (tries3 && !IS_RATE_DEFINED(sn, rix3)) badrate(ifp, 3, hwrate3, tries3, ts->ts_status); /* * NB: series > 0 are not penalized for failure * based on the try counts under the assumption * that losses are often bursty and since we * sample higher rates 1 try at a time doing so * may unfairly penalize them. */ if (tries0) { update_stats(sc, an, frame_size, rix0, tries0, rix1, tries1, rix2, tries2, rix3, tries3, short_tries, long_tries, long_tries > tries0); long_tries -= tries0; } if (tries1 && finalTSIdx > 0) { update_stats(sc, an, frame_size, rix1, tries1, rix2, tries2, rix3, tries3, 0, 0, short_tries, long_tries, ts->ts_status); long_tries -= tries1; } if (tries2 && finalTSIdx > 1) { update_stats(sc, an, frame_size, rix2, tries2, rix3, tries3, 0, 0, 0, 0, short_tries, long_tries, ts->ts_status); long_tries -= tries2; } if (tries3 && finalTSIdx > 2) { update_stats(sc, an, frame_size, rix3, tries3, 0, 0, 0, 0, 0, 0, short_tries, long_tries, ts->ts_status); } } } void ath_rate_newassoc(struct ath_softc *sc, struct ath_node *an, int isnew) { if (isnew) ath_rate_ctl_reset(sc, &an->an_node); } static const struct txschedule *mrr_schedules[IEEE80211_MODE_MAX+2] = { NULL, /* IEEE80211_MODE_AUTO */ series_11a, /* IEEE80211_MODE_11A */ series_11g, /* IEEE80211_MODE_11B */ series_11g, /* IEEE80211_MODE_11G */ NULL, /* IEEE80211_MODE_FH */ series_11a, /* IEEE80211_MODE_TURBO_A */ series_11g, /* IEEE80211_MODE_TURBO_G */ series_11a, /* IEEE80211_MODE_STURBO_A */ series_11a, /* IEEE80211_MODE_11NA */ series_11g, /* IEEE80211_MODE_11NG */ series_half, /* IEEE80211_MODE_HALF */ series_quarter, /* IEEE80211_MODE_QUARTER */ }; /* * Initialize the tables for a node. */ static void ath_rate_ctl_reset(struct ath_softc *sc, struct ieee80211_node *ni) { #define RATE(_ix) (ni->ni_rates.rs_rates[(_ix)] & IEEE80211_RATE_VAL) #define DOT11RATE(_ix) (rt->info[(_ix)].dot11Rate & IEEE80211_RATE_VAL) struct ath_node *an = ATH_NODE(ni); const struct ieee80211_txparam *tp = ni->ni_txparms; struct sample_node *sn = ATH_NODE_SAMPLE(an); const HAL_RATE_TABLE *rt = sc->sc_currates; int x, y, srate, rix; KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); KASSERT(sc->sc_curmode < IEEE80211_MODE_MAX+2, ("curmode %u", sc->sc_curmode)); sn->sched = mrr_schedules[sc->sc_curmode]; KASSERT(sn->sched != NULL, ("no mrr schedule for mode %u", sc->sc_curmode)); sn->static_rix = -1; if (tp != NULL && tp->ucastrate != IEEE80211_FIXED_RATE_NONE) { /* * A fixed rate is to be used; ucastrate is the IEEE code * for this rate (sans basic bit). Check this against the * negotiated rate set for the node. Note the fixed rate * may not be available for various reasons so we only * setup the static rate index if the lookup is successful. * XXX handle MCS */ for (srate = ni->ni_rates.rs_nrates - 1; srate >= 0; srate--) if (RATE(srate) == tp->ucastrate) { sn->static_rix = sc->sc_rixmap[tp->ucastrate]; break; } #ifdef IEEE80211_DEBUG if (sn->static_rix == -1) { IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_RATECTL, ni, "%s: ucastrate %u not found, nrates %u", __func__, tp->ucastrate, ni->ni_rates.rs_nrates); } #endif } /* * Construct a bitmask of usable rates. This has all * negotiated rates minus those marked by the hal as * to be ignored for doing rate control. */ sn->ratemask = 0; for (x = 0; x < ni->ni_rates.rs_nrates; x++) { rix = sc->sc_rixmap[RATE(x)]; if (rix == 0xff) continue; /* skip rates marked broken by hal */ if (!rt->info[rix].valid) continue; KASSERT(rix < SAMPLE_MAXRATES, ("rate %u has rix %d", RATE(x), rix)); sn->ratemask |= 1<ni_vap, IEEE80211_MSG_RATECTL)) { uint32_t mask; ieee80211_note(ni->ni_vap, "[%6D] %s: size 1600 rate/tt", ni->ni_macaddr, ":", __func__); for (mask = sn->ratemask, rix = 0; mask != 0; mask >>= 1, rix++) { if ((mask & 1) == 0) continue; kprintf(" %d/%d", DOT11RATE(rix) / 2, calc_usecs_unicast_packet(sc, 1600, rix, 0,0)); } kprintf("\n"); } #endif for (y = 0; y < NUM_PACKET_SIZE_BINS; y++) { int size = bin_to_size(y); uint32_t mask; sn->packets_sent[y] = 0; sn->current_sample_rix[y] = -1; sn->last_sample_rix[y] = 0; /* XXX start with first valid rate */ sn->current_rix[y] = ffs(sn->ratemask)-1; /* * Initialize the statistics buckets; these are * indexed by the rate code index. */ for (rix = 0, mask = sn->ratemask; mask != 0; rix++, mask >>= 1) { if ((mask & 1) == 0) /* not a valid rate */ continue; sn->stats[y][rix].successive_failures = 0; sn->stats[y][rix].tries = 0; sn->stats[y][rix].total_packets = 0; sn->stats[y][rix].packets_acked = 0; sn->stats[y][rix].last_tx = 0; sn->stats[y][rix].perfect_tx_time = calc_usecs_unicast_packet(sc, size, rix, 0, 0); sn->stats[y][rix].average_tx_time = sn->stats[y][rix].perfect_tx_time; } } #if 0 /* XXX 0, num_rates-1 are wrong */ IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_RATECTL, ni, "%s: %d rates %d%sMbps (%dus)- %d%sMbps (%dus)", __func__, sn->num_rates, DOT11RATE(0)/2, DOT11RATE(0) % 1 ? ".5" : "", sn->stats[1][0].perfect_tx_time, DOT11RATE(sn->num_rates-1)/2, DOT11RATE(sn->num_rates-1) % 1 ? ".5" : "", sn->stats[1][sn->num_rates-1].perfect_tx_time ); #endif /* set the visible bit-rate */ if (sn->static_rix != -1) ni->ni_txrate = DOT11RATE(sn->static_rix); else ni->ni_txrate = RATE(0); #undef RATE #undef DOT11RATE } static void sample_stats(void *arg, struct ieee80211_node *ni) { struct ath_softc *sc = arg; const HAL_RATE_TABLE *rt = sc->sc_currates; struct sample_node *sn = ATH_NODE_SAMPLE(ATH_NODE(ni)); uint32_t mask; int rix, y; kprintf("\n[%6D] refcnt %d static_rix %d ratemask 0x%x\n", ni->ni_macaddr, ":", ieee80211_node_refcnt(ni), sn->static_rix, sn->ratemask); for (y = 0; y < NUM_PACKET_SIZE_BINS; y++) { kprintf("[%4u] cur rix %d since switch: packets %d ticks %u\n", bin_to_size(y), sn->current_rix[y], sn->packets_since_switch[y], sn->ticks_since_switch[y]); kprintf("[%4u] last sample %d cur sample %d packets sent %d\n", bin_to_size(y), sn->last_sample_rix[y], sn->current_sample_rix[y], sn->packets_sent[y]); kprintf("[%4u] packets since sample %d sample tt %u\n", bin_to_size(y), sn->packets_since_sample[y], sn->sample_tt[y]); } for (mask = sn->ratemask, rix = 0; mask != 0; mask >>= 1, rix++) { if ((mask & 1) == 0) continue; for (y = 0; y < NUM_PACKET_SIZE_BINS; y++) { if (sn->stats[y][rix].total_packets == 0) continue; kprintf("[%2u:%4u] %8d:%-8d (%3d%%) T %8d F %4d avg %5u last %u\n", (rt->info[rix].dot11Rate & IEEE80211_RATE_VAL)/2, bin_to_size(y), sn->stats[y][rix].total_packets, sn->stats[y][rix].packets_acked, (100*sn->stats[y][rix].packets_acked)/sn->stats[y][rix].total_packets, sn->stats[y][rix].tries, sn->stats[y][rix].successive_failures, sn->stats[y][rix].average_tx_time, ticks - sn->stats[y][rix].last_tx); } } } static int ath_rate_sysctl_stats(SYSCTL_HANDLER_ARGS) { struct ath_softc *sc = arg1; struct ifnet *ifp; struct ieee80211com *ic; int error, v; wlan_serialize_enter(); v = 0; ifp = sc->sc_ifp; ic = ifp->if_l2com; error = sysctl_handle_int(oidp, &v, 0, req); if (error == 0 && req->newptr) ieee80211_iterate_nodes(&ic->ic_sta, sample_stats, sc); wlan_serialize_exit(); return error; } static int ath_rate_sysctl_smoothing_rate(SYSCTL_HANDLER_ARGS) { struct sample_softc *ssc = arg1; int rate, error; wlan_serialize_enter(); rate = ssc->smoothing_rate; error = sysctl_handle_int(oidp, &rate, 0, req); if (error == 0 && req->newptr) { if (!(0 <= rate && rate < 100)) { error = EINVAL; } else { ssc->smoothing_rate = rate; ssc->smoothing_minpackets = 100 / (100 - rate); } } wlan_serialize_exit(); return error; } static int ath_rate_sysctl_sample_rate(SYSCTL_HANDLER_ARGS) { struct sample_softc *ssc = arg1; int rate, error; wlan_serialize_enter(); rate = ssc->sample_rate; error = sysctl_handle_int(oidp, &rate, 0, req); if (error == 0 && req->newptr) { if (!(2 <= rate && rate <= 100)) error = EINVAL; else ssc->sample_rate = rate; } wlan_serialize_exit(); return error; } static void ath_rate_sysctlattach(struct ath_softc *sc, struct sample_softc *ssc) { struct sysctl_ctx_list *ctx; struct sysctl_oid *tree; ctx = &sc->sc_sysctl_ctx; tree = sc->sc_sysctl_tree; if (tree == NULL) { device_printf(sc->sc_dev, "can't add sysctl node\n"); return; } SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "smoothing_rate", CTLTYPE_INT | CTLFLAG_RW, ssc, 0, ath_rate_sysctl_smoothing_rate, "I", "sample: smoothing rate for avg tx time (%%)"); SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "sample_rate", CTLTYPE_INT | CTLFLAG_RW, ssc, 0, ath_rate_sysctl_sample_rate, "I", "sample: percent air time devoted to sampling new rates (%%)"); /* XXX max_successive_failures, stale_failure_timeout, min_switch */ SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "sample_stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0, ath_rate_sysctl_stats, "I", "sample: print statistics"); } struct ath_ratectrl * ath_rate_attach(struct ath_softc *sc) { struct sample_softc *ssc; ssc = kmalloc(sizeof(struct sample_softc), M_DEVBUF, M_NOWAIT|M_ZERO); if (ssc == NULL) return NULL; ssc->arc.arc_space = sizeof(struct sample_node); ssc->smoothing_rate = 95; /* ewma percentage ([0..99]) */ ssc->smoothing_minpackets = 100 / (100 - ssc->smoothing_rate); ssc->sample_rate = 10; /* %time to try diff tx rates */ ssc->max_successive_failures = 3; /* threshold for rate sampling*/ ssc->stale_failure_timeout = 10 * hz; /* 10 seconds */ ssc->min_switch = hz; /* 1 second */ ath_rate_sysctlattach(sc, ssc); return &ssc->arc; } void ath_rate_detach(struct ath_ratectrl *arc) { struct sample_softc *ssc = (struct sample_softc *) arc; kfree(ssc, M_DEVBUF); } /* * Module glue. */ static int sample_modevent(module_t mod, int type, void *unused) { int error; wlan_serialize_enter(); switch (type) { case MOD_LOAD: if (bootverbose) { kprintf("ath_rate: \n"); } error = 0; break; case MOD_UNLOAD: error = 0; break; default: error = EINVAL; break; } wlan_serialize_exit(); return error; } static moduledata_t sample_mod = { "ath_rate", sample_modevent, 0 }; DECLARE_MODULE(ath_rate, sample_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); MODULE_VERSION(ath_rate, 1); MODULE_DEPEND(ath_rate, ath_hal, 1, 1, 1); /* Atheros HAL */ MODULE_DEPEND(ath_rate, wlan, 1, 1, 1);