/*- * Copyright (c) 2000 Doug Rabson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD: src/sys/dev/agp/agp.c,v 1.62 2009/02/06 20:57:10 wkoszek Exp $ */ #include "opt_agp.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include "agppriv.h" #include "agpvar.h" #include "agpreg.h" #include #include #include #include #include #include MODULE_VERSION(agp, 1); MALLOC_DEFINE(M_AGP, "agp", "AGP data structures"); static d_open_t agp_open; static d_close_t agp_close; static d_ioctl_t agp_ioctl; static d_mmap_t agp_mmap; static struct dev_ops agp_ops = { { "agp", 0, D_TTY }, .d_open = agp_open, .d_close = agp_close, .d_ioctl = agp_ioctl, .d_mmap = agp_mmap, }; static devclass_t agp_devclass; /* Helper functions for implementing chipset mini drivers. */ void agp_flush_cache(void) { #if defined(__i386__) || defined(__x86_64__) wbinvd(); #endif } u_int8_t agp_find_caps(device_t dev) { int capreg; if (pci_find_extcap(dev, PCIY_AGP, &capreg) != 0) capreg = 0; return (capreg); } /* * Find an AGP display device (if any). */ static device_t agp_find_display(void) { devclass_t pci = devclass_find("pci"); device_t bus, dev = 0; device_t *kids; int busnum, numkids, i; for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) { bus = devclass_get_device(pci, busnum); if (!bus) continue; device_get_children(bus, &kids, &numkids); for (i = 0; i < numkids; i++) { dev = kids[i]; if (pci_get_class(dev) == PCIC_DISPLAY && pci_get_subclass(dev) == PCIS_DISPLAY_VGA) if (agp_find_caps(dev)) { kfree(kids, M_TEMP); return dev; } } kfree(kids, M_TEMP); } return 0; } struct agp_gatt * agp_alloc_gatt(device_t dev) { u_int32_t apsize = AGP_GET_APERTURE(dev); u_int32_t entries = apsize >> AGP_PAGE_SHIFT; struct agp_gatt *gatt; if (bootverbose) device_printf(dev, "allocating GATT for aperture of size %dM\n", apsize / (1024*1024)); if (entries == 0) { device_printf(dev, "bad aperture size\n"); return NULL; } gatt = kmalloc(sizeof(struct agp_gatt), M_AGP, M_INTWAIT); gatt->ag_entries = entries; gatt->ag_virtual = contigmalloc(entries * sizeof(u_int32_t), M_AGP, M_WAITOK|M_ZERO, 0, ~0, PAGE_SIZE, 0); if (!gatt->ag_virtual) { if (bootverbose) device_printf(dev, "contiguous allocation failed\n"); kfree(gatt, M_AGP); return 0; } gatt->ag_physical = vtophys((vm_offset_t) gatt->ag_virtual); agp_flush_cache(); return gatt; } void agp_free_gatt(struct agp_gatt *gatt) { contigfree(gatt->ag_virtual, gatt->ag_entries * sizeof(u_int32_t), M_AGP); kfree(gatt, M_AGP); } static u_int agp_max[][2] = { {0, 0}, {32, 4}, {64, 28}, {128, 96}, {256, 204}, {512, 440}, {1024, 942}, {2048, 1920}, {4096, 3932} }; #define agp_max_size NELEM(agp_max) /** * Sets the PCI resource which represents the AGP aperture. * * If not called, the default AGP aperture resource of AGP_APBASE will * be used. Must be called before agp_generic_attach(). */ void agp_set_aperture_resource(device_t dev, int rid) { struct agp_softc *sc = device_get_softc(dev); sc->as_aperture_rid = rid; } int agp_generic_attach(device_t dev) { struct agp_softc *sc = device_get_softc(dev); int i; u_int memsize; /* * Find and map the aperture, RF_SHAREABLE for DRM but not RF_ACTIVE * because the kernel doesn't need to map it. */ if (sc->as_aperture_rid == 0) sc->as_aperture_rid = AGP_APBASE; sc->as_aperture = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->as_aperture_rid, RF_SHAREABLE); if (!sc->as_aperture) return ENOMEM; /* * Work out an upper bound for agp memory allocation. This * uses a heurisitc table from the Linux driver. */ memsize = ptoa(Maxmem) >> 20; for (i = 0; i < agp_max_size; i++) { if (memsize <= agp_max[i][0]) break; } if (i == agp_max_size) i = agp_max_size - 1; sc->as_maxmem = agp_max[i][1] << 20U; /* * The lock is used to prevent re-entry to * agp_generic_bind_memory() since that function can sleep. */ lockinit(&sc->as_lock, "agplk", 0, 0); /* * Initialise stuff for the userland device. */ agp_devclass = devclass_find("agp"); TAILQ_INIT(&sc->as_memory); sc->as_nextid = 1; sc->as_devnode = make_dev(&agp_ops, 0, UID_ROOT, GID_WHEEL, 0600, "agpgart"); sc->as_devnode->si_drv1 = dev; return 0; } void agp_free_cdev(device_t dev) { dev_ops_remove_minor(&agp_ops, device_get_unit(dev)); } void agp_free_res(device_t dev) { struct agp_softc *sc = device_get_softc(dev); bus_release_resource(dev, SYS_RES_MEMORY, sc->as_aperture_rid, sc->as_aperture); agp_flush_cache(); } int agp_generic_detach(device_t dev) { agp_free_cdev(dev); agp_free_res(dev); return 0; } /** * Default AGP aperture size detection which simply returns the size of * the aperture's PCI resource. */ u_int32_t agp_generic_get_aperture(device_t dev) { struct agp_softc *sc = device_get_softc(dev); return rman_get_size(sc->as_aperture); } /** * Default AGP aperture size setting function, which simply doesn't allow * changes to resource size. */ int agp_generic_set_aperture(device_t dev, u_int32_t aperture) { u_int32_t current_aperture; current_aperture = AGP_GET_APERTURE(dev); if (current_aperture != aperture) return EINVAL; else return 0; } /* * This does the enable logic for v3, with the same topology * restrictions as in place for v2 -- one bus, one device on the bus. */ static int agp_v3_enable(device_t dev, device_t mdev, u_int32_t mode) { u_int32_t tstatus, mstatus; u_int32_t command; int rq, sba, fw, rate, arqsz, cal; tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); /* Set RQ to the min of mode, tstatus and mstatus */ rq = AGP_MODE_GET_RQ(mode); if (AGP_MODE_GET_RQ(tstatus) < rq) rq = AGP_MODE_GET_RQ(tstatus); if (AGP_MODE_GET_RQ(mstatus) < rq) rq = AGP_MODE_GET_RQ(mstatus); /* * ARQSZ - Set the value to the maximum one. * Don't allow the mode register to override values. */ arqsz = AGP_MODE_GET_ARQSZ(mode); if (AGP_MODE_GET_ARQSZ(tstatus) > rq) rq = AGP_MODE_GET_ARQSZ(tstatus); if (AGP_MODE_GET_ARQSZ(mstatus) > rq) rq = AGP_MODE_GET_ARQSZ(mstatus); /* Calibration cycle - don't allow override by mode register */ cal = AGP_MODE_GET_CAL(tstatus); if (AGP_MODE_GET_CAL(mstatus) < cal) cal = AGP_MODE_GET_CAL(mstatus); /* SBA must be supported for AGP v3. */ sba = 1; /* Set FW if all three support it. */ fw = (AGP_MODE_GET_FW(tstatus) & AGP_MODE_GET_FW(mstatus) & AGP_MODE_GET_FW(mode)); /* Figure out the max rate */ rate = (AGP_MODE_GET_RATE(tstatus) & AGP_MODE_GET_RATE(mstatus) & AGP_MODE_GET_RATE(mode)); if (rate & AGP_MODE_V3_RATE_8x) rate = AGP_MODE_V3_RATE_8x; else rate = AGP_MODE_V3_RATE_4x; if (bootverbose) device_printf(dev, "Setting AGP v3 mode %d\n", rate * 4); pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, 0, 4); /* Construct the new mode word and tell the hardware */ command = 0; command = AGP_MODE_SET_RQ(0, rq); command = AGP_MODE_SET_ARQSZ(command, arqsz); command = AGP_MODE_SET_CAL(command, cal); command = AGP_MODE_SET_SBA(command, sba); command = AGP_MODE_SET_FW(command, fw); command = AGP_MODE_SET_RATE(command, rate); command = AGP_MODE_SET_MODE_3(command, 1); command = AGP_MODE_SET_AGP(command, 1); pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4); pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4); return 0; } static int agp_v2_enable(device_t dev, device_t mdev, u_int32_t mode) { u_int32_t tstatus, mstatus; u_int32_t command; int rq, sba, fw, rate; tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); /* Set RQ to the min of mode, tstatus and mstatus */ rq = AGP_MODE_GET_RQ(mode); if (AGP_MODE_GET_RQ(tstatus) < rq) rq = AGP_MODE_GET_RQ(tstatus); if (AGP_MODE_GET_RQ(mstatus) < rq) rq = AGP_MODE_GET_RQ(mstatus); /* Set SBA if all three can deal with SBA */ sba = (AGP_MODE_GET_SBA(tstatus) & AGP_MODE_GET_SBA(mstatus) & AGP_MODE_GET_SBA(mode)); /* Similar for FW */ fw = (AGP_MODE_GET_FW(tstatus) & AGP_MODE_GET_FW(mstatus) & AGP_MODE_GET_FW(mode)); /* Figure out the max rate */ rate = (AGP_MODE_GET_RATE(tstatus) & AGP_MODE_GET_RATE(mstatus) & AGP_MODE_GET_RATE(mode)); if (rate & AGP_MODE_V2_RATE_4x) rate = AGP_MODE_V2_RATE_4x; else if (rate & AGP_MODE_V2_RATE_2x) rate = AGP_MODE_V2_RATE_2x; else rate = AGP_MODE_V2_RATE_1x; if (bootverbose) device_printf(dev, "Setting AGP v2 mode %d\n", rate); /* Construct the new mode word and tell the hardware */ command = 0; command = AGP_MODE_SET_RQ(0, rq); command = AGP_MODE_SET_SBA(command, sba); command = AGP_MODE_SET_FW(command, fw); command = AGP_MODE_SET_RATE(command, rate); command = AGP_MODE_SET_AGP(command, 1); pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4); pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4); return 0; } int agp_generic_enable(device_t dev, u_int32_t mode) { device_t mdev = agp_find_display(); u_int32_t tstatus, mstatus; if (!mdev) { AGP_DPF("can't find display\n"); return ENXIO; } tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); /* * Check display and bridge for AGP v3 support. AGP v3 allows * more variety in topology than v2, e.g. multiple AGP devices * attached to one bridge, or multiple AGP bridges in one * system. This doesn't attempt to address those situations, * but should work fine for a classic single AGP slot system * with AGP v3. */ if (AGP_MODE_GET_MODE_3(mode) && AGP_MODE_GET_MODE_3(tstatus) && AGP_MODE_GET_MODE_3(mstatus)) return (agp_v3_enable(dev, mdev, mode)); else return (agp_v2_enable(dev, mdev, mode)); } struct agp_memory * agp_generic_alloc_memory(device_t dev, int type, vm_size_t size) { struct agp_softc *sc = device_get_softc(dev); struct agp_memory *mem; if ((size & (AGP_PAGE_SIZE - 1)) != 0) return 0; if (sc->as_allocated + size > sc->as_maxmem) return 0; if (type != 0) { kprintf("agp_generic_alloc_memory: unsupported type %d\n", type); return 0; } mem = kmalloc(sizeof *mem, M_AGP, M_INTWAIT); mem->am_id = sc->as_nextid++; mem->am_size = size; mem->am_type = 0; mem->am_obj = vm_object_allocate(OBJT_DEFAULT, atop(round_page(size))); mem->am_physical = 0; mem->am_offset = 0; mem->am_is_bound = 0; TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link); sc->as_allocated += size; return mem; } int agp_generic_free_memory(device_t dev, struct agp_memory *mem) { struct agp_softc *sc = device_get_softc(dev); if (mem->am_is_bound) return EBUSY; sc->as_allocated -= mem->am_size; TAILQ_REMOVE(&sc->as_memory, mem, am_link); vm_object_deallocate(mem->am_obj); kfree(mem, M_AGP); return 0; } int agp_generic_bind_memory(device_t dev, struct agp_memory *mem, vm_offset_t offset) { struct agp_softc *sc = device_get_softc(dev); vm_offset_t i, j, k; vm_page_t m; int error; lockmgr(&sc->as_lock, LK_EXCLUSIVE); if (mem->am_is_bound) { device_printf(dev, "memory already bound\n"); lockmgr(&sc->as_lock, LK_RELEASE); return EINVAL; } /* Do some sanity checks first. */ if (offset < 0 || (offset & (AGP_PAGE_SIZE - 1)) != 0 || offset + mem->am_size > AGP_GET_APERTURE(dev)) { device_printf(dev, "binding memory at bad offset %#x,%#x,%#x\n", (int) offset, (int)mem->am_size, (int)AGP_GET_APERTURE(dev)); kprintf("Check BIOS's aperature size vs X\n"); lockmgr(&sc->as_lock, LK_RELEASE); return EINVAL; } /* * Bind the individual pages and flush the chipset's * TLB. */ for (i = 0; i < mem->am_size; i += PAGE_SIZE) { /* * Find a page from the object and wire it down. This page * will be mapped using one or more entries in the GATT * (assuming that PAGE_SIZE >= AGP_PAGE_SIZE. If this is * the first call to bind, the pages will be allocated * and zeroed. */ m = vm_page_grab(mem->am_obj, OFF_TO_IDX(i), VM_ALLOC_NORMAL | VM_ALLOC_ZERO | VM_ALLOC_RETRY); AGP_DPF("found page pa=%#jx\n", (uintmax_t)VM_PAGE_TO_PHYS(m)); vm_page_wire(m); /* * Install entries in the GATT, making sure that if * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not * aligned to PAGE_SIZE, we don't modify too many GATT * entries. */ for (j = 0; j < PAGE_SIZE && i + j < mem->am_size; j += AGP_PAGE_SIZE) { vm_offset_t pa = VM_PAGE_TO_PHYS(m) + j; AGP_DPF("binding offset %#jx to pa %#jx\n", (uintmax_t)offset + i + j, (uintmax_t)pa); error = AGP_BIND_PAGE(dev, offset + i + j, pa); if (error) { /* * Bail out. Reverse all the mappings * and unwire the pages. */ vm_page_wakeup(m); for (k = 0; k < i + j; k += AGP_PAGE_SIZE) AGP_UNBIND_PAGE(dev, offset + k); vm_object_hold(mem->am_obj); for (k = 0; k <= i; k += PAGE_SIZE) { m = vm_page_lookup_busy_wait( mem->am_obj, OFF_TO_IDX(k), FALSE, "agppg"); vm_page_unwire(m, 0); vm_page_wakeup(m); } vm_object_drop(mem->am_obj); lockmgr(&sc->as_lock, LK_RELEASE); return error; } } vm_page_wakeup(m); } /* * Flush the cpu cache since we are providing a new mapping * for these pages. */ agp_flush_cache(); /* * Make sure the chipset gets the new mappings. */ AGP_FLUSH_TLB(dev); mem->am_offset = offset; mem->am_is_bound = 1; lockmgr(&sc->as_lock, LK_RELEASE); return 0; } int agp_generic_unbind_memory(device_t dev, struct agp_memory *mem) { struct agp_softc *sc = device_get_softc(dev); vm_page_t m; int i; lockmgr(&sc->as_lock, LK_EXCLUSIVE); if (!mem->am_is_bound) { device_printf(dev, "memory is not bound\n"); lockmgr(&sc->as_lock, LK_RELEASE); return EINVAL; } /* * Unbind the individual pages and flush the chipset's * TLB. Unwire the pages so they can be swapped. */ for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE) AGP_UNBIND_PAGE(dev, mem->am_offset + i); vm_object_hold(mem->am_obj); for (i = 0; i < mem->am_size; i += PAGE_SIZE) { m = vm_page_lookup_busy_wait(mem->am_obj, atop(i), FALSE, "agppg"); vm_page_unwire(m, 0); vm_page_wakeup(m); } vm_object_drop(mem->am_obj); agp_flush_cache(); AGP_FLUSH_TLB(dev); mem->am_offset = 0; mem->am_is_bound = 0; lockmgr(&sc->as_lock, LK_RELEASE); return 0; } /* Helper functions for implementing user/kernel api */ static int agp_acquire_helper(device_t dev, enum agp_acquire_state state) { struct agp_softc *sc = device_get_softc(dev); if (sc->as_state != AGP_ACQUIRE_FREE) return EBUSY; sc->as_state = state; return 0; } static int agp_release_helper(device_t dev, enum agp_acquire_state state) { struct agp_softc *sc = device_get_softc(dev); if (sc->as_state == AGP_ACQUIRE_FREE) return 0; if (sc->as_state != state) return EBUSY; sc->as_state = AGP_ACQUIRE_FREE; return 0; } static struct agp_memory * agp_find_memory(device_t dev, int id) { struct agp_softc *sc = device_get_softc(dev); struct agp_memory *mem; AGP_DPF("searching for memory block %d\n", id); TAILQ_FOREACH(mem, &sc->as_memory, am_link) { AGP_DPF("considering memory block %d\n", mem->am_id); if (mem->am_id == id) return mem; } return 0; } /* Implementation of the userland ioctl api */ static int agp_info_user(device_t dev, agp_info *info) { struct agp_softc *sc = device_get_softc(dev); bzero(info, sizeof *info); info->bridge_id = pci_get_devid(dev); info->agp_mode = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); info->aper_base = rman_get_start(sc->as_aperture); info->aper_size = AGP_GET_APERTURE(dev) >> 20; info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT; info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT; return 0; } static int agp_setup_user(device_t dev, agp_setup *setup) { return AGP_ENABLE(dev, setup->agp_mode); } static int agp_allocate_user(device_t dev, agp_allocate *alloc) { struct agp_memory *mem; mem = AGP_ALLOC_MEMORY(dev, alloc->type, alloc->pg_count << AGP_PAGE_SHIFT); if (mem) { alloc->key = mem->am_id; alloc->physical = mem->am_physical; return 0; } else { return ENOMEM; } } static int agp_deallocate_user(device_t dev, int id) { struct agp_memory *mem = agp_find_memory(dev, id); if (mem) { AGP_FREE_MEMORY(dev, mem); return 0; } else { return ENOENT; } } static int agp_bind_user(device_t dev, agp_bind *bind) { struct agp_memory *mem = agp_find_memory(dev, bind->key); if (!mem) return ENOENT; return AGP_BIND_MEMORY(dev, mem, bind->pg_start << AGP_PAGE_SHIFT); } static int agp_unbind_user(device_t dev, agp_unbind *unbind) { struct agp_memory *mem = agp_find_memory(dev, unbind->key); if (!mem) return ENOENT; return AGP_UNBIND_MEMORY(dev, mem); } static int agp_open(struct dev_open_args *ap) { cdev_t kdev = ap->a_head.a_dev; device_t dev = kdev->si_drv1; struct agp_softc *sc = device_get_softc(dev); if (!sc->as_isopen) { sc->as_isopen = 1; device_busy(dev); } return 0; } static int agp_close(struct dev_close_args *ap) { cdev_t kdev = ap->a_head.a_dev; device_t dev = kdev->si_drv1; struct agp_softc *sc = device_get_softc(dev); struct agp_memory *mem; /* * Clear the GATT and force release on last close */ while ((mem = TAILQ_FIRST(&sc->as_memory)) != NULL) { if (mem->am_is_bound) AGP_UNBIND_MEMORY(dev, mem); AGP_FREE_MEMORY(dev, mem); } if (sc->as_state == AGP_ACQUIRE_USER) agp_release_helper(dev, AGP_ACQUIRE_USER); if (sc->as_isopen) { sc->as_isopen = 0; device_unbusy(dev); } return 0; } static int agp_ioctl(struct dev_ioctl_args *ap) { cdev_t kdev = ap->a_head.a_dev; device_t dev = kdev->si_drv1; switch (ap->a_cmd) { case AGPIOC_INFO: return agp_info_user(dev, (agp_info *)ap->a_data); case AGPIOC_ACQUIRE: return agp_acquire_helper(dev, AGP_ACQUIRE_USER); case AGPIOC_RELEASE: return agp_release_helper(dev, AGP_ACQUIRE_USER); case AGPIOC_SETUP: return agp_setup_user(dev, (agp_setup *)ap->a_data); case AGPIOC_ALLOCATE: return agp_allocate_user(dev, (agp_allocate *)ap->a_data); case AGPIOC_DEALLOCATE: return agp_deallocate_user(dev, *(int *)ap->a_data); case AGPIOC_BIND: return agp_bind_user(dev, (agp_bind *)ap->a_data); case AGPIOC_UNBIND: return agp_unbind_user(dev, (agp_unbind *)ap->a_data); } return EINVAL; } static int agp_mmap(struct dev_mmap_args *ap) { cdev_t kdev = ap->a_head.a_dev; device_t dev = kdev->si_drv1; struct agp_softc *sc = device_get_softc(dev); if (ap->a_offset > AGP_GET_APERTURE(dev)) return EINVAL; ap->a_result = atop(rman_get_start(sc->as_aperture) + ap->a_offset); return 0; } /* Implementation of the kernel api */ device_t agp_find_device(void) { device_t *children, child; int i, count; if (!agp_devclass) return NULL; if (devclass_get_devices(agp_devclass, &children, &count) != 0) return NULL; child = NULL; for (i = 0; i < count; i++) { if (device_is_attached(children[i])) { child = children[i]; break; } } kfree(children, M_TEMP); return child; } enum agp_acquire_state agp_state(device_t dev) { struct agp_softc *sc = device_get_softc(dev); return sc->as_state; } void agp_get_info(device_t dev, struct agp_info *info) { struct agp_softc *sc = device_get_softc(dev); info->ai_mode = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); info->ai_aperture_base = rman_get_start(sc->as_aperture); info->ai_aperture_size = rman_get_size(sc->as_aperture); info->ai_memory_allowed = sc->as_maxmem; info->ai_memory_used = sc->as_allocated; } int agp_acquire(device_t dev) { return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL); } int agp_release(device_t dev) { return agp_release_helper(dev, AGP_ACQUIRE_KERNEL); } int agp_enable(device_t dev, u_int32_t mode) { return AGP_ENABLE(dev, mode); } void *agp_alloc_memory(device_t dev, int type, vm_size_t bytes) { return (void *) AGP_ALLOC_MEMORY(dev, type, bytes); } void agp_free_memory(device_t dev, void *handle) { struct agp_memory *mem = (struct agp_memory *) handle; AGP_FREE_MEMORY(dev, mem); } int agp_bind_memory(device_t dev, void *handle, vm_offset_t offset) { struct agp_memory *mem = (struct agp_memory *) handle; return AGP_BIND_MEMORY(dev, mem, offset); } int agp_unbind_memory(device_t dev, void *handle) { struct agp_memory *mem = (struct agp_memory *) handle; return AGP_UNBIND_MEMORY(dev, mem); } void agp_memory_info(device_t dev, void *handle, struct agp_memory_info *mi) { struct agp_memory *mem = (struct agp_memory *) handle; mi->ami_size = mem->am_size; mi->ami_physical = mem->am_physical; mi->ami_offset = mem->am_offset; mi->ami_is_bound = mem->am_is_bound; }