/* * Copyright (c) 1995 Terrence R. Lambert * All rights reserved. * * Copyright (c) 1982, 1986, 1989, 1991, 1992, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)init_main.c 8.9 (Berkeley) 1/21/94 * $FreeBSD: src/sys/kern/init_main.c,v 1.134.2.8 2003/06/06 20:21:32 tegge Exp $ */ #include "opt_init_path.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include int vfs_mountroot_devfs(void); /* Components of the first process -- never freed. */ static struct session session0; static struct pgrp pgrp0; static struct sigacts sigacts0; static struct filedesc filedesc0; static struct plimit limit0; static struct vmspace vmspace0; struct proc *initproc; struct proc proc0; struct lwp lwp0; struct thread thread0; struct sys_kpmap *kpmap; struct sysreaper initreaper; int cmask = CMASK; u_int cpu_mi_feature; cpumask_t usched_global_cpumask; extern struct user *proc0paddr; int boothowto = 0; /* initialized so that it can be patched */ SYSCTL_INT(_debug, OID_AUTO, boothowto, CTLFLAG_RD, &boothowto, 0, "Reboot flags, from console subsystem"); SYSCTL_OPAQUE(_kern, OID_AUTO, usched_global_cpumask, CTLFLAG_RW, &usched_global_cpumask, sizeof(usched_global_cpumask), "LU", "global user scheduler cpumask"); /* * This ensures that there is at least one entry so that the sysinit_set * symbol is not undefined. A subsystem ID of SI_SPECIAL_DUMMY is never * executed. */ SYSINIT(placeholder, SI_SPECIAL_DUMMY, SI_ORDER_ANY, NULL, NULL); /* * The sysinit table itself. Items are checked off as the are run. * If we want to register new sysinit types, add them to newsysinit. */ SET_DECLARE(sysinit_set, struct sysinit); struct sysinit **sysinit, **sysinit_end; struct sysinit **newsysinit, **newsysinit_end; /* * Merge a new sysinit set into the current set, reallocating it if * necessary. This can only be called after malloc is running. */ void sysinit_add(struct sysinit **set, struct sysinit **set_end) { struct sysinit **newset; struct sysinit **sipp; struct sysinit **xipp; int count; count = set_end - set; if (newsysinit) count += newsysinit_end - newsysinit; else count += sysinit_end - sysinit; newset = kmalloc(count * sizeof(*sipp), M_TEMP, M_WAITOK); xipp = newset; if (newsysinit) { for (sipp = newsysinit; sipp < newsysinit_end; sipp++) *xipp++ = *sipp; } else { for (sipp = sysinit; sipp < sysinit_end; sipp++) *xipp++ = *sipp; } for (sipp = set; sipp < set_end; sipp++) *xipp++ = *sipp; if (newsysinit) kfree(newsysinit, M_TEMP); newsysinit = newset; newsysinit_end = newset + count; } /* * Callbacks from machine-dependant startup code (e.g. init386) to set * up low level entities related to cpu #0's globaldata. * * Called from very low level boot code. */ void mi_proc0init(struct globaldata *gd, struct user *proc0paddr) { lwkt_init_thread(&thread0, proc0paddr, LWKT_THREAD_STACK, 0, gd); lwkt_set_comm(&thread0, "thread0"); RB_INIT(&proc0.p_lwp_tree); spin_init(&proc0.p_spin, "iproc_proc0"); lwkt_token_init(&proc0.p_token, "iproc"); proc0.p_lasttid = 0; /* +1 = next TID */ lwp_rb_tree_RB_INSERT(&proc0.p_lwp_tree, &lwp0); lwp0.lwp_thread = &thread0; lwp0.lwp_proc = &proc0; proc0.p_usched = usched_init(); CPUMASK_ASSALLONES(lwp0.lwp_cpumask); lwkt_token_init(&lwp0.lwp_token, "lwp_token"); spin_init(&lwp0.lwp_spin, "iproc_lwp0"); varsymset_init(&proc0.p_varsymset, NULL); thread0.td_flags |= TDF_RUNNING; thread0.td_proc = &proc0; thread0.td_lwp = &lwp0; thread0.td_switch = cpu_lwkt_switch; lwkt_schedule_self(curthread); } /* * System startup; initialize the world, create process 0, mount root * filesystem, and fork to create init and pagedaemon. Most of the * hard work is done in the lower-level initialization routines including * startup(), which does memory initialization and autoconfiguration. * * This allows simple addition of new kernel subsystems that require * boot time initialization. It also allows substitution of subsystem * (for instance, a scheduler, kernel profiler, or VM system) by object * module. Finally, it allows for optional "kernel threads". */ void mi_startup(void) { struct sysinit *sip; /* system initialization*/ struct sysinit **sipp; /* system initialization*/ struct sysinit **xipp; /* interior loop of sort*/ struct sysinit *save; /* bubble*/ if (sysinit == NULL) { sysinit = SET_BEGIN(sysinit_set); #if defined(__x86_64__) && defined(_KERNEL_VIRTUAL) /* * XXX For whatever reason, on 64-bit vkernels * the value of sysinit obtained from the * linker set is wrong. */ if ((long)sysinit % 8 != 0) { kprintf("Fixing sysinit value...\n"); sysinit = (void *)((long)(intptr_t)sysinit + 4); } #endif sysinit_end = SET_LIMIT(sysinit_set); } #if defined(__x86_64__) && defined(_KERNEL_VIRTUAL) KKASSERT((long)sysinit % 8 == 0); #endif restart: /* * Perform a bubble sort of the system initialization objects by * their subsystem (primary key) and order (secondary key). */ for (sipp = sysinit; sipp < sysinit_end; sipp++) { for (xipp = sipp + 1; xipp < sysinit_end; xipp++) { if ((*sipp)->subsystem < (*xipp)->subsystem || ((*sipp)->subsystem == (*xipp)->subsystem && (*sipp)->order <= (*xipp)->order)) continue; /* skip*/ save = *sipp; *sipp = *xipp; *xipp = save; } } /* * Traverse the (now) ordered list of system initialization tasks. * Perform each task, and continue on to the next task. * * The last item on the list is expected to be the scheduler, * which will not return. */ for (sipp = sysinit; sipp < sysinit_end; sipp++) { sip = *sipp; if (sip->subsystem == SI_SPECIAL_DUMMY) continue; /* skip dummy task(s)*/ if (sip->subsystem == SI_SPECIAL_DONE) continue; #if 0 if (bootverbose) kprintf("(%08x-%p)\n", sip->subsystem, sip->func); #endif /* Call function */ (*(sip->func))(sip->udata); /* Check off the one we're just done */ sip->subsystem = SI_SPECIAL_DONE; /* Check if we've installed more sysinit items via KLD */ if (newsysinit != NULL) { if (sysinit != SET_BEGIN(sysinit_set)) kfree(sysinit, M_TEMP); sysinit = newsysinit; sysinit_end = newsysinit_end; newsysinit = NULL; newsysinit_end = NULL; goto restart; } } panic("Shouldn't get here!"); /* NOTREACHED*/ } /* *************************************************************************** **** **** The following SYSINIT's belong elsewhere, but have not yet **** been moved. **** *************************************************************************** */ static void print_caddr_t(void *data) { kprintf("%s", (char *)data); } SYSINIT(announce, SI_BOOT1_COPYRIGHT, SI_ORDER_FIRST, print_caddr_t, copyright); /* * Leave the critical section that protected us from spurious interrupts * so device probes work. */ static void leavecrit(void *dummy __unused) { MachIntrABI.stabilize(); cpu_enable_intr(); MachIntrABI.cleanup(); crit_exit(); KKASSERT(!IN_CRITICAL_SECT(curthread)); if (bootverbose) kprintf("Leaving critical section, allowing interrupts\n"); } SYSINIT(leavecrit, SI_BOOT2_LEAVE_CRIT, SI_ORDER_ANY, leavecrit, NULL); /* * This is called after the threading system is up and running, * including the softclock, clock interrupts, and SMP. */ static void tsleepworks(void *dummy __unused) { tsleep_now_works = 1; } SYSINIT(tsleepworks, SI_BOOT2_FINISH_SMP, SI_ORDER_SECOND, tsleepworks, NULL); /* * This is called after devices have configured. Tell the kernel we are * no longer in cold boot. */ static void endofcoldboot(void *dummy __unused) { cold = 0; } SYSINIT(endofcoldboot, SI_SUB_ISWARM, SI_ORDER_ANY, endofcoldboot, NULL); /* *************************************************************************** **** **** The two following SYSINT's are proc0 specific glue code. I am not **** convinced that they can not be safely combined, but their order of **** operation has been maintained as the same as the original init_main.c **** for right now. **** **** These probably belong in init_proc.c or kern_proc.c, since they **** deal with proc0 (the fork template process). **** *************************************************************************** */ /* ARGSUSED*/ static void proc0_init(void *dummy __unused) { struct proc *p; struct lwp *lp; p = &proc0; lp = &lwp0; /* * Initialize osrel */ p->p_osrel = osreldate; /* * Initialize process and pgrp structures. */ procinit(); /* * additional VM structures */ vm_init2(); /* * Create process 0 (the swapper). */ procinsertinit(p); pgrpinsertinit(&pgrp0); LIST_INIT(&pgrp0.pg_members); lwkt_token_init(&pgrp0.pg_token, "pgrp0"); refcount_init(&pgrp0.pg_refs, 1); lockinit(&pgrp0.pg_lock, "pgwt0", 0, 0); LIST_INSERT_HEAD(&pgrp0.pg_members, p, p_pglist); pgrp0.pg_session = &session0; session0.s_count = 1; session0.s_leader = p; sessinsertinit(&session0); pgref(&pgrp0); p->p_pgrp = &pgrp0; p->p_sysent = &aout_sysvec; p->p_flags = P_SYSTEM; p->p_stat = SACTIVE; lp->lwp_stat = LSRUN; p->p_nice = NZERO; p->p_rtprio.type = RTP_PRIO_NORMAL; p->p_rtprio.prio = 0; lp->lwp_rtprio = p->p_rtprio; p->p_peers = NULL; p->p_leader = p; bcopy("swapper", p->p_comm, sizeof ("swapper")); bcopy("swapper", thread0.td_comm, sizeof ("swapper")); /* Create credentials. */ p->p_ucred = crget(); p->p_ucred->cr_ruidinfo = uifind(0); p->p_ucred->cr_ngroups = 1; /* group 0 */ p->p_ucred->cr_uidinfo = uifind(0); thread0.td_ucred = crhold(p->p_ucred); /* bootstrap fork1() */ /* Don't jail it */ p->p_ucred->cr_prison = NULL; /* Create sigacts. */ p->p_sigacts = &sigacts0; refcount_init(&p->p_sigacts->ps_refcnt, 1); /* Initialize signal state for process 0. */ siginit(p); /* Create the file descriptor table. */ fdinit_bootstrap(p, &filedesc0, cmask); /* Create the limits structures. */ plimit_init0(&limit0); p->p_limit = &limit0; /* Allocate a prototype map so we have something to fork. */ pmap_pinit0(vmspace_pmap(&vmspace0)); p->p_vmspace = &vmspace0; lp->lwp_vmspace = p->p_vmspace; vmspace_initrefs(&vmspace0); vm_map_init(&vmspace0.vm_map, round_page(VM_MIN_USER_ADDRESS), trunc_page(VM_MAX_USER_ADDRESS), vmspace_pmap(&vmspace0)); kqueue_init(&lwp0.lwp_kqueue, &filedesc0); /* * Charge root for one process. */ (void)chgproccnt(p->p_ucred->cr_uidinfo, 1, 0); vm_init_limits(p); } SYSINIT(p0init, SI_BOOT2_PROC0, SI_ORDER_FIRST, proc0_init, NULL); static int proc0_post_callback(struct proc *p, void *data __unused); /* ARGSUSED*/ static void proc0_post(void *dummy __unused) { struct timespec ts; /* * Now we can look at the time, having had a chance to verify the * time from the file system. Pretend that proc0 started now. */ allproc_scan(proc0_post_callback, NULL); /* * Give the ``random'' number generator a thump. * XXX: Does read_random() contain enough bits to be used here ? */ nanotime(&ts); skrandom(ts.tv_sec ^ ts.tv_nsec); } static int proc0_post_callback(struct proc *p, void *data __unused) { microtime(&p->p_start); return(0); } SYSINIT(p0post, SI_SUB_PROC0_POST, SI_ORDER_FIRST, proc0_post, NULL); /* *************************************************************************** **** **** The following SYSINIT's and glue code should be moved to the **** respective files on a per subsystem basis. **** *************************************************************************** */ /* *************************************************************************** **** **** The following code probably belongs in another file, like **** kern/init_init.c. **** *************************************************************************** */ /* * List of paths to try when searching for "init". */ static char init_path[MAXPATHLEN] = #ifdef INIT_PATH __XSTRING(INIT_PATH); #else "/sbin/init:/sbin/oinit:/sbin/init.bak"; #endif SYSCTL_STRING(_kern, OID_AUTO, init_path, CTLFLAG_RD, init_path, 0, ""); /* * Shutdown timeout of init(8). * Unused within kernel, but used to control init(8), hence do not remove. */ #ifndef INIT_SHUTDOWN_TIMEOUT #define INIT_SHUTDOWN_TIMEOUT 120 #endif static int init_shutdown_timeout = INIT_SHUTDOWN_TIMEOUT; SYSCTL_INT(_kern, OID_AUTO, init_shutdown_timeout, CTLFLAG_RW, &init_shutdown_timeout, 0, "Shutdown timeout of init(8). " "Unused within kernel, but used to control init(8)"); /* * Start the initial user process; try exec'ing each pathname in init_path. * The program is invoked with one argument containing the boot flags. */ static void start_init(void *dummy, struct trapframe *frame) { vm_offset_t addr; struct execve_args args; int options, error; char *var, *path, *next, *s; char *ucp, **uap, *arg0, *arg1; struct proc *p; struct lwp *lp; struct mount *mp; struct vnode *vp; char *env; /* * This is passed in by the bootloader */ env = kgetenv("kernelname"); if (env != NULL) strlcpy(kernelname, env, sizeof(kernelname)); /* * The MP lock is not held on entry. We release it before * returning to userland. */ get_mplock(); p = curproc; lp = ONLY_LWP_IN_PROC(p); /* Get the vnode for '/'. Set p->p_fd->fd_cdir to reference it. */ mp = mountlist_boot_getfirst(); if (VFS_ROOT(mp, &vp)) panic("cannot find root vnode"); if (mp->mnt_ncmountpt.ncp == NULL) { cache_allocroot(&mp->mnt_ncmountpt, mp, vp); cache_unlock(&mp->mnt_ncmountpt); /* leave ref intact */ } p->p_fd->fd_cdir = vp; vref(p->p_fd->fd_cdir); p->p_fd->fd_rdir = vp; vref(p->p_fd->fd_rdir); vfs_cache_setroot(vp, cache_hold(&mp->mnt_ncmountpt)); vn_unlock(vp); /* leave ref intact */ cache_copy(&mp->mnt_ncmountpt, &p->p_fd->fd_ncdir); cache_copy(&mp->mnt_ncmountpt, &p->p_fd->fd_nrdir); kprintf("Mounting devfs\n"); vfs_mountroot_devfs(); /* * Need just enough stack to hold the faked-up "execve()" arguments. */ addr = trunc_page(USRSTACK - PAGE_SIZE); error = vm_map_find(&p->p_vmspace->vm_map, NULL, NULL, 0, &addr, PAGE_SIZE, PAGE_SIZE, FALSE, VM_MAPTYPE_NORMAL, VM_PROT_ALL, VM_PROT_ALL, 0); if (error) panic("init: couldn't allocate argument space"); p->p_vmspace->vm_maxsaddr = (caddr_t)addr; p->p_vmspace->vm_ssize = 1; if ((var = kgetenv("init_path")) != NULL) { strncpy(init_path, var, sizeof init_path); init_path[sizeof init_path - 1] = 0; } for (path = init_path; *path != '\0'; path = next) { while (*path == ':') path++; if (*path == '\0') break; for (next = path; *next != '\0' && *next != ':'; next++) /* nothing */ ; if (bootverbose) kprintf("start_init: trying %.*s\n", (int)(next - path), path); /* * Move out the boot flag argument. */ options = 0; ucp = (char *)USRSTACK; (void)subyte(--ucp, 0); /* trailing zero */ if (boothowto & RB_SINGLE) { (void)subyte(--ucp, 's'); options = 1; } #ifdef notyet if (boothowto & RB_FASTBOOT) { (void)subyte(--ucp, 'f'); options = 1; } #endif #ifdef BOOTCDROM (void)subyte(--ucp, 'C'); options = 1; #endif if (options == 0) (void)subyte(--ucp, '-'); (void)subyte(--ucp, '-'); /* leading hyphen */ arg1 = ucp; /* * Move out the file name (also arg 0). */ (void)subyte(--ucp, 0); for (s = next - 1; s >= path; s--) (void)subyte(--ucp, *s); arg0 = ucp; /* * Move out the arg pointers. */ uap = (char **)((intptr_t)ucp & ~(sizeof(intptr_t)-1)); (void)suword((caddr_t)--uap, (long)0); /* terminator */ (void)suword((caddr_t)--uap, (long)(intptr_t)arg1); (void)suword((caddr_t)--uap, (long)(intptr_t)arg0); /* * Point at the arguments. */ args.fname = arg0; args.argv = uap; args.envv = NULL; /* * Now try to exec the program. If can't for any reason * other than it doesn't exist, complain. * * Otherwise, return via fork_trampoline() all the way * to user mode as init! * * WARNING! We may have been moved to another cpu after * acquiring the current user process designation. The * MP lock will migrate with us though so we still have to * release it. */ if ((error = sys_execve(&args)) == 0) { rel_mplock(); lp->lwp_proc->p_usched->acquire_curproc(lp); return; } if (error != ENOENT) kprintf("exec %.*s: error %d\n", (int)(next - path), path, error); } kprintf("init: not found in path %s\n", init_path); panic("no init"); } /* * Like kthread_create(), but runs in it's own address space. * We do this early to reserve pid 1. * * Note special case - do not make it runnable yet. Other work * in progress will change this more. */ static void create_init(const void *udata __unused) { int error; struct lwp *lp; crit_enter(); error = fork1(&lwp0, RFFDG | RFPROC, &initproc); if (error) panic("cannot fork init: %d", error); initproc->p_flags |= P_SYSTEM; reaper_init(initproc, &initreaper); lp = ONLY_LWP_IN_PROC(initproc); cpu_set_fork_handler(lp, start_init, NULL); crit_exit(); } SYSINIT(init, SI_SUB_CREATE_INIT, SI_ORDER_FIRST, create_init, NULL); /* * Make it runnable now. */ static void kick_init(const void *udata __unused) { start_forked_proc(&lwp0, initproc); } SYSINIT(kickinit, SI_SUB_KTHREAD_INIT, SI_ORDER_FIRST, kick_init, NULL); static void kpmap_init(const void *udata __unused) { kpmap = kmalloc(roundup2(sizeof(*kpmap), PAGE_SIZE), M_TEMP, M_ZERO | M_WAITOK); kpmap->header[0].type = UKPTYPE_VERSION; kpmap->header[0].offset = offsetof(struct sys_kpmap, version); kpmap->header[1].type = KPTYPE_UPTICKS; kpmap->header[1].offset = offsetof(struct sys_kpmap, upticks); kpmap->header[2].type = KPTYPE_TS_UPTIME; kpmap->header[2].offset = offsetof(struct sys_kpmap, ts_uptime); kpmap->header[3].type = KPTYPE_TS_REALTIME; kpmap->header[3].offset = offsetof(struct sys_kpmap, ts_realtime); kpmap->header[4].type = KPTYPE_TSC_FREQ; kpmap->header[4].offset = offsetof(struct sys_kpmap, tsc_freq); kpmap->header[5].type = KPTYPE_TICK_FREQ; kpmap->header[5].offset = offsetof(struct sys_kpmap, tick_freq); kpmap->version = KPMAP_VERSION; } SYSINIT(kpmapinit, SI_BOOT1_POST, SI_ORDER_FIRST, kpmap_init, NULL); /* * Machine independant globaldata initialization * * WARNING! Called from early boot, 'mycpu' may not work yet. */ void mi_gdinit(struct globaldata *gd, int cpuid) { TAILQ_INIT(&gd->gd_systimerq); gd->gd_sysid_alloc = cpuid; /* prime low bits for cpu lookup */ gd->gd_cpuid = cpuid; CPUMASK_ASSBIT(gd->gd_cpumask, cpuid); lwkt_gdinit(gd); vm_map_entry_reserve_cpu_init(gd); sleep_gdinit(gd); slab_gdinit(gd); ATOMIC_CPUMASK_ORBIT(usched_global_cpumask, cpuid); }