/*- * Copyright (c) 2000 David O'Brien * Copyright (c) 1995-1996 Søren Schmidt * Copyright (c) 1996 Peter Wemm * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer * in this position and unchanged. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD: src/sys/kern/imgact_elf.c,v 1.73.2.13 2002/12/28 19:49:41 dillon Exp $ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define OLD_EI_BRAND 8 #define truncps(va,ps) ((va) & ~(ps - 1)) #define aligned(a,t) (truncps((u_long)(a), sizeof(t)) == (u_long)(a)) static int __elfN(check_header)(const Elf_Ehdr *hdr); static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp, const char *interp, int32_t *osrel); static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr, u_long *entry); static int __elfN(load_section)(struct proc *p, struct vmspace *vmspace, struct vnode *vp, vm_offset_t offset, caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot); static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp); static boolean_t __elfN(bsd_trans_osrel)(const Elf_Note *note, int32_t *osrel); static boolean_t __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *checknote, int32_t *osrel); static vm_prot_t __elfN(trans_prot)(Elf_Word); static Elf_Word __elfN(untrans_prot)(vm_prot_t); static boolean_t check_PT_NOTE(struct image_params *imgp, Elf_Brandnote *checknote, int32_t *osrel, const Elf_Phdr * pnote); static boolean_t extract_interpreter(struct image_params *imgp, const Elf_Phdr *pinterpreter, char *data); static int elf_legacy_coredump = 0; static int __elfN(fallback_brand) = -1; #if defined(__x86_64__) SYSCTL_NODE(_kern, OID_AUTO, elf64, CTLFLAG_RW, 0, ""); SYSCTL_INT(_debug, OID_AUTO, elf64_legacy_coredump, CTLFLAG_RW, &elf_legacy_coredump, 0, "legacy coredump mode"); SYSCTL_INT(_kern_elf64, OID_AUTO, fallback_brand, CTLFLAG_RW, &elf64_fallback_brand, 0, "ELF64 brand of last resort"); TUNABLE_INT("kern.elf64.fallback_brand", &elf64_fallback_brand); #else /* i386 assumed */ SYSCTL_NODE(_kern, OID_AUTO, elf32, CTLFLAG_RW, 0, ""); SYSCTL_INT(_debug, OID_AUTO, elf32_legacy_coredump, CTLFLAG_RW, &elf_legacy_coredump, 0, "legacy coredump mode"); SYSCTL_INT(_kern_elf32, OID_AUTO, fallback_brand, CTLFLAG_RW, &elf32_fallback_brand, 0, "ELF32 brand of last resort"); TUNABLE_INT("kern.elf32.fallback_brand", &elf32_fallback_brand); #endif static Elf_Brandinfo *elf_brand_list[MAX_BRANDS]; static const char DRAGONFLY_ABI_VENDOR[] = "DragonFly"; static const char FREEBSD_ABI_VENDOR[] = "FreeBSD"; Elf_Brandnote __elfN(dragonfly_brandnote) = { .hdr.n_namesz = sizeof(DRAGONFLY_ABI_VENDOR), .hdr.n_descsz = sizeof(int32_t), .hdr.n_type = 1, .vendor = DRAGONFLY_ABI_VENDOR, .flags = BN_TRANSLATE_OSREL, .trans_osrel = __elfN(bsd_trans_osrel), }; Elf_Brandnote __elfN(freebsd_brandnote) = { .hdr.n_namesz = sizeof(FREEBSD_ABI_VENDOR), .hdr.n_descsz = sizeof(int32_t), .hdr.n_type = 1, .vendor = FREEBSD_ABI_VENDOR, .flags = BN_TRANSLATE_OSREL, .trans_osrel = __elfN(bsd_trans_osrel), }; int __elfN(insert_brand_entry)(Elf_Brandinfo *entry) { int i; for (i = 0; i < MAX_BRANDS; i++) { if (elf_brand_list[i] == NULL) { elf_brand_list[i] = entry; break; } } if (i == MAX_BRANDS) { uprintf("WARNING: %s: could not insert brandinfo entry: %p\n", __func__, entry); return (-1); } return (0); } int __elfN(remove_brand_entry)(Elf_Brandinfo *entry) { int i; for (i = 0; i < MAX_BRANDS; i++) { if (elf_brand_list[i] == entry) { elf_brand_list[i] = NULL; break; } } if (i == MAX_BRANDS) return (-1); return (0); } /* * Check if an elf brand is being used anywhere in the system. * * Used by the linux emulation module unloader. This isn't safe from * races. */ struct elf_brand_inuse_info { int rval; Elf_Brandinfo *entry; }; static int elf_brand_inuse_callback(struct proc *p, void *data); int __elfN(brand_inuse)(Elf_Brandinfo *entry) { struct elf_brand_inuse_info info; info.rval = FALSE; info.entry = entry; allproc_scan(elf_brand_inuse_callback, &info); return (info.rval); } static int elf_brand_inuse_callback(struct proc *p, void *data) { struct elf_brand_inuse_info *info = data; if (p->p_sysent == info->entry->sysvec) { info->rval = TRUE; return (-1); } return (0); } static int __elfN(check_header)(const Elf_Ehdr *hdr) { Elf_Brandinfo *bi; int i; if (!IS_ELF(*hdr) || hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || hdr->e_ident[EI_DATA] != ELF_TARG_DATA || hdr->e_ident[EI_VERSION] != EV_CURRENT || hdr->e_phentsize != sizeof(Elf_Phdr) || hdr->e_ehsize != sizeof(Elf_Ehdr) || hdr->e_version != ELF_TARG_VER) return (ENOEXEC); /* * Make sure we have at least one brand for this machine. */ for (i = 0; i < MAX_BRANDS; i++) { bi = elf_brand_list[i]; if (bi != NULL && bi->machine == hdr->e_machine) break; } if (i == MAX_BRANDS) return (ENOEXEC); return (0); } static int __elfN(load_section)(struct proc *p, struct vmspace *vmspace, struct vnode *vp, vm_offset_t offset, caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot) { size_t map_len; vm_offset_t map_addr; int error, rv, cow; int count; int shared; size_t copy_len; vm_object_t object; vm_offset_t file_addr; object = vp->v_object; error = 0; /* * In most cases we will be able to use a shared lock on the * object we are inserting into the map. The lock will be * upgraded in situations where new VM pages must be allocated. */ vm_object_hold_shared(object); shared = 1; /* * It's necessary to fail if the filsz + offset taken from the * header is greater than the actual file pager object's size. * If we were to allow this, then the vm_map_find() below would * walk right off the end of the file object and into the ether. * * While I'm here, might as well check for something else that * is invalid: filsz cannot be greater than memsz. */ if ((off_t)filsz + offset > vp->v_filesize || filsz > memsz) { uprintf("elf_load_section: truncated ELF file\n"); vm_object_drop(object); return (ENOEXEC); } map_addr = trunc_page((vm_offset_t)vmaddr); file_addr = trunc_page(offset); /* * We have two choices. We can either clear the data in the last page * of an oversized mapping, or we can start the anon mapping a page * early and copy the initialized data into that first page. We * choose the second.. */ if (memsz > filsz) map_len = trunc_page(offset+filsz) - file_addr; else map_len = round_page(offset+filsz) - file_addr; if (map_len != 0) { vm_object_reference_locked(object); /* cow flags: don't dump readonly sections in core */ cow = MAP_COPY_ON_WRITE | MAP_PREFAULT; if ((prot & VM_PROT_WRITE) == 0) cow |= MAP_DISABLE_COREDUMP; if (shared == 0) cow |= MAP_PREFAULT_RELOCK; count = vm_map_entry_reserve(MAP_RESERVE_COUNT); vm_map_lock(&vmspace->vm_map); rv = vm_map_insert(&vmspace->vm_map, &count, object, NULL, file_addr, /* file offset */ map_addr, /* virtual start */ map_addr + map_len,/* virtual end */ VM_MAPTYPE_NORMAL, prot, VM_PROT_ALL, cow); vm_map_unlock(&vmspace->vm_map); vm_map_entry_release(count); /* * NOTE: Object must have a hold ref when calling * vm_object_deallocate(). */ if (rv != KERN_SUCCESS) { vm_object_drop(object); vm_object_deallocate(object); return (EINVAL); } /* we can stop now if we've covered it all */ if (memsz == filsz) { vm_object_drop(object); return (0); } } /* * We have to get the remaining bit of the file into the first part * of the oversized map segment. This is normally because the .data * segment in the file is extended to provide bss. It's a neat idea * to try and save a page, but it's a pain in the behind to implement. */ copy_len = (offset + filsz) - trunc_page(offset + filsz); map_addr = trunc_page((vm_offset_t)vmaddr + filsz); map_len = round_page((vm_offset_t)vmaddr + memsz) - map_addr; /* This had damn well better be true! */ if (map_len != 0) { count = vm_map_entry_reserve(MAP_RESERVE_COUNT); vm_map_lock(&vmspace->vm_map); rv = vm_map_insert(&vmspace->vm_map, &count, NULL, NULL, 0, map_addr, map_addr + map_len, VM_MAPTYPE_NORMAL, VM_PROT_ALL, VM_PROT_ALL, 0); vm_map_unlock(&vmspace->vm_map); vm_map_entry_release(count); if (rv != KERN_SUCCESS) { vm_object_drop(object); return (EINVAL); } } if (copy_len != 0) { struct lwbuf *lwb; struct lwbuf lwb_cache; vm_page_t m; m = vm_fault_object_page(object, trunc_page(offset + filsz), VM_PROT_READ, 0, &shared, &error); vm_object_drop(object); if (m) { lwb = lwbuf_alloc(m, &lwb_cache); error = copyout((caddr_t)lwbuf_kva(lwb), (caddr_t)map_addr, copy_len); lwbuf_free(lwb); vm_page_unhold(m); } } else { vm_object_drop(object); } /* * set it to the specified protection */ if (error == 0) { vm_map_protect(&vmspace->vm_map, map_addr, map_addr + map_len, prot, FALSE); } return (error); } /* * Load the file "file" into memory. It may be either a shared object * or an executable. * * The "addr" reference parameter is in/out. On entry, it specifies * the address where a shared object should be loaded. If the file is * an executable, this value is ignored. On exit, "addr" specifies * where the file was actually loaded. * * The "entry" reference parameter is out only. On exit, it specifies * the entry point for the loaded file. */ static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr, u_long *entry) { struct { struct nlookupdata nd; struct vattr attr; struct image_params image_params; } *tempdata; const Elf_Ehdr *hdr = NULL; const Elf_Phdr *phdr = NULL; struct nlookupdata *nd; struct vmspace *vmspace = p->p_vmspace; struct vattr *attr; struct image_params *imgp; struct mount *topmnt; vm_prot_t prot; u_long rbase; u_long base_addr = 0; int error, i, numsegs; tempdata = kmalloc(sizeof(*tempdata), M_TEMP, M_WAITOK); nd = &tempdata->nd; attr = &tempdata->attr; imgp = &tempdata->image_params; /* * Initialize part of the common data */ imgp->proc = p; imgp->attr = attr; imgp->firstpage = NULL; imgp->image_header = NULL; imgp->vp = NULL; error = nlookup_init(nd, file, UIO_SYSSPACE, NLC_FOLLOW); if (error == 0) error = nlookup(nd); if (error == 0) error = cache_vget(&nd->nl_nch, nd->nl_cred, LK_SHARED, &imgp->vp); topmnt = nd->nl_nch.mount; nlookup_done(nd); if (error) goto fail; /* * Check permissions, modes, uid, etc on the file, and "open" it. */ error = exec_check_permissions(imgp, topmnt); if (error) { vn_unlock(imgp->vp); goto fail; } error = exec_map_first_page(imgp); /* * Also make certain that the interpreter stays the same, so set * its VTEXT flag, too. */ if (error == 0) vsetflags(imgp->vp, VTEXT); vn_unlock(imgp->vp); if (error) goto fail; hdr = (const Elf_Ehdr *)imgp->image_header; if ((error = __elfN(check_header)(hdr)) != 0) goto fail; if (hdr->e_type == ET_DYN) rbase = *addr; else if (hdr->e_type == ET_EXEC) rbase = 0; else { error = ENOEXEC; goto fail; } /* Only support headers that fit within first page for now */ /* (multiplication of two Elf_Half fields will not overflow) */ if ((hdr->e_phoff > PAGE_SIZE) || (hdr->e_phentsize * hdr->e_phnum) > PAGE_SIZE - hdr->e_phoff) { error = ENOEXEC; goto fail; } phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); if (!aligned(phdr, Elf_Addr)) { error = ENOEXEC; goto fail; } for (i = 0, numsegs = 0; i < hdr->e_phnum; i++) { if (phdr[i].p_type == PT_LOAD && phdr[i].p_memsz != 0) { /* Loadable segment */ prot = __elfN(trans_prot)(phdr[i].p_flags); error = __elfN(load_section)( p, vmspace, imgp->vp, phdr[i].p_offset, (caddr_t)phdr[i].p_vaddr + rbase, phdr[i].p_memsz, phdr[i].p_filesz, prot); if (error != 0) goto fail; /* * Establish the base address if this is the * first segment. */ if (numsegs == 0) base_addr = trunc_page(phdr[i].p_vaddr + rbase); numsegs++; } } *addr = base_addr; *entry = (unsigned long)hdr->e_entry + rbase; fail: if (imgp->firstpage) exec_unmap_first_page(imgp); if (imgp->vp) { vrele(imgp->vp); imgp->vp = NULL; } kfree(tempdata, M_TEMP); return (error); } static Elf_Brandinfo * __elfN(get_brandinfo)(struct image_params *imgp, const char *interp, int32_t *osrel) { const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header; Elf_Brandinfo *bi; boolean_t ret; int i; /* We support four types of branding -- (1) the ELF EI_OSABI field * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string * branding within the ELF header, (3) path of the `interp_path' field, * and (4) the ".note.ABI-tag" ELF section. */ /* Look for an ".note.ABI-tag" ELF section */ for (i = 0; i < MAX_BRANDS; i++) { bi = elf_brand_list[i]; if (bi == NULL) continue; if (hdr->e_machine == bi->machine && (bi->flags & (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) { ret = __elfN(check_note)(imgp, bi->brand_note, osrel); if (ret) return (bi); } } /* If the executable has a brand, search for it in the brand list. */ for (i = 0; i < MAX_BRANDS; i++) { bi = elf_brand_list[i]; if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY) continue; if (hdr->e_machine == bi->machine && (hdr->e_ident[EI_OSABI] == bi->brand || strncmp((const char *)&hdr->e_ident[OLD_EI_BRAND], bi->compat_3_brand, strlen(bi->compat_3_brand)) == 0)) return (bi); } /* Lacking a known brand, search for a recognized interpreter. */ if (interp != NULL) { for (i = 0; i < MAX_BRANDS; i++) { bi = elf_brand_list[i]; if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY) continue; if (hdr->e_machine == bi->machine && strcmp(interp, bi->interp_path) == 0) return (bi); } } /* Lacking a recognized interpreter, try the default brand */ for (i = 0; i < MAX_BRANDS; i++) { bi = elf_brand_list[i]; if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY) continue; if (hdr->e_machine == bi->machine && __elfN(fallback_brand) == bi->brand) return (bi); } return (NULL); } static int __CONCAT(exec_,__elfN(imgact))(struct image_params *imgp) { const Elf_Ehdr *hdr = (const Elf_Ehdr *) imgp->image_header; const Elf_Phdr *phdr; Elf_Auxargs *elf_auxargs; struct vmspace *vmspace; vm_prot_t prot; u_long text_size = 0, data_size = 0, total_size = 0; u_long text_addr = 0, data_addr = 0; u_long seg_size, seg_addr; u_long addr, baddr, et_dyn_addr, entry = 0, proghdr = 0; int32_t osrel = 0; int error = 0, i, n; boolean_t failure; char *interp = NULL; const char *newinterp = NULL; Elf_Brandinfo *brand_info; char *path; /* * Do we have a valid ELF header ? * * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later if a particular * brand doesn't support it. Both DragonFly platforms do by default. */ if (__elfN(check_header)(hdr) != 0 || (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN)) return (-1); /* * From here on down, we return an errno, not -1, as we've * detected an ELF file. */ if ((hdr->e_phoff > PAGE_SIZE) || (hdr->e_phoff + hdr->e_phentsize * hdr->e_phnum) > PAGE_SIZE) { /* Only support headers in first page for now */ return (ENOEXEC); } phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); if (!aligned(phdr, Elf_Addr)) return (ENOEXEC); n = 0; baddr = 0; for (i = 0; i < hdr->e_phnum; i++) { if (phdr[i].p_type == PT_LOAD) { if (n == 0) baddr = phdr[i].p_vaddr; n++; continue; } if (phdr[i].p_type == PT_INTERP) { /* * If interp is already defined there are more than * one PT_INTERP program headers present. Take only * the first one and ignore the rest. */ if (interp != NULL) continue; if (phdr[i].p_filesz == 0 || phdr[i].p_filesz > PAGE_SIZE || phdr[i].p_filesz > MAXPATHLEN) return (ENOEXEC); interp = kmalloc(phdr[i].p_filesz, M_TEMP, M_WAITOK); failure = extract_interpreter(imgp, &phdr[i], interp); if (failure) { kfree(interp, M_TEMP); return (ENOEXEC); } continue; } } brand_info = __elfN(get_brandinfo)(imgp, interp, &osrel); if (brand_info == NULL) { uprintf("ELF binary type \"%u\" not known.\n", hdr->e_ident[EI_OSABI]); if (interp != NULL) kfree(interp, M_TEMP); return (ENOEXEC); } if (hdr->e_type == ET_DYN) { if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) { if (interp != NULL) kfree(interp, M_TEMP); return (ENOEXEC); } /* * Honour the base load address from the dso if it is * non-zero for some reason. */ if (baddr == 0) et_dyn_addr = ET_DYN_LOAD_ADDR; else et_dyn_addr = 0; } else et_dyn_addr = 0; if (interp != NULL && brand_info->interp_newpath != NULL) newinterp = brand_info->interp_newpath; exec_new_vmspace(imgp, NULL); /* * Yeah, I'm paranoid. There is every reason in the world to get * VTEXT now since from here on out, there are places we can have * a context switch. Better safe than sorry; I really don't want * the file to change while it's being loaded. */ vsetflags(imgp->vp, VTEXT); vmspace = imgp->proc->p_vmspace; for (i = 0; i < hdr->e_phnum; i++) { switch (phdr[i].p_type) { case PT_LOAD: /* Loadable segment */ if (phdr[i].p_memsz == 0) break; prot = __elfN(trans_prot)(phdr[i].p_flags); if ((error = __elfN(load_section)( imgp->proc, vmspace, imgp->vp, phdr[i].p_offset, (caddr_t)phdr[i].p_vaddr + et_dyn_addr, phdr[i].p_memsz, phdr[i].p_filesz, prot)) != 0) { if (interp != NULL) kfree (interp, M_TEMP); return (error); } /* * If this segment contains the program headers, * remember their virtual address for the AT_PHDR * aux entry. Static binaries don't usually include * a PT_PHDR entry. */ if (phdr[i].p_offset == 0 && hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize <= phdr[i].p_filesz) proghdr = phdr[i].p_vaddr + hdr->e_phoff + et_dyn_addr; seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr); seg_size = round_page(phdr[i].p_memsz + phdr[i].p_vaddr + et_dyn_addr - seg_addr); /* * Is this .text or .data? We can't use * VM_PROT_WRITE or VM_PROT_EXEC, it breaks the * alpha terribly and possibly does other bad * things so we stick to the old way of figuring * it out: If the segment contains the program * entry point, it's a text segment, otherwise it * is a data segment. * * Note that obreak() assumes that data_addr + * data_size == end of data load area, and the ELF * file format expects segments to be sorted by * address. If multiple data segments exist, the * last one will be used. */ if (hdr->e_entry >= phdr[i].p_vaddr && hdr->e_entry < (phdr[i].p_vaddr + phdr[i].p_memsz)) { text_size = seg_size; text_addr = seg_addr; entry = (u_long)hdr->e_entry + et_dyn_addr; } else { data_size = seg_size; data_addr = seg_addr; } total_size += seg_size; /* * Check limits. It should be safe to check the * limits after loading the segment since we do * not actually fault in all the segment's pages. */ if (data_size > imgp->proc->p_rlimit[RLIMIT_DATA].rlim_cur || text_size > maxtsiz || total_size > imgp->proc->p_rlimit[RLIMIT_VMEM].rlim_cur) { if (interp != NULL) kfree(interp, M_TEMP); error = ENOMEM; return (error); } break; case PT_PHDR: /* Program header table info */ proghdr = phdr[i].p_vaddr + et_dyn_addr; break; default: break; } } vmspace->vm_tsize = text_size >> PAGE_SHIFT; vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr; vmspace->vm_dsize = data_size >> PAGE_SHIFT; vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr; addr = ELF_RTLD_ADDR(vmspace); imgp->entry_addr = entry; imgp->proc->p_sysent = brand_info->sysvec; EVENTHANDLER_INVOKE(process_exec, imgp); if (interp != NULL) { int have_interp = FALSE; if (brand_info->emul_path != NULL && brand_info->emul_path[0] != '\0') { path = kmalloc(MAXPATHLEN, M_TEMP, M_WAITOK); ksnprintf(path, MAXPATHLEN, "%s%s", brand_info->emul_path, interp); error = __elfN(load_file)(imgp->proc, path, &addr, &imgp->entry_addr); kfree(path, M_TEMP); if (error == 0) have_interp = TRUE; } if (!have_interp && newinterp != NULL) { error = __elfN(load_file)(imgp->proc, newinterp, &addr, &imgp->entry_addr); if (error == 0) have_interp = TRUE; } if (!have_interp) { error = __elfN(load_file)(imgp->proc, interp, &addr, &imgp->entry_addr); } if (error != 0) { uprintf("ELF interpreter %s not found\n", interp); kfree(interp, M_TEMP); return (error); } kfree(interp, M_TEMP); } else addr = et_dyn_addr; /* * Construct auxargs table (used by the fixup routine) */ elf_auxargs = kmalloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK); elf_auxargs->execfd = -1; elf_auxargs->phdr = proghdr; elf_auxargs->phent = hdr->e_phentsize; elf_auxargs->phnum = hdr->e_phnum; elf_auxargs->pagesz = PAGE_SIZE; elf_auxargs->base = addr; elf_auxargs->flags = 0; elf_auxargs->entry = entry; imgp->auxargs = elf_auxargs; imgp->interpreted = 0; imgp->proc->p_osrel = osrel; return (error); } int __elfN(dragonfly_fixup)(register_t **stack_base, struct image_params *imgp) { Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs; Elf_Addr *base; Elf_Addr *pos; base = (Elf_Addr *)*stack_base; pos = base + (imgp->args->argc + imgp->args->envc + 2); if (args->execfd != -1) AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd); AUXARGS_ENTRY(pos, AT_PHDR, args->phdr); AUXARGS_ENTRY(pos, AT_PHENT, args->phent); AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum); AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz); AUXARGS_ENTRY(pos, AT_FLAGS, args->flags); AUXARGS_ENTRY(pos, AT_ENTRY, args->entry); AUXARGS_ENTRY(pos, AT_BASE, args->base); if (imgp->execpathp != 0) AUXARGS_ENTRY(pos, AT_EXECPATH, imgp->execpathp); AUXARGS_ENTRY(pos, AT_OSRELDATE, osreldate); AUXARGS_ENTRY(pos, AT_NULL, 0); kfree(imgp->auxargs, M_TEMP); imgp->auxargs = NULL; base--; suword(base, (long)imgp->args->argc); *stack_base = (register_t *)base; return (0); } /* * Code for generating ELF core dumps. */ typedef int (*segment_callback)(vm_map_entry_t, void *); /* Closure for cb_put_phdr(). */ struct phdr_closure { Elf_Phdr *phdr; /* Program header to fill in (incremented) */ Elf_Phdr *phdr_max; /* Pointer bound for error check */ Elf_Off offset; /* Offset of segment in core file */ }; /* Closure for cb_size_segment(). */ struct sseg_closure { int count; /* Count of writable segments. */ size_t vsize; /* Total size of all writable segments. */ }; /* Closure for cb_put_fp(). */ struct fp_closure { struct vn_hdr *vnh; struct vn_hdr *vnh_max; int count; struct stat *sb; }; typedef struct elf_buf { char *buf; size_t off; size_t off_max; } *elf_buf_t; static void *target_reserve(elf_buf_t target, size_t bytes, int *error); static int cb_put_phdr (vm_map_entry_t, void *); static int cb_size_segment (vm_map_entry_t, void *); static int cb_fpcount_segment(vm_map_entry_t, void *); static int cb_put_fp(vm_map_entry_t, void *); static int each_segment (struct proc *, segment_callback, void *, int); static int __elfN(corehdr)(struct lwp *, int, struct file *, struct ucred *, int, elf_buf_t); enum putmode { WRITE, DRYRUN }; static int __elfN(puthdr)(struct lwp *, elf_buf_t, int sig, enum putmode, int, struct file *); static int elf_putallnotes(struct lwp *, elf_buf_t, int, enum putmode); static int __elfN(putnote)(elf_buf_t, const char *, int, const void *, size_t); static int elf_putsigs(struct lwp *, elf_buf_t); static int elf_puttextvp(struct proc *, elf_buf_t); static int elf_putfiles(struct proc *, elf_buf_t, struct file *); int __elfN(coredump)(struct lwp *lp, int sig, struct vnode *vp, off_t limit) { struct file *fp; int error; if ((error = falloc(NULL, &fp, NULL)) != 0) return (error); fsetcred(fp, lp->lwp_proc->p_ucred); /* * XXX fixme. */ fp->f_type = DTYPE_VNODE; fp->f_flag = O_CREAT|O_WRONLY|O_NOFOLLOW; fp->f_ops = &vnode_fileops; fp->f_data = vp; error = generic_elf_coredump(lp, sig, fp, limit); fp->f_type = 0; fp->f_flag = 0; fp->f_ops = &badfileops; fp->f_data = NULL; fdrop(fp); return (error); } int generic_elf_coredump(struct lwp *lp, int sig, struct file *fp, off_t limit) { struct proc *p = lp->lwp_proc; struct ucred *cred = p->p_ucred; int error = 0; struct sseg_closure seginfo; struct elf_buf target; if (!fp) kprintf("can't dump core - null fp\n"); /* * Size the program segments */ seginfo.count = 0; seginfo.vsize = 0; each_segment(p, cb_size_segment, &seginfo, 1); /* * Calculate the size of the core file header area by making * a dry run of generating it. Nothing is written, but the * size is calculated. */ bzero(&target, sizeof(target)); __elfN(puthdr)(lp, &target, sig, DRYRUN, seginfo.count, fp); if (target.off + seginfo.vsize >= limit) return (EFAULT); /* * Allocate memory for building the header, fill it up, * and write it out. */ target.off_max = target.off; target.off = 0; target.buf = kmalloc(target.off_max, M_TEMP, M_WAITOK|M_ZERO); error = __elfN(corehdr)(lp, sig, fp, cred, seginfo.count, &target); /* Write the contents of all of the writable segments. */ if (error == 0) { Elf_Phdr *php; int i; ssize_t nbytes; php = (Elf_Phdr *)(target.buf + sizeof(Elf_Ehdr)) + 1; for (i = 0; i < seginfo.count; i++) { error = fp_write(fp, (caddr_t)php->p_vaddr, php->p_filesz, &nbytes, UIO_USERSPACE); if (error != 0) break; php++; } } kfree(target.buf, M_TEMP); return (error); } /* * A callback for each_segment() to write out the segment's * program header entry. */ static int cb_put_phdr(vm_map_entry_t entry, void *closure) { struct phdr_closure *phc = closure; Elf_Phdr *phdr = phc->phdr; if (phc->phdr == phc->phdr_max) return (EINVAL); phc->offset = round_page(phc->offset); phdr->p_type = PT_LOAD; phdr->p_offset = phc->offset; phdr->p_vaddr = entry->start; phdr->p_paddr = 0; phdr->p_filesz = phdr->p_memsz = entry->end - entry->start; phdr->p_align = PAGE_SIZE; phdr->p_flags = __elfN(untrans_prot)(entry->protection); phc->offset += phdr->p_filesz; ++phc->phdr; return (0); } /* * A callback for each_writable_segment() to gather information about * the number of segments and their total size. */ static int cb_size_segment(vm_map_entry_t entry, void *closure) { struct sseg_closure *ssc = closure; ++ssc->count; ssc->vsize += entry->end - entry->start; return (0); } /* * A callback for each_segment() to gather information about * the number of text segments. */ static int cb_fpcount_segment(vm_map_entry_t entry, void *closure) { int *count = closure; struct vnode *vp; if (entry->object.vm_object->type == OBJT_VNODE) { vp = (struct vnode *)entry->object.vm_object->handle; if ((vp->v_flag & VCKPT) && curproc->p_textvp == vp) return (0); ++*count; } return (0); } static int cb_put_fp(vm_map_entry_t entry, void *closure) { struct fp_closure *fpc = closure; struct vn_hdr *vnh = fpc->vnh; Elf_Phdr *phdr = &vnh->vnh_phdr; struct vnode *vp; int error; /* * If an entry represents a vnode then write out a file handle. * * If we are checkpointing a checkpoint-restored program we do * NOT record the filehandle for the old checkpoint vnode (which * is mapped all over the place). Instead we rely on the fact * that a checkpoint-restored program does not mmap() the checkpt * vnode NOCORE, so its contents will be written out to the * new checkpoint file. This is necessary because the 'old' * checkpoint file is typically destroyed when a new one is created * and thus cannot be used to restore the new checkpoint. * * Theoretically we could create a chain of checkpoint files and * operate the checkpointing operation kinda like an incremental * checkpoint, but a checkpoint restore would then likely wind up * referencing many prior checkpoint files and that is a bit over * the top for the purpose of the checkpoint API. */ if (entry->object.vm_object->type == OBJT_VNODE) { vp = (struct vnode *)entry->object.vm_object->handle; if ((vp->v_flag & VCKPT) && curproc->p_textvp == vp) return (0); if (vnh == fpc->vnh_max) return (EINVAL); if (vp->v_mount) vnh->vnh_fh.fh_fsid = vp->v_mount->mnt_stat.f_fsid; error = VFS_VPTOFH(vp, &vnh->vnh_fh.fh_fid); if (error) { char *freepath, *fullpath; if (vn_fullpath(curproc, vp, &fullpath, &freepath, 0)) { kprintf("Warning: coredump, error %d: cannot store file handle for vnode %p\n", error, vp); } else { kprintf("Warning: coredump, error %d: cannot store file handle for %s\n", error, fullpath); kfree(freepath, M_TEMP); } error = 0; } phdr->p_type = PT_LOAD; phdr->p_offset = 0; /* not written to core */ phdr->p_vaddr = entry->start; phdr->p_paddr = 0; phdr->p_filesz = phdr->p_memsz = entry->end - entry->start; phdr->p_align = PAGE_SIZE; phdr->p_flags = 0; if (entry->protection & VM_PROT_READ) phdr->p_flags |= PF_R; if (entry->protection & VM_PROT_WRITE) phdr->p_flags |= PF_W; if (entry->protection & VM_PROT_EXECUTE) phdr->p_flags |= PF_X; ++fpc->vnh; ++fpc->count; } return (0); } /* * For each writable segment in the process's memory map, call the given * function with a pointer to the map entry and some arbitrary * caller-supplied data. */ static int each_segment(struct proc *p, segment_callback func, void *closure, int writable) { int error = 0; vm_map_t map = &p->p_vmspace->vm_map; vm_map_entry_t entry; for (entry = map->header.next; error == 0 && entry != &map->header; entry = entry->next) { vm_object_t obj; vm_object_t lobj; vm_object_t tobj; /* * Don't dump inaccessible mappings, deal with legacy * coredump mode. * * Note that read-only segments related to the elf binary * are marked MAP_ENTRY_NOCOREDUMP now so we no longer * need to arbitrarily ignore such segments. */ if (elf_legacy_coredump) { if (writable && (entry->protection & VM_PROT_RW) != VM_PROT_RW) continue; } else { if (writable && (entry->protection & VM_PROT_ALL) == 0) continue; } /* * Dont include memory segment in the coredump if * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in * madvise(2). * * Currently we only dump normal VM object maps. We do * not dump submaps or virtual page tables. */ if (writable && (entry->eflags & MAP_ENTRY_NOCOREDUMP)) continue; if (entry->maptype != VM_MAPTYPE_NORMAL) continue; if ((obj = entry->object.vm_object) == NULL) continue; /* * Find the bottom-most object, leaving the base object * and the bottom-most object held (but only one hold * if they happen to be the same). */ vm_object_hold_shared(obj); lobj = obj; while (lobj && (tobj = lobj->backing_object) != NULL) { KKASSERT(tobj != obj); vm_object_hold_shared(tobj); if (tobj == lobj->backing_object) { if (lobj != obj) { vm_object_lock_swap(); vm_object_drop(lobj); } lobj = tobj; } else { vm_object_drop(tobj); } } /* * The callback only applies to default, swap, or vnode * objects. Other types of objects such as memory-mapped * devices are ignored. */ if (lobj->type == OBJT_DEFAULT || lobj->type == OBJT_SWAP || lobj->type == OBJT_VNODE) { error = (*func)(entry, closure); } if (lobj != obj) vm_object_drop(lobj); vm_object_drop(obj); } return (error); } static void * target_reserve(elf_buf_t target, size_t bytes, int *error) { void *res = NULL; if (target->buf) { if (target->off + bytes > target->off_max) *error = EINVAL; else res = target->buf + target->off; } target->off += bytes; return (res); } /* * Write the core file header to the file, including padding up to * the page boundary. */ static int __elfN(corehdr)(struct lwp *lp, int sig, struct file *fp, struct ucred *cred, int numsegs, elf_buf_t target) { int error; ssize_t nbytes; /* * Fill in the header. The fp is passed so we can detect and flag * a checkpoint file pointer within the core file itself, because * it may not be restored from the same file handle. */ error = __elfN(puthdr)(lp, target, sig, WRITE, numsegs, fp); /* Write it to the core file. */ if (error == 0) { error = fp_write(fp, target->buf, target->off, &nbytes, UIO_SYSSPACE); } return (error); } static int __elfN(puthdr)(struct lwp *lp, elf_buf_t target, int sig, enum putmode mode, int numsegs, struct file *fp) { struct proc *p = lp->lwp_proc; int error = 0; size_t phoff; size_t noteoff; size_t notesz; Elf_Ehdr *ehdr; Elf_Phdr *phdr; ehdr = target_reserve(target, sizeof(Elf_Ehdr), &error); phoff = target->off; phdr = target_reserve(target, (numsegs + 1) * sizeof(Elf_Phdr), &error); noteoff = target->off; if (error == 0) elf_putallnotes(lp, target, sig, mode); notesz = target->off - noteoff; /* * put extra cruft for dumping process state here * - we really want it be before all the program * mappings * - we just need to update the offset accordingly * and GDB will be none the wiser. */ if (error == 0) error = elf_puttextvp(p, target); if (error == 0) error = elf_putsigs(lp, target); if (error == 0) error = elf_putfiles(p, target, fp); /* * Align up to a page boundary for the program segments. The * actual data will be written to the outptu file, not to elf_buf_t, * so we do not have to do any further bounds checking. */ target->off = round_page(target->off); if (error == 0 && ehdr != NULL) { /* * Fill in the ELF header. */ ehdr->e_ident[EI_MAG0] = ELFMAG0; ehdr->e_ident[EI_MAG1] = ELFMAG1; ehdr->e_ident[EI_MAG2] = ELFMAG2; ehdr->e_ident[EI_MAG3] = ELFMAG3; ehdr->e_ident[EI_CLASS] = ELF_CLASS; ehdr->e_ident[EI_DATA] = ELF_DATA; ehdr->e_ident[EI_VERSION] = EV_CURRENT; ehdr->e_ident[EI_OSABI] = ELFOSABI_NONE; ehdr->e_ident[EI_ABIVERSION] = 0; ehdr->e_ident[EI_PAD] = 0; ehdr->e_type = ET_CORE; ehdr->e_machine = ELF_ARCH; ehdr->e_version = EV_CURRENT; ehdr->e_entry = 0; ehdr->e_phoff = phoff; ehdr->e_flags = 0; ehdr->e_ehsize = sizeof(Elf_Ehdr); ehdr->e_phentsize = sizeof(Elf_Phdr); ehdr->e_phnum = numsegs + 1; ehdr->e_shentsize = sizeof(Elf_Shdr); ehdr->e_shnum = 0; ehdr->e_shstrndx = SHN_UNDEF; } if (error == 0 && phdr != NULL) { /* * Fill in the program header entries. */ struct phdr_closure phc; /* The note segement. */ phdr->p_type = PT_NOTE; phdr->p_offset = noteoff; phdr->p_vaddr = 0; phdr->p_paddr = 0; phdr->p_filesz = notesz; phdr->p_memsz = 0; phdr->p_flags = 0; phdr->p_align = 0; ++phdr; /* All the writable segments from the program. */ phc.phdr = phdr; phc.phdr_max = phdr + numsegs; phc.offset = target->off; each_segment(p, cb_put_phdr, &phc, 1); } return (error); } /* * Append core dump notes to target ELF buffer or simply update target size * if dryrun selected. */ static int elf_putallnotes(struct lwp *corelp, elf_buf_t target, int sig, enum putmode mode) { struct proc *p = corelp->lwp_proc; int error; struct { prstatus_t status; prfpregset_t fpregs; prpsinfo_t psinfo; } *tmpdata; prstatus_t *status; prfpregset_t *fpregs; prpsinfo_t *psinfo; struct lwp *lp; /* * Allocate temporary storage for notes on heap to avoid stack overflow. */ if (mode != DRYRUN) { tmpdata = kmalloc(sizeof(*tmpdata), M_TEMP, M_ZERO | M_WAITOK); status = &tmpdata->status; fpregs = &tmpdata->fpregs; psinfo = &tmpdata->psinfo; } else { tmpdata = NULL; status = NULL; fpregs = NULL; psinfo = NULL; } /* * Append LWP-agnostic note. */ if (mode != DRYRUN) { psinfo->pr_version = PRPSINFO_VERSION; psinfo->pr_psinfosz = sizeof(prpsinfo_t); strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname)); /* * XXX - We don't fill in the command line arguments * properly yet. */ strlcpy(psinfo->pr_psargs, p->p_comm, sizeof(psinfo->pr_psargs)); } error = __elfN(putnote)(target, "CORE", NT_PRPSINFO, psinfo, sizeof *psinfo); if (error) goto exit; /* * Append first note for LWP that triggered core so that it is * the selected one when the debugger starts. */ if (mode != DRYRUN) { status->pr_version = PRSTATUS_VERSION; status->pr_statussz = sizeof(prstatus_t); status->pr_gregsetsz = sizeof(gregset_t); status->pr_fpregsetsz = sizeof(fpregset_t); status->pr_osreldate = osreldate; status->pr_cursig = sig; /* * XXX GDB needs unique pr_pid for each LWP and does not * not support pr_pid==0 but lwp_tid can be 0, so hack unique * value. */ status->pr_pid = corelp->lwp_tid; fill_regs(corelp, &status->pr_reg); fill_fpregs(corelp, fpregs); } error = __elfN(putnote)(target, "CORE", NT_PRSTATUS, status, sizeof *status); if (error) goto exit; error = __elfN(putnote)(target, "CORE", NT_FPREGSET, fpregs, sizeof *fpregs); if (error) goto exit; /* * Then append notes for other LWPs. */ FOREACH_LWP_IN_PROC(lp, p) { if (lp == corelp) continue; /* skip lwps being created */ if (lp->lwp_thread == NULL) continue; if (mode != DRYRUN) { status->pr_pid = lp->lwp_tid; fill_regs(lp, &status->pr_reg); fill_fpregs(lp, fpregs); } error = __elfN(putnote)(target, "CORE", NT_PRSTATUS, status, sizeof *status); if (error) goto exit; error = __elfN(putnote)(target, "CORE", NT_FPREGSET, fpregs, sizeof *fpregs); if (error) goto exit; } exit: if (tmpdata != NULL) kfree(tmpdata, M_TEMP); return (error); } /* * Generate a note sub-structure. * * NOTE: 4-byte alignment. */ static int __elfN(putnote)(elf_buf_t target, const char *name, int type, const void *desc, size_t descsz) { int error = 0; char *dst; Elf_Note note; note.n_namesz = strlen(name) + 1; note.n_descsz = descsz; note.n_type = type; dst = target_reserve(target, sizeof(note), &error); if (dst != NULL) bcopy(¬e, dst, sizeof note); dst = target_reserve(target, note.n_namesz, &error); if (dst != NULL) bcopy(name, dst, note.n_namesz); target->off = roundup2(target->off, sizeof(Elf_Word)); dst = target_reserve(target, note.n_descsz, &error); if (dst != NULL) bcopy(desc, dst, note.n_descsz); target->off = roundup2(target->off, sizeof(Elf_Word)); return (error); } static int elf_putsigs(struct lwp *lp, elf_buf_t target) { /* XXX lwp handle more than one lwp */ struct proc *p = lp->lwp_proc; int error = 0; struct ckpt_siginfo *csi; csi = target_reserve(target, sizeof(struct ckpt_siginfo), &error); if (csi) { csi->csi_ckptpisz = sizeof(struct ckpt_siginfo); bcopy(p->p_sigacts, &csi->csi_sigacts, sizeof(*p->p_sigacts)); bcopy(&p->p_realtimer, &csi->csi_itimerval, sizeof(struct itimerval)); bcopy(&lp->lwp_sigmask, &csi->csi_sigmask, sizeof(sigset_t)); csi->csi_sigparent = p->p_sigparent; } return (error); } static int elf_putfiles(struct proc *p, elf_buf_t target, struct file *ckfp) { int error = 0; int i; struct ckpt_filehdr *cfh = NULL; struct ckpt_fileinfo *cfi; struct file *fp; struct vnode *vp; /* * the duplicated loop is gross, but it was the only way * to eliminate uninitialized variable warnings */ cfh = target_reserve(target, sizeof(struct ckpt_filehdr), &error); if (cfh) { cfh->cfh_nfiles = 0; } /* * ignore STDIN/STDERR/STDOUT. */ for (i = 3; error == 0 && i < p->p_fd->fd_nfiles; i++) { fp = holdfp(p->p_fd, i, -1); if (fp == NULL) continue; /* * XXX Only checkpoint vnodes for now. */ if (fp->f_type != DTYPE_VNODE) { fdrop(fp); continue; } cfi = target_reserve(target, sizeof(struct ckpt_fileinfo), &error); if (cfi == NULL) { fdrop(fp); continue; } cfi->cfi_index = -1; cfi->cfi_type = fp->f_type; cfi->cfi_flags = fp->f_flag; cfi->cfi_offset = fp->f_offset; cfi->cfi_ckflags = 0; if (fp == ckfp) cfi->cfi_ckflags |= CKFIF_ISCKPTFD; /* f_count and f_msgcount should not be saved/restored */ /* XXX save cred info */ switch(fp->f_type) { case DTYPE_VNODE: vp = (struct vnode *)fp->f_data; /* * it looks like a bug in ptrace is marking * a non-vnode as a vnode - until we find the * root cause this will at least prevent * further panics from truss */ if (vp == NULL || vp->v_mount == NULL) break; cfh->cfh_nfiles++; cfi->cfi_index = i; cfi->cfi_fh.fh_fsid = vp->v_mount->mnt_stat.f_fsid; error = VFS_VPTOFH(vp, &cfi->cfi_fh.fh_fid); break; default: break; } fdrop(fp); } return (error); } static int elf_puttextvp(struct proc *p, elf_buf_t target) { int error = 0; int *vn_count; struct fp_closure fpc; struct ckpt_vminfo *vminfo; vminfo = target_reserve(target, sizeof(struct ckpt_vminfo), &error); if (vminfo != NULL) { vminfo->cvm_dsize = p->p_vmspace->vm_dsize; vminfo->cvm_tsize = p->p_vmspace->vm_tsize; vminfo->cvm_daddr = p->p_vmspace->vm_daddr; vminfo->cvm_taddr = p->p_vmspace->vm_taddr; } fpc.count = 0; vn_count = target_reserve(target, sizeof(int), &error); if (target->buf != NULL) { fpc.vnh = (struct vn_hdr *)(target->buf + target->off); fpc.vnh_max = fpc.vnh + (target->off_max - target->off) / sizeof(struct vn_hdr); error = each_segment(p, cb_put_fp, &fpc, 0); if (vn_count) *vn_count = fpc.count; } else { error = each_segment(p, cb_fpcount_segment, &fpc.count, 0); } target->off += fpc.count * sizeof(struct vn_hdr); return (error); } /* * Try to find the appropriate ABI-note section for checknote, * The entire image is searched if necessary, not only the first page. */ static boolean_t __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *checknote, int32_t *osrel) { boolean_t valid_note_found; const Elf_Phdr *phdr, *pnote; const Elf_Ehdr *hdr; int i; valid_note_found = FALSE; hdr = (const Elf_Ehdr *)imgp->image_header; phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); for (i = 0; i < hdr->e_phnum; i++) { if (phdr[i].p_type == PT_NOTE) { pnote = &phdr[i]; valid_note_found = check_PT_NOTE (imgp, checknote, osrel, pnote); if (valid_note_found) break; } } return valid_note_found; } /* * Be careful not to create new overflow conditions when checking * for overflow. */ static boolean_t note_overflow(const Elf_Note *note, size_t maxsize) { if (sizeof(*note) > maxsize) return TRUE; if (note->n_namesz > maxsize - sizeof(*note)) return TRUE; return FALSE; } static boolean_t hdr_overflow(__ElfN(Off) off_beg, __ElfN(Size) size) { __ElfN(Off) off_end; off_end = off_beg + size; if (off_end < off_beg) return TRUE; return FALSE; } static boolean_t check_PT_NOTE(struct image_params *imgp, Elf_Brandnote *checknote, int32_t *osrel, const Elf_Phdr * pnote) { boolean_t limited_to_first_page; boolean_t found = FALSE; const Elf_Note *note, *note0, *note_end; const char *note_name; __ElfN(Off) noteloc, firstloc; __ElfN(Size) notesz, firstlen, endbyte; struct lwbuf *lwb; struct lwbuf lwb_cache; const char *page; char *data = NULL; int n; if (hdr_overflow(pnote->p_offset, pnote->p_filesz)) return (FALSE); notesz = pnote->p_filesz; noteloc = pnote->p_offset; endbyte = noteloc + notesz; limited_to_first_page = noteloc < PAGE_SIZE && endbyte < PAGE_SIZE; if (limited_to_first_page) { note = (const Elf_Note *)(imgp->image_header + noteloc); note_end = (const Elf_Note *)(imgp->image_header + endbyte); note0 = note; } else { firstloc = noteloc & PAGE_MASK; firstlen = PAGE_SIZE - firstloc; if (notesz < sizeof(Elf_Note) || notesz > PAGE_SIZE) return (FALSE); lwb = &lwb_cache; if (exec_map_page(imgp, noteloc >> PAGE_SHIFT, &lwb, &page)) return (FALSE); if (firstlen < notesz) { /* crosses page boundary */ data = kmalloc(notesz, M_TEMP, M_WAITOK); bcopy(page + firstloc, data, firstlen); exec_unmap_page(lwb); lwb = &lwb_cache; if (exec_map_page(imgp, (noteloc >> PAGE_SHIFT) + 1, &lwb, &page)) { kfree(data, M_TEMP); return (FALSE); } bcopy(page, data + firstlen, notesz - firstlen); note = note0 = (const Elf_Note *)(data); note_end = (const Elf_Note *)(data + notesz); } else { note = note0 = (const Elf_Note *)(page + firstloc); note_end = (const Elf_Note *)(page + firstloc + firstlen); } } for (n = 0; n < 100 && note >= note0 && note < note_end; n++) { if (!aligned(note, Elf32_Addr)) break; if (note_overflow(note, (const char *)note_end - (const char *)note)) { break; } note_name = (const char *)(note + 1); if (note->n_namesz == checknote->hdr.n_namesz && note->n_descsz == checknote->hdr.n_descsz && note->n_type == checknote->hdr.n_type && (strncmp(checknote->vendor, note_name, checknote->hdr.n_namesz) == 0)) { /* Fetch osreldata from ABI.note-tag */ if ((checknote->flags & BN_TRANSLATE_OSREL) != 0 && checknote->trans_osrel != NULL) checknote->trans_osrel(note, osrel); found = TRUE; break; } note = (const Elf_Note *)((const char *)(note + 1) + roundup2(note->n_namesz, sizeof(Elf32_Addr)) + roundup2(note->n_descsz, sizeof(Elf32_Addr))); } if (!limited_to_first_page) { if (data != NULL) kfree(data, M_TEMP); exec_unmap_page(lwb); } return (found); } /* * The interpreter program header may be located beyond the first page, so * regardless of its location, a copy of the interpreter path is created so * that it may be safely referenced by the calling function in all case. The * memory is allocated by calling function, and the copying is done here. */ static boolean_t extract_interpreter(struct image_params *imgp, const Elf_Phdr *pinterpreter, char *data) { boolean_t limited_to_first_page; const boolean_t result_success = FALSE; const boolean_t result_failure = TRUE; __ElfN(Off) pathloc, firstloc; __ElfN(Size) pathsz, firstlen, endbyte; struct lwbuf *lwb; struct lwbuf lwb_cache; const char *page; if (hdr_overflow(pinterpreter->p_offset, pinterpreter->p_filesz)) return (result_failure); pathsz = pinterpreter->p_filesz; pathloc = pinterpreter->p_offset; endbyte = pathloc + pathsz; limited_to_first_page = pathloc < PAGE_SIZE && endbyte < PAGE_SIZE; if (limited_to_first_page) { bcopy(imgp->image_header + pathloc, data, pathsz); return (result_success); } firstloc = pathloc & PAGE_MASK; firstlen = PAGE_SIZE - firstloc; lwb = &lwb_cache; if (exec_map_page(imgp, pathloc >> PAGE_SHIFT, &lwb, &page)) return (result_failure); if (firstlen < pathsz) { /* crosses page boundary */ bcopy(page + firstloc, data, firstlen); exec_unmap_page(lwb); lwb = &lwb_cache; if (exec_map_page(imgp, (pathloc >> PAGE_SHIFT) + 1, &lwb, &page)) return (result_failure); bcopy(page, data + firstlen, pathsz - firstlen); } else bcopy(page + firstloc, data, pathsz); exec_unmap_page(lwb); return (result_success); } static boolean_t __elfN(bsd_trans_osrel)(const Elf_Note *note, int32_t *osrel) { uintptr_t p; p = (uintptr_t)(note + 1); p += roundup2(note->n_namesz, sizeof(Elf32_Addr)); *osrel = *(const int32_t *)(p); return (TRUE); } /* * Tell kern_execve.c about it, with a little help from the linker. */ #if defined(__x86_64__) static struct execsw elf_execsw = {exec_elf64_imgact, "ELF64"}; EXEC_SET_ORDERED(elf64, elf_execsw, SI_ORDER_FIRST); #else /* i386 assumed */ static struct execsw elf_execsw = {exec_elf32_imgact, "ELF32"}; EXEC_SET_ORDERED(elf32, elf_execsw, SI_ORDER_FIRST); #endif static vm_prot_t __elfN(trans_prot)(Elf_Word flags) { vm_prot_t prot; prot = 0; if (flags & PF_X) prot |= VM_PROT_EXECUTE; if (flags & PF_W) prot |= VM_PROT_WRITE; if (flags & PF_R) prot |= VM_PROT_READ; return (prot); } static Elf_Word __elfN(untrans_prot)(vm_prot_t prot) { Elf_Word flags; flags = 0; if (prot & VM_PROT_EXECUTE) flags |= PF_X; if (prot & VM_PROT_READ) flags |= PF_R; if (prot & VM_PROT_WRITE) flags |= PF_W; return (flags); }