/* * Copyright (c) 1997, 1998, 1999 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD: src/sys/pci/if_sis.c,v 1.13.4.24 2003/03/05 18:42:33 njl Exp $ */ /* * SiS 900/SiS 7016 fast ethernet PCI NIC driver. Datasheets are * available from http://www.sis.com.tw. * * This driver also supports the NatSemi DP83815. Datasheets are * available from http://www.national.com. * * Written by Bill Paul * Electrical Engineering Department * Columbia University, New York City */ /* * The SiS 900 is a fairly simple chip. It uses bus master DMA with * simple TX and RX descriptors of 3 longwords in size. The receiver * has a single perfect filter entry for the station address and a * 128-bit multicast hash table. The SiS 900 has a built-in MII-based * transceiver while the 7016 requires an external transceiver chip. * Both chips offer the standard bit-bang MII interface as well as * an enchanced PHY interface which simplifies accessing MII registers. * * The only downside to this chipset is that RX descriptors must be * longword aligned. */ #include "opt_ifpoll.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "pcidevs.h" #include #include #define SIS_USEIOSPACE #include "if_sisreg.h" /* "controller miibus0" required. See GENERIC if you get errors here. */ #include "miibus_if.h" /* * Various supported device vendors/types and their names. */ static struct sis_type sis_devs[] = { { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, "SiS 900 10/100BaseTX" }, { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016, "SiS 7016 10/100BaseTX" }, { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815, "NatSemi DP8381[56] 10/100BaseTX" }, { 0, 0, NULL } }; static int sis_probe(device_t); static int sis_attach(device_t); static int sis_detach(device_t); static int sis_newbuf(struct sis_softc *, int, int); static void sis_setup_rxdesc(struct sis_softc *, int); static int sis_encap(struct sis_softc *, struct mbuf **, uint32_t *); static void sis_rxeof(struct sis_softc *); static void sis_rxeoc(struct sis_softc *); static void sis_txeof(struct sis_softc *); static void sis_intr(void *); static void sis_tick(void *); static void sis_start(struct ifnet *, struct ifaltq_subque *); static int sis_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *); static void sis_init(void *); static void sis_stop(struct sis_softc *); static void sis_watchdog(struct ifnet *); static void sis_shutdown(device_t); static int sis_ifmedia_upd(struct ifnet *); static void sis_ifmedia_sts(struct ifnet *, struct ifmediareq *); static uint16_t sis_reverse(uint16_t); static void sis_delay(struct sis_softc *); static void sis_eeprom_idle(struct sis_softc *); static void sis_eeprom_putbyte(struct sis_softc *, int); static void sis_eeprom_getword(struct sis_softc *, int, uint16_t *); static void sis_read_eeprom(struct sis_softc *, caddr_t, int, int, int); #ifdef __i386__ static void sis_read_cmos(struct sis_softc *, device_t, caddr_t, int, int); static void sis_read_mac(struct sis_softc *, device_t, caddr_t); static device_t sis_find_bridge(device_t); #endif static void sis_mii_sync(struct sis_softc *); static void sis_mii_send(struct sis_softc *, uint32_t, int); static int sis_mii_readreg(struct sis_softc *, struct sis_mii_frame *); static int sis_mii_writereg(struct sis_softc *, struct sis_mii_frame *); static int sis_miibus_readreg(device_t, int, int); static int sis_miibus_writereg(device_t, int, int, int); static void sis_miibus_statchg(device_t); static void sis_setmulti_sis(struct sis_softc *); static void sis_setmulti_ns(struct sis_softc *); static uint32_t sis_mchash(struct sis_softc *, const uint8_t *); static void sis_reset(struct sis_softc *); static int sis_list_rx_init(struct sis_softc *); static int sis_list_tx_init(struct sis_softc *); static int sis_dma_alloc(device_t dev); static void sis_dma_free(device_t dev); #ifdef IFPOLL_ENABLE static void sis_npoll(struct ifnet *, struct ifpoll_info *); static void sis_npoll_compat(struct ifnet *, void *, int); #endif #ifdef SIS_USEIOSPACE #define SIS_RES SYS_RES_IOPORT #define SIS_RID SIS_PCI_LOIO #else #define SIS_RES SYS_RES_MEMORY #define SIS_RID SIS_PCI_LOMEM #endif static device_method_t sis_methods[] = { /* Device interface */ DEVMETHOD(device_probe, sis_probe), DEVMETHOD(device_attach, sis_attach), DEVMETHOD(device_detach, sis_detach), DEVMETHOD(device_shutdown, sis_shutdown), /* bus interface */ DEVMETHOD(bus_print_child, bus_generic_print_child), DEVMETHOD(bus_driver_added, bus_generic_driver_added), /* MII interface */ DEVMETHOD(miibus_readreg, sis_miibus_readreg), DEVMETHOD(miibus_writereg, sis_miibus_writereg), DEVMETHOD(miibus_statchg, sis_miibus_statchg), DEVMETHOD_END }; static driver_t sis_driver = { "sis", sis_methods, sizeof(struct sis_softc) }; static devclass_t sis_devclass; DECLARE_DUMMY_MODULE(if_sis); DRIVER_MODULE(if_sis, pci, sis_driver, sis_devclass, NULL, NULL); DRIVER_MODULE(miibus, sis, miibus_driver, miibus_devclass, NULL, NULL); #define SIS_SETBIT(sc, reg, x) \ CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x)) #define SIS_CLRBIT(sc, reg, x) \ CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x)) #define SIO_SET(x) \ CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) | x) #define SIO_CLR(x) \ CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) & ~x) /* * Routine to reverse the bits in a word. Stolen almost * verbatim from /usr/games/fortune. */ static uint16_t sis_reverse(uint16_t n) { n = ((n >> 1) & 0x5555) | ((n << 1) & 0xaaaa); n = ((n >> 2) & 0x3333) | ((n << 2) & 0xcccc); n = ((n >> 4) & 0x0f0f) | ((n << 4) & 0xf0f0); n = ((n >> 8) & 0x00ff) | ((n << 8) & 0xff00); return(n); } static void sis_delay(struct sis_softc *sc) { int idx; for (idx = (300 / 33) + 1; idx > 0; idx--) CSR_READ_4(sc, SIS_CSR); } static void sis_eeprom_idle(struct sis_softc *sc) { int i; SIO_SET(SIS_EECTL_CSEL); sis_delay(sc); SIO_SET(SIS_EECTL_CLK); sis_delay(sc); for (i = 0; i < 25; i++) { SIO_CLR(SIS_EECTL_CLK); sis_delay(sc); SIO_SET(SIS_EECTL_CLK); sis_delay(sc); } SIO_CLR(SIS_EECTL_CLK); sis_delay(sc); SIO_CLR(SIS_EECTL_CSEL); sis_delay(sc); CSR_WRITE_4(sc, SIS_EECTL, 0x00000000); } /* * Send a read command and address to the EEPROM, check for ACK. */ static void sis_eeprom_putbyte(struct sis_softc *sc, int addr) { int d, i; d = addr | SIS_EECMD_READ; /* * Feed in each bit and stobe the clock. */ for (i = 0x400; i; i >>= 1) { if (d & i) SIO_SET(SIS_EECTL_DIN); else SIO_CLR(SIS_EECTL_DIN); sis_delay(sc); SIO_SET(SIS_EECTL_CLK); sis_delay(sc); SIO_CLR(SIS_EECTL_CLK); sis_delay(sc); } } /* * Read a word of data stored in the EEPROM at address 'addr.' */ static void sis_eeprom_getword(struct sis_softc *sc, int addr, uint16_t *dest) { int i; uint16_t word = 0; /* Force EEPROM to idle state. */ sis_eeprom_idle(sc); /* Enter EEPROM access mode. */ sis_delay(sc); SIO_CLR(SIS_EECTL_CLK); sis_delay(sc); SIO_SET(SIS_EECTL_CSEL); sis_delay(sc); /* * Send address of word we want to read. */ sis_eeprom_putbyte(sc, addr); /* * Start reading bits from EEPROM. */ for (i = 0x8000; i; i >>= 1) { SIO_SET(SIS_EECTL_CLK); sis_delay(sc); if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECTL_DOUT) word |= i; sis_delay(sc); SIO_CLR(SIS_EECTL_CLK); sis_delay(sc); } /* Turn off EEPROM access mode. */ sis_eeprom_idle(sc); *dest = word; } /* * Read a sequence of words from the EEPROM. */ static void sis_read_eeprom(struct sis_softc *sc, caddr_t dest, int off, int cnt, int swap) { int i; uint16_t word = 0, *ptr; for (i = 0; i < cnt; i++) { sis_eeprom_getword(sc, off + i, &word); ptr = (uint16_t *)(dest + (i * 2)); if (swap) *ptr = ntohs(word); else *ptr = word; } } #ifdef __i386__ static device_t sis_find_bridge(device_t dev) { devclass_t pci_devclass; device_t *pci_devices; int pci_count = 0; device_t *pci_children; int pci_childcount = 0; device_t *busp, *childp; device_t child = NULL; int i, j; if ((pci_devclass = devclass_find("pci")) == NULL) return(NULL); devclass_get_devices(pci_devclass, &pci_devices, &pci_count); for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) { pci_childcount = 0; device_get_children(*busp, &pci_children, &pci_childcount); for (j = 0, childp = pci_children; j < pci_childcount; j++, childp++) { if (pci_get_vendor(*childp) == PCI_VENDOR_SIS && pci_get_device(*childp) == 0x0008) { child = *childp; goto done; } } } done: kfree(pci_devices, M_TEMP); kfree(pci_children, M_TEMP); return(child); } static void sis_read_cmos(struct sis_softc *sc, device_t dev, caddr_t dest, int off, int cnt) { device_t bridge; uint8_t reg; int i; bus_space_tag_t btag; bridge = sis_find_bridge(dev); if (bridge == NULL) return; reg = pci_read_config(bridge, 0x48, 1); pci_write_config(bridge, 0x48, reg|0x40, 1); /* XXX */ btag = I386_BUS_SPACE_IO; for (i = 0; i < cnt; i++) { bus_space_write_1(btag, 0x0, 0x70, i + off); *(dest + i) = bus_space_read_1(btag, 0x0, 0x71); } pci_write_config(bridge, 0x48, reg & ~0x40, 1); } static void sis_read_mac(struct sis_softc *sc, device_t dev, caddr_t dest) { uint32_t filtsave, csrsave; filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL); csrsave = CSR_READ_4(sc, SIS_CSR); CSR_WRITE_4(sc, SIS_CSR, SIS_CSR_RELOAD | filtsave); CSR_WRITE_4(sc, SIS_CSR, 0); CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave & ~SIS_RXFILTCTL_ENABLE); CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0); ((uint16_t *)dest)[0] = CSR_READ_2(sc, SIS_RXFILT_DATA); CSR_WRITE_4(sc, SIS_RXFILT_CTL,SIS_FILTADDR_PAR1); ((uint16_t *)dest)[1] = CSR_READ_2(sc, SIS_RXFILT_DATA); CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2); ((uint16_t *)dest)[2] = CSR_READ_2(sc, SIS_RXFILT_DATA); CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave); CSR_WRITE_4(sc, SIS_CSR, csrsave); } #endif /* * Sync the PHYs by setting data bit and strobing the clock 32 times. */ static void sis_mii_sync(struct sis_softc *sc) { int i; SIO_SET(SIS_MII_DIR|SIS_MII_DATA); for (i = 0; i < 32; i++) { SIO_SET(SIS_MII_CLK); DELAY(1); SIO_CLR(SIS_MII_CLK); DELAY(1); } } /* * Clock a series of bits through the MII. */ static void sis_mii_send(struct sis_softc *sc, uint32_t bits, int cnt) { int i; SIO_CLR(SIS_MII_CLK); for (i = (0x1 << (cnt - 1)); i; i >>= 1) { if (bits & i) SIO_SET(SIS_MII_DATA); else SIO_CLR(SIS_MII_DATA); DELAY(1); SIO_CLR(SIS_MII_CLK); DELAY(1); SIO_SET(SIS_MII_CLK); } } /* * Read an PHY register through the MII. */ static int sis_mii_readreg(struct sis_softc *sc, struct sis_mii_frame *frame) { int i, ack; /* * Set up frame for RX. */ frame->mii_stdelim = SIS_MII_STARTDELIM; frame->mii_opcode = SIS_MII_READOP; frame->mii_turnaround = 0; frame->mii_data = 0; /* * Turn on data xmit. */ SIO_SET(SIS_MII_DIR); sis_mii_sync(sc); /* * Send command/address info. */ sis_mii_send(sc, frame->mii_stdelim, 2); sis_mii_send(sc, frame->mii_opcode, 2); sis_mii_send(sc, frame->mii_phyaddr, 5); sis_mii_send(sc, frame->mii_regaddr, 5); /* Idle bit */ SIO_CLR((SIS_MII_CLK|SIS_MII_DATA)); DELAY(1); SIO_SET(SIS_MII_CLK); DELAY(1); /* Turn off xmit. */ SIO_CLR(SIS_MII_DIR); /* Check for ack */ SIO_CLR(SIS_MII_CLK); DELAY(1); ack = CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA; SIO_SET(SIS_MII_CLK); DELAY(1); /* * Now try reading data bits. If the ack failed, we still * need to clock through 16 cycles to keep the PHY(s) in sync. */ if (ack) { for(i = 0; i < 16; i++) { SIO_CLR(SIS_MII_CLK); DELAY(1); SIO_SET(SIS_MII_CLK); DELAY(1); } goto fail; } for (i = 0x8000; i; i >>= 1) { SIO_CLR(SIS_MII_CLK); DELAY(1); if (!ack) { if (CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA) frame->mii_data |= i; DELAY(1); } SIO_SET(SIS_MII_CLK); DELAY(1); } fail: SIO_CLR(SIS_MII_CLK); DELAY(1); SIO_SET(SIS_MII_CLK); DELAY(1); if (ack) return(1); return(0); } /* * Write to a PHY register through the MII. */ static int sis_mii_writereg(struct sis_softc *sc, struct sis_mii_frame *frame) { /* * Set up frame for TX. */ frame->mii_stdelim = SIS_MII_STARTDELIM; frame->mii_opcode = SIS_MII_WRITEOP; frame->mii_turnaround = SIS_MII_TURNAROUND; /* * Turn on data output. */ SIO_SET(SIS_MII_DIR); sis_mii_sync(sc); sis_mii_send(sc, frame->mii_stdelim, 2); sis_mii_send(sc, frame->mii_opcode, 2); sis_mii_send(sc, frame->mii_phyaddr, 5); sis_mii_send(sc, frame->mii_regaddr, 5); sis_mii_send(sc, frame->mii_turnaround, 2); sis_mii_send(sc, frame->mii_data, 16); /* Idle bit. */ SIO_SET(SIS_MII_CLK); DELAY(1); SIO_CLR(SIS_MII_CLK); DELAY(1); /* * Turn off xmit. */ SIO_CLR(SIS_MII_DIR); return(0); } static int sis_miibus_readreg(device_t dev, int phy, int reg) { struct sis_softc *sc; struct sis_mii_frame frame; sc = device_get_softc(dev); if (sc->sis_type == SIS_TYPE_83815) { if (phy != 0) return(0); /* * The NatSemi chip can take a while after * a reset to come ready, during which the BMSR * returns a value of 0. This is *never* supposed * to happen: some of the BMSR bits are meant to * be hardwired in the on position, and this can * confuse the miibus code a bit during the probe * and attach phase. So we make an effort to check * for this condition and wait for it to clear. */ if (!CSR_READ_4(sc, NS_BMSR)) DELAY(1000); return CSR_READ_4(sc, NS_BMCR + (reg * 4)); } /* * Chipsets < SIS_635 seem not to be able to read/write * through mdio. Use the enhanced PHY access register * again for them. */ if (sc->sis_type == SIS_TYPE_900 && sc->sis_rev < SIS_REV_635) { int i, val = 0; if (phy != 0) return(0); CSR_WRITE_4(sc, SIS_PHYCTL, (phy << 11) | (reg << 6) | SIS_PHYOP_READ); SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS); for (i = 0; i < SIS_TIMEOUT; i++) { if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS)) break; } if (i == SIS_TIMEOUT) { device_printf(dev, "PHY failed to come ready\n"); return(0); } val = (CSR_READ_4(sc, SIS_PHYCTL) >> 16) & 0xFFFF; if (val == 0xFFFF) return(0); return(val); } else { bzero((char *)&frame, sizeof(frame)); frame.mii_phyaddr = phy; frame.mii_regaddr = reg; sis_mii_readreg(sc, &frame); return(frame.mii_data); } } static int sis_miibus_writereg(device_t dev, int phy, int reg, int data) { struct sis_softc *sc; struct sis_mii_frame frame; sc = device_get_softc(dev); if (sc->sis_type == SIS_TYPE_83815) { if (phy != 0) return(0); CSR_WRITE_4(sc, NS_BMCR + (reg * 4), data); return(0); } if (sc->sis_type == SIS_TYPE_900 && sc->sis_rev < SIS_REV_635) { int i; if (phy != 0) return(0); CSR_WRITE_4(sc, SIS_PHYCTL, (data << 16) | (phy << 11) | (reg << 6) | SIS_PHYOP_WRITE); SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS); for (i = 0; i < SIS_TIMEOUT; i++) { if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS)) break; } if (i == SIS_TIMEOUT) device_printf(dev, "PHY failed to come ready\n"); } else { bzero((char *)&frame, sizeof(frame)); frame.mii_phyaddr = phy; frame.mii_regaddr = reg; frame.mii_data = data; sis_mii_writereg(sc, &frame); } return(0); } static void sis_miibus_statchg(device_t dev) { struct sis_softc *sc; sc = device_get_softc(dev); sis_init(sc); } static uint32_t sis_mchash(struct sis_softc *sc, const uint8_t *addr) { uint32_t crc, carry; int i, j; uint8_t c; /* Compute CRC for the address value. */ crc = 0xFFFFFFFF; /* initial value */ for (i = 0; i < 6; i++) { c = *(addr + i); for (j = 0; j < 8; j++) { carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01); crc <<= 1; c >>= 1; if (carry) crc = (crc ^ 0x04c11db6) | carry; } } /* * return the filter bit position * * The NatSemi chip has a 512-bit filter, which is * different than the SiS, so we special-case it. */ if (sc->sis_type == SIS_TYPE_83815) return (crc >> 23); else if (sc->sis_rev >= SIS_REV_635 || sc->sis_rev == SIS_REV_900B) return (crc >> 24); else return (crc >> 25); } static void sis_setmulti_ns(struct sis_softc *sc) { struct ifnet *ifp; struct ifmultiaddr *ifma; uint32_t h = 0, i, filtsave; int bit, index; ifp = &sc->arpcom.ac_if; if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { SIS_CLRBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_MCHASH); SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI); return; } /* * We have to explicitly enable the multicast hash table * on the NatSemi chip if we want to use it, which we do. */ SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_MCHASH); SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI); filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL); /* first, zot all the existing hash bits */ for (i = 0; i < 32; i++) { CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + (i*2)); CSR_WRITE_4(sc, SIS_RXFILT_DATA, 0); } TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; h = sis_mchash(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); index = h >> 3; bit = h & 0x1F; CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + index); if (bit > 0xF) bit -= 0x10; SIS_SETBIT(sc, SIS_RXFILT_DATA, (1 << bit)); } CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave); } static void sis_setmulti_sis(struct sis_softc *sc) { struct ifnet *ifp; struct ifmultiaddr *ifma; uint32_t h, i, n, ctl; uint16_t hashes[16]; ifp = &sc->arpcom.ac_if; /* hash table size */ if (sc->sis_rev >= SIS_REV_635 || sc->sis_rev == SIS_REV_900B) n = 16; else n = 8; ctl = CSR_READ_4(sc, SIS_RXFILT_CTL) & SIS_RXFILTCTL_ENABLE; if (ifp->if_flags & IFF_BROADCAST) ctl |= SIS_RXFILTCTL_BROAD; if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { ctl |= SIS_RXFILTCTL_ALLMULTI; if (ifp->if_flags & IFF_PROMISC) ctl |= SIS_RXFILTCTL_BROAD|SIS_RXFILTCTL_ALLPHYS; for (i = 0; i < n; i++) hashes[i] = ~0; } else { for (i = 0; i < n; i++) hashes[i] = 0; i = 0; TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; h = sis_mchash(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); hashes[h >> 4] |= 1 << (h & 0xf); i++; } if (i > n) { ctl |= SIS_RXFILTCTL_ALLMULTI; for (i = 0; i < n; i++) hashes[i] = ~0; } } for (i = 0; i < n; i++) { CSR_WRITE_4(sc, SIS_RXFILT_CTL, (4 + i) << 16); CSR_WRITE_4(sc, SIS_RXFILT_DATA, hashes[i]); } CSR_WRITE_4(sc, SIS_RXFILT_CTL, ctl); } static void sis_reset(struct sis_softc *sc) { struct ifnet *ifp = &sc->arpcom.ac_if; int i; SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RESET); for (i = 0; i < SIS_TIMEOUT; i++) { if (!(CSR_READ_4(sc, SIS_CSR) & SIS_CSR_RESET)) break; } if (i == SIS_TIMEOUT) if_printf(ifp, "reset never completed\n"); /* Wait a little while for the chip to get its brains in order. */ DELAY(1000); /* * If this is a NetSemi chip, make sure to clear * PME mode. */ if (sc->sis_type == SIS_TYPE_83815) { CSR_WRITE_4(sc, NS_CLKRUN, NS_CLKRUN_PMESTS); CSR_WRITE_4(sc, NS_CLKRUN, 0); } } /* * Probe for an SiS chip. Check the PCI vendor and device * IDs against our list and return a device name if we find a match. */ static int sis_probe(device_t dev) { struct sis_type *t; t = sis_devs; while(t->sis_name != NULL) { if ((pci_get_vendor(dev) == t->sis_vid) && (pci_get_device(dev) == t->sis_did)) { device_set_desc(dev, t->sis_name); return(0); } t++; } return(ENXIO); } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ static int sis_attach(device_t dev) { uint8_t eaddr[ETHER_ADDR_LEN]; uint32_t command; struct sis_softc *sc; struct ifnet *ifp; int error, rid, waittime; error = waittime = 0; sc = device_get_softc(dev); if (pci_get_device(dev) == PCI_PRODUCT_SIS_900) sc->sis_type = SIS_TYPE_900; if (pci_get_device(dev) == PCI_PRODUCT_SIS_7016) sc->sis_type = SIS_TYPE_7016; if (pci_get_vendor(dev) == PCI_VENDOR_NS) sc->sis_type = SIS_TYPE_83815; sc->sis_rev = pci_read_config(dev, PCIR_REVID, 1); /* * Handle power management nonsense. */ command = pci_read_config(dev, SIS_PCI_CAPID, 4) & 0x000000FF; if (command == 0x01) { command = pci_read_config(dev, SIS_PCI_PWRMGMTCTRL, 4); if (command & SIS_PSTATE_MASK) { uint32_t iobase, membase, irq; /* Save important PCI config data. */ iobase = pci_read_config(dev, SIS_PCI_LOIO, 4); membase = pci_read_config(dev, SIS_PCI_LOMEM, 4); irq = pci_read_config(dev, SIS_PCI_INTLINE, 4); /* Reset the power state. */ device_printf(dev, "chip is in D%d power mode " "-- setting to D0\n", command & SIS_PSTATE_MASK); command &= 0xFFFFFFFC; pci_write_config(dev, SIS_PCI_PWRMGMTCTRL, command, 4); /* Restore PCI config data. */ pci_write_config(dev, SIS_PCI_LOIO, iobase, 4); pci_write_config(dev, SIS_PCI_LOMEM, membase, 4); pci_write_config(dev, SIS_PCI_INTLINE, irq, 4); } } /* * Map control/status registers. */ command = pci_read_config(dev, PCIR_COMMAND, 4); command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN); pci_write_config(dev, PCIR_COMMAND, command, 4); command = pci_read_config(dev, PCIR_COMMAND, 4); #ifdef SIS_USEIOSPACE if (!(command & PCIM_CMD_PORTEN)) { device_printf(dev, "failed to enable I/O ports!\n"); error = ENXIO; goto fail; } #else if (!(command & PCIM_CMD_MEMEN)) { device_printf(dev, "failed to enable memory mapping!\n"); error = ENXIO; goto fail; } #endif rid = SIS_RID; sc->sis_res = bus_alloc_resource_any(dev, SIS_RES, &rid, RF_ACTIVE); if (sc->sis_res == NULL) { device_printf(dev, "couldn't map ports/memory\n"); error = ENXIO; goto fail; } sc->sis_btag = rman_get_bustag(sc->sis_res); sc->sis_bhandle = rman_get_bushandle(sc->sis_res); /* Allocate interrupt */ rid = 0; sc->sis_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE); if (sc->sis_irq == NULL) { device_printf(dev, "couldn't map interrupt\n"); error = ENXIO; goto fail; } /* Reset the adapter. */ sis_reset(sc); if (sc->sis_type == SIS_TYPE_900 && (sc->sis_rev == SIS_REV_635 || sc->sis_rev == SIS_REV_900B)) { SIO_SET(SIS_CFG_RND_CNT); SIO_SET(SIS_CFG_PERR_DETECT); } /* * Get station address from the EEPROM. */ switch (pci_get_vendor(dev)) { case PCI_VENDOR_NS: /* * Reading the MAC address out of the EEPROM on * the NatSemi chip takes a bit more work than * you'd expect. The address spans 4 16-bit words, * with the first word containing only a single bit. * You have to shift everything over one bit to * get it aligned properly. Also, the bits are * stored backwards (the LSB is really the MSB, * and so on) so you have to reverse them in order * to get the MAC address into the form we want. * Why? Who the hell knows. */ { uint16_t tmp[4]; sis_read_eeprom(sc, (caddr_t)&tmp, NS_EE_NODEADDR, 4, 0); /* Shift everything over one bit. */ tmp[3] = tmp[3] >> 1; tmp[3] |= tmp[2] << 15; tmp[2] = tmp[2] >> 1; tmp[2] |= tmp[1] << 15; tmp[1] = tmp[1] >> 1; tmp[1] |= tmp[0] << 15; /* Now reverse all the bits. */ tmp[3] = sis_reverse(tmp[3]); tmp[2] = sis_reverse(tmp[2]); tmp[1] = sis_reverse(tmp[1]); bcopy((char *)&tmp[1], eaddr, ETHER_ADDR_LEN); } break; case PCI_VENDOR_SIS: default: #ifdef __i386__ /* * If this is a SiS 630E chipset with an embedded * SiS 900 controller, we have to read the MAC address * from the APC CMOS RAM. Our method for doing this * is very ugly since we have to reach out and grab * ahold of hardware for which we cannot properly * allocate resources. This code is only compiled on * the i386 architecture since the SiS 630E chipset * is for x86 motherboards only. Note that there are * a lot of magic numbers in this hack. These are * taken from SiS's Linux driver. I'd like to replace * them with proper symbolic definitions, but that * requires some datasheets that I don't have access * to at the moment. */ if (sc->sis_rev == SIS_REV_630S || sc->sis_rev == SIS_REV_630E || sc->sis_rev == SIS_REV_630EA1) sis_read_cmos(sc, dev, (caddr_t)&eaddr, 0x9, 6); else if (sc->sis_rev == SIS_REV_635 || sc->sis_rev == SIS_REV_630ET) sis_read_mac(sc, dev, (caddr_t)&eaddr); else if (sc->sis_rev == SIS_REV_96x) { /* * Allow to read EEPROM from LAN. It is shared * between a 1394 controller and the NIC and each * time we access it, we need to set SIS_EECMD_REQ. */ SIO_SET(SIS_EECMD_REQ); for (waittime = 0; waittime < SIS_TIMEOUT; waittime++) { /* Force EEPROM to idle state. */ sis_eeprom_idle(sc); if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECMD_GNT) { sis_read_eeprom(sc, (caddr_t)&eaddr, SIS_EE_NODEADDR, 3, 0); break; } DELAY(1); } /* * Set SIS_EECTL_CLK to high, so a other master * can operate on the i2c bus. */ SIO_SET(SIS_EECTL_CLK); /* Refuse EEPROM access by LAN */ SIO_SET(SIS_EECMD_DONE); } else #endif sis_read_eeprom(sc, (caddr_t)&eaddr, SIS_EE_NODEADDR, 3, 0); break; } callout_init(&sc->sis_timer); error = sis_dma_alloc(dev); if (error) goto fail; ifp = &sc->arpcom.ac_if; ifp->if_softc = sc; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_mtu = ETHERMTU; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = sis_ioctl; ifp->if_start = sis_start; ifp->if_watchdog = sis_watchdog; ifp->if_init = sis_init; ifp->if_baudrate = 10000000; ifq_set_maxlen(&ifp->if_snd, SIS_TX_LIST_CNT - 1); ifq_set_ready(&ifp->if_snd); #ifdef IFPOLL_ENABLE ifp->if_npoll = sis_npoll; #endif ifp->if_capenable = ifp->if_capabilities; /* * Do MII setup. */ if (mii_phy_probe(dev, &sc->sis_miibus, sis_ifmedia_upd, sis_ifmedia_sts)) { device_printf(dev, "MII without any PHY!\n"); error = ENXIO; goto fail; } /* * Call MI attach routine. */ ether_ifattach(ifp, eaddr, NULL); #ifdef IFPOLL_ENABLE ifpoll_compat_setup(&sc->sis_npoll, NULL, NULL, device_get_unit(dev), ifp->if_serializer); #endif /* * Tell the upper layer(s) we support long frames. */ ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->sis_irq)); error = bus_setup_intr(dev, sc->sis_irq, INTR_MPSAFE, sis_intr, sc, &sc->sis_intrhand, ifp->if_serializer); if (error) { device_printf(dev, "couldn't set up irq\n"); ether_ifdetach(ifp); goto fail; } fail: if (error) sis_detach(dev); return(error); } /* * Shutdown hardware and free up resources. It is called in both the error case * and the normal detach case so it needs to be careful about only freeing * resources that have actually been allocated. */ static int sis_detach(device_t dev) { struct sis_softc *sc = device_get_softc(dev); struct ifnet *ifp = &sc->arpcom.ac_if; if (device_is_attached(dev)) { lwkt_serialize_enter(ifp->if_serializer); sis_reset(sc); sis_stop(sc); bus_teardown_intr(dev, sc->sis_irq, sc->sis_intrhand); lwkt_serialize_exit(ifp->if_serializer); ether_ifdetach(ifp); } if (sc->sis_miibus) device_delete_child(dev, sc->sis_miibus); bus_generic_detach(dev); if (sc->sis_irq) bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sis_irq); if (sc->sis_res) bus_release_resource(dev, SIS_RES, SIS_RID, sc->sis_res); sis_dma_free(dev); return(0); } /* * Initialize the transmit descriptors. */ static int sis_list_tx_init(struct sis_softc *sc) { struct sis_list_data *ld = &sc->sis_ldata; struct sis_chain_data *cd = &sc->sis_cdata; int i, nexti; for (i = 0; i < SIS_TX_LIST_CNT; i++) { bus_addr_t paddr; /* * Link the TX desc together */ nexti = (i == (SIS_TX_LIST_CNT - 1)) ? 0 : i+1; paddr = ld->sis_tx_paddr + (nexti * sizeof(struct sis_desc)); ld->sis_tx_list[i].sis_next = paddr; } cd->sis_tx_prod = cd->sis_tx_cons = cd->sis_tx_cnt = 0; return 0; } /* * Initialize the RX descriptors and allocate mbufs for them. Note that * we arrange the descriptors in a closed ring, so that the last descriptor * points back to the first. */ static int sis_list_rx_init(struct sis_softc *sc) { struct sis_list_data *ld = &sc->sis_ldata; struct sis_chain_data *cd = &sc->sis_cdata; int i, error; for (i = 0; i < SIS_RX_LIST_CNT; i++) { bus_addr_t paddr; int nexti; error = sis_newbuf(sc, i, 1); if (error) return error; /* * Link the RX desc together */ nexti = (i == (SIS_RX_LIST_CNT - 1)) ? 0 : i+1; paddr = ld->sis_rx_paddr + (nexti * sizeof(struct sis_desc)); ld->sis_rx_list[i].sis_next = paddr; } cd->sis_rx_prod = 0; return 0; } /* * Initialize an RX descriptor and attach an MBUF cluster. */ static int sis_newbuf(struct sis_softc *sc, int idx, int init) { struct sis_chain_data *cd = &sc->sis_cdata; struct sis_rx_data *rd = &cd->sis_rx_data[idx]; bus_dma_segment_t seg; bus_dmamap_t map; struct mbuf *m; int nseg, error; m = m_getcl(init ? M_WAITOK : M_NOWAIT, MT_DATA, M_PKTHDR); if (m == NULL) { if (init) if_printf(&sc->arpcom.ac_if, "can't alloc RX mbuf\n"); return ENOBUFS; } m->m_len = m->m_pkthdr.len = MCLBYTES; /* Try loading the mbuf into tmp DMA map */ error = bus_dmamap_load_mbuf_segment(cd->sis_rxbuf_tag, cd->sis_rx_tmpmap, m, &seg, 1, &nseg, BUS_DMA_NOWAIT); if (error) { m_freem(m); if (init) if_printf(&sc->arpcom.ac_if, "can't load RX mbuf\n"); return error; } /* Unload the currently loaded mbuf */ if (rd->sis_mbuf != NULL) { bus_dmamap_sync(cd->sis_rxbuf_tag, rd->sis_map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(cd->sis_rxbuf_tag, rd->sis_map); } /* Swap DMA maps */ map = cd->sis_rx_tmpmap; cd->sis_rx_tmpmap = rd->sis_map; rd->sis_map = map; /* Save necessary information */ rd->sis_mbuf = m; rd->sis_paddr = seg.ds_addr; sis_setup_rxdesc(sc, idx); return 0; } static void sis_setup_rxdesc(struct sis_softc *sc, int idx) { struct sis_desc *c = &sc->sis_ldata.sis_rx_list[idx]; /* Setup the RX desc */ c->sis_ctl = SIS_RXLEN; c->sis_ptr = sc->sis_cdata.sis_rx_data[idx].sis_paddr; } /* * A frame has been uploaded: pass the resulting mbuf chain up to * the higher level protocols. */ static void sis_rxeof(struct sis_softc *sc) { struct ifnet *ifp = &sc->arpcom.ac_if; int i, total_len = 0; uint32_t rxstat; i = sc->sis_cdata.sis_rx_prod; while (SIS_OWNDESC(&sc->sis_ldata.sis_rx_list[i])) { struct sis_desc *cur_rx; struct sis_rx_data *rd; struct mbuf *m; int idx = i; #ifdef IFPOLL_ENABLE if (ifp->if_flags & IFF_NPOLLING) { if (sc->rxcycles <= 0) break; sc->rxcycles--; } #endif /* IFPOLL_ENABLE */ cur_rx = &sc->sis_ldata.sis_rx_list[idx]; rd = &sc->sis_cdata.sis_rx_data[idx]; rxstat = cur_rx->sis_rxstat; total_len = SIS_RXBYTES(cur_rx); m = rd->sis_mbuf; SIS_INC(i, SIS_RX_LIST_CNT); /* * If an error occurs, update stats, clear the * status word and leave the mbuf cluster in place: * it should simply get re-used next time this descriptor * comes up in the ring. */ if (!(rxstat & SIS_CMDSTS_PKT_OK)) { IFNET_STAT_INC(ifp, ierrors, 1); if (rxstat & SIS_RXSTAT_COLL) IFNET_STAT_INC(ifp, collisions, 1); sis_setup_rxdesc(sc, idx); continue; } /* No errors; receive the packet. */ if (sis_newbuf(sc, idx, 0) == 0) { m->m_pkthdr.len = m->m_len = total_len; m->m_pkthdr.rcvif = ifp; } else { IFNET_STAT_INC(ifp, ierrors, 1); sis_setup_rxdesc(sc, idx); continue; } IFNET_STAT_INC(ifp, ipackets, 1); ifp->if_input(ifp, m, NULL, -1); } sc->sis_cdata.sis_rx_prod = i; } static void sis_rxeoc(struct sis_softc *sc) { sis_rxeof(sc); sis_init(sc); } /* * A frame was downloaded to the chip. It's safe for us to clean up * the list buffers. */ static void sis_txeof(struct sis_softc *sc) { struct ifnet *ifp = &sc->arpcom.ac_if; struct sis_chain_data *cd = &sc->sis_cdata; uint32_t idx; /* * Go through our tx list and free mbufs for those * frames that have been transmitted. */ for (idx = sc->sis_cdata.sis_tx_cons; sc->sis_cdata.sis_tx_cnt > 0; sc->sis_cdata.sis_tx_cnt--, SIS_INC(idx, SIS_TX_LIST_CNT) ) { struct sis_desc *cur_tx; struct sis_tx_data *td; cur_tx = &sc->sis_ldata.sis_tx_list[idx]; td = &cd->sis_tx_data[idx]; if (SIS_OWNDESC(cur_tx)) break; if (cur_tx->sis_ctl & SIS_CMDSTS_MORE) continue; if (!(cur_tx->sis_ctl & SIS_CMDSTS_PKT_OK)) { IFNET_STAT_INC(ifp, oerrors, 1); if (cur_tx->sis_txstat & SIS_TXSTAT_EXCESSCOLLS) IFNET_STAT_INC(ifp, collisions, 1); if (cur_tx->sis_txstat & SIS_TXSTAT_OUTOFWINCOLL) IFNET_STAT_INC(ifp, collisions, 1); } IFNET_STAT_INC(ifp, collisions, (cur_tx->sis_txstat & SIS_TXSTAT_COLLCNT) >> 16); IFNET_STAT_INC(ifp, opackets, 1); if (td->sis_mbuf != NULL) { bus_dmamap_unload(cd->sis_txbuf_tag, td->sis_map); m_freem(td->sis_mbuf); td->sis_mbuf = NULL; } } if (idx != sc->sis_cdata.sis_tx_cons) { /* we freed up some buffers */ sc->sis_cdata.sis_tx_cons = idx; } if (cd->sis_tx_cnt == 0) ifp->if_timer = 0; if (!SIS_IS_OACTIVE(sc)) ifq_clr_oactive(&ifp->if_snd); } static void sis_tick(void *xsc) { struct sis_softc *sc = xsc; struct mii_data *mii; struct ifnet *ifp = &sc->arpcom.ac_if; lwkt_serialize_enter(ifp->if_serializer); mii = device_get_softc(sc->sis_miibus); mii_tick(mii); if (!sc->sis_link) { mii_pollstat(mii); if (mii->mii_media_status & IFM_ACTIVE && IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) sc->sis_link++; if (!ifq_is_empty(&ifp->if_snd)) if_devstart(ifp); } callout_reset(&sc->sis_timer, hz, sis_tick, sc); lwkt_serialize_exit(ifp->if_serializer); } #ifdef IFPOLL_ENABLE static void sis_npoll_compat(struct ifnet *ifp, void *arg __unused, int count) { struct sis_softc *sc = ifp->if_softc; ASSERT_SERIALIZED(ifp->if_serializer); /* * On the sis, reading the status register also clears it. * So before returning to intr mode we must make sure that all * possible pending sources of interrupts have been served. * In practice this means run to completion the *eof routines, * and then call the interrupt routine */ sc->rxcycles = count; sis_rxeof(sc); sis_txeof(sc); if (!ifq_is_empty(&ifp->if_snd)) if_devstart(ifp); if (sc->sis_npoll.ifpc_stcount-- == 0) { uint32_t status; sc->sis_npoll.ifpc_stcount = sc->sis_npoll.ifpc_stfrac; /* Reading the ISR register clears all interrupts. */ status = CSR_READ_4(sc, SIS_ISR); if (status & (SIS_ISR_RX_ERR|SIS_ISR_RX_OFLOW)) sis_rxeoc(sc); if (status & (SIS_ISR_RX_IDLE)) SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE); if (status & SIS_ISR_SYSERR) { sis_reset(sc); sis_init(sc); } } } static void sis_npoll(struct ifnet *ifp, struct ifpoll_info *info) { struct sis_softc *sc = ifp->if_softc; ASSERT_SERIALIZED(ifp->if_serializer); if (info != NULL) { int cpuid = sc->sis_npoll.ifpc_cpuid; info->ifpi_rx[cpuid].poll_func = sis_npoll_compat; info->ifpi_rx[cpuid].arg = NULL; info->ifpi_rx[cpuid].serializer = ifp->if_serializer; if (ifp->if_flags & IFF_RUNNING) { /* disable interrupts */ CSR_WRITE_4(sc, SIS_IER, 0); sc->sis_npoll.ifpc_stcount = 0; } ifq_set_cpuid(&ifp->if_snd, cpuid); } else { if (ifp->if_flags & IFF_RUNNING) { /* enable interrupts */ CSR_WRITE_4(sc, SIS_IER, 1); } ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->sis_irq)); } } #endif /* IFPOLL_ENABLE */ static void sis_intr(void *arg) { struct sis_softc *sc; struct ifnet *ifp; uint32_t status; sc = arg; ifp = &sc->arpcom.ac_if; /* Supress unwanted interrupts */ if (!(ifp->if_flags & IFF_UP)) { sis_stop(sc); return; } /* Disable interrupts. */ CSR_WRITE_4(sc, SIS_IER, 0); for (;;) { /* Reading the ISR register clears all interrupts. */ status = CSR_READ_4(sc, SIS_ISR); if ((status & SIS_INTRS) == 0) break; if (status & (SIS_ISR_TX_DESC_OK | SIS_ISR_TX_ERR | SIS_ISR_TX_OK | SIS_ISR_TX_IDLE) ) sis_txeof(sc); if (status & (SIS_ISR_RX_DESC_OK | SIS_ISR_RX_OK | SIS_ISR_RX_IDLE)) sis_rxeof(sc); if (status & (SIS_ISR_RX_ERR | SIS_ISR_RX_OFLOW)) sis_rxeoc(sc); if (status & (SIS_ISR_RX_IDLE)) SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE); if (status & SIS_ISR_SYSERR) { sis_reset(sc); sis_init(sc); } } /* Re-enable interrupts. */ CSR_WRITE_4(sc, SIS_IER, 1); if (!ifq_is_empty(&ifp->if_snd)) if_devstart(ifp); } /* * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data * pointers to the fragment pointers. */ static int sis_encap(struct sis_softc *sc, struct mbuf **m_head, uint32_t *txidx) { struct sis_chain_data *cd = &sc->sis_cdata; struct sis_list_data *ld = &sc->sis_ldata; bus_dma_segment_t segs[SIS_NSEGS]; bus_dmamap_t map; int frag, cur, maxsegs, nsegs, error, i; maxsegs = SIS_TX_LIST_CNT - SIS_NSEGS_RESERVED - cd->sis_tx_cnt; KASSERT(maxsegs >= 1, ("not enough TX descs")); if (maxsegs > SIS_NSEGS) maxsegs = SIS_NSEGS; map = cd->sis_tx_data[*txidx].sis_map; error = bus_dmamap_load_mbuf_defrag(cd->sis_txbuf_tag, map, m_head, segs, maxsegs, &nsegs, BUS_DMA_NOWAIT); if (error) { m_freem(*m_head); *m_head = NULL; return error; } bus_dmamap_sync(cd->sis_txbuf_tag, map, BUS_DMASYNC_PREWRITE); cur = frag = *txidx; for (i = 0; i < nsegs; ++i) { struct sis_desc *f = &ld->sis_tx_list[frag]; f->sis_ctl = SIS_CMDSTS_MORE | segs[i].ds_len; f->sis_ptr = segs[i].ds_addr; if (i != 0) f->sis_ctl |= SIS_CMDSTS_OWN; cur = frag; SIS_INC(frag, SIS_TX_LIST_CNT); } ld->sis_tx_list[cur].sis_ctl &= ~SIS_CMDSTS_MORE; ld->sis_tx_list[*txidx].sis_ctl |= SIS_CMDSTS_OWN; /* Swap DMA map */ cd->sis_tx_data[*txidx].sis_map = cd->sis_tx_data[cur].sis_map; cd->sis_tx_data[cur].sis_map = map; cd->sis_tx_data[cur].sis_mbuf = *m_head; cd->sis_tx_cnt += nsegs; *txidx = frag; return 0; } /* * Main transmit routine. To avoid having to do mbuf copies, we put pointers * to the mbuf data regions directly in the transmit lists. We also save a * copy of the pointers since the transmit list fragment pointers are * physical addresses. */ static void sis_start(struct ifnet *ifp, struct ifaltq_subque *ifsq) { struct sis_softc *sc = ifp->if_softc; int need_trans, error; uint32_t idx; ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq); if (!sc->sis_link) { ifq_purge(&ifp->if_snd); return; } if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd)) return; idx = sc->sis_cdata.sis_tx_prod; need_trans = 0; while (sc->sis_cdata.sis_tx_data[idx].sis_mbuf == NULL) { struct mbuf *m_head; /* * If there's no way we can send any packets, return now. */ if (SIS_IS_OACTIVE(sc)) { ifq_set_oactive(&ifp->if_snd); break; } m_head = ifq_dequeue(&ifp->if_snd); if (m_head == NULL) break; error = sis_encap(sc, &m_head, &idx); if (error) { IFNET_STAT_INC(ifp, oerrors, 1); if (sc->sis_cdata.sis_tx_cnt == 0) { continue; } else { ifq_set_oactive(&ifp->if_snd); break; } } need_trans = 1; /* * If there's a BPF listener, bounce a copy of this frame * to him. */ BPF_MTAP(ifp, m_head); } if (!need_trans) return; /* Transmit */ sc->sis_cdata.sis_tx_prod = idx; SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE); /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; } static void sis_init(void *xsc) { struct sis_softc *sc = xsc; struct ifnet *ifp = &sc->arpcom.ac_if; struct mii_data *mii; /* * Cancel pending I/O and free all RX/TX buffers. */ sis_stop(sc); mii = device_get_softc(sc->sis_miibus); /* Set MAC address */ if (sc->sis_type == SIS_TYPE_83815) { CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR0); CSR_WRITE_4(sc, SIS_RXFILT_DATA, ((uint16_t *)sc->arpcom.ac_enaddr)[0]); CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR1); CSR_WRITE_4(sc, SIS_RXFILT_DATA, ((uint16_t *)sc->arpcom.ac_enaddr)[1]); CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR2); CSR_WRITE_4(sc, SIS_RXFILT_DATA, ((uint16_t *)sc->arpcom.ac_enaddr)[2]); } else { CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0); CSR_WRITE_4(sc, SIS_RXFILT_DATA, ((uint16_t *)sc->arpcom.ac_enaddr)[0]); CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR1); CSR_WRITE_4(sc, SIS_RXFILT_DATA, ((uint16_t *)sc->arpcom.ac_enaddr)[1]); CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2); CSR_WRITE_4(sc, SIS_RXFILT_DATA, ((uint16_t *)sc->arpcom.ac_enaddr)[2]); } /* Init circular RX list. */ if (sis_list_rx_init(sc)) { if_printf(ifp, "initialization failed: " "no memory for rx buffers\n"); sis_stop(sc); return; } /* * Init tx descriptors. */ sis_list_tx_init(sc); /* * For the NatSemi chip, we have to explicitly enable the * reception of ARP frames, as well as turn on the 'perfect * match' filter where we store the station address, otherwise * we won't receive unicasts meant for this host. */ if (sc->sis_type == SIS_TYPE_83815) { SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_ARP); SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_PERFECT); } /* If we want promiscuous mode, set the allframes bit. */ if (ifp->if_flags & IFF_PROMISC) SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLPHYS); else SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLPHYS); /* * Set the capture broadcast bit to capture broadcast frames. */ if (ifp->if_flags & IFF_BROADCAST) SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_BROAD); else SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_BROAD); /* * Load the multicast filter. */ if (sc->sis_type == SIS_TYPE_83815) sis_setmulti_ns(sc); else sis_setmulti_sis(sc); /* Turn the receive filter on */ SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ENABLE); /* * Load the address of the RX and TX lists. */ CSR_WRITE_4(sc, SIS_RX_LISTPTR, sc->sis_ldata.sis_rx_paddr); CSR_WRITE_4(sc, SIS_TX_LISTPTR, sc->sis_ldata.sis_tx_paddr); /* SIS_CFG_EDB_MASTER_EN indicates the EDB bus is used instead of * the PCI bus. When this bit is set, the Max DMA Burst Size * for TX/RX DMA should be no larger than 16 double words. */ if (CSR_READ_4(sc, SIS_CFG) & SIS_CFG_EDB_MASTER_EN) CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG64); else CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG256); /* Accept Long Packets for VLAN support */ SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_JABBER); /* Set TX configuration */ if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T) CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_10); else CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100); /* Set full/half duplex mode. */ if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) { SIS_SETBIT(sc, SIS_TX_CFG, (SIS_TXCFG_IGN_HBEAT|SIS_TXCFG_IGN_CARR)); SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS); } else { SIS_CLRBIT(sc, SIS_TX_CFG, (SIS_TXCFG_IGN_HBEAT|SIS_TXCFG_IGN_CARR)); SIS_CLRBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS); } /* * Enable interrupts. */ CSR_WRITE_4(sc, SIS_IMR, SIS_INTRS); #ifdef IFPOLL_ENABLE /* * ... only enable interrupts if we are not polling, make sure * they are off otherwise. */ if (ifp->if_flags & IFF_NPOLLING) { CSR_WRITE_4(sc, SIS_IER, 0); sc->sis_npoll.ifpc_stcount = 0; } else #endif /* IFPOLL_ENABLE */ CSR_WRITE_4(sc, SIS_IER, 1); /* Enable receiver and transmitter. */ SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE); SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE); #ifdef notdef mii_mediachg(mii); #endif /* * Page 75 of the DP83815 manual recommends the * following register settings "for optimum * performance." Note however that at least three * of the registers are listed as "reserved" in * the register map, so who knows what they do. */ if (sc->sis_type == SIS_TYPE_83815) { CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001); CSR_WRITE_4(sc, NS_PHY_CR, 0x189C); CSR_WRITE_4(sc, NS_PHY_TDATA, 0x0000); CSR_WRITE_4(sc, NS_PHY_DSPCFG, 0x5040); CSR_WRITE_4(sc, NS_PHY_SDCFG, 0x008C); } ifp->if_flags |= IFF_RUNNING; ifq_clr_oactive(&ifp->if_snd); callout_reset(&sc->sis_timer, hz, sis_tick, sc); } /* * Set media options. */ static int sis_ifmedia_upd(struct ifnet *ifp) { struct sis_softc *sc; struct mii_data *mii; sc = ifp->if_softc; mii = device_get_softc(sc->sis_miibus); sc->sis_link = 0; if (mii->mii_instance) { struct mii_softc *miisc; LIST_FOREACH(miisc, &mii->mii_phys, mii_list) mii_phy_reset(miisc); } mii_mediachg(mii); return(0); } /* * Report current media status. */ static void sis_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct sis_softc *sc; struct mii_data *mii; sc = ifp->if_softc; mii = device_get_softc(sc->sis_miibus); mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; } static int sis_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr) { struct sis_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; struct mii_data *mii; int error = 0; switch(command) { case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { sis_init(sc); } else { if (ifp->if_flags & IFF_RUNNING) sis_stop(sc); } error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: if (sc->sis_type == SIS_TYPE_83815) sis_setmulti_ns(sc); else sis_setmulti_sis(sc); error = 0; break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: mii = device_get_softc(sc->sis_miibus); error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); break; default: error = ether_ioctl(ifp, command, data); break; } return(error); } static void sis_watchdog(struct ifnet *ifp) { struct sis_softc *sc; sc = ifp->if_softc; IFNET_STAT_INC(ifp, oerrors, 1); if_printf(ifp, "watchdog timeout\n"); sis_stop(sc); sis_reset(sc); sis_init(sc); if (!ifq_is_empty(&ifp->if_snd)) if_devstart(ifp); } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ static void sis_stop(struct sis_softc *sc) { struct ifnet *ifp = &sc->arpcom.ac_if; struct sis_list_data *ld = &sc->sis_ldata; struct sis_chain_data *cd = &sc->sis_cdata; int i; callout_stop(&sc->sis_timer); ifp->if_flags &= ~IFF_RUNNING; ifq_clr_oactive(&ifp->if_snd); ifp->if_timer = 0; CSR_WRITE_4(sc, SIS_IER, 0); CSR_WRITE_4(sc, SIS_IMR, 0); SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE); DELAY(1000); CSR_WRITE_4(sc, SIS_TX_LISTPTR, 0); CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0); sc->sis_link = 0; /* * Free data in the RX lists. */ for (i = 0; i < SIS_RX_LIST_CNT; i++) { struct sis_rx_data *rd = &cd->sis_rx_data[i]; if (rd->sis_mbuf != NULL) { bus_dmamap_unload(cd->sis_rxbuf_tag, rd->sis_map); m_freem(rd->sis_mbuf); rd->sis_mbuf = NULL; } } bzero(ld->sis_rx_list, SIS_RX_LIST_SZ); /* * Free the TX list buffers. */ for (i = 0; i < SIS_TX_LIST_CNT; i++) { struct sis_tx_data *td = &cd->sis_tx_data[i]; if (td->sis_mbuf != NULL) { bus_dmamap_unload(cd->sis_txbuf_tag, td->sis_map); m_freem(td->sis_mbuf); td->sis_mbuf = NULL; } } bzero(ld->sis_tx_list, SIS_TX_LIST_SZ); } /* * Stop all chip I/O so that the kernel's probe routines don't * get confused by errant DMAs when rebooting. */ static void sis_shutdown(device_t dev) { struct sis_softc *sc; struct ifnet *ifp; sc = device_get_softc(dev); ifp = &sc->arpcom.ac_if; lwkt_serialize_enter(ifp->if_serializer); sis_reset(sc); sis_stop(sc); lwkt_serialize_exit(ifp->if_serializer); } static int sis_dma_alloc(device_t dev) { struct sis_softc *sc = device_get_softc(dev); struct sis_chain_data *cd = &sc->sis_cdata; struct sis_list_data *ld = &sc->sis_ldata; int i, error; /* Create top level DMA tag */ error = bus_dma_tag_create(NULL, /* parent */ 1, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ BUS_SPACE_MAXSIZE_32BIT,/* maxsize */ 0, /* nsegments */ BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */ 0, /* flags */ &sc->sis_parent_tag); if (error) { device_printf(dev, "could not create parent DMA tag\n"); return error; } /* Allocate RX ring */ ld->sis_rx_list = bus_dmamem_coherent_any(sc->sis_parent_tag, SIS_RING_ALIGN, SIS_RX_LIST_SZ, BUS_DMA_WAITOK | BUS_DMA_ZERO, &ld->sis_rx_tag, &ld->sis_rx_dmamap, &ld->sis_rx_paddr); if (ld->sis_rx_list == NULL) { device_printf(dev, "could not allocate RX ring\n"); return ENOMEM; } /* Allocate TX ring */ ld->sis_tx_list = bus_dmamem_coherent_any(sc->sis_parent_tag, SIS_RING_ALIGN, SIS_TX_LIST_SZ, BUS_DMA_WAITOK | BUS_DMA_ZERO, &ld->sis_tx_tag, &ld->sis_tx_dmamap, &ld->sis_tx_paddr); if (ld->sis_tx_list == NULL) { device_printf(dev, "could not allocate TX ring\n"); return ENOMEM; } /* Create DMA tag for TX mbuf */ error = bus_dma_tag_create(sc->sis_parent_tag,/* parent */ 1, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ MCLBYTES, /* maxsize */ SIS_NSEGS, /* nsegments */ MCLBYTES, /* maxsegsize */ BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK,/* flags */ &cd->sis_txbuf_tag); if (error) { device_printf(dev, "could not create TX buf DMA tag\n"); return error; } /* Create DMA maps for TX mbufs */ for (i = 0; i < SIS_TX_LIST_CNT; ++i) { error = bus_dmamap_create(cd->sis_txbuf_tag, BUS_DMA_WAITOK, &cd->sis_tx_data[i].sis_map); if (error) { int j; for (j = 0; j < i; ++j) { bus_dmamap_destroy(cd->sis_txbuf_tag, cd->sis_tx_data[j].sis_map); } bus_dma_tag_destroy(cd->sis_txbuf_tag); cd->sis_txbuf_tag = NULL; device_printf(dev, "could not create %dth " "TX buf DMA map\n", i); return error; } } /* Create DMA tag for RX mbuf */ error = bus_dma_tag_create(sc->sis_parent_tag,/* parent */ SIS_RXBUF_ALIGN, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ MCLBYTES, /* maxsize */ 1, /* nsegments */ MCLBYTES, /* maxsegsize */ BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ALIGNED, /* flags */ &cd->sis_rxbuf_tag); if (error) { device_printf(dev, "could not create RX buf DMA tag\n"); return error; } /* Create tmp DMA map for loading RX mbuf */ error = bus_dmamap_create(cd->sis_rxbuf_tag, BUS_DMA_WAITOK, &cd->sis_rx_tmpmap); if (error) { device_printf(dev, "could not create RX buf tmp DMA map\n"); bus_dma_tag_destroy(cd->sis_rxbuf_tag); cd->sis_rxbuf_tag = NULL; return error; } /* Create DMA maps for RX mbufs */ for (i = 0; i < SIS_RX_LIST_CNT; ++i) { error = bus_dmamap_create(cd->sis_rxbuf_tag, BUS_DMA_WAITOK, &cd->sis_rx_data[i].sis_map); if (error) { int j; for (j = 0; j < i; ++j) { bus_dmamap_destroy(cd->sis_rxbuf_tag, cd->sis_rx_data[j].sis_map); } bus_dmamap_destroy(cd->sis_rxbuf_tag, cd->sis_rx_tmpmap); bus_dma_tag_destroy(cd->sis_rxbuf_tag); cd->sis_rxbuf_tag = NULL; device_printf(dev, "could not create %dth " "RX buf DMA map\n", i); return error; } } return 0; } static void sis_dma_free(device_t dev) { struct sis_softc *sc = device_get_softc(dev); struct sis_list_data *ld = &sc->sis_ldata; struct sis_chain_data *cd = &sc->sis_cdata; int i; /* Free TX ring */ if (ld->sis_tx_list != NULL) { bus_dmamap_unload(ld->sis_tx_tag, ld->sis_tx_dmamap); bus_dmamem_free(ld->sis_tx_tag, ld->sis_tx_list, ld->sis_tx_dmamap); bus_dma_tag_destroy(ld->sis_tx_tag); } /* Free RX ring */ if (ld->sis_rx_list != NULL) { bus_dmamap_unload(ld->sis_rx_tag, ld->sis_rx_dmamap); bus_dmamem_free(ld->sis_rx_tag, ld->sis_rx_list, ld->sis_rx_dmamap); bus_dma_tag_destroy(ld->sis_rx_tag); } /* Destroy DMA stuffs for TX mbufs */ if (cd->sis_txbuf_tag != NULL) { for (i = 0; i < SIS_TX_LIST_CNT; ++i) { KKASSERT(cd->sis_tx_data[i].sis_mbuf == NULL); bus_dmamap_destroy(cd->sis_txbuf_tag, cd->sis_tx_data[i].sis_map); } bus_dma_tag_destroy(cd->sis_txbuf_tag); } /* Destroy DMA stuffs for RX mbufs */ if (cd->sis_rxbuf_tag != NULL) { for (i = 0; i < SIS_RX_LIST_CNT; ++i) { KKASSERT(cd->sis_rx_data[i].sis_mbuf == NULL); bus_dmamap_destroy(cd->sis_rxbuf_tag, cd->sis_rx_data[i].sis_map); } bus_dmamap_destroy(cd->sis_rxbuf_tag, cd->sis_rx_tmpmap); bus_dma_tag_destroy(cd->sis_rxbuf_tag); } }