/* * Copyright (c) 2004 Jeffrey M. Hsu. All rights reserved. * Copyright (c) 2004 The DragonFly Project. All rights reserved. * * This code is derived from software contributed to The DragonFly Project * by Jeffrey M. Hsu. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of The DragonFly Project nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific, prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)tcp_output.c 8.4 (Berkeley) 5/24/95 * $FreeBSD: src/sys/netinet/tcp_output.c,v 1.39.2.20 2003/01/29 22:45:36 hsu Exp $ */ #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ipsec.h" #include "opt_tcpdebug.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define TCPOUTFLAGS #include #include #include #include #include #include #ifdef TCPDEBUG #include #endif #ifdef IPSEC #include #endif /*IPSEC*/ #ifdef FAST_IPSEC #include #define IPSEC #endif /*FAST_IPSEC*/ #ifdef notyet extern struct mbuf *m_copypack(); #endif int path_mtu_discovery = 1; SYSCTL_INT(_net_inet_tcp, OID_AUTO, path_mtu_discovery, CTLFLAG_RW, &path_mtu_discovery, 1, "Enable Path MTU Discovery"); static int avoid_pure_win_update = 1; SYSCTL_INT(_net_inet_tcp, OID_AUTO, avoid_pure_win_update, CTLFLAG_RW, &avoid_pure_win_update, 1, "Avoid pure window updates when possible"); /* * 1 - enabled for increasing and decreasing the buffer size * 2 - enabled only for increasing the buffer size */ int tcp_do_autosndbuf = 1; SYSCTL_INT(_net_inet_tcp, OID_AUTO, sendbuf_auto, CTLFLAG_RW, &tcp_do_autosndbuf, 0, "Enable automatic send buffer sizing"); int tcp_autosndbuf_inc = 8*1024; SYSCTL_INT(_net_inet_tcp, OID_AUTO, sendbuf_inc, CTLFLAG_RW, &tcp_autosndbuf_inc, 0, "Incrementor step size of automatic send buffer"); int tcp_autosndbuf_min = 32768; SYSCTL_INT(_net_inet_tcp, OID_AUTO, sendbuf_min, CTLFLAG_RW, &tcp_autosndbuf_min, 0, "Min size of automatic send buffer"); int tcp_autosndbuf_max = 2*1024*1024; SYSCTL_INT(_net_inet_tcp, OID_AUTO, sendbuf_max, CTLFLAG_RW, &tcp_autosndbuf_max, 0, "Max size of automatic send buffer"); int tcp_prio_synack = 1; SYSCTL_INT(_net_inet_tcp, OID_AUTO, prio_synack, CTLFLAG_RW, &tcp_prio_synack, 0, "Prioritize SYN, SYN|ACK and pure ACK"); static int tcp_idle_cwv = 1; SYSCTL_INT(_net_inet_tcp, OID_AUTO, idle_cwv, CTLFLAG_RW, &tcp_idle_cwv, 0, "Congestion window validation after idle period (part of RFC2861)"); static int tcp_idle_restart = 1; SYSCTL_INT(_net_inet_tcp, OID_AUTO, idle_restart, CTLFLAG_RW, &tcp_idle_restart, 0, "Reset congestion window after idle period"); static int tcp_do_tso = 1; SYSCTL_INT(_net_inet_tcp, OID_AUTO, tso, CTLFLAG_RW, &tcp_do_tso, 0, "Enable TCP Segmentation Offload (TSO)"); static int tcp_fairsend = 4; SYSCTL_INT(_net_inet_tcp, OID_AUTO, fairsend, CTLFLAG_RW, &tcp_fairsend, 0, "Amount of segments sent before yield to other senders or receivers"); static void tcp_idle_cwnd_validate(struct tcpcb *); static int tcp_tso_getsize(struct tcpcb *tp, u_int *segsz, u_int *hlen); static void tcp_output_sched(struct tcpcb *tp); /* * Tcp output routine: figure out what should be sent and send it. */ int tcp_output(struct tcpcb *tp) { struct inpcb * const inp = tp->t_inpcb; struct socket *so = inp->inp_socket; long len, recvwin, sendwin; int nsacked = 0; int off, flags, error = 0; #ifdef TCP_SIGNATURE int sigoff = 0; #endif struct mbuf *m; struct ip *ip; struct tcphdr *th; u_char opt[TCP_MAXOLEN]; unsigned int ipoptlen, optlen, hdrlen; int idle; boolean_t sendalot; struct ip6_hdr *ip6; #ifdef INET6 const boolean_t isipv6 = INP_ISIPV6(inp); #else const boolean_t isipv6 = FALSE; #endif boolean_t can_tso = FALSE, use_tso; boolean_t report_sack, idle_cwv = FALSE; u_int segsz, tso_hlen, tso_lenmax = 0; int segcnt = 0; boolean_t need_sched = FALSE; KKASSERT(so->so_port == &curthread->td_msgport); /* * Determine length of data that should be transmitted, * and flags that will be used. * If there is some data or critical controls (SYN, RST) * to send, then transmit; otherwise, investigate further. */ /* * If we have been idle for a while, the send congestion window * could be no longer representative of the current state of the * link; need to validate congestion window. However, we should * not perform congestion window validation here, since we could * be asked to send pure ACK. */ if (tp->snd_max == tp->snd_una && (ticks - tp->snd_last) >= tp->t_rxtcur && tcp_idle_restart) idle_cwv = TRUE; /* * Calculate whether the transmit stream was previously idle * and adjust TF_LASTIDLE for the next time. */ idle = (tp->t_flags & TF_LASTIDLE) || (tp->snd_max == tp->snd_una); if (idle && (tp->t_flags & TF_MORETOCOME)) tp->t_flags |= TF_LASTIDLE; else tp->t_flags &= ~TF_LASTIDLE; if (TCP_DO_SACK(tp) && tp->snd_nxt != tp->snd_max && !IN_FASTRECOVERY(tp)) nsacked = tcp_sack_bytes_below(&tp->scb, tp->snd_nxt); /* * Find out whether TSO could be used or not * * For TSO capable devices, the following assumptions apply to * the processing of TCP flags: * - If FIN is set on the large TCP segment, the device must set * FIN on the last segment that it creates from the large TCP * segment. * - If PUSH is set on the large TCP segment, the device must set * PUSH on the last segment that it creates from the large TCP * segment. */ #if !defined(IPSEC) && !defined(FAST_IPSEC) if (tcp_do_tso #ifdef TCP_SIGNATURE && (tp->t_flags & TF_SIGNATURE) == 0 #endif ) { if (!isipv6) { struct rtentry *rt = inp->inp_route.ro_rt; if (rt != NULL && (rt->rt_flags & RTF_UP) && (rt->rt_ifp->if_hwassist & CSUM_TSO)) { can_tso = TRUE; tso_lenmax = rt->rt_ifp->if_tsolen; } } } #endif /* !IPSEC && !FAST_IPSEC */ again: m = NULL; ip = NULL; th = NULL; ip6 = NULL; if ((tp->t_flags & (TF_SACK_PERMITTED | TF_NOOPT)) == TF_SACK_PERMITTED && (!TAILQ_EMPTY(&tp->t_segq) || tp->reportblk.rblk_start != tp->reportblk.rblk_end)) report_sack = TRUE; else report_sack = FALSE; /* Make use of SACK information when slow-starting after a RTO. */ if (TCP_DO_SACK(tp) && tp->snd_nxt != tp->snd_max && !IN_FASTRECOVERY(tp)) { tcp_seq old_snd_nxt = tp->snd_nxt; tcp_sack_skip_sacked(&tp->scb, &tp->snd_nxt); nsacked += tp->snd_nxt - old_snd_nxt; } sendalot = FALSE; off = tp->snd_nxt - tp->snd_una; sendwin = min(tp->snd_wnd, tp->snd_cwnd + nsacked); sendwin = min(sendwin, tp->snd_bwnd); flags = tcp_outflags[tp->t_state]; /* * Get standard flags, and add SYN or FIN if requested by 'hidden' * state flags. */ if (tp->t_flags & TF_NEEDFIN) flags |= TH_FIN; if (tp->t_flags & TF_NEEDSYN) flags |= TH_SYN; /* * If in persist timeout with window of 0, send 1 byte. * Otherwise, if window is small but nonzero * and timer expired, we will send what we can * and go to transmit state. */ if (tp->t_flags & TF_FORCE) { if (sendwin == 0) { /* * If we still have some data to send, then * clear the FIN bit. Usually this would * happen below when it realizes that we * aren't sending all the data. However, * if we have exactly 1 byte of unsent data, * then it won't clear the FIN bit below, * and if we are in persist state, we wind * up sending the packet without recording * that we sent the FIN bit. * * We can't just blindly clear the FIN bit, * because if we don't have any more data * to send then the probe will be the FIN * itself. */ if (off < so->so_snd.ssb_cc) flags &= ~TH_FIN; sendwin = 1; } else { tcp_callout_stop(tp, tp->tt_persist); tp->t_rxtshift = 0; } } /* * If snd_nxt == snd_max and we have transmitted a FIN, the * offset will be > 0 even if so_snd.ssb_cc is 0, resulting in * a negative length. This can also occur when TCP opens up * its congestion window while receiving additional duplicate * acks after fast-retransmit because TCP will reset snd_nxt * to snd_max after the fast-retransmit. * * A negative length can also occur when we are in the * TCPS_SYN_RECEIVED state due to a simultanious connect where * our SYN has not been acked yet. * * In the normal retransmit-FIN-only case, however, snd_nxt will * be set to snd_una, the offset will be 0, and the length may * wind up 0. */ len = (long)ulmin(so->so_snd.ssb_cc, sendwin) - off; /* * Lop off SYN bit if it has already been sent. However, if this * is SYN-SENT state and if segment contains data, suppress sending * segment (sending the segment would be an option if we still * did TAO and the remote host supported it). */ if ((flags & TH_SYN) && SEQ_GT(tp->snd_nxt, tp->snd_una)) { flags &= ~TH_SYN; off--, len++; if (len > 0 && tp->t_state == TCPS_SYN_SENT) { tp->t_flags &= ~(TF_ACKNOW | TF_XMITNOW); return 0; } } /* * Be careful not to send data and/or FIN on SYN segments. * This measure is needed to prevent interoperability problems * with not fully conformant TCP implementations. */ if (flags & TH_SYN) { len = 0; flags &= ~TH_FIN; } if (len < 0) { /* * A negative len can occur if our FIN has been sent but not * acked, or if we are in a simultanious connect in the * TCPS_SYN_RECEIVED state with our SYN sent but not yet * acked. * * If our window has contracted to 0 in the FIN case * (which can only occur if we have NOT been called to * retransmit as per code a few paragraphs up) then we * want to shift the retransmit timer over to the * persist timer. * * However, if we are in the TCPS_SYN_RECEIVED state * (the SYN case) we will be in a simultanious connect and * the window may be zero degeneratively. In this case we * do not want to shift to the persist timer after the SYN * or the SYN+ACK transmission. */ len = 0; if (sendwin == 0 && tp->t_state != TCPS_SYN_RECEIVED) { tcp_callout_stop(tp, tp->tt_rexmt); tp->t_rxtshift = 0; tp->snd_nxt = tp->snd_una; if (!tcp_callout_active(tp, tp->tt_persist)) tcp_setpersist(tp); } } KASSERT(len >= 0, ("%s: len < 0", __func__)); /* * Automatic sizing of send socket buffer. Often the send buffer * size is not optimally adjusted to the actual network conditions * at hand (delay bandwidth product). Setting the buffer size too * small limits throughput on links with high bandwidth and high * delay (eg. trans-continental/oceanic links). Setting the * buffer size too big consumes too much real kernel memory, * especially with many connections on busy servers. * * The criteria to step up the send buffer one notch are: * 1. receive window of remote host is larger than send buffer * (with a fudge factor of 5/4th); * 2. hiwat has not significantly exceeded bwnd (inflight) * (bwnd is a maximal value if inflight is disabled). * 3. send buffer is filled to 7/8th with data (so we actually * have data to make use of it); * 4. hiwat has not hit maximal automatic size; * 5. our send window (slow start and cogestion controlled) is * larger than sent but unacknowledged data in send buffer. * * The remote host receive window scaling factor may limit the * growing of the send buffer before it reaches its allowed * maximum. * * It scales directly with slow start or congestion window * and does at most one step per received ACK. This fast * scaling has the drawback of growing the send buffer beyond * what is strictly necessary to make full use of a given * delay*bandwith product. However testing has shown this not * to be much of an problem. At worst we are trading wasting * of available bandwith (the non-use of it) for wasting some * socket buffer memory. * * The criteria for shrinking the buffer is based solely on * the inflight code (snd_bwnd). If inflight is disabled, * the buffer will not be shrinked. Note that snd_bwnd already * has a fudge factor. Our test adds a little hysteresis. */ if (tcp_do_autosndbuf && (so->so_snd.ssb_flags & SSB_AUTOSIZE)) { const int asbinc = tcp_autosndbuf_inc; const int hiwat = so->so_snd.ssb_hiwat; const int lowat = so->so_snd.ssb_lowat; u_long newsize; if ((tp->snd_wnd / 4 * 5) >= hiwat && so->so_snd.ssb_cc >= (hiwat / 8 * 7) && hiwat < tp->snd_bwnd + hiwat / 10 && hiwat + asbinc < tcp_autosndbuf_max && hiwat < (TCP_MAXWIN << tp->snd_scale) && sendwin >= (so->so_snd.ssb_cc - (tp->snd_nxt - tp->snd_una))) { newsize = ulmin(hiwat + asbinc, tcp_autosndbuf_max); if (!ssb_reserve(&so->so_snd, newsize, so, NULL)) atomic_clear_int(&so->so_snd.ssb_flags, SSB_AUTOSIZE); #if 0 if (newsize >= (TCP_MAXWIN << tp->snd_scale)) atomic_clear_int(&so->so_snd.ssb_flags, SSB_AUTOSIZE); #endif } else if ((long)tp->snd_bwnd < (long)(hiwat * 3 / 4 - lowat - asbinc) && hiwat > tp->t_maxseg * 2 + asbinc && hiwat + asbinc >= tcp_autosndbuf_min && tcp_do_autosndbuf == 1) { newsize = ulmax(hiwat - asbinc, tp->t_maxseg * 2); ssb_reserve(&so->so_snd, newsize, so, NULL); } } /* * Don't use TSO, if: * - Congestion window needs validation * - There are SACK blocks to report * - RST or SYN flags is set * - URG will be set * * XXX * Checking for SYN|RST looks overkill, just to be safe than sorry */ use_tso = can_tso; if (report_sack || idle_cwv || (flags & (TH_RST | TH_SYN))) use_tso = FALSE; if (use_tso) { tcp_seq ugr_nxt = tp->snd_nxt; if ((flags & TH_FIN) && (tp->t_flags & TF_SENTFIN) && tp->snd_nxt == tp->snd_max) --ugr_nxt; if (SEQ_GT(tp->snd_up, ugr_nxt)) use_tso = FALSE; } if (use_tso) { /* * Find out segment size and header length for TSO */ error = tcp_tso_getsize(tp, &segsz, &tso_hlen); if (error) use_tso = FALSE; } if (!use_tso) { segsz = tp->t_maxseg; tso_hlen = 0; /* not used */ } /* * Truncate to the maximum segment length if not TSO, and ensure that * FIN is removed if the length no longer contains the last data byte. */ if (len > segsz) { if (!use_tso) { len = segsz; ++segcnt; } else { int nsegs; if (__predict_false(tso_lenmax < segsz)) tso_lenmax = segsz << 1; /* * Truncate TSO transfers to (IP_MAXPACKET - iphlen - * thoff), and make sure that we send equal size * transfers down the stack (rather than big-small- * big-small-...). */ len = min(len, tso_lenmax); nsegs = min(len, (IP_MAXPACKET - tso_hlen)) / segsz; KKASSERT(nsegs > 0); len = nsegs * segsz; if (len <= segsz) { use_tso = FALSE; ++segcnt; } else { segcnt += nsegs; } } sendalot = TRUE; } else { use_tso = FALSE; if (len > 0) ++segcnt; } if (SEQ_LT(tp->snd_nxt + len, tp->snd_una + so->so_snd.ssb_cc)) flags &= ~TH_FIN; recvwin = ssb_space(&so->so_rcv); /* * Sender silly window avoidance. We transmit under the following * conditions when len is non-zero: * * - We have a full segment * - This is the last buffer in a write()/send() and we are * either idle or running NODELAY * - we've timed out (e.g. persist timer) * - we have more then 1/2 the maximum send window's worth of * data (receiver may be limiting the window size) * - we need to retransmit */ if (len) { if (len >= segsz) goto send; /* * NOTE! on localhost connections an 'ack' from the remote * end may occur synchronously with the output and cause * us to flush a buffer queued with moretocome. XXX * * note: the len + off check is almost certainly unnecessary. */ if (!(tp->t_flags & TF_MORETOCOME) && /* normal case */ (idle || (tp->t_flags & TF_NODELAY)) && len + off >= so->so_snd.ssb_cc && !(tp->t_flags & TF_NOPUSH)) { goto send; } if (tp->t_flags & TF_FORCE) /* typ. timeout case */ goto send; if (len >= tp->max_sndwnd / 2 && tp->max_sndwnd > 0) goto send; if (SEQ_LT(tp->snd_nxt, tp->snd_max)) /* retransmit case */ goto send; if (tp->t_flags & TF_XMITNOW) goto send; } /* * Compare available window to amount of window * known to peer (as advertised window less * next expected input). If the difference is at least two * max size segments, or at least 50% of the maximum possible * window, then want to send a window update to peer. */ if (recvwin > 0) { /* * "adv" is the amount we can increase the window, * taking into account that we are limited by * TCP_MAXWIN << tp->rcv_scale. */ long adv = min(recvwin, (long)TCP_MAXWIN << tp->rcv_scale) - (tp->rcv_adv - tp->rcv_nxt); long hiwat; /* * This ack case typically occurs when the user has drained * the TCP socket buffer sufficiently to warrent an ack * containing a 'pure window update'... that is, an ack that * ONLY updates the tcp window. * * It is unclear why we would need to do a pure window update * past 2 segments if we are going to do one at 1/2 the high * water mark anyway, especially since under normal conditions * the user program will drain the socket buffer quickly. * The 2-segment pure window update will often add a large * number of extra, unnecessary acks to the stream. * * avoid_pure_win_update now defaults to 1. */ if (avoid_pure_win_update == 0 || (tp->t_flags & TF_RXRESIZED)) { if (adv >= (long) (2 * segsz)) { goto send; } } hiwat = (long)(TCP_MAXWIN << tp->rcv_scale); if (hiwat > (long)so->so_rcv.ssb_hiwat) hiwat = (long)so->so_rcv.ssb_hiwat; if (adv >= hiwat / 2) goto send; } /* * Send if we owe the peer an ACK, RST, SYN, or urgent data. ACKNOW * is also a catch-all for the retransmit timer timeout case. */ if (tp->t_flags & TF_ACKNOW) goto send; if ((flags & TH_RST) || ((flags & TH_SYN) && !(tp->t_flags & TF_NEEDSYN))) goto send; if (SEQ_GT(tp->snd_up, tp->snd_una)) goto send; /* * If our state indicates that FIN should be sent * and we have not yet done so, then we need to send. */ if ((flags & TH_FIN) && (!(tp->t_flags & TF_SENTFIN) || tp->snd_nxt == tp->snd_una)) goto send; /* * TCP window updates are not reliable, rather a polling protocol * using ``persist'' packets is used to insure receipt of window * updates. The three ``states'' for the output side are: * idle not doing retransmits or persists * persisting to move a small or zero window * (re)transmitting and thereby not persisting * * tcp_callout_active(tp, tp->tt_persist) * is true when we are in persist state. * The TF_FORCE flag in tp->t_flags * is set when we are called to send a persist packet. * tcp_callout_active(tp, tp->tt_rexmt) * is set when we are retransmitting * The output side is idle when both timers are zero. * * If send window is too small, there is data to transmit, and no * retransmit or persist is pending, then go to persist state. * * If nothing happens soon, send when timer expires: * if window is nonzero, transmit what we can, otherwise force out * a byte. * * Don't try to set the persist state if we are in TCPS_SYN_RECEIVED * with data pending. This situation can occur during a * simultanious connect. */ if (so->so_snd.ssb_cc > 0 && tp->t_state != TCPS_SYN_RECEIVED && !tcp_callout_active(tp, tp->tt_rexmt) && !tcp_callout_active(tp, tp->tt_persist)) { tp->t_rxtshift = 0; tcp_setpersist(tp); } /* * No reason to send a segment, just return. */ tp->t_flags &= ~TF_XMITNOW; return (0); send: if (need_sched && len > 0) { tcp_output_sched(tp); return 0; } /* * Before ESTABLISHED, force sending of initial options * unless TCP set not to do any options. * NOTE: we assume that the IP/TCP header plus TCP options * always fit in a single mbuf, leaving room for a maximum * link header, i.e. * max_linkhdr + sizeof(struct tcpiphdr) + optlen <= MCLBYTES */ optlen = 0; if (isipv6) hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr); else hdrlen = sizeof(struct tcpiphdr); if (flags & TH_SYN) { tp->snd_nxt = tp->iss; if (!(tp->t_flags & TF_NOOPT)) { u_short mss; opt[0] = TCPOPT_MAXSEG; opt[1] = TCPOLEN_MAXSEG; mss = htons((u_short) tcp_mssopt(tp)); memcpy(opt + 2, &mss, sizeof mss); optlen = TCPOLEN_MAXSEG; if ((tp->t_flags & TF_REQ_SCALE) && (!(flags & TH_ACK) || (tp->t_flags & TF_RCVD_SCALE))) { *((u_int32_t *)(opt + optlen)) = htonl( TCPOPT_NOP << 24 | TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 | tp->request_r_scale); optlen += 4; } if ((tcp_do_sack && !(flags & TH_ACK)) || tp->t_flags & TF_SACK_PERMITTED) { uint32_t *lp = (uint32_t *)(opt + optlen); *lp = htonl(TCPOPT_SACK_PERMITTED_ALIGNED); optlen += TCPOLEN_SACK_PERMITTED_ALIGNED; } } } /* * Send a timestamp and echo-reply if this is a SYN and our side * wants to use timestamps (TF_REQ_TSTMP is set) or both our side * and our peer have sent timestamps in our SYN's. */ if ((tp->t_flags & (TF_REQ_TSTMP | TF_NOOPT)) == TF_REQ_TSTMP && !(flags & TH_RST) && (!(flags & TH_ACK) || (tp->t_flags & TF_RCVD_TSTMP))) { u_int32_t *lp = (u_int32_t *)(opt + optlen); /* Form timestamp option as shown in appendix A of RFC 1323. */ *lp++ = htonl(TCPOPT_TSTAMP_HDR); *lp++ = htonl(ticks); *lp = htonl(tp->ts_recent); optlen += TCPOLEN_TSTAMP_APPA; } /* Set receive buffer autosizing timestamp. */ if (tp->rfbuf_ts == 0 && (so->so_rcv.ssb_flags & SSB_AUTOSIZE)) tp->rfbuf_ts = ticks; /* * If this is a SACK connection and we have a block to report, * fill in the SACK blocks in the TCP options. */ if (report_sack) tcp_sack_fill_report(tp, opt, &optlen); #ifdef TCP_SIGNATURE if (tp->t_flags & TF_SIGNATURE) { int i; u_char *bp; /* * Initialize TCP-MD5 option (RFC2385) */ bp = (u_char *)opt + optlen; *bp++ = TCPOPT_SIGNATURE; *bp++ = TCPOLEN_SIGNATURE; sigoff = optlen + 2; for (i = 0; i < TCP_SIGLEN; i++) *bp++ = 0; optlen += TCPOLEN_SIGNATURE; /* * Terminate options list and maintain 32-bit alignment. */ *bp++ = TCPOPT_NOP; *bp++ = TCPOPT_EOL; optlen += 2; } #endif /* TCP_SIGNATURE */ KASSERT(optlen <= TCP_MAXOLEN, ("too many TCP options")); hdrlen += optlen; if (isipv6) { ipoptlen = ip6_optlen(inp); } else { if (inp->inp_options) { ipoptlen = inp->inp_options->m_len - offsetof(struct ipoption, ipopt_list); } else { ipoptlen = 0; } } #ifdef IPSEC ipoptlen += ipsec_hdrsiz_tcp(tp); #endif if (use_tso) { /* TSO segment length must be multiple of segment size */ KASSERT(len >= (2 * segsz) && (len % segsz == 0), ("invalid TSO len %ld, segsz %u", len, segsz)); } else { KASSERT(len <= segsz, ("invalid len %ld, segsz %u", len, segsz)); /* * Adjust data length if insertion of options will bump * the packet length beyond the t_maxopd length. Clear * FIN to prevent premature closure since there is still * more data to send after this (now truncated) packet. * * If just the options do not fit we are in a no-win * situation and we treat it as an unreachable host. */ if (len + optlen + ipoptlen > tp->t_maxopd) { if (tp->t_maxopd <= optlen + ipoptlen) { static time_t last_optlen_report; if (last_optlen_report != time_uptime) { last_optlen_report = time_uptime; kprintf("tcpcb %p: MSS (%d) too " "small to hold options!\n", tp, tp->t_maxopd); } error = EHOSTUNREACH; goto out; } else { flags &= ~TH_FIN; len = tp->t_maxopd - optlen - ipoptlen; sendalot = TRUE; } } } #ifdef INET6 KASSERT(max_linkhdr + hdrlen <= MCLBYTES, ("tcphdr too big")); #else KASSERT(max_linkhdr + hdrlen <= MHLEN, ("tcphdr too big")); #endif /* * Grab a header mbuf, attaching a copy of data to * be transmitted, and initialize the header from * the template for sends on this connection. */ if (len) { if ((tp->t_flags & TF_FORCE) && len == 1) tcpstat.tcps_sndprobe++; else if (SEQ_LT(tp->snd_nxt, tp->snd_max)) { if (tp->snd_nxt == tp->snd_una) tp->snd_max_rexmt = tp->snd_max; if (nsacked) { tcpstat.tcps_sndsackrtopack++; tcpstat.tcps_sndsackrtobyte += len; } tcpstat.tcps_sndrexmitpack++; tcpstat.tcps_sndrexmitbyte += len; } else { tcpstat.tcps_sndpack++; tcpstat.tcps_sndbyte += len; } if (idle_cwv) { idle_cwv = FALSE; tcp_idle_cwnd_validate(tp); } /* Update last send time after CWV */ tp->snd_last = ticks; #ifdef notyet if ((m = m_copypack(so->so_snd.ssb_mb, off, (int)len, max_linkhdr + hdrlen)) == NULL) { error = ENOBUFS; goto after_th; } /* * m_copypack left space for our hdr; use it. */ m->m_len += hdrlen; m->m_data -= hdrlen; #else #ifndef INET6 m = m_gethdr(M_NOWAIT, MT_HEADER); #else m = m_getl(hdrlen + max_linkhdr, M_NOWAIT, MT_HEADER, M_PKTHDR, NULL); #endif if (m == NULL) { error = ENOBUFS; goto after_th; } m->m_data += max_linkhdr; m->m_len = hdrlen; if (len <= MHLEN - hdrlen - max_linkhdr) { m_copydata(so->so_snd.ssb_mb, off, (int) len, mtod(m, caddr_t) + hdrlen); m->m_len += len; } else { m->m_next = m_copy(so->so_snd.ssb_mb, off, (int) len); if (m->m_next == NULL) { m_free(m); m = NULL; error = ENOBUFS; goto after_th; } } #endif /* * If we're sending everything we've got, set PUSH. * (This will keep happy those implementations which only * give data to the user when a buffer fills or * a PUSH comes in.) */ if (off + len == so->so_snd.ssb_cc) flags |= TH_PUSH; } else { if (tp->t_flags & TF_ACKNOW) tcpstat.tcps_sndacks++; else if (flags & (TH_SYN | TH_FIN | TH_RST)) tcpstat.tcps_sndctrl++; else if (SEQ_GT(tp->snd_up, tp->snd_una)) tcpstat.tcps_sndurg++; else tcpstat.tcps_sndwinup++; MGETHDR(m, M_NOWAIT, MT_HEADER); if (m == NULL) { error = ENOBUFS; goto after_th; } if (isipv6 && (hdrlen + max_linkhdr > MHLEN) && hdrlen <= MHLEN) MH_ALIGN(m, hdrlen); else m->m_data += max_linkhdr; m->m_len = hdrlen; /* * Prioritize SYN, SYN|ACK and pure ACK. * Leave FIN and RST as they are. */ if (tcp_prio_synack && (flags & (TH_FIN | TH_RST)) == 0) m->m_flags |= M_PRIO; } m->m_pkthdr.rcvif = NULL; if (isipv6) { ip6 = mtod(m, struct ip6_hdr *); th = (struct tcphdr *)(ip6 + 1); tcp_fillheaders(tp, ip6, th, use_tso); } else { ip = mtod(m, struct ip *); th = (struct tcphdr *)(ip + 1); /* this picks up the pseudo header (w/o the length) */ tcp_fillheaders(tp, ip, th, use_tso); } after_th: /* * Fill in fields, remembering maximum advertised * window for use in delaying messages about window sizes. * If resending a FIN, be sure not to use a new sequence number. */ if (flags & TH_FIN && tp->t_flags & TF_SENTFIN && tp->snd_nxt == tp->snd_max) tp->snd_nxt--; if (th != NULL) { /* * If we are doing retransmissions, then snd_nxt will * not reflect the first unsent octet. For ACK only * packets, we do not want the sequence number of the * retransmitted packet, we want the sequence number * of the next unsent octet. So, if there is no data * (and no SYN or FIN), use snd_max instead of snd_nxt * when filling in ti_seq. But if we are in persist * state, snd_max might reflect one byte beyond the * right edge of the window, so use snd_nxt in that * case, since we know we aren't doing a retransmission. * (retransmit and persist are mutually exclusive...) */ if (len || (flags & (TH_SYN|TH_FIN)) || tcp_callout_active(tp, tp->tt_persist)) th->th_seq = htonl(tp->snd_nxt); else th->th_seq = htonl(tp->snd_max); th->th_ack = htonl(tp->rcv_nxt); if (optlen) { bcopy(opt, th + 1, optlen); th->th_off = (sizeof(struct tcphdr) + optlen) >> 2; } th->th_flags = flags; } /* * Calculate receive window. Don't shrink window, but avoid * silly window syndrome by sending a 0 window if the actual * window is less then one segment. */ if (recvwin < (long)(so->so_rcv.ssb_hiwat / 4) && recvwin < (long)segsz) recvwin = 0; if (recvwin < (tcp_seq_diff_t)(tp->rcv_adv - tp->rcv_nxt)) recvwin = (tcp_seq_diff_t)(tp->rcv_adv - tp->rcv_nxt); if (recvwin > (long)TCP_MAXWIN << tp->rcv_scale) recvwin = (long)TCP_MAXWIN << tp->rcv_scale; /* * Adjust the RXWIN0SENT flag - indicate that we have advertised * a 0 window. This may cause the remote transmitter to stall. This * flag tells soreceive() to disable delayed acknowledgements when * draining the buffer. This can occur if the receiver is attempting * to read more data then can be buffered prior to transmitting on * the connection. */ if (recvwin == 0) tp->t_flags |= TF_RXWIN0SENT; else tp->t_flags &= ~TF_RXWIN0SENT; if (th != NULL) th->th_win = htons((u_short) (recvwin>>tp->rcv_scale)); if (SEQ_GT(tp->snd_up, tp->snd_nxt)) { KASSERT(!use_tso, ("URG with TSO")); if (th != NULL) { th->th_urp = htons((u_short)(tp->snd_up - tp->snd_nxt)); th->th_flags |= TH_URG; } } else { /* * If no urgent pointer to send, then we pull * the urgent pointer to the left edge of the send window * so that it doesn't drift into the send window on sequence * number wraparound. */ tp->snd_up = tp->snd_una; /* drag it along */ } if (th != NULL) { #ifdef TCP_SIGNATURE if (tp->t_flags & TF_SIGNATURE) { tcpsignature_compute(m, len, optlen, (u_char *)(th + 1) + sigoff, IPSEC_DIR_OUTBOUND); } #endif /* TCP_SIGNATURE */ /* * Put TCP length in extended header, and then * checksum extended header and data. */ m->m_pkthdr.len = hdrlen + len; /* in6_cksum() need this */ if (isipv6) { /* * ip6_plen is not need to be filled now, and will be * filled in ip6_output(). */ th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr), sizeof(struct tcphdr) + optlen + len); } else { m->m_pkthdr.csum_thlen = sizeof(struct tcphdr) + optlen; if (use_tso) { m->m_pkthdr.csum_flags = CSUM_TSO; m->m_pkthdr.tso_segsz = segsz; } else { m->m_pkthdr.csum_flags = CSUM_TCP; m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); if (len + optlen) { th->th_sum = in_addword(th->th_sum, htons((u_short)(optlen + len))); } } /* * IP version must be set here for ipv4/ipv6 checking * later */ KASSERT(ip->ip_v == IPVERSION, ("%s: IP version incorrect: %d", __func__, ip->ip_v)); } } /* * In transmit state, time the transmission and arrange for * the retransmit. In persist state, just set snd_max. */ if (!(tp->t_flags & TF_FORCE) || !tcp_callout_active(tp, tp->tt_persist)) { tcp_seq startseq = tp->snd_nxt; /* * Advance snd_nxt over sequence space of this segment. */ if (flags & (TH_SYN | TH_FIN)) { if (flags & TH_SYN) tp->snd_nxt++; if (flags & TH_FIN) { tp->snd_nxt++; tp->t_flags |= TF_SENTFIN; } } tp->snd_nxt += len; if (SEQ_GT(tp->snd_nxt, tp->snd_max)) { tp->snd_max = tp->snd_nxt; /* * Time this transmission if not a retransmission and * not currently timing anything. */ if (tp->t_rtttime == 0) { tp->t_rtttime = ticks; tp->t_rtseq = startseq; tcpstat.tcps_segstimed++; } } /* * Set retransmit timer if not currently set, * and not doing a pure ack or a keep-alive probe. * Initial value for retransmit timer is smoothed * round-trip time + 2 * round-trip time variance. * Initialize shift counter which is used for backoff * of retransmit time. */ if (!tcp_callout_active(tp, tp->tt_rexmt) && tp->snd_nxt != tp->snd_una) { if (tcp_callout_active(tp, tp->tt_persist)) { tcp_callout_stop(tp, tp->tt_persist); tp->t_rxtshift = 0; } tcp_callout_reset(tp, tp->tt_rexmt, tp->t_rxtcur, tcp_timer_rexmt); } } else { /* * Persist case, update snd_max but since we are in * persist mode (no window) we do not update snd_nxt. */ int xlen = len; if (flags & TH_SYN) panic("tcp_output: persist timer to send SYN"); if (flags & TH_FIN) { ++xlen; tp->t_flags |= TF_SENTFIN; } if (SEQ_GT(tp->snd_nxt + xlen, tp->snd_max)) tp->snd_max = tp->snd_nxt + xlen; } if (th != NULL) { #ifdef TCPDEBUG /* Trace. */ if (so->so_options & SO_DEBUG) { tcp_trace(TA_OUTPUT, tp->t_state, tp, mtod(m, void *), th, 0); } #endif /* * Fill in IP length and desired time to live and * send to IP level. There should be a better way * to handle ttl and tos; we could keep them in * the template, but need a way to checksum without them. */ /* * m->m_pkthdr.len should have been set before cksum * calcuration, because in6_cksum() need it. */ if (isipv6) { /* * we separately set hoplimit for every segment, * since the user might want to change the value * via setsockopt. Also, desired default hop * limit might be changed via Neighbor Discovery. */ ip6->ip6_hlim = in6_selecthlim(inp, (inp->in6p_route.ro_rt ? inp->in6p_route.ro_rt->rt_ifp : NULL)); /* TODO: IPv6 IP6TOS_ECT bit on */ error = ip6_output(m, inp->in6p_outputopts, &inp->in6p_route, (so->so_options & SO_DONTROUTE), NULL, NULL, inp); } else { struct rtentry *rt; KASSERT(!INP_CHECK_SOCKAF(so, AF_INET6), ("inet6 pcb")); ip->ip_len = m->m_pkthdr.len; ip->ip_ttl = inp->inp_ip_ttl; /* XXX */ ip->ip_tos = inp->inp_ip_tos; /* XXX */ /* * See if we should do MTU discovery. * We do it only if the following are true: * 1) we have a valid route to the destination * 2) the MTU is not locked (if it is, * then discovery has been disabled) */ if (path_mtu_discovery && (rt = inp->inp_route.ro_rt) && (rt->rt_flags & RTF_UP) && !(rt->rt_rmx.rmx_locks & RTV_MTU)) ip->ip_off |= IP_DF; error = ip_output(m, inp->inp_options, &inp->inp_route, (so->so_options & SO_DONTROUTE) | IP_DEBUGROUTE, NULL, inp); } } else { KASSERT(error != 0, ("no error, but th not set")); } if (error) { tp->t_flags &= ~(TF_ACKNOW | TF_XMITNOW); /* * We know that the packet was lost, so back out the * sequence number advance, if any. */ if (!(tp->t_flags & TF_FORCE) || !tcp_callout_active(tp, tp->tt_persist)) { /* * No need to check for TH_FIN here because * the TF_SENTFIN flag handles that case. */ if (!(flags & TH_SYN)) tp->snd_nxt -= len; } out: if (error == ENOBUFS) { /* * If we can't send, make sure there is something * to get us going again later. * * The persist timer isn't necessarily allowed in all * states, use the rexmt timer. */ if (!tcp_callout_active(tp, tp->tt_rexmt) && !tcp_callout_active(tp, tp->tt_persist)) { tcp_callout_reset(tp, tp->tt_rexmt, tp->t_rxtcur, tcp_timer_rexmt); #if 0 tp->t_rxtshift = 0; tcp_setpersist(tp); #endif } tcp_quench(inp, 0); return (0); } if (error == EMSGSIZE) { /* * ip_output() will have already fixed the route * for us. tcp_mtudisc() will, as its last action, * initiate retransmission, so it is important to * not do so here. */ tcp_mtudisc(inp, 0); return 0; } if ((error == EHOSTUNREACH || error == ENETDOWN) && TCPS_HAVERCVDSYN(tp->t_state)) { tp->t_softerror = error; return (0); } return (error); } tcpstat.tcps_sndtotal++; /* * Data sent (as far as we can tell). * * If this advertises a larger window than any other segment, * then remember the size of the advertised window. * * Any pending ACK has now been sent. */ if (recvwin > 0 && SEQ_GT(tp->rcv_nxt + recvwin, tp->rcv_adv)) { tp->rcv_adv = tp->rcv_nxt + recvwin; tp->t_flags &= ~TF_RXRESIZED; } tp->last_ack_sent = tp->rcv_nxt; tp->t_flags &= ~(TF_ACKNOW | TF_XMITNOW); if (tcp_delack_enabled) tcp_callout_stop(tp, tp->tt_delack); if (sendalot) { if (tcp_fairsend > 0 && (tp->t_flags & TF_FAIRSEND) && segcnt >= tcp_fairsend) need_sched = TRUE; goto again; } return (0); } void tcp_setpersist(struct tcpcb *tp) { int t = ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1; int tt; if (tp->t_state == TCPS_SYN_SENT || tp->t_state == TCPS_SYN_RECEIVED) { panic("tcp_setpersist: not established yet, current %s", tp->t_state == TCPS_SYN_SENT ? "SYN_SENT" : "SYN_RECEIVED"); } if (tcp_callout_active(tp, tp->tt_rexmt)) panic("tcp_setpersist: retransmit pending"); /* * Start/restart persistance timer. */ TCPT_RANGESET(tt, t * tcp_backoff[tp->t_rxtshift], TCPTV_PERSMIN, TCPTV_PERSMAX); tcp_callout_reset(tp, tp->tt_persist, tt, tcp_timer_persist); if (tp->t_rxtshift < TCP_MAXRXTSHIFT) tp->t_rxtshift++; } static void tcp_idle_cwnd_validate(struct tcpcb *tp) { u_long initial_cwnd = tcp_initial_window(tp); u_long min_cwnd; tcpstat.tcps_sndidle++; /* According to RFC5681: RW=min(IW,cwnd) */ min_cwnd = min(tp->snd_cwnd, initial_cwnd); if (tcp_idle_cwv) { u_long idle_time, decay_cwnd; /* * RFC2861, but only after idle period. */ /* * Before the congestion window is reduced, ssthresh * is set to the maximum of its current value and 3/4 * cwnd. If the sender then has more data to send * than the decayed cwnd allows, the TCP will slow- * start (perform exponential increase) at least * half-way back up to the old value of cwnd. */ tp->snd_ssthresh = max(tp->snd_ssthresh, (3 * tp->snd_cwnd) / 4); /* * Decay the congestion window by half for every RTT * that the flow remains inactive. * * The difference between our implementation and * RFC2861 is that we don't allow cwnd to go below * the value allowed by RFC5681 (min_cwnd). */ idle_time = ticks - tp->snd_last; decay_cwnd = tp->snd_cwnd; while (idle_time >= tp->t_rxtcur && decay_cwnd > min_cwnd) { decay_cwnd >>= 1; idle_time -= tp->t_rxtcur; } tp->snd_cwnd = max(decay_cwnd, min_cwnd); } else { /* * Slow-start from scratch to re-determine the send * congestion window. */ tp->snd_cwnd = min_cwnd; } /* Restart ABC counting during congestion avoidance */ tp->snd_wacked = 0; } static int tcp_tso_getsize(struct tcpcb *tp, u_int *segsz, u_int *hlen0) { struct inpcb * const inp = tp->t_inpcb; #ifdef INET6 const boolean_t isipv6 = INP_ISIPV6(inp); #else const boolean_t isipv6 = FALSE; #endif unsigned int ipoptlen, optlen; u_int hlen; hlen = sizeof(struct ip) + sizeof(struct tcphdr); if (isipv6) { ipoptlen = ip6_optlen(inp); } else { if (inp->inp_options) { ipoptlen = inp->inp_options->m_len - offsetof(struct ipoption, ipopt_list); } else { ipoptlen = 0; } } #ifdef IPSEC ipoptlen += ipsec_hdrsiz_tcp(tp); #endif hlen += ipoptlen; optlen = 0; if ((tp->t_flags & (TF_REQ_TSTMP | TF_NOOPT)) == TF_REQ_TSTMP && (tp->t_flags & TF_RCVD_TSTMP)) optlen += TCPOLEN_TSTAMP_APPA; hlen += optlen; if (tp->t_maxopd <= optlen + ipoptlen) return EHOSTUNREACH; *segsz = tp->t_maxopd - optlen - ipoptlen; *hlen0 = hlen; return 0; } static void tcp_output_sched_handler(netmsg_t nmsg) { struct tcpcb *tp = nmsg->lmsg.u.ms_resultp; /* Reply ASAP */ crit_enter(); lwkt_replymsg(&nmsg->lmsg, 0); crit_exit(); tcp_output_fair(tp); } void tcp_output_init(struct tcpcb *tp) { netmsg_init(tp->tt_sndmore, NULL, &netisr_adone_rport, MSGF_DROPABLE, tcp_output_sched_handler); tp->tt_sndmore->lmsg.u.ms_resultp = tp; } void tcp_output_cancel(struct tcpcb *tp) { /* * This message is still pending to be processed; * drop it. Optimized. */ crit_enter(); if ((tp->tt_sndmore->lmsg.ms_flags & MSGF_DONE) == 0) { lwkt_dropmsg(&tp->tt_sndmore->lmsg); } crit_exit(); } boolean_t tcp_output_pending(struct tcpcb *tp) { if ((tp->tt_sndmore->lmsg.ms_flags & MSGF_DONE) == 0) return TRUE; else return FALSE; } static void tcp_output_sched(struct tcpcb *tp) { crit_enter(); if (tp->tt_sndmore->lmsg.ms_flags & MSGF_DONE) lwkt_sendmsg(netisr_cpuport(mycpuid), &tp->tt_sndmore->lmsg); crit_exit(); } /* * Fairsend * * Yield to other senders or receivers on the same netisr if the current * TCP stream has sent tcp_fairsend segments and is going to burst more * segments. Bursting large amount of segements in a single TCP stream * could delay other senders' segments and receivers' ACKs quite a lot, * if others segments and ACKs are queued on to the same hardware transmit * queue; thus cause unfairness between senders and suppress receiving * performance. * * Fairsend should be performed at the places that do not affect segment * sending during congestion control, e.g. * - User requested output * - ACK input triggered output * * NOTE: * For devices that are TSO capable, their TSO aggregation size limit could * affect fairsend. */ int tcp_output_fair(struct tcpcb *tp) { int ret; tp->t_flags |= TF_FAIRSEND; ret = tcp_output(tp); tp->t_flags &= ~TF_FAIRSEND; return ret; }