/* ssl/s2_srvr.c */ /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ /* ==================================================================== * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ #include "ssl_locl.h" #ifndef OPENSSL_NO_SSL2 #include "../crypto/constant_time_locl.h" # include # include # include # include # include static const SSL_METHOD *ssl2_get_server_method(int ver); static int get_client_master_key(SSL *s); static int get_client_hello(SSL *s); static int server_hello(SSL *s); static int get_client_finished(SSL *s); static int server_verify(SSL *s); static int server_finish(SSL *s); static int request_certificate(SSL *s); static int ssl_rsa_private_decrypt(CERT *c, int len, unsigned char *from, unsigned char *to, int padding); # define BREAK break static const SSL_METHOD *ssl2_get_server_method(int ver) { if (ver == SSL2_VERSION) return (SSLv2_server_method()); else return (NULL); } IMPLEMENT_ssl2_meth_func(SSLv2_server_method, ssl2_accept, ssl_undefined_function, ssl2_get_server_method) int ssl2_accept(SSL *s) { unsigned long l = (unsigned long)time(NULL); BUF_MEM *buf = NULL; int ret = -1; long num1; void (*cb) (const SSL *ssl, int type, int val) = NULL; int new_state, state; RAND_add(&l, sizeof(l), 0); ERR_clear_error(); clear_sys_error(); if (s->info_callback != NULL) cb = s->info_callback; else if (s->ctx->info_callback != NULL) cb = s->ctx->info_callback; /* init things to blank */ s->in_handshake++; if (!SSL_in_init(s) || SSL_in_before(s)) SSL_clear(s); if (s->cert == NULL) { SSLerr(SSL_F_SSL2_ACCEPT, SSL_R_NO_CERTIFICATE_SET); return (-1); } clear_sys_error(); for (;;) { state = s->state; switch (s->state) { case SSL_ST_BEFORE: case SSL_ST_ACCEPT: case SSL_ST_BEFORE | SSL_ST_ACCEPT: case SSL_ST_OK | SSL_ST_ACCEPT: s->server = 1; if (cb != NULL) cb(s, SSL_CB_HANDSHAKE_START, 1); s->version = SSL2_VERSION; s->type = SSL_ST_ACCEPT; if (s->init_buf == NULL) { if ((buf = BUF_MEM_new()) == NULL) { ret = -1; goto end; } if (!BUF_MEM_grow (buf, (int)SSL2_MAX_RECORD_LENGTH_3_BYTE_HEADER)) { BUF_MEM_free(buf); ret = -1; goto end; } s->init_buf = buf; } s->init_num = 0; s->ctx->stats.sess_accept++; s->handshake_func = ssl2_accept; s->state = SSL2_ST_GET_CLIENT_HELLO_A; BREAK; case SSL2_ST_GET_CLIENT_HELLO_A: case SSL2_ST_GET_CLIENT_HELLO_B: case SSL2_ST_GET_CLIENT_HELLO_C: s->shutdown = 0; ret = get_client_hello(s); if (ret <= 0) goto end; s->init_num = 0; s->state = SSL2_ST_SEND_SERVER_HELLO_A; BREAK; case SSL2_ST_SEND_SERVER_HELLO_A: case SSL2_ST_SEND_SERVER_HELLO_B: ret = server_hello(s); if (ret <= 0) goto end; s->init_num = 0; if (!s->hit) { s->state = SSL2_ST_GET_CLIENT_MASTER_KEY_A; BREAK; } else { s->state = SSL2_ST_SERVER_START_ENCRYPTION; BREAK; } case SSL2_ST_GET_CLIENT_MASTER_KEY_A: case SSL2_ST_GET_CLIENT_MASTER_KEY_B: ret = get_client_master_key(s); if (ret <= 0) goto end; s->init_num = 0; s->state = SSL2_ST_SERVER_START_ENCRYPTION; BREAK; case SSL2_ST_SERVER_START_ENCRYPTION: /* * Ok we how have sent all the stuff needed to start encrypting, * the next packet back will be encrypted. */ if (!ssl2_enc_init(s, 0)) { ret = -1; goto end; } s->s2->clear_text = 0; s->state = SSL2_ST_SEND_SERVER_VERIFY_A; BREAK; case SSL2_ST_SEND_SERVER_VERIFY_A: case SSL2_ST_SEND_SERVER_VERIFY_B: ret = server_verify(s); if (ret <= 0) goto end; s->init_num = 0; if (s->hit) { /* * If we are in here, we have been buffering the output, so * we need to flush it and remove buffering from future * traffic */ s->state = SSL2_ST_SEND_SERVER_VERIFY_C; BREAK; } else { s->state = SSL2_ST_GET_CLIENT_FINISHED_A; break; } case SSL2_ST_SEND_SERVER_VERIFY_C: /* get the number of bytes to write */ num1 = BIO_ctrl(s->wbio, BIO_CTRL_INFO, 0, NULL); if (num1 > 0) { s->rwstate = SSL_WRITING; num1 = BIO_flush(s->wbio); if (num1 <= 0) { ret = -1; goto end; } s->rwstate = SSL_NOTHING; } /* flushed and now remove buffering */ s->wbio = BIO_pop(s->wbio); s->state = SSL2_ST_GET_CLIENT_FINISHED_A; BREAK; case SSL2_ST_GET_CLIENT_FINISHED_A: case SSL2_ST_GET_CLIENT_FINISHED_B: ret = get_client_finished(s); if (ret <= 0) goto end; s->init_num = 0; s->state = SSL2_ST_SEND_REQUEST_CERTIFICATE_A; BREAK; case SSL2_ST_SEND_REQUEST_CERTIFICATE_A: case SSL2_ST_SEND_REQUEST_CERTIFICATE_B: case SSL2_ST_SEND_REQUEST_CERTIFICATE_C: case SSL2_ST_SEND_REQUEST_CERTIFICATE_D: /* * don't do a 'request certificate' if we don't want to, or we * already have one, and we only want to do it once. */ if (!(s->verify_mode & SSL_VERIFY_PEER) || ((s->session->peer != NULL) && (s->verify_mode & SSL_VERIFY_CLIENT_ONCE))) { s->state = SSL2_ST_SEND_SERVER_FINISHED_A; break; } else { ret = request_certificate(s); if (ret <= 0) goto end; s->init_num = 0; s->state = SSL2_ST_SEND_SERVER_FINISHED_A; } BREAK; case SSL2_ST_SEND_SERVER_FINISHED_A: case SSL2_ST_SEND_SERVER_FINISHED_B: ret = server_finish(s); if (ret <= 0) goto end; s->init_num = 0; s->state = SSL_ST_OK; break; case SSL_ST_OK: BUF_MEM_free(s->init_buf); ssl_free_wbio_buffer(s); s->init_buf = NULL; s->init_num = 0; /* ERR_clear_error(); */ ssl_update_cache(s, SSL_SESS_CACHE_SERVER); s->ctx->stats.sess_accept_good++; /* s->server=1; */ ret = 1; if (cb != NULL) cb(s, SSL_CB_HANDSHAKE_DONE, 1); goto end; /* BREAK; */ default: SSLerr(SSL_F_SSL2_ACCEPT, SSL_R_UNKNOWN_STATE); ret = -1; goto end; /* BREAK; */ } if ((cb != NULL) && (s->state != state)) { new_state = s->state; s->state = state; cb(s, SSL_CB_ACCEPT_LOOP, 1); s->state = new_state; } } end: s->in_handshake--; if (cb != NULL) cb(s, SSL_CB_ACCEPT_EXIT, ret); return (ret); } static int get_client_master_key(SSL *s) { int is_export, i, n, keya; unsigned int num_encrypted_key_bytes, key_length; unsigned long len; unsigned char *p; const SSL_CIPHER *cp; const EVP_CIPHER *c; const EVP_MD *md; unsigned char rand_premaster_secret[SSL_MAX_MASTER_KEY_LENGTH]; unsigned char decrypt_good; size_t j; p = (unsigned char *)s->init_buf->data; if (s->state == SSL2_ST_GET_CLIENT_MASTER_KEY_A) { i = ssl2_read(s, (char *)&(p[s->init_num]), 10 - s->init_num); if (i < (10 - s->init_num)) return (ssl2_part_read(s, SSL_F_GET_CLIENT_MASTER_KEY, i)); s->init_num = 10; if (*(p++) != SSL2_MT_CLIENT_MASTER_KEY) { if (p[-1] != SSL2_MT_ERROR) { ssl2_return_error(s, SSL2_PE_UNDEFINED_ERROR); SSLerr(SSL_F_GET_CLIENT_MASTER_KEY, SSL_R_READ_WRONG_PACKET_TYPE); } else SSLerr(SSL_F_GET_CLIENT_MASTER_KEY, SSL_R_PEER_ERROR); return (-1); } cp = ssl2_get_cipher_by_char(p); if (cp == NULL) { ssl2_return_error(s, SSL2_PE_NO_CIPHER); SSLerr(SSL_F_GET_CLIENT_MASTER_KEY, SSL_R_NO_CIPHER_MATCH); return (-1); } s->session->cipher = cp; p += 3; n2s(p, i); s->s2->tmp.clear = i; n2s(p, i); s->s2->tmp.enc = i; n2s(p, i); if (i > SSL_MAX_KEY_ARG_LENGTH) { ssl2_return_error(s, SSL2_PE_UNDEFINED_ERROR); SSLerr(SSL_F_GET_CLIENT_MASTER_KEY, SSL_R_KEY_ARG_TOO_LONG); return -1; } s->session->key_arg_length = i; s->state = SSL2_ST_GET_CLIENT_MASTER_KEY_B; } /* SSL2_ST_GET_CLIENT_MASTER_KEY_B */ p = (unsigned char *)s->init_buf->data; if (s->init_buf->length < SSL2_MAX_RECORD_LENGTH_3_BYTE_HEADER) { ssl2_return_error(s, SSL2_PE_UNDEFINED_ERROR); SSLerr(SSL_F_GET_CLIENT_MASTER_KEY, ERR_R_INTERNAL_ERROR); return -1; } keya = s->session->key_arg_length; len = 10 + (unsigned long)s->s2->tmp.clear + (unsigned long)s->s2->tmp.enc + (unsigned long)keya; if (len > SSL2_MAX_RECORD_LENGTH_3_BYTE_HEADER) { ssl2_return_error(s, SSL2_PE_UNDEFINED_ERROR); SSLerr(SSL_F_GET_CLIENT_MASTER_KEY, SSL_R_MESSAGE_TOO_LONG); return -1; } n = (int)len - s->init_num; i = ssl2_read(s, (char *)&(p[s->init_num]), n); if (i != n) return (ssl2_part_read(s, SSL_F_GET_CLIENT_MASTER_KEY, i)); if (s->msg_callback) { /* CLIENT-MASTER-KEY */ s->msg_callback(0, s->version, 0, p, (size_t)len, s, s->msg_callback_arg); } p += 10; memcpy(s->session->key_arg, &(p[s->s2->tmp.clear + s->s2->tmp.enc]), (unsigned int)keya); if (s->cert->pkeys[SSL_PKEY_RSA_ENC].privatekey == NULL) { ssl2_return_error(s, SSL2_PE_UNDEFINED_ERROR); SSLerr(SSL_F_GET_CLIENT_MASTER_KEY, SSL_R_NO_PRIVATEKEY); return (-1); } is_export = SSL_C_IS_EXPORT(s->session->cipher); if (!ssl_cipher_get_evp(s->session, &c, &md, NULL, NULL, NULL)) { ssl2_return_error(s, SSL2_PE_NO_CIPHER); SSLerr(SSL_F_GET_CLIENT_MASTER_KEY, SSL_R_PROBLEMS_MAPPING_CIPHER_FUNCTIONS); return (0); } /* * The format of the CLIENT-MASTER-KEY message is * 1 byte message type * 3 bytes cipher * 2-byte clear key length (stored in s->s2->tmp.clear) * 2-byte encrypted key length (stored in s->s2->tmp.enc) * 2-byte key args length (IV etc) * clear key * encrypted key * key args * * If the cipher is an export cipher, then the encrypted key bytes * are a fixed portion of the total key (5 or 8 bytes). The size of * this portion is in |num_encrypted_key_bytes|. If the cipher is not an * export cipher, then the entire key material is encrypted (i.e., clear * key length must be zero). */ key_length = (unsigned int)EVP_CIPHER_key_length(c); if (key_length > SSL_MAX_MASTER_KEY_LENGTH) { ssl2_return_error(s, SSL2_PE_UNDEFINED_ERROR); SSLerr(SSL_F_GET_CLIENT_MASTER_KEY, ERR_R_INTERNAL_ERROR); return -1; } if (s->session->cipher->algorithm2 & SSL2_CF_8_BYTE_ENC) { is_export = 1; num_encrypted_key_bytes = 8; } else if (is_export) { num_encrypted_key_bytes = 5; } else { num_encrypted_key_bytes = key_length; } if (s->s2->tmp.clear + num_encrypted_key_bytes != key_length) { ssl2_return_error(s, SSL2_PE_UNDEFINED_ERROR); SSLerr(SSL_F_GET_CLIENT_MASTER_KEY,SSL_R_BAD_LENGTH); return -1; } /* * The encrypted blob must decrypt to the encrypted portion of the key. * Decryption can't be expanding, so if we don't have enough encrypted * bytes to fit the key in the buffer, stop now. */ if (s->s2->tmp.enc < num_encrypted_key_bytes) { ssl2_return_error(s,SSL2_PE_UNDEFINED_ERROR); SSLerr(SSL_F_GET_CLIENT_MASTER_KEY,SSL_R_LENGTH_TOO_SHORT); return -1; } /* * We must not leak whether a decryption failure occurs because of * Bleichenbacher's attack on PKCS #1 v1.5 RSA padding (see RFC 2246, * section 7.4.7.1). The code follows that advice of the TLS RFC and * generates a random premaster secret for the case that the decrypt * fails. See https://tools.ietf.org/html/rfc5246#section-7.4.7.1 */ /* * should be RAND_bytes, but we cannot work around a failure. */ if (RAND_pseudo_bytes(rand_premaster_secret, (int)num_encrypted_key_bytes) <= 0) return 0; i = ssl_rsa_private_decrypt(s->cert, s->s2->tmp.enc, &(p[s->s2->tmp.clear]), &(p[s->s2->tmp.clear]), (s->s2->ssl2_rollback) ? RSA_SSLV23_PADDING : RSA_PKCS1_PADDING); ERR_clear_error(); /* * If a bad decrypt, continue with protocol but with a random master * secret (Bleichenbacher attack) */ decrypt_good = constant_time_eq_int_8(i, (int)num_encrypted_key_bytes); for (j = 0; j < num_encrypted_key_bytes; j++) { p[s->s2->tmp.clear + j] = constant_time_select_8(decrypt_good, p[s->s2->tmp.clear + j], rand_premaster_secret[j]); } s->session->master_key_length = (int)key_length; memcpy(s->session->master_key, p, key_length); OPENSSL_cleanse(p, key_length); return 1; } static int get_client_hello(SSL *s) { int i, n; unsigned long len; unsigned char *p; STACK_OF(SSL_CIPHER) *cs; /* a stack of SSL_CIPHERS */ STACK_OF(SSL_CIPHER) *cl; /* the ones we want to use */ STACK_OF(SSL_CIPHER) *prio, *allow; int z; /* * This is a bit of a hack to check for the correct packet type the first * time round. */ if (s->state == SSL2_ST_GET_CLIENT_HELLO_A) { s->first_packet = 1; s->state = SSL2_ST_GET_CLIENT_HELLO_B; } p = (unsigned char *)s->init_buf->data; if (s->state == SSL2_ST_GET_CLIENT_HELLO_B) { i = ssl2_read(s, (char *)&(p[s->init_num]), 9 - s->init_num); if (i < (9 - s->init_num)) return (ssl2_part_read(s, SSL_F_GET_CLIENT_HELLO, i)); s->init_num = 9; if (*(p++) != SSL2_MT_CLIENT_HELLO) { if (p[-1] != SSL2_MT_ERROR) { ssl2_return_error(s, SSL2_PE_UNDEFINED_ERROR); SSLerr(SSL_F_GET_CLIENT_HELLO, SSL_R_READ_WRONG_PACKET_TYPE); } else SSLerr(SSL_F_GET_CLIENT_HELLO, SSL_R_PEER_ERROR); return (-1); } n2s(p, i); if (i < s->version) s->version = i; n2s(p, i); s->s2->tmp.cipher_spec_length = i; n2s(p, i); s->s2->tmp.session_id_length = i; n2s(p, i); s->s2->challenge_length = i; if ((i < SSL2_MIN_CHALLENGE_LENGTH) || (i > SSL2_MAX_CHALLENGE_LENGTH)) { ssl2_return_error(s, SSL2_PE_UNDEFINED_ERROR); SSLerr(SSL_F_GET_CLIENT_HELLO, SSL_R_INVALID_CHALLENGE_LENGTH); return (-1); } s->state = SSL2_ST_GET_CLIENT_HELLO_C; } /* SSL2_ST_GET_CLIENT_HELLO_C */ p = (unsigned char *)s->init_buf->data; len = 9 + (unsigned long)s->s2->tmp.cipher_spec_length + (unsigned long)s->s2->challenge_length + (unsigned long)s->s2->tmp.session_id_length; if (len > SSL2_MAX_RECORD_LENGTH_3_BYTE_HEADER) { ssl2_return_error(s, SSL2_PE_UNDEFINED_ERROR); SSLerr(SSL_F_GET_CLIENT_HELLO, SSL_R_MESSAGE_TOO_LONG); return -1; } n = (int)len - s->init_num; i = ssl2_read(s, (char *)&(p[s->init_num]), n); if (i != n) return (ssl2_part_read(s, SSL_F_GET_CLIENT_HELLO, i)); if (s->msg_callback) { /* CLIENT-HELLO */ s->msg_callback(0, s->version, 0, p, (size_t)len, s, s->msg_callback_arg); } p += 9; /* * get session-id before cipher stuff so we can get out session structure * if it is cached */ /* session-id */ if ((s->s2->tmp.session_id_length != 0) && (s->s2->tmp.session_id_length != SSL2_SSL_SESSION_ID_LENGTH)) { ssl2_return_error(s, SSL2_PE_UNDEFINED_ERROR); SSLerr(SSL_F_GET_CLIENT_HELLO, SSL_R_BAD_SSL_SESSION_ID_LENGTH); return (-1); } if (s->s2->tmp.session_id_length == 0) { if (!ssl_get_new_session(s, 1)) { ssl2_return_error(s, SSL2_PE_UNDEFINED_ERROR); return (-1); } } else { i = ssl_get_prev_session(s, &(p[s->s2->tmp.cipher_spec_length]), s->s2->tmp.session_id_length, NULL); if (i == 1) { /* previous session */ s->hit = 1; } else if (i == -1) { ssl2_return_error(s, SSL2_PE_UNDEFINED_ERROR); return (-1); } else { if (s->cert == NULL) { ssl2_return_error(s, SSL2_PE_NO_CERTIFICATE); SSLerr(SSL_F_GET_CLIENT_HELLO, SSL_R_NO_CERTIFICATE_SET); return (-1); } if (!ssl_get_new_session(s, 1)) { ssl2_return_error(s, SSL2_PE_UNDEFINED_ERROR); return (-1); } } } if (!s->hit) { cs = ssl_bytes_to_cipher_list(s, p, s->s2->tmp.cipher_spec_length, &s->session->ciphers); if (cs == NULL) goto mem_err; cl = SSL_get_ciphers(s); if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) { prio = sk_SSL_CIPHER_dup(cl); if (prio == NULL) goto mem_err; allow = cs; } else { prio = cs; allow = cl; } for (z = 0; z < sk_SSL_CIPHER_num(prio); z++) { if (sk_SSL_CIPHER_find(allow, sk_SSL_CIPHER_value(prio, z)) < 0) { (void)sk_SSL_CIPHER_delete(prio, z); z--; } } if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) { sk_SSL_CIPHER_free(s->session->ciphers); s->session->ciphers = prio; } /* * s->session->ciphers should now have a list of ciphers that are on * both the client and server. This list is ordered by the order the * client sent the ciphers or in the order of the server's preference * if SSL_OP_CIPHER_SERVER_PREFERENCE was set. */ } p += s->s2->tmp.cipher_spec_length; /* done cipher selection */ /* session id extracted already */ p += s->s2->tmp.session_id_length; /* challenge */ if (s->s2->challenge_length > sizeof s->s2->challenge) { ssl2_return_error(s, SSL2_PE_UNDEFINED_ERROR); SSLerr(SSL_F_GET_CLIENT_HELLO, ERR_R_INTERNAL_ERROR); return -1; } memcpy(s->s2->challenge, p, (unsigned int)s->s2->challenge_length); return (1); mem_err: SSLerr(SSL_F_GET_CLIENT_HELLO, ERR_R_MALLOC_FAILURE); return (0); } static int server_hello(SSL *s) { unsigned char *p, *d; int n, hit; p = (unsigned char *)s->init_buf->data; if (s->state == SSL2_ST_SEND_SERVER_HELLO_A) { d = p + 11; *(p++) = SSL2_MT_SERVER_HELLO; /* type */ hit = s->hit; *(p++) = (unsigned char)hit; # if 1 if (!hit) { if (s->session->sess_cert != NULL) /* * This can't really happen because get_client_hello has * called ssl_get_new_session, which does not set sess_cert. */ ssl_sess_cert_free(s->session->sess_cert); s->session->sess_cert = ssl_sess_cert_new(); if (s->session->sess_cert == NULL) { SSLerr(SSL_F_SERVER_HELLO, ERR_R_MALLOC_FAILURE); return (-1); } } /* * If 'hit' is set, then s->sess_cert may be non-NULL or NULL, * depending on whether it survived in the internal cache or was * retrieved from an external cache. If it is NULL, we cannot put any * useful data in it anyway, so we don't touch it. */ # else /* That's what used to be done when cert_st * and sess_cert_st were * the same. */ if (!hit) { /* else add cert to session */ CRYPTO_add(&s->cert->references, 1, CRYPTO_LOCK_SSL_CERT); if (s->session->sess_cert != NULL) ssl_cert_free(s->session->sess_cert); s->session->sess_cert = s->cert; } else { /* We have a session id-cache hit, if the * * session-id has no certificate listed * against * the 'cert' structure, grab the * 'old' one * listed against the SSL * connection */ if (s->session->sess_cert == NULL) { CRYPTO_add(&s->cert->references, 1, CRYPTO_LOCK_SSL_CERT); s->session->sess_cert = s->cert; } } # endif if (s->cert == NULL) { ssl2_return_error(s, SSL2_PE_NO_CERTIFICATE); SSLerr(SSL_F_SERVER_HELLO, SSL_R_NO_CERTIFICATE_SPECIFIED); return (-1); } if (hit) { *(p++) = 0; /* no certificate type */ s2n(s->version, p); /* version */ s2n(0, p); /* cert len */ s2n(0, p); /* ciphers len */ } else { /* EAY EAY */ /* put certificate type */ *(p++) = SSL2_CT_X509_CERTIFICATE; s2n(s->version, p); /* version */ n = i2d_X509(s->cert->pkeys[SSL_PKEY_RSA_ENC].x509, NULL); s2n(n, p); /* certificate length */ i2d_X509(s->cert->pkeys[SSL_PKEY_RSA_ENC].x509, &d); n = 0; /* * lets send out the ciphers we like in the prefered order */ n = ssl_cipher_list_to_bytes(s, s->session->ciphers, d, 0); d += n; s2n(n, p); /* add cipher length */ } /* make and send conn_id */ s2n(SSL2_CONNECTION_ID_LENGTH, p); /* add conn_id length */ s->s2->conn_id_length = SSL2_CONNECTION_ID_LENGTH; if (RAND_pseudo_bytes(s->s2->conn_id, (int)s->s2->conn_id_length) <= 0) return -1; memcpy(d, s->s2->conn_id, SSL2_CONNECTION_ID_LENGTH); d += SSL2_CONNECTION_ID_LENGTH; s->state = SSL2_ST_SEND_SERVER_HELLO_B; s->init_num = d - (unsigned char *)s->init_buf->data; s->init_off = 0; } /* SSL2_ST_SEND_SERVER_HELLO_B */ /* * If we are using TCP/IP, the performance is bad if we do 2 writes * without a read between them. This occurs when Session-id reuse is * used, so I will put in a buffering module */ if (s->hit) { if (!ssl_init_wbio_buffer(s, 1)) return (-1); } return (ssl2_do_write(s)); } static int get_client_finished(SSL *s) { unsigned char *p; int i, n; unsigned long len; p = (unsigned char *)s->init_buf->data; if (s->state == SSL2_ST_GET_CLIENT_FINISHED_A) { i = ssl2_read(s, (char *)&(p[s->init_num]), 1 - s->init_num); if (i < 1 - s->init_num) return (ssl2_part_read(s, SSL_F_GET_CLIENT_FINISHED, i)); s->init_num += i; if (*p != SSL2_MT_CLIENT_FINISHED) { if (*p != SSL2_MT_ERROR) { ssl2_return_error(s, SSL2_PE_UNDEFINED_ERROR); SSLerr(SSL_F_GET_CLIENT_FINISHED, SSL_R_READ_WRONG_PACKET_TYPE); } else { SSLerr(SSL_F_GET_CLIENT_FINISHED, SSL_R_PEER_ERROR); /* try to read the error message */ i = ssl2_read(s, (char *)&(p[s->init_num]), 3 - s->init_num); return ssl2_part_read(s, SSL_F_GET_SERVER_VERIFY, i); } return (-1); } s->state = SSL2_ST_GET_CLIENT_FINISHED_B; } /* SSL2_ST_GET_CLIENT_FINISHED_B */ if (s->s2->conn_id_length > sizeof s->s2->conn_id) { ssl2_return_error(s, SSL2_PE_UNDEFINED_ERROR); SSLerr(SSL_F_GET_CLIENT_FINISHED, ERR_R_INTERNAL_ERROR); return -1; } len = 1 + (unsigned long)s->s2->conn_id_length; n = (int)len - s->init_num; i = ssl2_read(s, (char *)&(p[s->init_num]), n); if (i < n) { return (ssl2_part_read(s, SSL_F_GET_CLIENT_FINISHED, i)); } if (s->msg_callback) { /* CLIENT-FINISHED */ s->msg_callback(0, s->version, 0, p, len, s, s->msg_callback_arg); } p += 1; if (memcmp(p, s->s2->conn_id, s->s2->conn_id_length) != 0) { ssl2_return_error(s, SSL2_PE_UNDEFINED_ERROR); SSLerr(SSL_F_GET_CLIENT_FINISHED, SSL_R_CONNECTION_ID_IS_DIFFERENT); return (-1); } return (1); } static int server_verify(SSL *s) { unsigned char *p; if (s->state == SSL2_ST_SEND_SERVER_VERIFY_A) { p = (unsigned char *)s->init_buf->data; *(p++) = SSL2_MT_SERVER_VERIFY; if (s->s2->challenge_length > sizeof s->s2->challenge) { SSLerr(SSL_F_SERVER_VERIFY, ERR_R_INTERNAL_ERROR); return -1; } memcpy(p, s->s2->challenge, (unsigned int)s->s2->challenge_length); /* p+=s->s2->challenge_length; */ s->state = SSL2_ST_SEND_SERVER_VERIFY_B; s->init_num = s->s2->challenge_length + 1; s->init_off = 0; } return (ssl2_do_write(s)); } static int server_finish(SSL *s) { unsigned char *p; if (s->state == SSL2_ST_SEND_SERVER_FINISHED_A) { p = (unsigned char *)s->init_buf->data; *(p++) = SSL2_MT_SERVER_FINISHED; if (s->session->session_id_length > sizeof s->session->session_id) { SSLerr(SSL_F_SERVER_FINISH, ERR_R_INTERNAL_ERROR); return -1; } memcpy(p, s->session->session_id, (unsigned int)s->session->session_id_length); /* p+=s->session->session_id_length; */ s->state = SSL2_ST_SEND_SERVER_FINISHED_B; s->init_num = s->session->session_id_length + 1; s->init_off = 0; } /* SSL2_ST_SEND_SERVER_FINISHED_B */ return (ssl2_do_write(s)); } /* send the request and check the response */ static int request_certificate(SSL *s) { const unsigned char *cp; unsigned char *p, *p2, *buf2; unsigned char *ccd; int i, j, ctype, ret = -1; unsigned long len; X509 *x509 = NULL; STACK_OF(X509) *sk = NULL; ccd = s->s2->tmp.ccl; if (s->state == SSL2_ST_SEND_REQUEST_CERTIFICATE_A) { p = (unsigned char *)s->init_buf->data; *(p++) = SSL2_MT_REQUEST_CERTIFICATE; *(p++) = SSL2_AT_MD5_WITH_RSA_ENCRYPTION; if (RAND_pseudo_bytes(ccd, SSL2_MIN_CERT_CHALLENGE_LENGTH) <= 0) return -1; memcpy(p, ccd, SSL2_MIN_CERT_CHALLENGE_LENGTH); s->state = SSL2_ST_SEND_REQUEST_CERTIFICATE_B; s->init_num = SSL2_MIN_CERT_CHALLENGE_LENGTH + 2; s->init_off = 0; } if (s->state == SSL2_ST_SEND_REQUEST_CERTIFICATE_B) { i = ssl2_do_write(s); if (i <= 0) { ret = i; goto end; } s->init_num = 0; s->state = SSL2_ST_SEND_REQUEST_CERTIFICATE_C; } if (s->state == SSL2_ST_SEND_REQUEST_CERTIFICATE_C) { p = (unsigned char *)s->init_buf->data; /* try to read 6 octets ... */ i = ssl2_read(s, (char *)&(p[s->init_num]), 6 - s->init_num); /* * ... but don't call ssl2_part_read now if we got at least 3 * (probably NO-CERTIFICATE-ERROR) */ if (i < 3 - s->init_num) { ret = ssl2_part_read(s, SSL_F_REQUEST_CERTIFICATE, i); goto end; } s->init_num += i; if ((s->init_num >= 3) && (p[0] == SSL2_MT_ERROR)) { n2s(p, i); if (i != SSL2_PE_NO_CERTIFICATE) { /* * not the error message we expected -- let ssl2_part_read * handle it */ s->init_num -= 3; ret = ssl2_part_read(s, SSL_F_REQUEST_CERTIFICATE, 3); goto end; } if (s->msg_callback) { /* ERROR */ s->msg_callback(0, s->version, 0, p, 3, s, s->msg_callback_arg); } /* * this is the one place where we can recover from an SSL 2.0 * error */ if (s->verify_mode & SSL_VERIFY_FAIL_IF_NO_PEER_CERT) { ssl2_return_error(s, SSL2_PE_BAD_CERTIFICATE); SSLerr(SSL_F_REQUEST_CERTIFICATE, SSL_R_PEER_DID_NOT_RETURN_A_CERTIFICATE); goto end; } ret = 1; goto end; } if ((*(p++) != SSL2_MT_CLIENT_CERTIFICATE) || (s->init_num < 6)) { ssl2_return_error(s, SSL2_PE_UNDEFINED_ERROR); SSLerr(SSL_F_REQUEST_CERTIFICATE, SSL_R_SHORT_READ); goto end; } if (s->init_num != 6) { SSLerr(SSL_F_REQUEST_CERTIFICATE, ERR_R_INTERNAL_ERROR); goto end; } /* ok we have a response */ /* certificate type, there is only one right now. */ ctype = *(p++); if (ctype != SSL2_AT_MD5_WITH_RSA_ENCRYPTION) { ssl2_return_error(s, SSL2_PE_UNSUPPORTED_CERTIFICATE_TYPE); SSLerr(SSL_F_REQUEST_CERTIFICATE, SSL_R_BAD_RESPONSE_ARGUMENT); goto end; } n2s(p, i); s->s2->tmp.clen = i; n2s(p, i); s->s2->tmp.rlen = i; s->state = SSL2_ST_SEND_REQUEST_CERTIFICATE_D; } /* SSL2_ST_SEND_REQUEST_CERTIFICATE_D */ p = (unsigned char *)s->init_buf->data; len = 6 + (unsigned long)s->s2->tmp.clen + (unsigned long)s->s2->tmp.rlen; if (len > SSL2_MAX_RECORD_LENGTH_3_BYTE_HEADER) { SSLerr(SSL_F_REQUEST_CERTIFICATE, SSL_R_MESSAGE_TOO_LONG); goto end; } j = (int)len - s->init_num; i = ssl2_read(s, (char *)&(p[s->init_num]), j); if (i < j) { ret = ssl2_part_read(s, SSL_F_REQUEST_CERTIFICATE, i); goto end; } if (s->msg_callback) { /* CLIENT-CERTIFICATE */ s->msg_callback(0, s->version, 0, p, len, s, s->msg_callback_arg); } p += 6; cp = p; x509 = (X509 *)d2i_X509(NULL, &cp, (long)s->s2->tmp.clen); if (x509 == NULL) { SSLerr(SSL_F_REQUEST_CERTIFICATE, ERR_R_X509_LIB); goto msg_end; } if (((sk = sk_X509_new_null()) == NULL) || (!sk_X509_push(sk, x509))) { SSLerr(SSL_F_REQUEST_CERTIFICATE, ERR_R_MALLOC_FAILURE); goto msg_end; } i = ssl_verify_cert_chain(s, sk); if (i > 0) { /* we like the packet, now check the chksum */ EVP_MD_CTX ctx; EVP_PKEY *pkey = NULL; EVP_MD_CTX_init(&ctx); if (!EVP_VerifyInit_ex(&ctx, s->ctx->rsa_md5, NULL) || !EVP_VerifyUpdate(&ctx, s->s2->key_material, s->s2->key_material_length) || !EVP_VerifyUpdate(&ctx, ccd, SSL2_MIN_CERT_CHALLENGE_LENGTH)) goto msg_end; i = i2d_X509(s->cert->pkeys[SSL_PKEY_RSA_ENC].x509, NULL); buf2 = OPENSSL_malloc((unsigned int)i); if (buf2 == NULL) { SSLerr(SSL_F_REQUEST_CERTIFICATE, ERR_R_MALLOC_FAILURE); goto msg_end; } p2 = buf2; i = i2d_X509(s->cert->pkeys[SSL_PKEY_RSA_ENC].x509, &p2); if (!EVP_VerifyUpdate(&ctx, buf2, (unsigned int)i)) { OPENSSL_free(buf2); goto msg_end; } OPENSSL_free(buf2); pkey = X509_get_pubkey(x509); if (pkey == NULL) goto end; i = EVP_VerifyFinal(&ctx, cp, s->s2->tmp.rlen, pkey); EVP_PKEY_free(pkey); EVP_MD_CTX_cleanup(&ctx); if (i > 0) { if (s->session->peer != NULL) X509_free(s->session->peer); s->session->peer = x509; CRYPTO_add(&x509->references, 1, CRYPTO_LOCK_X509); s->session->verify_result = s->verify_result; ret = 1; goto end; } else { SSLerr(SSL_F_REQUEST_CERTIFICATE, SSL_R_BAD_CHECKSUM); goto msg_end; } } else { msg_end: ssl2_return_error(s, SSL2_PE_BAD_CERTIFICATE); } end: sk_X509_free(sk); X509_free(x509); return (ret); } static int ssl_rsa_private_decrypt(CERT *c, int len, unsigned char *from, unsigned char *to, int padding) { RSA *rsa; int i; if ((c == NULL) || (c->pkeys[SSL_PKEY_RSA_ENC].privatekey == NULL)) { SSLerr(SSL_F_SSL_RSA_PRIVATE_DECRYPT, SSL_R_NO_PRIVATEKEY); return (-1); } if (c->pkeys[SSL_PKEY_RSA_ENC].privatekey->type != EVP_PKEY_RSA) { SSLerr(SSL_F_SSL_RSA_PRIVATE_DECRYPT, SSL_R_PUBLIC_KEY_IS_NOT_RSA); return (-1); } rsa = c->pkeys[SSL_PKEY_RSA_ENC].privatekey->pkey.rsa; /* we have the public key */ i = RSA_private_decrypt(len, from, to, rsa, padding); if (i < 0) SSLerr(SSL_F_SSL_RSA_PRIVATE_DECRYPT, ERR_R_RSA_LIB); return (i); } #else /* !OPENSSL_NO_SSL2 */ # if PEDANTIC static void *dummy = &dummy; # endif #endif