Initial import from FreeBSD RELENG_4:
[games.git] / sbin / growfs / growfs.c
1 /*
2  * Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz
3  * Copyright (c) 1980, 1989, 1993 The Regents of the University of California.
4  * All rights reserved.
5  * 
6  * This code is derived from software contributed to Berkeley by
7  * Christoph Herrmann and Thomas-Henning von Kamptz, Munich and Frankfurt.
8  * 
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgment:
19  *      This product includes software developed by the University of
20  *      California, Berkeley and its contributors, as well as Christoph
21  *      Herrmann and Thomas-Henning von Kamptz.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  * 
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  * $TSHeader: src/sbin/growfs/growfs.c,v 1.5 2000/12/12 19:31:00 tomsoft Exp $
39  *
40  */
41
42 #ifndef lint
43 static const char copyright[] =
44 "@(#) Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz\n\
45 Copyright (c) 1980, 1989, 1993 The Regents of the University of California.\n\
46 All rights reserved.\n";
47 #endif /* not lint */
48
49 #ifndef lint
50 static const char rcsid[] =
51   "$FreeBSD: src/sbin/growfs/growfs.c,v 1.4.2.2 2001/08/14 12:45:11 chm Exp $";
52 #endif /* not lint */
53
54 /* ********************************************************** INCLUDES ***** */
55 #include <sys/param.h>
56 #include <sys/disklabel.h>
57 #include <sys/ioctl.h>
58 #include <sys/stat.h>
59
60 #include <stdio.h>
61 #include <paths.h>
62 #include <ctype.h>
63 #include <err.h>
64 #include <fcntl.h>
65 #include <stdlib.h>
66 #include <string.h>
67 #include <unistd.h>
68 #include <ufs/ufs/dinode.h>
69 #include <ufs/ffs/fs.h>
70
71 #include "debug.h"
72
73 /* *************************************************** GLOBALS & TYPES ***** */
74 #ifdef FS_DEBUG
75 int     _dbg_lvl_ = (DL_INFO);  /* DL_TRC */
76 #endif /* FS_DEBUG */
77
78 static union {
79         struct fs       fs;
80         char    pad[SBSIZE];
81 } fsun1, fsun2;
82 #define sblock  fsun1.fs        /* the new superblock */
83 #define osblock fsun2.fs        /* the old superblock */
84
85 static union {
86         struct cg       cg;
87         char    pad[MAXBSIZE];
88 } cgun1, cgun2;
89 #define acg     cgun1.cg        /* a cylinder cgroup (new) */
90 #define aocg    cgun2.cg        /* an old cylinder group */
91
92 static char     ablk[MAXBSIZE];         /* a block */
93 static char     i1blk[MAXBSIZE];        /* some indirect blocks */
94 static char     i2blk[MAXBSIZE];
95 static char     i3blk[MAXBSIZE];
96
97         /* where to write back updated blocks */
98 static daddr_t  in_src, i1_src, i2_src, i3_src;
99
100         /* what object contains the reference */
101 enum pointer_source {
102         GFS_PS_INODE,
103         GFS_PS_IND_BLK_LVL1,
104         GFS_PS_IND_BLK_LVL2,
105         GFS_PS_IND_BLK_LVL3
106 };
107
108 static struct csum      *fscs;          /* cylinder summary */
109
110 static struct dinode    zino[MAXBSIZE/sizeof(struct dinode)]; /* some inodes */
111
112 /*
113  * An  array of elements of type struct gfs_bpp describes all blocks  to
114  * be relocated in order to free the space needed for the cylinder group
115  * summary for all cylinder groups located in the first cylinder group.
116  */
117 struct gfs_bpp {
118         daddr_t old;            /* old block number */
119         daddr_t new;            /* new block number */
120 #define GFS_FL_FIRST    1
121 #define GFS_FL_LAST     2
122         unsigned int    flags;  /* special handling required */
123         int     found;          /* how many references were updated */
124 };
125
126 /* ******************************************************** PROTOTYPES ***** */
127 static void     growfs(int, int, unsigned int);
128 static void     rdfs(daddr_t, size_t, void *, int);
129 static void     wtfs(daddr_t, size_t, void *, int, unsigned int);
130 static daddr_t  alloc(void);
131 static int      charsperline(void);
132 static void     usage(void);
133 static int      isblock(struct fs *, unsigned char *, int);
134 static void     clrblock(struct fs *, unsigned char *, int);
135 static void     setblock(struct fs *, unsigned char *, int);
136 static void     initcg(int, time_t, int, unsigned int);
137 static void     updjcg(int, time_t, int, int, unsigned int);
138 static void     updcsloc(time_t, int, int, unsigned int);
139 static struct disklabel *get_disklabel(int);
140 static void     return_disklabel(int, struct disklabel *, unsigned int);
141 static struct dinode    *ginode(ino_t, int, int);
142 static void     frag_adjust(daddr_t, int);
143 static void     cond_bl_upd(ufs_daddr_t *, struct gfs_bpp *,
144     enum pointer_source, int, unsigned int);
145 static void     updclst(int);
146 static void     updrefs(int, ino_t, struct gfs_bpp *, int, int, unsigned int);
147
148 /* ************************************************************ growfs ***** */
149 /*
150  * Here  we actually start growing the filesystem. We basically  read  the
151  * cylinder  summary  from the first cylinder group as we want  to  update
152  * this  on  the fly during our various operations. First  we  handle  the
153  * changes in the former last cylinder group. Afterwards we create all new
154  * cylinder  groups.  Now  we handle the  cylinder  group  containing  the
155  * cylinder  summary  which  might result in a  relocation  of  the  whole
156  * structure.  In the end we write back the updated cylinder summary,  the
157  * new superblock, and slightly patched versions of the super block
158  * copies.
159  */
160 static void
161 growfs(int fsi, int fso, unsigned int Nflag)
162 {
163         DBG_FUNC("growfs")
164         int     i;
165         int     cylno, j;
166         time_t  utime;
167         int     width;
168         char    tmpbuf[100];
169 #ifdef FSIRAND
170         static int      randinit=0;
171
172         DBG_ENTER;
173
174         if (!randinit) {
175                 randinit = 1;
176                 srandomdev();
177         }
178 #else /* not FSIRAND */
179
180         DBG_ENTER;
181
182 #endif /* FSIRAND */
183         time(&utime);
184
185         /*
186          * Get the cylinder summary into the memory.
187          */
188         fscs = (struct csum *)calloc((size_t)1, (size_t)sblock.fs_cssize);
189         if(fscs == NULL) {
190                 errx(1, "calloc failed");
191         }
192         for (i = 0; i < osblock.fs_cssize; i += osblock.fs_bsize) {
193                 rdfs(fsbtodb(&osblock, osblock.fs_csaddr +
194                     numfrags(&osblock, i)), (size_t)MIN(osblock.fs_cssize - i,
195                     osblock.fs_bsize), (void *)(((char *)fscs)+i), fsi);
196         }
197
198 #ifdef FS_DEBUG
199 {
200         struct csum     *dbg_csp;
201         int     dbg_csc;
202         char    dbg_line[80];
203
204         dbg_csp=fscs;
205         for(dbg_csc=0; dbg_csc<osblock.fs_ncg; dbg_csc++) {
206                 snprintf(dbg_line, sizeof(dbg_line),
207                     "%d. old csum in old location", dbg_csc);
208                 DBG_DUMP_CSUM(&osblock,
209                     dbg_line,
210                     dbg_csp++);
211         }
212 }
213 #endif /* FS_DEBUG */
214         DBG_PRINT0("fscs read\n");
215
216         /*
217          * Do all needed changes in the former last cylinder group.
218          */
219         updjcg(osblock.fs_ncg-1, utime, fsi, fso, Nflag);
220
221         /*
222          * Dump out summary information about file system.
223          */
224         printf("growfs:\t%d sectors in %d %s of %d tracks, %d sectors\n",
225             sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl,
226             "cylinders", sblock.fs_ntrak, sblock.fs_nsect);
227 #define B2MBFACTOR (1 / (1024.0 * 1024.0))
228         printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n",
229             (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
230             sblock.fs_ncg, sblock.fs_cpg,
231             (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
232             sblock.fs_ipg);
233 #undef B2MBFACTOR
234
235         /*
236          * Now build the cylinders group blocks and
237          * then print out indices of cylinder groups.
238          */
239         printf("super-block backups (for fsck -b #) at:\n");
240         i = 0;
241         width = charsperline();
242
243         /*
244          * Iterate for only the new cylinder groups.
245          */
246         for (cylno = osblock.fs_ncg; cylno < sblock.fs_ncg; cylno++) {
247                 initcg(cylno, utime, fso, Nflag);
248                 j = sprintf(tmpbuf, " %d%s",
249                     (int)fsbtodb(&sblock, cgsblock(&sblock, cylno)),
250                     cylno < (sblock.fs_ncg-1) ? "," : "" );
251                 if (i + j >= width) {
252                         printf("\n");
253                         i = 0;
254                 }
255                 i += j;
256                 printf("%s", tmpbuf);
257                 fflush(stdout);
258         }
259         printf("\n");
260
261         /*
262          * Do all needed changes in the first cylinder group.
263          * allocate blocks in new location
264          */
265         updcsloc(utime, fsi, fso, Nflag);
266
267         /*
268          * Now write the cylinder summary back to disk.
269          */
270         for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) {
271                 wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
272                     (size_t)MIN(sblock.fs_cssize - i, sblock.fs_bsize),
273                     (void *)(((char *)fscs) + i), fso, Nflag);
274         }
275         DBG_PRINT0("fscs written\n");
276
277 #ifdef FS_DEBUG
278 {
279         struct csum     *dbg_csp;
280         int     dbg_csc;
281         char    dbg_line[80];
282
283         dbg_csp=fscs;
284         for(dbg_csc=0; dbg_csc<sblock.fs_ncg; dbg_csc++) {
285                 snprintf(dbg_line, sizeof(dbg_line),
286                     "%d. new csum in new location", dbg_csc);
287                 DBG_DUMP_CSUM(&sblock,
288                     dbg_line,
289                     dbg_csp++);
290         }
291 }
292 #endif /* FS_DEBUG */
293
294         /*
295          * Now write the new superblock back to disk.
296          */
297         sblock.fs_time = utime;
298         wtfs((daddr_t)(SBOFF / DEV_BSIZE), (size_t)SBSIZE, (void *)&sblock,
299             fso, Nflag);
300         DBG_PRINT0("sblock written\n");
301         DBG_DUMP_FS(&sblock,
302             "new initial sblock");
303
304         /*
305          * Clean up the dynamic fields in our superblock copies.
306          */
307         sblock.fs_fmod = 0;
308         sblock.fs_clean = 1;
309         sblock.fs_ronly = 0;
310         sblock.fs_cgrotor = 0;
311         sblock.fs_state = 0;
312         memset((void *)&sblock.fs_fsmnt, 0, sizeof(sblock.fs_fsmnt));
313         sblock.fs_flags &= FS_DOSOFTDEP;
314
315         /*
316          * XXX
317          * The following fields are currently distributed from the  superblock
318          * to the copies:
319          *     fs_minfree
320          *     fs_rotdelay
321          *     fs_maxcontig
322          *     fs_maxbpg
323          *     fs_minfree,
324          *     fs_optim
325          *     fs_flags regarding SOFTPDATES
326          *
327          * We probably should rather change the summary for the cylinder group
328          * statistics here to the value of what would be in there, if the file
329          * system were created initially with the new size. Therefor we  still
330          * need to find an easy way of calculating that.
331          * Possibly we can try to read the first superblock copy and apply the
332          * "diffed" stats between the old and new superblock by still  copying
333          * certain parameters onto that.
334          */
335
336         /*
337          * Write out the duplicate super blocks.
338          */
339         for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
340                 wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
341                     (size_t)SBSIZE, (void *)&sblock, fso, Nflag);
342         }
343         DBG_PRINT0("sblock copies written\n");
344         DBG_DUMP_FS(&sblock,
345             "new other sblocks");
346
347         DBG_LEAVE;
348         return;
349 }
350
351 /* ************************************************************ initcg ***** */
352 /*
353  * This creates a new cylinder group structure, for more details please  see
354  * the  source of newfs(8), as this function is taken over almost unchanged.
355  * As  this  is  never called for the  first  cylinder  group,  the  special
356  * provisions for that case are removed here.
357  */
358 static void
359 initcg(int cylno, time_t utime, int fso, unsigned int Nflag)
360 {
361         DBG_FUNC("initcg")
362         daddr_t cbase, d, dlower, dupper, dmax, blkno;
363         int i;
364         register struct csum *cs;
365 #ifdef FSIRAND
366         int j;
367 #endif
368
369         DBG_ENTER;
370
371         /*
372          * Determine block bounds for cylinder group.
373          */
374         cbase = cgbase(&sblock, cylno);
375         dmax = cbase + sblock.fs_fpg;
376         if (dmax > sblock.fs_size) {
377                 dmax = sblock.fs_size;
378         }
379         dlower = cgsblock(&sblock, cylno) - cbase;
380         dupper = cgdmin(&sblock, cylno) - cbase;
381         if (cylno == 0) { /* XXX fscs may be relocated */
382                 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
383         }
384         cs = fscs + cylno;
385         memset(&acg, 0, (size_t)sblock.fs_cgsize);
386         acg.cg_time = utime;
387         acg.cg_magic = CG_MAGIC;
388         acg.cg_cgx = cylno;
389         if (cylno == sblock.fs_ncg - 1) {
390                 acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
391         } else {
392                 acg.cg_ncyl = sblock.fs_cpg;
393         }
394         acg.cg_niblk = sblock.fs_ipg;
395         acg.cg_ndblk = dmax - cbase;
396         if (sblock.fs_contigsumsize > 0) {
397                 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
398         }
399         acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
400         acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t);
401         acg.cg_iusedoff = acg.cg_boff +
402             sblock.fs_cpg * sblock.fs_nrpos * sizeof(u_int16_t);
403         acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
404         if (sblock.fs_contigsumsize <= 0) {
405                 acg.cg_nextfreeoff = acg.cg_freeoff +
406                     howmany(sblock.fs_cpg* sblock.fs_spc/ NSPF(&sblock), NBBY);
407         } else {
408                 acg.cg_clustersumoff = acg.cg_freeoff + howmany
409                     (sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY) -
410                     sizeof(u_int32_t);
411                 acg.cg_clustersumoff =
412                     roundup(acg.cg_clustersumoff, sizeof(u_int32_t));
413                 acg.cg_clusteroff = acg.cg_clustersumoff +
414                     (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
415                 acg.cg_nextfreeoff = acg.cg_clusteroff + howmany
416                     (sblock.fs_cpg * sblock.fs_spc / NSPB(&sblock), NBBY);
417         }
418         if (acg.cg_nextfreeoff-(int)(&acg.cg_firstfield) > sblock.fs_cgsize) {
419                 /*
420                  * XXX This should never happen as we would have had that panic
421                  *     already on filesystem creation
422                  */
423                 errx(37, "panic: cylinder group too big");
424         }
425         acg.cg_cs.cs_nifree += sblock.fs_ipg;
426         if (cylno == 0)
427                 for (i = 0; (size_t)i < ROOTINO; i++) {
428                         setbit(cg_inosused(&acg), i);
429                         acg.cg_cs.cs_nifree--;
430                 }
431         for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag) {
432 #ifdef FSIRAND
433                 for (j = 0; j < sblock.fs_bsize / sizeof(struct dinode); j++) {
434                         zino[j].di_gen = random();
435                 }
436 #endif
437                 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
438                     (size_t)sblock.fs_bsize, (void *)zino, fso, Nflag);
439         }
440         for (d = 0; d < dlower; d += sblock.fs_frag) {
441                 blkno = d / sblock.fs_frag;
442                 setblock(&sblock, cg_blksfree(&acg), blkno);
443                 if (sblock.fs_contigsumsize > 0) {
444                         setbit(cg_clustersfree(&acg), blkno);
445                 }
446                 acg.cg_cs.cs_nbfree++;
447                 cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
448                 cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
449                     [cbtorpos(&sblock, d)]++;
450         }
451         sblock.fs_dsize += dlower;
452         sblock.fs_dsize += acg.cg_ndblk - dupper;
453         if ((i = dupper % sblock.fs_frag)) {
454                 acg.cg_frsum[sblock.fs_frag - i]++;
455                 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
456                         setbit(cg_blksfree(&acg), dupper);
457                         acg.cg_cs.cs_nffree++;
458                 }
459         }
460         for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) {
461                 blkno = d / sblock.fs_frag;
462                 setblock(&sblock, cg_blksfree(&acg), blkno);
463                 if (sblock.fs_contigsumsize > 0) {
464                         setbit(cg_clustersfree(&acg), blkno);
465                 }
466                 acg.cg_cs.cs_nbfree++;
467                 cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
468                 cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
469                     [cbtorpos(&sblock, d)]++;
470                 d += sblock.fs_frag;
471         }
472         if (d < dmax - cbase) {
473                 acg.cg_frsum[dmax - cbase - d]++;
474                 for (; d < dmax - cbase; d++) {
475                         setbit(cg_blksfree(&acg), d);
476                         acg.cg_cs.cs_nffree++;
477                 }
478         }
479         if (sblock.fs_contigsumsize > 0) {
480                 int32_t *sump = cg_clustersum(&acg);
481                 u_char  *mapp = cg_clustersfree(&acg);
482                 int     map = *mapp++;
483                 int     bit = 1;
484                 int     run = 0;
485
486                 for (i = 0; i < acg.cg_nclusterblks; i++) {
487                         if ((map & bit) != 0) {
488                                 run++;
489                         } else if (run != 0) {
490                                 if (run > sblock.fs_contigsumsize) {
491                                         run = sblock.fs_contigsumsize;
492                                 }
493                                 sump[run]++;
494                                 run = 0;
495                         }
496                         if ((i & (NBBY - 1)) != (NBBY - 1)) {
497                                 bit <<= 1;
498                         } else {
499                                 map = *mapp++;
500                                 bit = 1;
501                         }
502                 }
503                 if (run != 0) {
504                         if (run > sblock.fs_contigsumsize) {
505                                 run = sblock.fs_contigsumsize;
506                         }
507                         sump[run]++;
508                 }
509         }
510         sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
511         sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
512         sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
513         sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
514         *cs = acg.cg_cs;
515         wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
516             (size_t)sblock.fs_bsize, (void *)&acg, fso, Nflag);
517         DBG_DUMP_CG(&sblock,
518             "new cg",
519             &acg);
520
521         DBG_LEAVE;
522         return;
523 }
524
525 /* ******************************************************* frag_adjust ***** */
526 /*
527  * Here  we add or subtract (sign +1/-1) the available fragments in  a  given
528  * block to or from the fragment statistics. By subtracting before and adding
529  * after  an operation on the free frag map we can easy update  the  fragment
530  * statistic, which seems to be otherwise an rather complex operation.
531  */
532 static void
533 frag_adjust(daddr_t frag, int sign)
534 {
535         DBG_FUNC("frag_adjust")
536         int fragsize;
537         int f;
538
539         DBG_ENTER;
540
541         fragsize=0;
542         /*
543          * Here frag only needs to point to any fragment in the block we want
544          * to examine.
545          */
546         for(f=rounddown(frag, sblock.fs_frag); 
547             f<roundup(frag+1, sblock.fs_frag);
548             f++) {
549                 /*
550                  * Count contiguos free fragments.
551                  */
552                 if(isset(cg_blksfree(&acg), f)) {
553                         fragsize++;
554                 } else {
555                         if(fragsize && fragsize<sblock.fs_frag) {
556                                 /*
557                                  * We found something in between.
558                                  */
559                                 acg.cg_frsum[fragsize]+=sign;
560                                 DBG_PRINT2("frag_adjust [%d]+=%d\n",
561                                     fragsize,
562                                     sign);
563                         }
564                         fragsize=0;
565                 }
566         }
567         if(fragsize && fragsize<sblock.fs_frag) {
568                 /*
569                  * We found something.
570                  */
571                 acg.cg_frsum[fragsize]+=sign;
572                 DBG_PRINT2("frag_adjust [%d]+=%d\n",
573                     fragsize,
574                     sign);
575         }
576         DBG_PRINT2("frag_adjust [[%d]]+=%d\n",
577             fragsize,
578             sign);
579
580         DBG_LEAVE;
581         return;
582 }
583
584 /* ******************************************************* cond_bl_upd ***** */
585 /*
586  * Here we conditionally update a pointer to a fragment. We check for all
587  * relocated blocks if any of it's fragments is referenced by the current
588  * field,  and update the pointer to the respective fragment in  our  new
589  * block.  If  we find a reference we write back the  block  immediately,
590  * as there is no easy way for our general block reading engine to figure
591  * out if a write back operation is needed.
592  */
593 static void
594 cond_bl_upd(ufs_daddr_t *block, struct gfs_bpp *field,
595     enum pointer_source source, int fso, unsigned int Nflag)
596 {
597         DBG_FUNC("cond_bl_upd")
598         struct gfs_bpp  *f;
599         char *src;
600         daddr_t dst=0;
601
602         DBG_ENTER;
603
604         f=field;
605         while(f->old) { /* for all old blocks */
606                 if(*block/sblock.fs_frag == f->old) {
607                         /*
608                          * The fragment is part of the block, so update.
609                          */
610                         *block=(f->new*sblock.fs_frag+(*block%sblock.fs_frag));
611                         f->found++;
612                         DBG_PRINT3("scg (%d->%d)[%d] reference updated\n",
613                             f->old,
614                             f->new,
615                             *block%sblock.fs_frag);
616
617                         /* Write the block back to disk immediately */
618                         switch (source) {
619                         case GFS_PS_INODE:
620                                 src=ablk;
621                                 dst=in_src;
622                                 break;
623                         case GFS_PS_IND_BLK_LVL1:
624                                 src=i1blk;
625                                 dst=i1_src;
626                                 break;
627                         case GFS_PS_IND_BLK_LVL2:
628                                 src=i2blk;
629                                 dst=i2_src;
630                                 break;
631                         case GFS_PS_IND_BLK_LVL3:
632                                 src=i3blk;
633                                 dst=i3_src;
634                                 break;
635                         default:        /* error */
636                                 src=NULL;
637                                 break;
638                         }
639                         if(src) {
640                                 /*
641                                  * XXX  If src is not of type inode we have to
642                                  *      implement  copy on write here in  case
643                                  *      of active snapshots.
644                                  */
645                                 wtfs(dst, (size_t)sblock.fs_bsize, (void *)src,
646                                     fso, Nflag);
647                         }
648
649                         /*
650                          * The same block can't be found again in this loop.
651                          */
652                         break;
653                 }
654                 f++;
655         }
656
657         DBG_LEAVE;
658         return;
659 }
660
661 /* ************************************************************ updjcg ***** */
662 /*
663  * Here we do all needed work for the former last cylinder group. It has to be
664  * changed  in  any case, even if the filesystem ended exactly on the  end  of
665  * this  group, as there is some slightly inconsistent handling of the  number
666  * of cylinders in the cylinder group. We start again by reading the  cylinder
667  * group from disk. If the last block was not fully available, we first handle
668  * the  missing  fragments, then we handle all new full blocks  in  that  file
669  * system  and  finally we handle the new last fragmented block  in  the  file
670  * system.  We again have to handle the fragment statistics rotational  layout
671  * tables and cluster summary during all those operations.
672  */
673 static void
674 updjcg(int cylno, time_t utime, int fsi, int fso, unsigned int Nflag)
675 {
676         DBG_FUNC("updjcg")
677         daddr_t cbase, dmax, dupper;
678         struct csum     *cs;
679         int     i,k;
680         int     j=0;
681
682         DBG_ENTER;
683
684         /*
685          * Read the former last (joining) cylinder group from disk, and make
686          * a copy.
687          */
688         rdfs(fsbtodb(&osblock, cgtod(&osblock, cylno)),
689             (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
690         DBG_PRINT0("jcg read\n");
691         DBG_DUMP_CG(&sblock,
692             "old joining cg",
693             &aocg);
694
695         memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
696
697         /*
698          * If  the  cylinder  group had already it's  new  final  size  almost
699          * nothing is to be done ... except:
700          * For some reason the value of cg_ncyl in the last cylinder group has
701          * to  be  zero instead of fs_cpg. As this is now no longer  the  last
702          * cylinder group we have to change that value now to fs_cpg.
703          */ 
704
705         if(cgbase(&osblock, cylno+1) == osblock.fs_size) {
706                 acg.cg_ncyl=sblock.fs_cpg;
707
708                 wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
709                     (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
710                 DBG_PRINT0("jcg written\n");
711                 DBG_DUMP_CG(&sblock,
712                     "new joining cg",
713                     &acg);
714
715                 DBG_LEAVE;
716                 return;
717         }
718
719         /*
720          * Set up some variables needed later.
721          */
722         cbase = cgbase(&sblock, cylno);
723         dmax = cbase + sblock.fs_fpg;
724         if (dmax > sblock.fs_size)
725                 dmax = sblock.fs_size;
726         dupper = cgdmin(&sblock, cylno) - cbase;
727         if (cylno == 0) { /* XXX fscs may be relocated */
728                 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
729         }
730
731         /*
732          * Set pointer to the cylinder summary for our cylinder group.
733          */
734         cs = fscs + cylno;
735
736         /*
737          * Touch the cylinder group, update all fields in the cylinder group as
738          * needed, update the free space in the superblock.
739          */
740         acg.cg_time = utime;
741         if (cylno == sblock.fs_ncg - 1) {
742                 /*
743                  * This is still the last cylinder group.
744                  */
745                 acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
746         } else {
747                 acg.cg_ncyl = sblock.fs_cpg;
748         }
749         DBG_PRINT4("jcg dbg: %d %u %d %u\n",
750             cylno,
751             sblock.fs_ncg,
752             acg.cg_ncyl,
753             sblock.fs_cpg);
754         acg.cg_ndblk = dmax - cbase;
755         sblock.fs_dsize += acg.cg_ndblk-aocg.cg_ndblk;
756         if (sblock.fs_contigsumsize > 0) {
757                 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
758         }
759
760         /*
761          * Now  we have to update the free fragment bitmap for our new  free
762          * space.  There again we have to handle the fragmentation and  also
763          * the  rotational  layout tables and the cluster summary.  This  is
764          * also  done per fragment for the first new block if the  old  file
765          * system end was not on a block boundary, per fragment for the  new
766          * last block if the new file system end is not on a block boundary,
767          * and per block for all space in between.
768          *
769          * Handle the first new block here if it was partially available
770          * before.
771          */
772         if(osblock.fs_size % sblock.fs_frag) {
773                 if(roundup(osblock.fs_size, sblock.fs_frag)<=sblock.fs_size) {
774                         /*
775                          * The new space is enough to fill at least this
776                          * block
777                          */
778                         j=0;
779                         for(i=roundup(osblock.fs_size-cbase, sblock.fs_frag)-1;
780                             i>=osblock.fs_size-cbase;
781                             i--) {
782                                 setbit(cg_blksfree(&acg), i);
783                                 acg.cg_cs.cs_nffree++;
784                                 j++;
785                         }
786
787                         /*
788                          * Check  if the fragment just created could join  an
789                          * already existing fragment at the former end of the
790                          * file system.
791                          */
792                         if(isblock(&sblock, cg_blksfree(&acg),
793                             ((osblock.fs_size - cgbase(&sblock, cylno))/
794                             sblock.fs_frag))) {
795                                 /*
796                                  * The block is now completely available
797                                  */
798                                 DBG_PRINT0("block was\n");
799                                 acg.cg_frsum[osblock.fs_size%sblock.fs_frag]--;
800                                 acg.cg_cs.cs_nbfree++;
801                                 acg.cg_cs.cs_nffree-=sblock.fs_frag;
802                                 k=rounddown(osblock.fs_size-cbase,
803                                     sblock.fs_frag);
804                                 cg_blktot(&acg)[cbtocylno(&sblock, k)]++;
805                                 cg_blks(&sblock, &acg, cbtocylno(&sblock, k))
806                                     [cbtorpos(&sblock, k)]++;
807                                 updclst((osblock.fs_size-cbase)/sblock.fs_frag);
808                         } else {
809                                 /*
810                                  * Lets rejoin a possible partially growed
811                                  * fragment.
812                                  */
813                                 k=0;
814                                 while(isset(cg_blksfree(&acg), i) &&
815                                     (i>=rounddown(osblock.fs_size-cbase,
816                                     sblock.fs_frag))) {
817                                         i--;
818                                         k++;
819                                 }
820                                 if(k) {
821                                         acg.cg_frsum[k]--;
822                                 }
823                                 acg.cg_frsum[k+j]++;
824                         }
825                 } else {
826                         /*
827                          * We only grow by some fragments within this last
828                          * block.
829                          */
830                         for(i=sblock.fs_size-cbase-1;
831                                 i>=osblock.fs_size-cbase;
832                                 i--) {
833                                 setbit(cg_blksfree(&acg), i);
834                                 acg.cg_cs.cs_nffree++;
835                                 j++;
836                         }
837                         /*
838                          * Lets rejoin a possible partially growed fragment.
839                          */
840                         k=0;
841                         while(isset(cg_blksfree(&acg), i) &&
842                             (i>=rounddown(osblock.fs_size-cbase,
843                             sblock.fs_frag))) {
844                                 i--;
845                                 k++;
846                         }
847                         if(k) {
848                                 acg.cg_frsum[k]--;
849                         }
850                         acg.cg_frsum[k+j]++;
851                 }
852         }
853
854         /*
855          * Handle all new complete blocks here.
856          */
857         for(i=roundup(osblock.fs_size-cbase, sblock.fs_frag);
858             i+sblock.fs_frag<=dmax-cbase;       /* XXX <= or only < ? */
859             i+=sblock.fs_frag) {
860                 j = i / sblock.fs_frag;
861                 setblock(&sblock, cg_blksfree(&acg), j);
862                 updclst(j);
863                 acg.cg_cs.cs_nbfree++;
864                 cg_blktot(&acg)[cbtocylno(&sblock, i)]++;
865                 cg_blks(&sblock, &acg, cbtocylno(&sblock, i))
866                     [cbtorpos(&sblock, i)]++;
867         }
868
869         /*
870          * Handle the last new block if there are stll some new fragments left.
871          * Here  we don't have to bother about the cluster summary or the  even
872          * the rotational layout table.
873          */
874         if (i < (dmax - cbase)) {
875                 acg.cg_frsum[dmax - cbase - i]++;
876                 for (; i < dmax - cbase; i++) {
877                         setbit(cg_blksfree(&acg), i);
878                         acg.cg_cs.cs_nffree++;
879                 }
880         }
881
882         sblock.fs_cstotal.cs_nffree +=
883             (acg.cg_cs.cs_nffree - aocg.cg_cs.cs_nffree);
884         sblock.fs_cstotal.cs_nbfree +=
885             (acg.cg_cs.cs_nbfree - aocg.cg_cs.cs_nbfree);
886         /*
887          * The following statistics are not changed here:
888          *     sblock.fs_cstotal.cs_ndir
889          *     sblock.fs_cstotal.cs_nifree
890          * As the statistics for this cylinder group are ready, copy it to
891          * the summary information array.
892          */
893         *cs = acg.cg_cs;
894
895         /*
896          * Write the updated "joining" cylinder group back to disk.
897          */
898         wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)), (size_t)sblock.fs_cgsize,
899             (void *)&acg, fso, Nflag);
900         DBG_PRINT0("jcg written\n");
901         DBG_DUMP_CG(&sblock,
902             "new joining cg",
903             &acg);
904
905         DBG_LEAVE;
906         return;
907 }
908
909 /* ********************************************************** updcsloc ***** */
910 /*
911  * Here  we update the location of the cylinder summary. We have  two  possible
912  * ways of growing the cylinder summary.
913  * (1)  We can try to grow the summary in the current location, and  relocate
914  *      possibly used blocks within the current cylinder group.
915  * (2)  Alternatively we can relocate the whole cylinder summary to the first
916  *      new completely empty cylinder group. Once the cylinder summary is  no
917  *      longer in the beginning of the first cylinder group you should  never
918  *      use  a version of fsck which is not aware of the possibility to  have
919  *      this structure in a non standard place.
920  * Option (1) is considered to be less intrusive to the structure of the  file-
921  * system. So we try to stick to that whenever possible. If there is not enough
922  * space  in the cylinder group containing the cylinder summary we have to  use
923  * method  (2). In case of active snapshots in the filesystem we  probably  can
924  * completely avoid implementing copy on write if we stick to method (2) only.
925  */
926 static void
927 updcsloc(time_t utime, int fsi, int fso, unsigned int Nflag)
928 {
929         DBG_FUNC("updcsloc")
930         struct csum     *cs;
931         int     ocscg, ncscg;
932         int     blocks;
933         daddr_t cbase, dupper, odupper, d, f, g;
934         int     ind;
935         int     cylno, inc;
936         struct gfs_bpp  *bp;
937         int     i, l;
938         int     lcs=0;
939         int     block;
940
941         DBG_ENTER;
942
943         if(howmany(sblock.fs_cssize, sblock.fs_fsize) ==
944             howmany(osblock.fs_cssize, osblock.fs_fsize)) {
945                 /*
946                  * No new fragment needed.
947                  */
948                 DBG_LEAVE;
949                 return;
950         }
951         ocscg=dtog(&osblock, osblock.fs_csaddr);
952         cs=fscs+ocscg;
953         blocks = 1+howmany(sblock.fs_cssize, sblock.fs_bsize)-
954             howmany(osblock.fs_cssize, osblock.fs_bsize);
955
956         /*
957          * Read original cylinder group from disk, and make a copy.
958          * XXX  If Nflag is set in some very rare cases we now miss
959          *      some changes done in updjcg by reading the unmodified
960          *      block from disk.
961          */
962         rdfs(fsbtodb(&osblock, cgtod(&osblock, ocscg)),
963             (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
964         DBG_PRINT0("oscg read\n");
965         DBG_DUMP_CG(&sblock,
966             "old summary cg",
967             &aocg);
968
969         memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
970
971         /*
972          * Touch the cylinder group, set up local variables needed later
973          * and update the superblock.
974          */
975         acg.cg_time = utime;
976
977         /*
978          * XXX  In the case of having active snapshots we may need much more
979          *      blocks for the copy on write. We need each block twice,  and
980          *      also  up to 8*3 blocks for indirect blocks for all  possible
981          *      references.
982          */
983         if(/*((int)sblock.fs_time&0x3)>0||*/ cs->cs_nbfree < blocks) {
984                 /*
985                  * There  is  not enough space in the old cylinder  group  to
986                  * relocate  all blocks as needed, so we relocate  the  whole
987                  * cylinder  group summary to a new group. We try to use  the
988                  * first complete new cylinder group just created. Within the
989                  * cylinder  group we allign the area immediately  after  the
990                  * cylinder  group  information location in order  to  be  as
991                  * close as possible to the original implementation of ffs.
992                  *
993                  * First  we have to make sure we'll find enough space in  the
994                  * new  cylinder  group. If not, then we  currently  give  up.
995                  * We  start  with freeing everything which was  used  by  the
996                  * fragments of the old cylinder summary in the current group.
997                  * Now  we write back the group meta data, read in the  needed
998                  * meta data from the new cylinder group, and start allocating
999                  * within  that  group. Here we can assume, the  group  to  be
1000                  * completely empty. Which makes the handling of fragments and
1001                  * clusters a lot easier.
1002                  */
1003                 DBG_TRC;
1004                 if(sblock.fs_ncg-osblock.fs_ncg < 2) {
1005                         errx(2, "panic: not enough space");
1006                 }
1007
1008                 /*
1009                  * Point "d" to the first fragment not used by the cylinder
1010                  * summary.
1011                  */
1012                 d=osblock.fs_csaddr+(osblock.fs_cssize/osblock.fs_fsize);
1013
1014                 /*
1015                  * Set up last cluster size ("lcs") already here. Calculate
1016                  * the size for the trailing cluster just behind where  "d"
1017                  * points to.
1018                  */
1019                 if(sblock.fs_contigsumsize > 0) {
1020                         for(block=howmany(d%sblock.fs_fpg, sblock.fs_frag),
1021                             lcs=0; lcs<sblock.fs_contigsumsize;
1022                             block++, lcs++) {
1023                                 if(isclr(cg_clustersfree(&acg), block)){
1024                                         break;
1025                                 }
1026                         }
1027                 }
1028
1029                 /*
1030                  * Point "d" to the last frag used by the cylinder summary.
1031                  */
1032                 d--;
1033
1034                 DBG_PRINT1("d=%d\n",
1035                     d);
1036                 if((d+1)%sblock.fs_frag) {
1037                         /*
1038                          * The end of the cylinder summary is not a complete
1039                          * block.
1040                          */
1041                         DBG_TRC;
1042                         frag_adjust(d%sblock.fs_fpg, -1);
1043                         for(; (d+1)%sblock.fs_frag; d--) {
1044                                 DBG_PRINT1("d=%d\n",
1045                                     d);
1046                                 setbit(cg_blksfree(&acg), d%sblock.fs_fpg);
1047                                 acg.cg_cs.cs_nffree++;
1048                                 sblock.fs_cstotal.cs_nffree++;
1049                         }
1050                         /*
1051                          * Point  "d" to the last fragment of the  last
1052                          * (incomplete) block of the clinder summary.
1053                          */
1054                         d++;
1055                         frag_adjust(d%sblock.fs_fpg, 1);
1056
1057                         if(isblock(&sblock, cg_blksfree(&acg),
1058                             (d%sblock.fs_fpg)/sblock.fs_frag)) {
1059                                 DBG_PRINT1("d=%d\n",
1060                                     d);
1061                                 acg.cg_cs.cs_nffree-=sblock.fs_frag;
1062                                 acg.cg_cs.cs_nbfree++;
1063                                 sblock.fs_cstotal.cs_nffree-=sblock.fs_frag;
1064                                 sblock.fs_cstotal.cs_nbfree++;
1065                                 cg_blktot(&acg)[cbtocylno(&sblock,
1066                                     d%sblock.fs_fpg)]++;
1067                                 cg_blks(&sblock, &acg, cbtocylno(&sblock,
1068                                     d%sblock.fs_fpg))[cbtorpos(&sblock,
1069                                     d%sblock.fs_fpg)]++;
1070                                 if(sblock.fs_contigsumsize > 0) {
1071                                         setbit(cg_clustersfree(&acg),
1072                                             (d%sblock.fs_fpg)/sblock.fs_frag);
1073                                         if(lcs < sblock.fs_contigsumsize) {
1074                                                 if(lcs) {
1075                                                         cg_clustersum(&acg)
1076                                                             [lcs]--;
1077                                                 }
1078                                                 lcs++;
1079                                                 cg_clustersum(&acg)[lcs]++;
1080                                         }
1081                                 }
1082                         }
1083                         /*
1084                          * Point "d" to the first fragment of the block before
1085                          * the last incomplete block.
1086                          */
1087                         d--;
1088                 }
1089
1090                 DBG_PRINT1("d=%d\n",
1091                     d);
1092                 for(d=rounddown(d, sblock.fs_frag); d >= osblock.fs_csaddr;
1093                     d-=sblock.fs_frag) {
1094                         DBG_TRC;
1095                         DBG_PRINT1("d=%d\n",
1096                             d);
1097                         setblock(&sblock, cg_blksfree(&acg),
1098                             (d%sblock.fs_fpg)/sblock.fs_frag);
1099                         acg.cg_cs.cs_nbfree++;
1100                         sblock.fs_cstotal.cs_nbfree++;
1101                         cg_blktot(&acg)[cbtocylno(&sblock, d%sblock.fs_fpg)]++;
1102                         cg_blks(&sblock, &acg, cbtocylno(&sblock,
1103                             d%sblock.fs_fpg))[cbtorpos(&sblock,
1104                             d%sblock.fs_fpg)]++;
1105                         if(sblock.fs_contigsumsize > 0) {
1106                                 setbit(cg_clustersfree(&acg),
1107                                     (d%sblock.fs_fpg)/sblock.fs_frag);
1108                                 /*
1109                                  * The last cluster size is already set up.
1110                                  */
1111                                 if(lcs < sblock.fs_contigsumsize) {
1112                                         if(lcs) {
1113                                                 cg_clustersum(&acg)[lcs]--;
1114                                         }
1115                                         lcs++;
1116                                         cg_clustersum(&acg)[lcs]++;
1117                                 }
1118                         }
1119                 }
1120                 *cs = acg.cg_cs;
1121
1122                 /*
1123                  * Now write the former cylinder group containing the cylinder
1124                  * summary back to disk.
1125                  */
1126                 wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)),
1127                     (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
1128                 DBG_PRINT0("oscg written\n");
1129                 DBG_DUMP_CG(&sblock,
1130                     "old summary cg",
1131                     &acg);
1132
1133                 /*
1134                  * Find the beginning of the new cylinder group containing the
1135                  * cylinder summary.
1136                  */
1137                 sblock.fs_csaddr=cgdmin(&sblock, osblock.fs_ncg);
1138                 ncscg=dtog(&sblock, sblock.fs_csaddr);
1139                 cs=fscs+ncscg;
1140
1141
1142                 /*
1143                  * If Nflag is specified, we would now read random data instead
1144                  * of an empty cg structure from disk. So we can't simulate that
1145                  * part for now.
1146                  */
1147                 if(Nflag) {
1148                         DBG_PRINT0("nscg update skipped\n");
1149                         DBG_LEAVE;
1150                         return;
1151                 }
1152
1153                 /*
1154                  * Read the future cylinder group containing the cylinder
1155                  * summary from disk, and make a copy.
1156                  */
1157                 rdfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
1158                     (size_t)sblock.fs_cgsize, (void *)&aocg, fsi);
1159                 DBG_PRINT0("nscg read\n");
1160                 DBG_DUMP_CG(&sblock,
1161                     "new summary cg",
1162                     &aocg);
1163
1164                 memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
1165
1166                 /*
1167                  * Allocate all complete blocks used by the new cylinder
1168                  * summary.
1169                  */
1170                 for(d=sblock.fs_csaddr; d+sblock.fs_frag <=
1171                     sblock.fs_csaddr+(sblock.fs_cssize/sblock.fs_fsize);
1172                     d+=sblock.fs_frag) {
1173                         clrblock(&sblock, cg_blksfree(&acg),
1174                             (d%sblock.fs_fpg)/sblock.fs_frag);
1175                         acg.cg_cs.cs_nbfree--;
1176                         sblock.fs_cstotal.cs_nbfree--;
1177                         cg_blktot(&acg)[cbtocylno(&sblock, d%sblock.fs_fpg)]--;
1178                         cg_blks(&sblock, &acg, cbtocylno(&sblock,
1179                             d%sblock.fs_fpg))[cbtorpos(&sblock,
1180                             d%sblock.fs_fpg)]--;
1181                         if(sblock.fs_contigsumsize > 0) {
1182                                 clrbit(cg_clustersfree(&acg),
1183                                     (d%sblock.fs_fpg)/sblock.fs_frag);
1184                         }
1185                 }
1186
1187                 /*
1188                  * Allocate all fragments used by the cylinder summary in the
1189                  * last block.
1190                  */
1191                 if(d<sblock.fs_csaddr+(sblock.fs_cssize/sblock.fs_fsize)) {
1192                         for(; d-sblock.fs_csaddr<
1193                             sblock.fs_cssize/sblock.fs_fsize;
1194                             d++) {
1195                                 clrbit(cg_blksfree(&acg), d%sblock.fs_fpg);
1196                                 acg.cg_cs.cs_nffree--;
1197                                 sblock.fs_cstotal.cs_nffree--;
1198                         }
1199                         acg.cg_cs.cs_nbfree--;
1200                         acg.cg_cs.cs_nffree+=sblock.fs_frag;
1201                         sblock.fs_cstotal.cs_nbfree--;
1202                         sblock.fs_cstotal.cs_nffree+=sblock.fs_frag;
1203                         cg_blktot(&acg)[cbtocylno(&sblock, d%sblock.fs_fpg)]--;
1204                         cg_blks(&sblock, &acg, cbtocylno(&sblock,
1205                             d%sblock.fs_fpg))[cbtorpos(&sblock,
1206                             d%sblock.fs_fpg)]--;
1207                         if(sblock.fs_contigsumsize > 0) {
1208                                 clrbit(cg_clustersfree(&acg),
1209                                     (d%sblock.fs_fpg)/sblock.fs_frag);
1210                         }
1211
1212                         frag_adjust(d%sblock.fs_fpg, +1);
1213                 }
1214                 /*
1215                  * XXX  Handle the cluster statistics here in the case  this
1216                  *      cylinder group is now almost full, and the remaining
1217                  *      space is less then the maximum cluster size. This is
1218                  *      probably not needed, as you would hardly find a file
1219                  *      system which has only MAXCSBUFS+FS_MAXCONTIG of free
1220                  *      space right behind the cylinder group information in
1221                  *      any new cylinder group.
1222                  */
1223
1224                 /*
1225                  * Update our statistics in the cylinder summary.
1226                  */
1227                 *cs = acg.cg_cs;
1228
1229                 /*
1230                  * Write the new cylinder group containing the cylinder summary
1231                  * back to disk.
1232                  */
1233                 wtfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
1234                     (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
1235                 DBG_PRINT0("nscg written\n");
1236                 DBG_DUMP_CG(&sblock,
1237                     "new summary cg",
1238                     &acg);
1239
1240                 DBG_LEAVE;
1241                 return;
1242         }
1243         /*
1244          * We have got enough of space in the current cylinder group, so we
1245          * can relocate just a few blocks, and let the summary  information
1246          * grow in place where it is right now.
1247          */
1248         DBG_TRC;
1249
1250         cbase = cgbase(&osblock, ocscg);        /* old and new are equal */
1251         dupper = sblock.fs_csaddr - cbase +
1252             howmany(sblock.fs_cssize, sblock.fs_fsize);
1253         odupper = osblock.fs_csaddr - cbase +
1254             howmany(osblock.fs_cssize, osblock.fs_fsize);
1255
1256         sblock.fs_dsize -= dupper-odupper;
1257
1258         /*
1259          * Allocate the space for the array of blocks to be relocated.
1260          */
1261         bp=(struct gfs_bpp *)malloc(((dupper-odupper)/sblock.fs_frag+2)*
1262             sizeof(struct gfs_bpp));
1263         if(bp == NULL) {
1264                 errx(1, "malloc failed");
1265         }
1266         memset((char *)bp, 0, ((dupper-odupper)/sblock.fs_frag+2)*
1267             sizeof(struct gfs_bpp));
1268
1269         /*
1270          * Lock all new frags needed for the cylinder group summary. This  is
1271          * done per fragment in the first and last block of the new  required
1272          * area, and per block for all other blocks.
1273          *
1274          * Handle the first new  block here (but only if some fragments where
1275          * already used for the cylinder summary).
1276          */
1277         ind=0;
1278         frag_adjust(odupper, -1);
1279         for(d=odupper; ((d<dupper)&&(d%sblock.fs_frag)); d++) {
1280                 DBG_PRINT1("scg first frag check loop d=%d\n",
1281                     d);
1282                 if(isclr(cg_blksfree(&acg), d)) {
1283                         if (!ind) {
1284                                 bp[ind].old=d/sblock.fs_frag;
1285                                 bp[ind].flags|=GFS_FL_FIRST;
1286                                 if(roundup(d, sblock.fs_frag) >= dupper) {
1287                                         bp[ind].flags|=GFS_FL_LAST;
1288                                 }
1289                                 ind++;
1290                         }
1291                 } else {
1292                         clrbit(cg_blksfree(&acg), d);
1293                         acg.cg_cs.cs_nffree--;
1294                         sblock.fs_cstotal.cs_nffree--;
1295                 }
1296                 /*
1297                  * No cluster handling is needed here, as there was at least
1298                  * one  fragment in use by the cylinder summary in  the  old
1299                  * file system.
1300                  * No block-free counter handling here as this block was not
1301                  * a free block.
1302                  */
1303         }
1304         frag_adjust(odupper, 1);
1305
1306         /*
1307          * Handle all needed complete blocks here.
1308          */
1309         for(; d+sblock.fs_frag<=dupper; d+=sblock.fs_frag) {
1310                 DBG_PRINT1("scg block check loop d=%d\n",
1311                     d);
1312                 if(!isblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag)) {
1313                         for(f=d; f<d+sblock.fs_frag; f++) {
1314                                 if(isset(cg_blksfree(&aocg), f)) {
1315                                         acg.cg_cs.cs_nffree--;
1316                                         sblock.fs_cstotal.cs_nffree--;
1317                                 }
1318                         }
1319                         clrblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag);
1320                         bp[ind].old=d/sblock.fs_frag;
1321                         ind++;
1322                 } else {
1323                         clrblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag);
1324                         acg.cg_cs.cs_nbfree--;
1325                         sblock.fs_cstotal.cs_nbfree--;
1326                         cg_blktot(&acg)[cbtocylno(&sblock, d)]--;
1327                         cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
1328                             [cbtorpos(&sblock, d)]--;
1329                         if(sblock.fs_contigsumsize > 0) {
1330                                 clrbit(cg_clustersfree(&acg), d/sblock.fs_frag);
1331                                 for(lcs=0, l=(d/sblock.fs_frag)+1;
1332                                     lcs<sblock.fs_contigsumsize;
1333                                     l++, lcs++ ) {
1334                                         if(isclr(cg_clustersfree(&acg),l)){
1335                                                 break;
1336                                         }
1337                                 }
1338                                 if(lcs < sblock.fs_contigsumsize) {
1339                                         cg_clustersum(&acg)[lcs+1]--;
1340                                         if(lcs) {
1341                                                 cg_clustersum(&acg)[lcs]++;
1342                                         }
1343                                 }
1344                         }
1345                 }
1346                 /*
1347                  * No fragment counter handling is needed here, as this finally
1348                  * doesn't change after the relocation.
1349                  */
1350         }
1351
1352         /*
1353          * Handle all fragments needed in the last new affected block.
1354          */
1355         if(d<dupper) {
1356                 frag_adjust(dupper-1, -1);
1357
1358                 if(isblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag)) {
1359                         acg.cg_cs.cs_nbfree--;
1360                         sblock.fs_cstotal.cs_nbfree--;
1361                         acg.cg_cs.cs_nffree+=sblock.fs_frag;
1362                         sblock.fs_cstotal.cs_nffree+=sblock.fs_frag;
1363                         cg_blktot(&acg)[cbtocylno(&sblock, d)]--;
1364                         cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
1365                             [cbtorpos(&sblock, d)]--;
1366                         if(sblock.fs_contigsumsize > 0) {
1367                                 clrbit(cg_clustersfree(&acg), d/sblock.fs_frag);
1368                                 for(lcs=0, l=(d/sblock.fs_frag)+1;
1369                                     lcs<sblock.fs_contigsumsize;
1370                                     l++, lcs++ ) {
1371                                         if(isclr(cg_clustersfree(&acg),l)){
1372                                                 break;
1373                                         }
1374                                 }
1375                                 if(lcs < sblock.fs_contigsumsize) {
1376                                         cg_clustersum(&acg)[lcs+1]--;
1377                                         if(lcs) {
1378                                                 cg_clustersum(&acg)[lcs]++;
1379                                         }
1380                                 }
1381                         }
1382                 }
1383
1384                 for(; d<dupper; d++) {
1385                         DBG_PRINT1("scg second frag check loop d=%d\n",
1386                             d);
1387                         if(isclr(cg_blksfree(&acg), d)) {
1388                                 bp[ind].old=d/sblock.fs_frag;
1389                                 bp[ind].flags|=GFS_FL_LAST;
1390                         } else {
1391                                 clrbit(cg_blksfree(&acg), d);
1392                                 acg.cg_cs.cs_nffree--;
1393                                 sblock.fs_cstotal.cs_nffree--;
1394                         }
1395                 }
1396                 if(bp[ind].flags & GFS_FL_LAST) { /* we have to advance here */
1397                         ind++;
1398                 }
1399                 frag_adjust(dupper-1, 1);
1400         }
1401
1402         /*
1403          * If we found a block to relocate just do so.
1404          */
1405         if(ind) {
1406                 for(i=0; i<ind; i++) {
1407                         if(!bp[i].old) { /* no more blocks listed */
1408                                 /*
1409                                  * XXX  A relative blocknumber should not be
1410                                  *      zero,   which  is   not   explicitly
1411                                  *      guaranteed by our code.
1412                                  */
1413                                 break;
1414                         }
1415                         /*
1416                          * Allocate a complete block in the same (current)
1417                          * cylinder group.
1418                          */
1419                         bp[i].new=alloc()/sblock.fs_frag;
1420
1421                         /*
1422                          * There is no frag_adjust() needed for the new block
1423                          * as it will have no fragments yet :-).
1424                          */
1425                         for(f=bp[i].old*sblock.fs_frag,
1426                             g=bp[i].new*sblock.fs_frag;
1427                             f<(bp[i].old+1)*sblock.fs_frag;
1428                             f++, g++) {
1429                                 if(isset(cg_blksfree(&aocg), f)) {
1430                                         setbit(cg_blksfree(&acg), g);
1431                                         acg.cg_cs.cs_nffree++;
1432                                         sblock.fs_cstotal.cs_nffree++;
1433                                 }
1434                         }
1435
1436                         /*
1437                          * Special handling is required if this was the  first
1438                          * block. We have to consider the fragments which were
1439                          * used by the cylinder summary in the original  block
1440                          * which  re to be free in the copy of our  block.  We
1441                          * have  to be careful if this first block happens  to
1442                          * be also the last block to be relocated.
1443                          */
1444                         if(bp[i].flags & GFS_FL_FIRST) {
1445                                 for(f=bp[i].old*sblock.fs_frag,
1446                                     g=bp[i].new*sblock.fs_frag;
1447                                     f<odupper;
1448                                     f++, g++) {
1449                                         setbit(cg_blksfree(&acg), g);
1450                                         acg.cg_cs.cs_nffree++;
1451                                         sblock.fs_cstotal.cs_nffree++;
1452                                 }
1453                                 if(!(bp[i].flags & GFS_FL_LAST)) {
1454                                         frag_adjust(bp[i].new*sblock.fs_frag,1);
1455                                 }
1456                                 
1457                         }
1458
1459                         /*
1460                          * Special handling is required if this is the last
1461                          * block to be relocated.
1462                          */
1463                         if(bp[i].flags & GFS_FL_LAST) {
1464                                 frag_adjust(bp[i].new*sblock.fs_frag, 1);
1465                                 frag_adjust(bp[i].old*sblock.fs_frag, -1);
1466                                 for(f=dupper;
1467                                     f<roundup(dupper, sblock.fs_frag);
1468                                     f++) {
1469                                         if(isclr(cg_blksfree(&acg), f)) {
1470                                                 setbit(cg_blksfree(&acg), f);
1471                                                 acg.cg_cs.cs_nffree++;
1472                                                 sblock.fs_cstotal.cs_nffree++;
1473                                         }
1474                                 }
1475                                 frag_adjust(bp[i].old*sblock.fs_frag, 1);
1476                         }
1477
1478                         /*
1479                          * !!! Attach the cylindergroup offset here. 
1480                          */
1481                         bp[i].old+=cbase/sblock.fs_frag;
1482                         bp[i].new+=cbase/sblock.fs_frag;
1483
1484                         /*
1485                          * Copy the content of the block.
1486                          */
1487                         /*
1488                          * XXX  Here we will have to implement a copy on write
1489                          *      in the case we have any active snapshots.
1490                          */
1491                         rdfs(fsbtodb(&sblock, bp[i].old*sblock.fs_frag),
1492                             (size_t)sblock.fs_bsize, (void *)&ablk, fsi);
1493                         wtfs(fsbtodb(&sblock, bp[i].new*sblock.fs_frag),
1494                             (size_t)sblock.fs_bsize, (void *)&ablk, fso, Nflag);
1495                         DBG_DUMP_HEX(&sblock,
1496                             "copied full block",
1497                             (unsigned char *)&ablk);
1498
1499                         DBG_PRINT2("scg (%d->%d) block relocated\n",
1500                             bp[i].old,
1501                             bp[i].new);
1502                 }
1503
1504                 /*
1505                  * Now we have to update all references to any fragment which
1506                  * belongs  to any block relocated. We iterate now  over  all
1507                  * cylinder  groups,  within those over all non  zero  length 
1508                  * inodes.
1509                  */
1510                 for(cylno=0; cylno<osblock.fs_ncg; cylno++) {
1511                         DBG_PRINT1("scg doing cg (%d)\n",
1512                             cylno);
1513                         for(inc=osblock.fs_ipg-1 ; inc>=0 ; inc--) {
1514                                 updrefs(cylno, (ino_t)inc, bp, fsi, fso, Nflag);
1515                         }
1516                 }
1517
1518                 /*
1519                  * All inodes are checked, now make sure the number of
1520                  * references found make sense.
1521                  */
1522                 for(i=0; i<ind; i++) {
1523                         if(!bp[i].found || (bp[i].found>sblock.fs_frag)) {
1524                                 warnx("error: %d refs found for block %d.",
1525                                     bp[i].found, bp[i].old);
1526                         }
1527
1528                 }
1529         }
1530         /*
1531          * The following statistics are not changed here:
1532          *     sblock.fs_cstotal.cs_ndir
1533          *     sblock.fs_cstotal.cs_nifree
1534          * The following statistics were already updated on the fly:
1535          *     sblock.fs_cstotal.cs_nffree
1536          *     sblock.fs_cstotal.cs_nbfree
1537          * As the statistics for this cylinder group are ready, copy it to
1538          * the summary information array.
1539          */
1540
1541         *cs = acg.cg_cs;
1542
1543         /*
1544          * Write summary cylinder group back to disk.
1545          */
1546         wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)), (size_t)sblock.fs_cgsize,
1547             (void *)&acg, fso, Nflag);
1548         DBG_PRINT0("scg written\n");
1549         DBG_DUMP_CG(&sblock,
1550             "new summary cg",
1551             &acg);
1552
1553         DBG_LEAVE;
1554         return;
1555 }
1556
1557 /* ************************************************************** rdfs ***** */
1558 /*
1559  * Here we read some block(s) from disk.
1560  */
1561 static void
1562 rdfs(daddr_t bno, size_t size, void *bf, int fsi)
1563 {
1564         DBG_FUNC("rdfs")
1565         ssize_t n;
1566
1567         DBG_ENTER;
1568
1569         if (lseek(fsi, (off_t)bno * DEV_BSIZE, 0) < 0) {
1570                 err(33, "rdfs: seek error: %ld", (long)bno);
1571         }
1572         n = read(fsi, bf, size);
1573         if (n != (ssize_t)size) {
1574                 err(34, "rdfs: read error: %ld", (long)bno);
1575         }
1576
1577         DBG_LEAVE;
1578         return;
1579 }
1580
1581 /* ************************************************************** wtfs ***** */
1582 /*
1583  * Here we write some block(s) to disk.
1584  */
1585 static void
1586 wtfs(daddr_t bno, size_t size, void *bf, int fso, unsigned int Nflag)
1587 {
1588         DBG_FUNC("wtfs")
1589         ssize_t n;
1590
1591         DBG_ENTER;
1592
1593         if (Nflag) {
1594                 DBG_LEAVE;
1595                 return;
1596         }
1597         if (lseek(fso, (off_t)bno * DEV_BSIZE, SEEK_SET) < 0) {
1598                 err(35, "wtfs: seek error: %ld", (long)bno);
1599         }
1600         n = write(fso, bf, size);
1601         if (n != (ssize_t)size) {
1602                 err(36, "wtfs: write error: %ld", (long)bno);
1603         }
1604
1605         DBG_LEAVE;
1606         return;
1607 }
1608
1609 /* ************************************************************* alloc ***** */
1610 /*
1611  * Here we allocate a free block in the current cylinder group. It is assumed,
1612  * that  acg contains the current cylinder group. As we may take a block  from
1613  * somewhere in the filesystem we have to handle cluster summary here.
1614  */
1615 static daddr_t
1616 alloc(void)
1617 {
1618         DBG_FUNC("alloc")
1619         daddr_t d, blkno;
1620         int     lcs1, lcs2;
1621         int     l;
1622         int     csmin, csmax;
1623         int     dlower, dupper, dmax;
1624
1625         DBG_ENTER;
1626
1627         if (acg.cg_magic != CG_MAGIC) {
1628                 warnx("acg: bad magic number");
1629                 DBG_LEAVE;
1630                 return (0);
1631         }
1632         if (acg.cg_cs.cs_nbfree == 0) {
1633                 warnx("error: cylinder group ran out of space");
1634                 DBG_LEAVE;
1635                 return (0);
1636         }
1637         /*
1638          * We start seeking for free blocks only from the space available after
1639          * the  end of the new grown cylinder summary. Otherwise we allocate  a
1640          * block here which we have to relocate a couple of seconds later again
1641          * again, and we are not prepared to to this anyway.
1642          */
1643         blkno=-1;
1644         dlower=cgsblock(&sblock, acg.cg_cgx)-cgbase(&sblock, acg.cg_cgx);
1645         dupper=cgdmin(&sblock, acg.cg_cgx)-cgbase(&sblock, acg.cg_cgx);
1646         dmax=cgbase(&sblock, acg.cg_cgx)+sblock.fs_fpg;
1647         if (dmax > sblock.fs_size) {
1648                 dmax = sblock.fs_size;
1649         }
1650         dmax-=cgbase(&sblock, acg.cg_cgx); /* retransform into cg */
1651         csmin=sblock.fs_csaddr-cgbase(&sblock, acg.cg_cgx);
1652         csmax=csmin+howmany(sblock.fs_cssize, sblock.fs_fsize);
1653         DBG_PRINT3("seek range: dl=%d, du=%d, dm=%d\n",
1654             dlower,
1655             dupper,
1656             dmax);
1657         DBG_PRINT2("range cont: csmin=%d, csmax=%d\n",
1658             csmin,
1659             csmax);
1660
1661         for(d=0; (d<dlower && blkno==-1); d+=sblock.fs_frag) {
1662                 if(d>=csmin && d<=csmax) {
1663                         continue;
1664                 }
1665                 if(isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock,
1666                     d))) {
1667                         blkno = fragstoblks(&sblock, d);/* Yeah found a block */
1668                         break;
1669                 }
1670         }
1671         for(d=dupper; (d<dmax && blkno==-1); d+=sblock.fs_frag) {
1672                 if(d>=csmin && d<=csmax) {
1673                         continue;
1674                 }
1675                 if(isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock,
1676                     d))) {
1677                         blkno = fragstoblks(&sblock, d);/* Yeah found a block */
1678                         break;
1679                 }
1680         }
1681         if(blkno==-1) {
1682                 warnx("internal error: couldn't find promised block in cg");
1683                 DBG_LEAVE;
1684                 return (0);
1685         }
1686
1687         /*
1688          * This is needed if the block was found already in the first loop.
1689          */
1690         d=blkstofrags(&sblock, blkno);
1691
1692         clrblock(&sblock, cg_blksfree(&acg), blkno);
1693         if (sblock.fs_contigsumsize > 0) {
1694                 /*
1695                  * Handle the cluster allocation bitmap.
1696                  */
1697                 clrbit(cg_clustersfree(&acg), blkno);
1698                 /*
1699                  * We  possibly have split a cluster here, so we have  to  do
1700                  * recalculate the sizes of the remaining cluster halves now,
1701                  * and use them for updating the cluster summary information.
1702                  *
1703                  * Lets start with the blocks before our allocated block ...
1704                  */
1705                 for(lcs1=0, l=blkno-1; lcs1<sblock.fs_contigsumsize;
1706                     l--, lcs1++ ) {
1707                         if(isclr(cg_clustersfree(&acg),l)){
1708                                 break;
1709                         }
1710                 }
1711                 /*
1712                  * ... and continue with the blocks right after our allocated
1713                  * block.
1714                  */
1715                 for(lcs2=0, l=blkno+1; lcs2<sblock.fs_contigsumsize;
1716                     l++, lcs2++ ) {
1717                         if(isclr(cg_clustersfree(&acg),l)){
1718                                 break;
1719                         }
1720                 }
1721
1722                 /*
1723                  * Now update all counters.
1724                  */
1725                 cg_clustersum(&acg)[MIN(lcs1+lcs2+1,sblock.fs_contigsumsize)]--;
1726                 if(lcs1) {
1727                         cg_clustersum(&acg)[lcs1]++;
1728                 }
1729                 if(lcs2) {
1730                         cg_clustersum(&acg)[lcs2]++;
1731                 }
1732         }
1733         /*
1734          * Update all statistics based on blocks.
1735          */
1736         acg.cg_cs.cs_nbfree--;
1737         sblock.fs_cstotal.cs_nbfree--;
1738         cg_blktot(&acg)[cbtocylno(&sblock, d)]--;
1739         cg_blks(&sblock, &acg, cbtocylno(&sblock, d))[cbtorpos(&sblock, d)]--;
1740
1741         DBG_LEAVE;
1742         return (d);
1743 }
1744
1745 /* *********************************************************** isblock ***** */
1746 /*
1747  * Here  we check if all frags of a block are free. For more details  again
1748  * please see the source of newfs(8), as this function is taken over almost
1749  * unchanged.
1750  */
1751 static int
1752 isblock(struct fs *fs, unsigned char *cp, int h)
1753 {
1754         DBG_FUNC("isblock")
1755         unsigned char   mask;
1756
1757         DBG_ENTER;
1758
1759         switch (fs->fs_frag) {
1760         case 8:
1761                 DBG_LEAVE;
1762                 return (cp[h] == 0xff);
1763         case 4:
1764                 mask = 0x0f << ((h & 0x1) << 2);
1765                 DBG_LEAVE;
1766                 return ((cp[h >> 1] & mask) == mask);
1767         case 2:
1768                 mask = 0x03 << ((h & 0x3) << 1);
1769                 DBG_LEAVE;
1770                 return ((cp[h >> 2] & mask) == mask);
1771         case 1:
1772                 mask = 0x01 << (h & 0x7);
1773                 DBG_LEAVE;
1774                 return ((cp[h >> 3] & mask) == mask);
1775         default:
1776                 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1777                 DBG_LEAVE;
1778                 return (0);
1779         }
1780 }
1781
1782 /* ********************************************************** clrblock ***** */
1783 /*
1784  * Here we allocate a complete block in the block map. For more details again
1785  * please  see the source of newfs(8), as this function is taken over  almost
1786  * unchanged.
1787  */
1788 static void
1789 clrblock(struct fs *fs, unsigned char *cp, int h)
1790 {
1791         DBG_FUNC("clrblock")
1792
1793         DBG_ENTER;
1794
1795         switch ((fs)->fs_frag) {
1796         case 8:
1797                 cp[h] = 0;
1798                 break;
1799         case 4:
1800                 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1801                 break;
1802         case 2:
1803                 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1804                 break;
1805         case 1:
1806                 cp[h >> 3] &= ~(0x01 << (h & 0x7));
1807                 break;
1808         default:
1809                 warnx("clrblock bad fs_frag %d", fs->fs_frag);
1810                 break;
1811         }
1812
1813         DBG_LEAVE;
1814         return;
1815 }
1816
1817 /* ********************************************************** setblock ***** */
1818 /*
1819  * Here we free a complete block in the free block map. For more details again
1820  * please  see the source of newfs(8), as this function is taken  over  almost
1821  * unchanged.
1822  */
1823 static void
1824 setblock(struct fs *fs, unsigned char *cp, int h)
1825 {
1826         DBG_FUNC("setblock")
1827
1828         DBG_ENTER;
1829
1830         switch (fs->fs_frag) {
1831         case 8:
1832                 cp[h] = 0xff;
1833                 break;
1834         case 4:
1835                 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1836                 break;
1837         case 2:
1838                 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1839                 break;
1840         case 1:
1841                 cp[h >> 3] |= (0x01 << (h & 0x7));
1842                 break;
1843         default:
1844                 warnx("setblock bad fs_frag %d", fs->fs_frag);
1845                 break;
1846         }
1847
1848         DBG_LEAVE;
1849         return;
1850 }
1851
1852 /* ************************************************************ ginode ***** */
1853 /*
1854  * This function provides access to an individual inode. We find out in which
1855  * block  the  requested inode is located, read it from disk if  needed,  and
1856  * return  the pointer into that block. We maintain a cache of one  block  to
1857  * not  read the same block again and again if we iterate linearly  over  all
1858  * inodes.
1859  */
1860 static struct dinode *
1861 ginode(ino_t inumber, int fsi, int cg)
1862 {
1863         DBG_FUNC("ginode")
1864         ufs_daddr_t     iblk;
1865         static ino_t    startinum=0;    /* first inode in cached block */
1866         struct dinode   *pi;
1867
1868         DBG_ENTER;
1869
1870         pi=(struct dinode *)(void *)ablk;
1871         inumber+=(cg * sblock.fs_ipg);
1872         if (startinum == 0 || inumber < startinum ||
1873             inumber >= startinum + INOPB(&sblock)) {
1874                 /*
1875                  * The block needed is not cached, so we have to read it from
1876                  * disk now.
1877                  */
1878                 iblk = ino_to_fsba(&sblock, inumber);
1879                 in_src=fsbtodb(&sblock, iblk);
1880                 rdfs(in_src, (size_t)sblock.fs_bsize, (void *)&ablk, fsi);
1881                 startinum = (inumber / INOPB(&sblock)) * INOPB(&sblock);
1882         }
1883
1884         DBG_LEAVE;
1885         return (&(pi[inumber % INOPB(&sblock)]));
1886 }
1887
1888 /* ****************************************************** charsperline ***** */
1889 /*
1890  * Figure out how many lines our current terminal has. For more details again
1891  * please  see the source of newfs(8), as this function is taken over  almost
1892  * unchanged.
1893  */
1894 static int
1895 charsperline(void)
1896 {
1897         DBG_FUNC("charsperline")
1898         int     columns;
1899         char    *cp;
1900         struct winsize  ws;
1901
1902         DBG_ENTER;
1903
1904         columns = 0;
1905         if (ioctl(0, TIOCGWINSZ, &ws) != -1) {
1906                 columns = ws.ws_col;
1907         }
1908         if (columns == 0 && (cp = getenv("COLUMNS"))) {
1909                 columns = atoi(cp);
1910         }
1911         if (columns == 0) {
1912                 columns = 80;   /* last resort */
1913         }
1914
1915         DBG_LEAVE;
1916         return columns;
1917 }
1918
1919 /* ************************************************************** main ***** */
1920 /*
1921  * growfs(8)  is a utility which allows to increase the size of  an  existing
1922  * ufs filesystem. Currently this can only be done on unmounted file  system.
1923  * It  recognizes some command line options to specify the new desired  size,
1924  * and  it does some basic checkings. The old file system size is  determined
1925  * and  after some more checks like we can really access the new  last  block
1926  * on the disk etc. we calculate the new parameters for the superblock. After
1927  * having  done  this we just call growfs() which will do  the  work.  Before
1928  * we finish the only thing left is to update the disklabel.
1929  * We still have to provide support for snapshots. Therefore we first have to
1930  * understand  what data structures are always replicated in the snapshot  on
1931  * creation,  for all other blocks we touch during our procedure, we have  to
1932  * keep the old blocks unchanged somewhere available for the snapshots. If we
1933  * are lucky, then we only have to handle our blocks to be relocated in  that
1934  * way.
1935  * Also  we  have to consider in what order we actually update  the  critical
1936  * data structures of the filesystem to make sure, that in case of a disaster
1937  * fsck(8) is still able to restore any lost data.
1938  * The  foreseen last step then will be to provide for growing  even  mounted
1939  * file  systems. There we have to extend the mount() system call to  provide
1940  * userland access to the file system locking facility.
1941  */
1942 int
1943 main(int argc, char **argv)
1944 {
1945         DBG_FUNC("main")
1946         char    *device, *special, *cp;
1947         char    ch;
1948         unsigned int    size=0;
1949         size_t  len;
1950         unsigned int    Nflag=0;
1951         int     ExpertFlag=0;
1952         struct stat     st;
1953         struct disklabel        *lp;
1954         struct partition        *pp;
1955         int     fsi,fso;
1956         char    reply[5];
1957 #ifdef FSMAXSNAP
1958         int     j;
1959 #endif /* FSMAXSNAP */
1960
1961         DBG_ENTER;
1962
1963         while((ch=getopt(argc, argv, "Ns:vy")) != -1) {
1964                 switch(ch) {
1965                 case 'N':
1966                         Nflag=1;
1967                         break;
1968                 case 's':
1969                         size=(size_t)atol(optarg);
1970                         if(size<1) {
1971                                 usage();
1972                         }
1973                         break;
1974                 case 'v': /* for compatibility to newfs */
1975                         break;
1976                 case 'y':
1977                         ExpertFlag=1;
1978                         break;
1979                 case '?':
1980                         /* FALLTHROUGH */
1981                 default:
1982                         usage();
1983                 }
1984         }
1985         argc -= optind;
1986         argv += optind;
1987
1988         if(argc != 1) {
1989                 usage();
1990         }
1991         device=*argv;
1992
1993         /*
1994          * Now try to guess the (raw)device name.
1995          */
1996         if (0 == strrchr(device, '/')) {
1997                 /*
1998                  * No path prefix was given, so try in that order:
1999                  *     /dev/r%s
2000                  *     /dev/%s
2001                  *     /dev/vinum/r%s
2002                  *     /dev/vinum/%s.
2003                  * 
2004                  * FreeBSD now doesn't distinguish between raw and  block
2005                  * devices any longer, but it should still work this way.
2006                  */
2007                 len=strlen(device)+strlen(_PATH_DEV)+2+strlen("vinum/");
2008                 special=(char *)malloc(len);
2009                 if(special == NULL) {
2010                         errx(1, "malloc failed");
2011                 }
2012                 snprintf(special, len, "%sr%s", _PATH_DEV, device);
2013                 if (stat(special, &st) == -1) {
2014                         snprintf(special, len, "%s%s", _PATH_DEV, device);
2015                         if (stat(special, &st) == -1) {
2016                                 snprintf(special, len, "%svinum/r%s",
2017                                     _PATH_DEV, device);
2018                                 if (stat(special, &st) == -1) {
2019                                         /* For now this is the 'last resort' */
2020                                         snprintf(special, len, "%svinum/%s",
2021                                             _PATH_DEV, device);
2022                                 }
2023                         }
2024                 }
2025                 device = special;
2026         }
2027
2028         /*
2029          * Try to access our devices for writing ...
2030          */
2031         if (Nflag) {
2032                 fso = -1;
2033         } else {
2034                 fso = open(device, O_WRONLY);
2035                 if (fso < 0) {
2036                         err(1, "%s", device);
2037                 }
2038         }
2039
2040         /*
2041          * ... and reading.
2042          */
2043         fsi = open(device, O_RDONLY);
2044         if (fsi < 0) {
2045                 err(1, "%s", device);
2046         }
2047
2048         /*
2049          * Try  to read a label and gess the slice if not  specified.  This
2050          * code  should guess the right thing and avaid to bother the  user
2051          * user with the task of specifying the option -v on vinum volumes.
2052          */
2053         cp=device+strlen(device)-1;
2054         lp = get_disklabel(fsi);
2055         if(lp->d_type == DTYPE_VINUM) {
2056                 pp = &lp->d_partitions[0];
2057         } else if (isdigit(*cp)) {
2058                 pp = &lp->d_partitions[2];
2059         } else if (*cp>='a' && *cp<='h') {
2060                 pp = &lp->d_partitions[*cp - 'a'];
2061         } else {
2062                 errx(1, "unknown device");
2063         }
2064
2065         /*
2066          * Check if that partition looks suited for growing a file system.
2067          */
2068         if (pp->p_size < 1) {
2069                 errx(1, "partition is unavailable");
2070         }
2071         if (pp->p_fstype != FS_BSDFFS) {
2072                 errx(1, "partition not 4.2BSD");
2073         }
2074
2075         /*
2076          * Read the current superblock, and take a backup.
2077          */
2078         rdfs((daddr_t)(SBOFF/DEV_BSIZE), (size_t)SBSIZE, (void *)&(osblock),
2079             fsi);
2080         if (osblock.fs_magic != FS_MAGIC) {
2081                 errx(1, "superblock not recognized");
2082         }
2083         memcpy((void *)&fsun1, (void *)&fsun2, sizeof(fsun2));
2084
2085         DBG_OPEN("/tmp/growfs.debug"); /* already here we need a superblock */
2086         DBG_DUMP_FS(&sblock,
2087             "old sblock");
2088
2089         /*
2090          * Determine size to grow to. Default to the full size specified in
2091          * the disk label.
2092          */
2093         sblock.fs_size = dbtofsb(&osblock, pp->p_size);
2094         if (size != 0) {
2095                 if (size > pp->p_size){
2096                         errx(1, "There is not enough space (%d < %d)",
2097                             pp->p_size, size);
2098                 }
2099                 sblock.fs_size = dbtofsb(&osblock, size);       
2100         }
2101
2102         /*
2103          * Are we really growing ?
2104          */
2105         if(osblock.fs_size >= sblock.fs_size) {
2106                 errx(1, "we are not growing (%d->%d)", osblock.fs_size,
2107                     sblock.fs_size);
2108         }
2109
2110
2111 #ifdef FSMAXSNAP
2112         /*
2113          * Check if we find an active snapshot.
2114          */
2115         if(ExpertFlag == 0) {
2116                 for(j=0; j<FSMAXSNAP; j++) {
2117                         if(sblock.fs_snapinum[j]) {
2118                                 errx(1, "active snapshot found in filesystem\n"
2119                                     "   please remove all snapshots before "
2120                                     "using growfs\n");
2121                         }
2122                         if(!sblock.fs_snapinum[j]) { /* list is dense */
2123                                 break;
2124                         }
2125                 }
2126         }
2127 #endif
2128
2129         if (ExpertFlag == 0 && Nflag == 0) {
2130                 printf("We strongly recommend you to make a backup "
2131                     "before growing the Filesystem\n\n"
2132                     " Did you backup your data (Yes/No) ? ");
2133                 fgets(reply, (int)sizeof(reply), stdin);
2134                 if (strcmp(reply, "Yes\n")){
2135                         printf("\n Nothing done \n");
2136                         exit (0);
2137                 }               
2138         }
2139
2140         printf("new filesystemsize is: %d frags\n", sblock.fs_size);
2141
2142         /*
2143          * Try to access our new last block in the filesystem. Even if we
2144          * later on realize we have to abort our operation, on that block
2145          * there should be no data, so we can't destroy something yet.
2146          */
2147         wtfs((daddr_t)pp->p_size-1, (size_t)DEV_BSIZE, (void *)&sblock, fso,
2148             Nflag);
2149
2150         /*
2151          * Now calculate new superblock values and check for reasonable
2152          * bound for new file system size:
2153          *     fs_size:    is derived from label or user input
2154          *     fs_dsize:   should get updated in the routines creating or
2155          *                 updating the cylinder groups on the fly
2156          *     fs_cstotal: should get updated in the routines creating or
2157          *                 updating the cylinder groups
2158          */
2159
2160         /*
2161          * Update the number of cylinders in the filesystem.
2162          */
2163         sblock.fs_ncyl = sblock.fs_size * NSPF(&sblock) / sblock.fs_spc;
2164         if (sblock.fs_size * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) {
2165                 sblock.fs_ncyl++;
2166         }
2167
2168         /*
2169          * Update the number of cylinder groups in the filesystem.
2170          */
2171         sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg;
2172         if (sblock.fs_ncyl % sblock.fs_cpg) {
2173                 sblock.fs_ncg++;
2174         }
2175
2176         if ((sblock.fs_size - (sblock.fs_ncg-1) * sblock.fs_fpg) <
2177             sblock.fs_fpg && cgdmin(&sblock, (sblock.fs_ncg-1))-
2178             cgbase(&sblock, (sblock.fs_ncg-1)) > (sblock.fs_size -
2179             (sblock.fs_ncg-1) * sblock.fs_fpg )) {
2180                 /*
2181                  * The space in the new last cylinder group is too small,
2182                  * so revert back.
2183                  */
2184                 sblock.fs_ncg--;
2185 #if 1 /* this is a bit more safe */
2186                 sblock.fs_ncyl = sblock.fs_ncg * sblock.fs_cpg;
2187 #else
2188                 sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
2189 #endif
2190                 sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
2191                 printf( "Warning: %d sector(s) cannot be allocated.\n",
2192                     (sblock.fs_size-(sblock.fs_ncg)*sblock.fs_fpg) *
2193                     NSPF(&sblock));
2194                 sblock.fs_size = sblock.fs_ncyl * sblock.fs_spc / NSPF(&sblock);
2195         }
2196
2197         /*
2198          * Update the space for the cylinder group summary information in the
2199          * respective cylinder group data area.
2200          */
2201         sblock.fs_cssize =
2202             fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
2203         
2204         if(osblock.fs_size >= sblock.fs_size) {
2205                 errx(1, "not enough new space");
2206         }
2207
2208         DBG_PRINT0("sblock calculated\n");
2209
2210         /*
2211          * Ok, everything prepared, so now let's do the tricks.
2212          */
2213         growfs(fsi, fso, Nflag);
2214
2215         /*
2216          * Update the disk label.
2217          */
2218         pp->p_fsize = sblock.fs_fsize;
2219         pp->p_frag = sblock.fs_frag;
2220         pp->p_cpg = sblock.fs_cpg;
2221
2222         return_disklabel(fso, lp, Nflag);
2223         DBG_PRINT0("label rewritten\n");
2224
2225         close(fsi);
2226         if(fso>-1) close(fso);
2227
2228         DBG_CLOSE;
2229
2230         DBG_LEAVE;
2231         return 0;
2232 }
2233
2234 /* ************************************************** return_disklabel ***** */
2235 /*
2236  * Write the updated disklabel back to disk.
2237  */
2238 static void
2239 return_disklabel(int fd, struct disklabel *lp, unsigned int Nflag)
2240 {
2241         DBG_FUNC("return_disklabel")
2242         u_short sum;
2243         u_short *ptr;
2244
2245         DBG_ENTER;
2246
2247         if(!lp) {
2248                 DBG_LEAVE;
2249                 return;
2250         }
2251         if(!Nflag) {
2252                 lp->d_checksum=0;
2253                 sum = 0;
2254                 ptr=(u_short *)lp;
2255
2256                 /*
2257                  * recalculate checksum
2258                  */
2259                 while(ptr < (u_short *)&lp->d_partitions[lp->d_npartitions]) {
2260                         sum ^= *ptr++;
2261                 }
2262                 lp->d_checksum=sum;
2263
2264                 if (ioctl(fd, DIOCWDINFO, (char *)lp) < 0) {
2265                         errx(1, "DIOCWDINFO failed");
2266                 }
2267         }
2268         free(lp);
2269
2270         DBG_LEAVE;
2271         return ;
2272 }
2273
2274 /* ***************************************************** get_disklabel ***** */
2275 /*
2276  * Read the disklabel from disk.
2277  */
2278 static struct disklabel *
2279 get_disklabel(int fd)
2280 {
2281         DBG_FUNC("get_disklabel")
2282         static struct   disklabel *lab;
2283
2284         DBG_ENTER;
2285
2286         lab=(struct disklabel *)malloc(sizeof(struct disklabel));
2287         if (!lab) {
2288                 errx(1, "malloc failed");
2289         }
2290         if (ioctl(fd, DIOCGDINFO, (char *)lab) < 0) {
2291                 errx(1, "DIOCGDINFO failed");
2292         }
2293
2294         DBG_LEAVE;
2295         return (lab);
2296 }
2297
2298
2299 /* ************************************************************* usage ***** */
2300 /*
2301  * Dump a line of usage.
2302  */
2303 static void
2304 usage(void)
2305 {       
2306         DBG_FUNC("usage")
2307
2308         DBG_ENTER;
2309
2310         fprintf(stderr, "usage: growfs [-Ny] [-s size] special\n");
2311
2312         DBG_LEAVE;
2313         exit(1);
2314 }
2315
2316 /* *********************************************************** updclst ***** */
2317 /*
2318  * This updates most paramters and the bitmap related to cluster. We have to
2319  * assume, that sblock, osblock, acg are set up.
2320  */
2321 static void
2322 updclst(int block)
2323 {       
2324         DBG_FUNC("updclst")
2325         static int      lcs=0;
2326
2327         DBG_ENTER;
2328
2329         if(sblock.fs_contigsumsize < 1) { /* no clustering */
2330                 return;
2331         }
2332         /*
2333          * update cluster allocation map
2334          */
2335         setbit(cg_clustersfree(&acg), block);
2336
2337         /*
2338          * update cluster summary table
2339          */
2340         if(!lcs) {
2341                 /*
2342                  * calculate size for the trailing cluster
2343                  */
2344                 for(block--; lcs<sblock.fs_contigsumsize; block--, lcs++ ) {
2345                         if(isclr(cg_clustersfree(&acg), block)){
2346                                 break;
2347                         }
2348                 }
2349         } 
2350         if(lcs < sblock.fs_contigsumsize) {
2351                 if(lcs) {
2352                         cg_clustersum(&acg)[lcs]--;
2353                 }
2354                 lcs++;
2355                 cg_clustersum(&acg)[lcs]++;
2356         }
2357
2358         DBG_LEAVE;
2359         return;
2360 }
2361
2362 /* *********************************************************** updrefs ***** */
2363 /*
2364  * This updates all references to relocated blocks for the given inode.  The
2365  * inode is given as number within the cylinder group, and the number of the
2366  * cylinder group.
2367  */
2368 static void
2369 updrefs(int cg, ino_t in, struct gfs_bpp *bp, int fsi, int fso, unsigned int
2370     Nflag)
2371 {       
2372         DBG_FUNC("updrefs")
2373         unsigned int    ictr, ind2ctr, ind3ctr;
2374         ufs_daddr_t     *iptr, *ind2ptr, *ind3ptr;
2375         struct dinode   *ino;
2376         int     remaining_blocks;
2377
2378         DBG_ENTER;
2379
2380         /*
2381          * XXX We should skip unused inodes even from beeing read from disk
2382          *     here by using the bitmap.
2383          */
2384         ino=ginode(in, fsi, cg);
2385         if(!((ino->di_mode & IFMT)==IFDIR || (ino->di_mode & IFMT)==IFREG ||
2386             (ino->di_mode & IFMT)==IFLNK)) {
2387                 DBG_LEAVE;
2388                 return; /* only check DIR, FILE, LINK */
2389         }
2390         if(((ino->di_mode & IFMT)==IFLNK) && (ino->di_size<MAXSYMLINKLEN)) {
2391                 DBG_LEAVE;
2392                 return; /* skip short symlinks */
2393         }
2394         if(!ino->di_size) {
2395                 DBG_LEAVE;
2396                 return; /* skip empty file */
2397         }
2398         if(!ino->di_blocks) {
2399                 DBG_LEAVE;
2400                 return; /* skip empty swiss cheesy file or old fastlink */
2401         }
2402         DBG_PRINT2("scg checking inode (%d in %d)\n",
2403             in,
2404             cg);
2405
2406         /*
2407          * Start checking all direct blocks.
2408          */
2409         remaining_blocks=howmany(ino->di_size, sblock.fs_bsize);
2410         for(ictr=0; ictr < MIN(NDADDR, (unsigned int)remaining_blocks);
2411             ictr++) {
2412                 iptr=&(ino->di_db[ictr]);
2413                 if(*iptr) {
2414                         cond_bl_upd(iptr, bp, GFS_PS_INODE, fso, Nflag);
2415                 }
2416         }
2417         DBG_PRINT0("~~scg direct blocks checked\n");
2418
2419         remaining_blocks-=NDADDR;
2420         if(remaining_blocks<0) {
2421                 DBG_LEAVE;
2422                 return;
2423         }
2424         if(ino->di_ib[0]) {
2425                 /*
2426                  * Start checking first indirect block
2427                  */
2428                 cond_bl_upd(&(ino->di_ib[0]), bp, GFS_PS_INODE, fso, Nflag);
2429                 i1_src=fsbtodb(&sblock, ino->di_ib[0]);
2430                 rdfs(i1_src, (size_t)sblock.fs_bsize, (void *)&i1blk, fsi);
2431                 for(ictr=0; ictr < MIN(howmany(sblock.fs_bsize,
2432                     sizeof(ufs_daddr_t)), (unsigned int)remaining_blocks);
2433                     ictr++) {
2434                         iptr=&((ufs_daddr_t *)(void *)&i1blk)[ictr];
2435                         if(*iptr) {
2436                                 cond_bl_upd(iptr, bp, GFS_PS_IND_BLK_LVL1,
2437                                     fso, Nflag);
2438                         }
2439                 }
2440         }
2441         DBG_PRINT0("scg indirect_1 blocks checked\n");
2442
2443         remaining_blocks-= howmany(sblock.fs_bsize, sizeof(ufs_daddr_t));
2444         if(remaining_blocks<0) {
2445                 DBG_LEAVE;
2446                 return;
2447         }
2448         if(ino->di_ib[1]) {
2449                 /*
2450                  * Start checking second indirect block
2451                  */
2452                 cond_bl_upd(&(ino->di_ib[1]), bp, GFS_PS_INODE, fso, Nflag);
2453                 i2_src=fsbtodb(&sblock, ino->di_ib[1]);
2454                 rdfs(i2_src, (size_t)sblock.fs_bsize, (void *)&i2blk, fsi);
2455                 for(ind2ctr=0; ind2ctr < howmany(sblock.fs_bsize,
2456                     sizeof(ufs_daddr_t)); ind2ctr++) {
2457                         ind2ptr=&((ufs_daddr_t *)(void *)&i2blk)[ind2ctr];
2458                         if(!*ind2ptr) {
2459                                 continue;
2460                         }
2461                         cond_bl_upd(ind2ptr, bp, GFS_PS_IND_BLK_LVL2, fso,
2462                             Nflag);
2463                         i1_src=fsbtodb(&sblock, *ind2ptr);
2464                         rdfs(i1_src, (size_t)sblock.fs_bsize, (void *)&i1blk,
2465                             fsi);
2466                         for(ictr=0; ictr<MIN(howmany((unsigned int)
2467                             sblock.fs_bsize, sizeof(ufs_daddr_t)),
2468                             (unsigned int)remaining_blocks); ictr++) {
2469                                 iptr=&((ufs_daddr_t *)(void *)&i1blk)[ictr];
2470                                 if(*iptr) {
2471                                         cond_bl_upd(iptr, bp,
2472                                             GFS_PS_IND_BLK_LVL1, fso, Nflag);
2473                                 }
2474                         }
2475                 }
2476         }
2477         DBG_PRINT0("scg indirect_2 blocks checked\n");
2478
2479 #define SQUARE(a) ((a)*(a))
2480         remaining_blocks-=SQUARE(howmany(sblock.fs_bsize, sizeof(ufs_daddr_t)));
2481 #undef SQUARE
2482         if(remaining_blocks<0) {
2483                 DBG_LEAVE;
2484                 return;
2485         }
2486                         
2487         if(ino->di_ib[2]) {
2488                 /*
2489                  * Start checking third indirect block
2490                  */
2491                 cond_bl_upd(&(ino->di_ib[2]), bp, GFS_PS_INODE, fso, Nflag);
2492                 i3_src=fsbtodb(&sblock, ino->di_ib[2]);
2493                 rdfs(i3_src, (size_t)sblock.fs_bsize, (void *)&i3blk, fsi);
2494                 for(ind3ctr=0; ind3ctr < howmany(sblock.fs_bsize,
2495                     sizeof(ufs_daddr_t)); ind3ctr ++) {
2496                         ind3ptr=&((ufs_daddr_t *)(void *)&i3blk)[ind3ctr];
2497                         if(!*ind3ptr) {
2498                                 continue;
2499                         }
2500                         cond_bl_upd(ind3ptr, bp, GFS_PS_IND_BLK_LVL3, fso,
2501                             Nflag);
2502                         i2_src=fsbtodb(&sblock, *ind3ptr);
2503                         rdfs(i2_src, (size_t)sblock.fs_bsize, (void *)&i2blk,
2504                             fsi);
2505                         for(ind2ctr=0; ind2ctr < howmany(sblock.fs_bsize,
2506                             sizeof(ufs_daddr_t)); ind2ctr ++) {
2507                                 ind2ptr=&((ufs_daddr_t *)(void *)&i2blk)
2508                                     [ind2ctr];
2509                                 if(!*ind2ptr) {
2510                                         continue;
2511                                 }
2512                                 cond_bl_upd(ind2ptr, bp, GFS_PS_IND_BLK_LVL2,
2513                                     fso, Nflag);
2514                                 i1_src=fsbtodb(&sblock, *ind2ptr);
2515                                 rdfs(i1_src, (size_t)sblock.fs_bsize,
2516                                     (void *)&i1blk, fsi);
2517                                 for(ictr=0; ictr < MIN(howmany(sblock.fs_bsize,
2518                                     sizeof(ufs_daddr_t)),
2519                                     (unsigned int)remaining_blocks); ictr++) {
2520                                         iptr=&((ufs_daddr_t *)(void *)&i1blk)
2521                                             [ictr];
2522                                         if(*iptr) {
2523                                                 cond_bl_upd(iptr, bp,
2524                                                     GFS_PS_IND_BLK_LVL1, fso,
2525                                                     Nflag);
2526                                         }
2527                                 }
2528                         }
2529                 }
2530         }
2531
2532         DBG_PRINT0("scg indirect_3 blocks checked\n");
2533
2534         DBG_LEAVE;
2535         return;
2536 }
2537