Update the bktr driver to match the current state of FreeBSD-current,
[dragonfly.git] / sys / dev / video / bktr / bktr_tuner.c
CommitLineData
984263bc
MD
1/*
2 * 1. Redistributions of source code must retain the
3 * Copyright (c) 1997 Amancio Hasty, 1999 Roger Hardiman
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 * must display the following acknowledgement:
16 * This product includes software developed by Amancio Hasty and
17 * Roger Hardiman
18 * 4. The name of the author may not be used to endorse or promote products
19 * derived from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
22 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
23 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
24 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
25 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
27 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
29 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
a35cc233 32 *
7f5487a0
SS
33 * $FreeBSD: src/sys/dev/bktr/bktr_tuner.c,v 1.18 2005/01/23 07:13:09 julian Exp
34 * $DragonFly: src/sys/dev/video/bktr/bktr_tuner.c,v 1.7 2005/03/12 11:35:27 corecode Exp $
984263bc
MD
35 */
36
37
a35cc233
JS
38/*
39 * This is part of the Driver for Video Capture Cards (Frame grabbers)
40 * and TV Tuner cards using the Brooktree Bt848, Bt848A, Bt849A, Bt878, Bt879
41 * chipset.
42 * Copyright Roger Hardiman and Amancio Hasty.
43 *
44 * bktr_tuner : This deals with controlling the tuner fitted to TV cards.
45 */
984263bc
MD
46
47#include <sys/param.h>
48#include <sys/systm.h>
49#include <sys/kernel.h>
50#include <sys/vnode.h>
984263bc 51
1f2de5d4 52#include <bus/pci/pcivar.h>
984263bc 53
984263bc
MD
54#include <machine/bus_memio.h> /* for bus space */
55#include <machine/bus.h>
56#include <sys/bus.h>
984263bc 57
a35cc233
JS
58#include <dev/video/meteor/ioctl_meteor.h>
59#include <dev/video/bktr/ioctl_bt848.h> /* extensions to ioctl_meteor.h */
60#include <dev/video/bktr/bktr_reg.h>
61#include <dev/video/bktr/bktr_tuner.h>
62#include <dev/video/bktr/bktr_card.h>
63#include <dev/video/bktr/bktr_core.h>
984263bc
MD
64
65
66
67#if defined( TUNER_AFC )
68#define AFC_DELAY 10000 /* 10 millisend delay */
69#define AFC_BITS 0x07
70#define AFC_FREQ_MINUS_125 0x00
71#define AFC_FREQ_MINUS_62 0x01
72#define AFC_FREQ_CENTERED 0x02
73#define AFC_FREQ_PLUS_62 0x03
74#define AFC_FREQ_PLUS_125 0x04
75#define AFC_MAX_STEP (5 * FREQFACTOR) /* no more than 5 MHz */
76#endif /* TUNER_AFC */
77
78
79#define TTYPE_XXX 0
80#define TTYPE_NTSC 1
81#define TTYPE_NTSC_J 2
82#define TTYPE_PAL 3
83#define TTYPE_PAL_M 4
84#define TTYPE_PAL_N 5
85#define TTYPE_SECAM 6
86
87#define TSA552x_CB_MSB (0x80)
88#define TSA552x_CB_CP (1<<6) /* set this for fast tuning */
89#define TSA552x_CB_T2 (1<<5) /* test mode - Normally set to 0 */
90#define TSA552x_CB_T1 (1<<4) /* test mode - Normally set to 0 */
91#define TSA552x_CB_T0 (1<<3) /* test mode - Normally set to 1 */
92#define TSA552x_CB_RSA (1<<2) /* 0 for 31.25 khz, 1 for 62.5 kHz */
93#define TSA552x_CB_RSB (1<<1) /* 0 for FM 50kHz steps, 1 = Use RSA*/
94#define TSA552x_CB_OS (1<<0) /* Set to 0 for normal operation */
95
96#define TSA552x_RADIO (TSA552x_CB_MSB | \
97 TSA552x_CB_T0)
98
99/* raise the charge pump voltage for fast tuning */
100#define TSA552x_FCONTROL (TSA552x_CB_MSB | \
101 TSA552x_CB_CP | \
102 TSA552x_CB_T0 | \
103 TSA552x_CB_RSA | \
104 TSA552x_CB_RSB)
105
106/* lower the charge pump voltage for better residual oscillator FM */
107#define TSA552x_SCONTROL (TSA552x_CB_MSB | \
108 TSA552x_CB_T0 | \
109 TSA552x_CB_RSA | \
110 TSA552x_CB_RSB)
111
112/* The control value for the ALPS TSCH5 Tuner */
113#define TSCH5_FCONTROL 0x82
114#define TSCH5_RADIO 0x86
115
116/* The control value for the ALPS TSBH1 Tuner */
117#define TSBH1_FCONTROL 0xce
118
119
7f5487a0
SS
120static void mt2032_set_tv_freq(bktr_ptr_t bktr, unsigned int freq);
121
122
984263bc
MD
123static const struct TUNER tuners[] = {
124/* XXX FIXME: fill in the band-switch crosspoints */
125 /* NO_TUNER */
126 { "<no>", /* the 'name' */
127 TTYPE_XXX, /* input type */
128 { 0x00, /* control byte for Tuner PLL */
129 0x00,
130 0x00,
131 0x00 },
132 { 0x00, 0x00 }, /* band-switch crosspoints */
133 { 0x00, 0x00, 0x00,0x00} }, /* the band-switch values */
134
135 /* TEMIC_NTSC */
136 { "Temic NTSC", /* the 'name' */
137 TTYPE_NTSC, /* input type */
138 { TSA552x_SCONTROL, /* control byte for Tuner PLL */
139 TSA552x_SCONTROL,
140 TSA552x_SCONTROL,
141 0x00 },
142 { 0x00, 0x00}, /* band-switch crosspoints */
143 { 0x02, 0x04, 0x01, 0x00 } }, /* the band-switch values */
144
145 /* TEMIC_PAL */
146 { "Temic PAL", /* the 'name' */
147 TTYPE_PAL, /* input type */
148 { TSA552x_SCONTROL, /* control byte for Tuner PLL */
149 TSA552x_SCONTROL,
150 TSA552x_SCONTROL,
151 0x00 },
152 { 0x00, 0x00 }, /* band-switch crosspoints */
153 { 0x02, 0x04, 0x01, 0x00 } }, /* the band-switch values */
154
155 /* TEMIC_SECAM */
156 { "Temic SECAM", /* the 'name' */
157 TTYPE_SECAM, /* input type */
158 { TSA552x_SCONTROL, /* control byte for Tuner PLL */
159 TSA552x_SCONTROL,
160 TSA552x_SCONTROL,
161 0x00 },
162 { 0x00, 0x00 }, /* band-switch crosspoints */
163 { 0x02, 0x04, 0x01,0x00 } }, /* the band-switch values */
164
165 /* PHILIPS_NTSC */
166 { "Philips NTSC", /* the 'name' */
167 TTYPE_NTSC, /* input type */
168 { TSA552x_SCONTROL, /* control byte for Tuner PLL */
169 TSA552x_SCONTROL,
170 TSA552x_SCONTROL,
171 0x00 },
172 { 0x00, 0x00 }, /* band-switch crosspoints */
173 { 0xa0, 0x90, 0x30, 0x00 } }, /* the band-switch values */
174
175 /* PHILIPS_PAL */
176 { "Philips PAL", /* the 'name' */
177 TTYPE_PAL, /* input type */
178 { TSA552x_SCONTROL, /* control byte for Tuner PLL */
179 TSA552x_SCONTROL,
180 TSA552x_SCONTROL,
181 0x00 },
182 { 0x00, 0x00 }, /* band-switch crosspoints */
183 { 0xa0, 0x90, 0x30, 0x00 } }, /* the band-switch values */
184
185 /* PHILIPS_SECAM */
186 { "Philips SECAM", /* the 'name' */
187 TTYPE_SECAM, /* input type */
188 { TSA552x_SCONTROL, /* control byte for Tuner PLL */
189 TSA552x_SCONTROL,
190 TSA552x_SCONTROL,
191 0x00 },
192 { 0x00, 0x00 }, /* band-switch crosspoints */
193 { 0xa7, 0x97, 0x37, 0x00 } }, /* the band-switch values */
194
195 /* TEMIC_PAL I */
196 { "Temic PAL I", /* the 'name' */
197 TTYPE_PAL, /* input type */
198 { TSA552x_SCONTROL, /* control byte for Tuner PLL */
199 TSA552x_SCONTROL,
200 TSA552x_SCONTROL,
201 0x00 },
202 { 0x00, 0x00 }, /* band-switch crosspoints */
203 { 0x02, 0x04, 0x01,0x00 } }, /* the band-switch values */
204
205 /* PHILIPS_PALI */
206 { "Philips PAL I", /* the 'name' */
207 TTYPE_PAL, /* input type */
208 { TSA552x_SCONTROL, /* control byte for Tuner PLL */
209 TSA552x_SCONTROL,
210 TSA552x_SCONTROL,
211 0x00 },
212 { 0x00, 0x00 }, /* band-switch crosspoints */
213 { 0xa0, 0x90, 0x30,0x00 } }, /* the band-switch values */
214
215 /* PHILIPS_FR1236_NTSC */
216 { "Philips FR1236 NTSC FM", /* the 'name' */
217 TTYPE_NTSC, /* input type */
218 { TSA552x_FCONTROL, /* control byte for Tuner PLL */
219 TSA552x_FCONTROL,
220 TSA552x_FCONTROL,
221 TSA552x_RADIO },
222 { 0x00, 0x00 }, /* band-switch crosspoints */
223 { 0xa0, 0x90, 0x30,0xa4 } }, /* the band-switch values */
224
225 /* PHILIPS_FR1216_PAL */
226 { "Philips FR1216 PAL FM" , /* the 'name' */
227 TTYPE_PAL, /* input type */
228 { TSA552x_FCONTROL, /* control byte for Tuner PLL */
229 TSA552x_FCONTROL,
230 TSA552x_FCONTROL,
231 TSA552x_RADIO },
232 { 0x00, 0x00 }, /* band-switch crosspoints */
233 { 0xa0, 0x90, 0x30, 0xa4 } }, /* the band-switch values */
234
235 /* PHILIPS_FR1236_SECAM */
236 { "Philips FR1236 SECAM FM", /* the 'name' */
237 TTYPE_SECAM, /* input type */
238 { TSA552x_FCONTROL, /* control byte for Tuner PLL */
239 TSA552x_FCONTROL,
240 TSA552x_FCONTROL,
241 TSA552x_RADIO },
242 { 0x00, 0x00 }, /* band-switch crosspoints */
243 { 0xa7, 0x97, 0x37, 0xa4 } }, /* the band-switch values */
244
245 /* ALPS TSCH5 NTSC */
246 { "ALPS TSCH5 NTSC FM", /* the 'name' */
247 TTYPE_NTSC, /* input type */
248 { TSCH5_FCONTROL, /* control byte for Tuner PLL */
249 TSCH5_FCONTROL,
250 TSCH5_FCONTROL,
251 TSCH5_RADIO },
252 { 0x00, 0x00 }, /* band-switch crosspoints */
253 { 0x14, 0x12, 0x11, 0x04 } }, /* the band-switch values */
254
255 /* ALPS TSBH1 NTSC */
256 { "ALPS TSBH1 NTSC", /* the 'name' */
257 TTYPE_NTSC, /* input type */
258 { TSBH1_FCONTROL, /* control byte for Tuner PLL */
259 TSBH1_FCONTROL,
260 TSBH1_FCONTROL,
261 0x00 },
262 { 0x00, 0x00 }, /* band-switch crosspoints */
7f5487a0
SS
263 { 0x01, 0x02, 0x08, 0x00 } }, /* the band-switch values */
264
265 /* MT2032 Microtune */
266 { "MT2032", /* the 'name' */
267 TTYPE_PAL, /* input type */
268 { TSA552x_SCONTROL, /* control byte for Tuner PLL */
269 TSA552x_SCONTROL,
270 TSA552x_SCONTROL,
271 0x00 },
272 { 0x00, 0x00 }, /* band-switch crosspoints */
273 { 0xa0, 0x90, 0x30, 0x00 } }, /* the band-switch values */
984263bc
MD
274};
275
276
277/* scaling factor for frequencies expressed as ints */
278#define FREQFACTOR 16
279
280/*
281 * Format:
282 * entry 0: MAX legal channel
283 * entry 1: IF frequency
284 * expressed as fi{mHz} * 16,
285 * eg 45.75mHz == 45.75 * 16 = 732
286 * entry 2: [place holder/future]
287 * entry 3: base of channel record 0
288 * entry 3 + (x*3): base of channel record 'x'
289 * entry LAST: NULL channel entry marking end of records
290 *
291 * Record:
292 * int 0: base channel
293 * int 1: frequency of base channel,
294 * expressed as fb{mHz} * 16,
295 * int 2: offset frequency between channels,
296 * expressed as fo{mHz} * 16,
297 */
298
299/*
300 * North American Broadcast Channels:
301 *
302 * 2: 55.25 mHz - 4: 67.25 mHz
303 * 5: 77.25 mHz - 6: 83.25 mHz
304 * 7: 175.25 mHz - 13: 211.25 mHz
305 * 14: 471.25 mHz - 83: 885.25 mHz
306 *
307 * IF freq: 45.75 mHz
308 */
309#define OFFSET 6.00
310static int nabcst[] = {
311 83, (int)( 45.75 * FREQFACTOR), 0,
312 14, (int)(471.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
313 7, (int)(175.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
314 5, (int)( 77.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
315 2, (int)( 55.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
316 0
317};
318#undef OFFSET
319
320/*
321 * North American Cable Channels, IRC:
322 *
323 * 2: 55.25 mHz - 4: 67.25 mHz
324 * 5: 77.25 mHz - 6: 83.25 mHz
325 * 7: 175.25 mHz - 13: 211.25 mHz
326 * 14: 121.25 mHz - 22: 169.25 mHz
327 * 23: 217.25 mHz - 94: 643.25 mHz
328 * 95: 91.25 mHz - 99: 115.25 mHz
329 *
330 * IF freq: 45.75 mHz
331 */
332#define OFFSET 6.00
333static int irccable[] = {
334 116, (int)( 45.75 * FREQFACTOR), 0,
335 100, (int)(649.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
336 95, (int)( 91.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
337 23, (int)(217.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
338 14, (int)(121.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
339 7, (int)(175.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
340 5, (int)( 77.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
341 2, (int)( 55.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
342 0
343};
344#undef OFFSET
345
346/*
347 * North American Cable Channels, HRC:
348 *
349 * 2: 54 mHz - 4: 66 mHz
350 * 5: 78 mHz - 6: 84 mHz
351 * 7: 174 mHz - 13: 210 mHz
352 * 14: 120 mHz - 22: 168 mHz
353 * 23: 216 mHz - 94: 642 mHz
354 * 95: 90 mHz - 99: 114 mHz
355 *
356 * IF freq: 45.75 mHz
357 */
358#define OFFSET 6.00
359static int hrccable[] = {
360 116, (int)( 45.75 * FREQFACTOR), 0,
361 100, (int)(648.00 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
362 95, (int)( 90.00 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
363 23, (int)(216.00 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
364 14, (int)(120.00 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
365 7, (int)(174.00 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
366 5, (int)( 78.00 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
367 2, (int)( 54.00 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
368 0
369};
370#undef OFFSET
371
372/*
373 * Western European broadcast channels:
374 *
375 * (there are others that appear to vary between countries - rmt)
376 *
377 * here's the table Philips provides:
378 * caution, some of the offsets don't compute...
379 *
380 * 1 4525 700 N21
381 *
382 * 2 4825 700 E2
383 * 3 5525 700 E3
384 * 4 6225 700 E4
385 *
386 * 5 17525 700 E5
387 * 6 18225 700 E6
388 * 7 18925 700 E7
389 * 8 19625 700 E8
390 * 9 20325 700 E9
391 * 10 21025 700 E10
392 * 11 21725 700 E11
393 * 12 22425 700 E12
394 *
395 * 13 5375 700 ITA
396 * 14 6225 700 ITB
397 *
398 * 15 8225 700 ITC
399 *
400 * 16 17525 700 ITD
401 * 17 18325 700 ITE
402 *
403 * 18 19225 700 ITF
404 * 19 20125 700 ITG
405 * 20 21025 700 ITH
406 *
407 * 21 47125 800 E21
408 * 22 47925 800 E22
409 * 23 48725 800 E23
410 * 24 49525 800 E24
411 * 25 50325 800 E25
412 * 26 51125 800 E26
413 * 27 51925 800 E27
414 * 28 52725 800 E28
415 * 29 53525 800 E29
416 * 30 54325 800 E30
417 * 31 55125 800 E31
418 * 32 55925 800 E32
419 * 33 56725 800 E33
420 * 34 57525 800 E34
421 * 35 58325 800 E35
422 * 36 59125 800 E36
423 * 37 59925 800 E37
424 * 38 60725 800 E38
425 * 39 61525 800 E39
426 * 40 62325 800 E40
427 * 41 63125 800 E41
428 * 42 63925 800 E42
429 * 43 64725 800 E43
430 * 44 65525 800 E44
431 * 45 66325 800 E45
432 * 46 67125 800 E46
433 * 47 67925 800 E47
434 * 48 68725 800 E48
435 * 49 69525 800 E49
436 * 50 70325 800 E50
437 * 51 71125 800 E51
438 * 52 71925 800 E52
439 * 53 72725 800 E53
440 * 54 73525 800 E54
441 * 55 74325 800 E55
442 * 56 75125 800 E56
443 * 57 75925 800 E57
444 * 58 76725 800 E58
445 * 59 77525 800 E59
446 * 60 78325 800 E60
447 * 61 79125 800 E61
448 * 62 79925 800 E62
449 * 63 80725 800 E63
450 * 64 81525 800 E64
451 * 65 82325 800 E65
452 * 66 83125 800 E66
453 * 67 83925 800 E67
454 * 68 84725 800 E68
455 * 69 85525 800 E69
456 *
457 * 70 4575 800 IA
458 * 71 5375 800 IB
459 * 72 6175 800 IC
460 *
461 * 74 6925 700 S01
462 * 75 7625 700 S02
463 * 76 8325 700 S03
464 *
465 * 80 10525 700 S1
466 * 81 11225 700 S2
467 * 82 11925 700 S3
468 * 83 12625 700 S4
469 * 84 13325 700 S5
470 * 85 14025 700 S6
471 * 86 14725 700 S7
472 * 87 15425 700 S8
473 * 88 16125 700 S9
474 * 89 16825 700 S10
475 * 90 23125 700 S11
476 * 91 23825 700 S12
477 * 92 24525 700 S13
478 * 93 25225 700 S14
479 * 94 25925 700 S15
480 * 95 26625 700 S16
481 * 96 27325 700 S17
482 * 97 28025 700 S18
483 * 98 28725 700 S19
484 * 99 29425 700 S20
485 *
486 *
487 * Channels S21 - S41 are taken from
488 * http://gemma.apple.com:80/dev/technotes/tn/tn1012.html
489 *
490 * 100 30325 800 S21
491 * 101 31125 800 S22
492 * 102 31925 800 S23
493 * 103 32725 800 S24
494 * 104 33525 800 S25
495 * 105 34325 800 S26
496 * 106 35125 800 S27
497 * 107 35925 800 S28
498 * 108 36725 800 S29
499 * 109 37525 800 S30
500 * 110 38325 800 S31
501 * 111 39125 800 S32
502 * 112 39925 800 S33
503 * 113 40725 800 S34
504 * 114 41525 800 S35
505 * 115 42325 800 S36
506 * 116 43125 800 S37
507 * 117 43925 800 S38
508 * 118 44725 800 S39
509 * 119 45525 800 S40
510 * 120 46325 800 S41
511 *
512 * 121 3890 000 IFFREQ
513 *
514 */
515static int weurope[] = {
516 121, (int)( 38.90 * FREQFACTOR), 0,
517 100, (int)(303.25 * FREQFACTOR), (int)(8.00 * FREQFACTOR),
518 90, (int)(231.25 * FREQFACTOR), (int)(7.00 * FREQFACTOR),
519 80, (int)(105.25 * FREQFACTOR), (int)(7.00 * FREQFACTOR),
520 74, (int)( 69.25 * FREQFACTOR), (int)(7.00 * FREQFACTOR),
521 21, (int)(471.25 * FREQFACTOR), (int)(8.00 * FREQFACTOR),
522 17, (int)(183.25 * FREQFACTOR), (int)(9.00 * FREQFACTOR),
523 16, (int)(175.25 * FREQFACTOR), (int)(9.00 * FREQFACTOR),
524 15, (int)(82.25 * FREQFACTOR), (int)(8.50 * FREQFACTOR),
525 13, (int)(53.75 * FREQFACTOR), (int)(8.50 * FREQFACTOR),
526 5, (int)(175.25 * FREQFACTOR), (int)(7.00 * FREQFACTOR),
527 2, (int)(48.25 * FREQFACTOR), (int)(7.00 * FREQFACTOR),
528 0
529};
530
531/*
532 * Japanese Broadcast Channels:
533 *
534 * 1: 91.25MHz - 3: 103.25MHz
535 * 4: 171.25MHz - 7: 189.25MHz
536 * 8: 193.25MHz - 12: 217.25MHz (VHF)
537 * 13: 471.25MHz - 62: 765.25MHz (UHF)
538 *
539 * IF freq: 45.75 mHz
540 * OR
541 * IF freq: 58.75 mHz
542 */
543#define OFFSET 6.00
544#define IF_FREQ 45.75
545static int jpnbcst[] = {
546 62, (int)(IF_FREQ * FREQFACTOR), 0,
547 13, (int)(471.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
548 8, (int)(193.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
549 4, (int)(171.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
550 1, (int)( 91.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
551 0
552};
553#undef IF_FREQ
554#undef OFFSET
555
556/*
557 * Japanese Cable Channels:
558 *
559 * 1: 91.25MHz - 3: 103.25MHz
560 * 4: 171.25MHz - 7: 189.25MHz
561 * 8: 193.25MHz - 12: 217.25MHz
562 * 13: 109.25MHz - 21: 157.25MHz
563 * 22: 165.25MHz
564 * 23: 223.25MHz - 63: 463.25MHz
565 *
566 * IF freq: 45.75 mHz
567 */
568#define OFFSET 6.00
569#define IF_FREQ 45.75
570static int jpncable[] = {
571 63, (int)(IF_FREQ * FREQFACTOR), 0,
572 23, (int)(223.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
573 22, (int)(165.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
574 13, (int)(109.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
575 8, (int)(193.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
576 4, (int)(171.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
577 1, (int)( 91.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
578 0
579};
580#undef IF_FREQ
581#undef OFFSET
582
583/*
584 * xUSSR Broadcast Channels:
585 *
586 * 1: 49.75MHz - 2: 59.25MHz
587 * 3: 77.25MHz - 5: 93.25MHz
588 * 6: 175.25MHz - 12: 223.25MHz
589 * 13-20 - not exist
590 * 21: 471.25MHz - 34: 575.25MHz
591 * 35: 583.25MHz - 69: 855.25MHz
592 *
593 * Cable channels
594 *
595 * 70: 111.25MHz - 77: 167.25MHz
596 * 78: 231.25MHz -107: 463.25MHz
597 *
598 * IF freq: 38.90 MHz
599 */
600#define IF_FREQ 38.90
601static int xussr[] = {
602 107, (int)(IF_FREQ * FREQFACTOR), 0,
603 78, (int)(231.25 * FREQFACTOR), (int)(8.00 * FREQFACTOR),
604 70, (int)(111.25 * FREQFACTOR), (int)(8.00 * FREQFACTOR),
605 35, (int)(583.25 * FREQFACTOR), (int)(8.00 * FREQFACTOR),
606 21, (int)(471.25 * FREQFACTOR), (int)(8.00 * FREQFACTOR),
607 6, (int)(175.25 * FREQFACTOR), (int)(8.00 * FREQFACTOR),
608 3, (int)( 77.25 * FREQFACTOR), (int)(8.00 * FREQFACTOR),
609 1, (int)( 49.75 * FREQFACTOR), (int)(9.50 * FREQFACTOR),
610 0
611};
612#undef IF_FREQ
613
614/*
615 * Australian broadcast channels
616 */
617#define OFFSET 7.00
618#define IF_FREQ 38.90
619static int australia[] = {
620 83, (int)(IF_FREQ * FREQFACTOR), 0,
621 28, (int)(527.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
622 10, (int)(209.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
623 6, (int)(175.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
624 4, (int)( 95.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
625 3, (int)( 86.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
626 1, (int)( 57.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR),
627 0
628};
629#undef OFFSET
630#undef IF_FREQ
631
632/*
633 * France broadcast channels
634 */
635#define OFFSET 8.00
636#define IF_FREQ 38.90
637static int france[] = {
638 69, (int)(IF_FREQ * FREQFACTOR), 0,
639 21, (int)(471.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR), /* 21 -> 69 */
640 5, (int)(176.00 * FREQFACTOR), (int)(OFFSET * FREQFACTOR), /* 5 -> 10 */
641 4, (int)( 63.75 * FREQFACTOR), (int)(OFFSET * FREQFACTOR), /* 4 */
642 3, (int)( 60.50 * FREQFACTOR), (int)(OFFSET * FREQFACTOR), /* 3 */
643 1, (int)( 47.75 * FREQFACTOR), (int)(OFFSET * FREQFACTOR), /* 1 2 */
644 0
645};
646#undef OFFSET
647#undef IF_FREQ
648
649static struct {
650 int *ptr;
651 char name[BT848_MAX_CHNLSET_NAME_LEN];
652} freqTable[] = {
653 {NULL, ""},
654 {nabcst, "nabcst"},
655 {irccable, "cableirc"},
656 {hrccable, "cablehrc"},
657 {weurope, "weurope"},
658 {jpnbcst, "jpnbcst"},
659 {jpncable, "jpncable"},
660 {xussr, "xussr"},
661 {australia, "australia"},
662 {france, "france"},
663
664};
665
666#define TBL_CHNL freqTable[ bktr->tuner.chnlset ].ptr[ x ]
667#define TBL_BASE_FREQ freqTable[ bktr->tuner.chnlset ].ptr[ x + 1 ]
668#define TBL_OFFSET freqTable[ bktr->tuner.chnlset ].ptr[ x + 2 ]
669static int
670frequency_lookup( bktr_ptr_t bktr, int channel )
671{
672 int x;
673
674 /* check for "> MAX channel" */
675 x = 0;
676 if ( channel > TBL_CHNL )
677 return( -1 );
678
679 /* search the table for data */
680 for ( x = 3; TBL_CHNL; x += 3 ) {
681 if ( channel >= TBL_CHNL ) {
682 return( TBL_BASE_FREQ +
683 ((channel - TBL_CHNL) * TBL_OFFSET) );
684 }
685 }
686
687 /* not found, must be below the MIN channel */
688 return( -1 );
689}
690#undef TBL_OFFSET
691#undef TBL_BASE_FREQ
692#undef TBL_CHNL
693
694
695#define TBL_IF freqTable[ bktr->tuner.chnlset ].ptr[ 1 ]
696
697
698/* Initialise the tuner structures in the bktr_softc */
699/* This is needed as the tuner details are no longer globally declared */
700
701void select_tuner( bktr_ptr_t bktr, int tuner_type ) {
702 if (tuner_type < Bt848_MAX_TUNER) {
703 bktr->card.tuner = &tuners[ tuner_type ];
704 } else {
705 bktr->card.tuner = NULL;
706 }
707}
708
709/*
710 * Tuner Notes:
711 * Programming the tuner properly is quite complicated.
712 * Here are some notes, based on a FM1246 data sheet for a PAL-I tuner.
713 * The tuner (front end) covers 45.75 Mhz - 855.25 Mhz and an FM band of
714 * 87.5 Mhz to 108.0 Mhz.
715 *
716 * RF and IF. RF = radio frequencies, it is the transmitted signal.
717 * IF is the Intermediate Frequency (the offset from the base
718 * signal where the video, color, audio and NICAM signals are.
719 *
720 * Eg, Picture at 38.9 Mhz, Colour at 34.47 MHz, sound at 32.9 MHz
721 * NICAM at 32.348 Mhz.
722 * Strangely enough, there is an IF (intermediate frequency) for
723 * FM Radio which is 10.7 Mhz.
724 *
725 * The tuner also works in Bands. Philips bands are
726 * FM radio band 87.50 to 108.00 MHz
727 * Low band 45.75 to 170.00 MHz
728 * Mid band 170.00 to 450.00 MHz
729 * High band 450.00 to 855.25 MHz
730 *
731 *
732 * Now we need to set the PLL on the tuner to the required freuqncy.
733 * It has a programmable divisor.
734 * For TV we want
735 * N = 16 (freq RF(pc) + freq IF(pc)) pc is picture carrier and RF and IF
736 * are in MHz.
737
738 * For RADIO we want a different equation.
739 * freq IF is 10.70 MHz (so the data sheet tells me)
740 * N = (freq RF + freq IF) / step size
741 * The step size must be set to 50 khz (so the data sheet tells me)
742 * (note this is 50 kHz, the other things are in MHz)
743 * so we end up with N = 20x(freq RF + 10.7)
744 *
745 */
746
747#define LOW_BAND 0
748#define MID_BAND 1
749#define HIGH_BAND 2
750#define FM_RADIO_BAND 3
751
752
753/* Check if these are correct for other than Philips PAL */
754#define STATUSBIT_COLD 0x80
755#define STATUSBIT_LOCK 0x40
756#define STATUSBIT_TV 0x20
757#define STATUSBIT_STEREO 0x10 /* valid if FM (aka not TV) */
758#define STATUSBIT_ADC 0x07
759
760/*
761 * set the frequency of the tuner
762 * If 'type' is TV_FREQUENCY, the frequency is freq MHz*16
763 * If 'type' is FM_RADIO_FREQUENCY, the frequency is freq MHz * 100
764 * (note *16 gives is 4 bits of fraction, eg steps of nnn.0625)
765 *
766 */
767int
768tv_freq( bktr_ptr_t bktr, int frequency, int type )
769{
770 const struct TUNER* tuner;
771 u_char addr;
772 u_char control;
773 u_char band;
774 int N;
775 int band_select = 0;
776#if defined( TEST_TUNER_AFC )
777 int oldFrequency, afcDelta;
778#endif
779
780 tuner = bktr->card.tuner;
781 if ( tuner == NULL )
782 return( -1 );
783
7f5487a0
SS
784 if (tuner == &tuners[TUNER_MT2032]) {
785 mt2032_set_tv_freq(bktr, frequency);
786 return 0;
787 }
984263bc
MD
788 if (type == TV_FREQUENCY) {
789 /*
790 * select the band based on frequency
791 * XXX FIXME: get the cross-over points from the tuner struct
792 */
793 if ( frequency < (160 * FREQFACTOR ) )
794 band_select = LOW_BAND;
795 else if ( frequency < (454 * FREQFACTOR ) )
796 band_select = MID_BAND;
797 else
798 band_select = HIGH_BAND;
799
800#if defined( TEST_TUNER_AFC )
801 if ( bktr->tuner.afc )
802 frequency -= 4;
803#endif
804 /*
805 * N = 16 * { fRF(pc) + fIF(pc) }
806 * or N = 16* fRF(pc) + 16*fIF(pc) }
807 * where:
808 * pc is picture carrier, fRF & fIF are in MHz
809 *
810 * fortunatly, frequency is passed in as MHz * 16
811 * and the TBL_IF frequency is also stored in MHz * 16
812 */
813 N = frequency + TBL_IF;
814
815 /* set the address of the PLL */
816 addr = bktr->card.tuner_pllAddr;
817 control = tuner->pllControl[ band_select ];
818 band = tuner->bandAddrs[ band_select ];
819
820 if(!(band && control)) /* Don't try to set un- */
821 return(-1); /* supported modes. */
822
823 if ( frequency > bktr->tuner.frequency ) {
824 i2cWrite( bktr, addr, (N>>8) & 0x7f, N & 0xff );
825 i2cWrite( bktr, addr, control, band );
826 }
827 else {
828 i2cWrite( bktr, addr, control, band );
829 i2cWrite( bktr, addr, (N>>8) & 0x7f, N & 0xff );
830 }
831
832#if defined( TUNER_AFC )
833 if ( bktr->tuner.afc == TRUE ) {
834#if defined( TEST_TUNER_AFC )
835 oldFrequency = frequency;
836#endif
837 if ( (N = do_afc( bktr, addr, N )) < 0 ) {
838 /* AFC failed, restore requested frequency */
839 N = frequency + TBL_IF;
840#if defined( TEST_TUNER_AFC )
841 printf("%s: do_afc: failed to lock\n",
842 bktr_name(bktr));
843#endif
844 i2cWrite( bktr, addr, (N>>8) & 0x7f, N & 0xff );
845 }
846 else
847 frequency = N - TBL_IF;
848#if defined( TEST_TUNER_AFC )
849 printf("%s: do_afc: returned freq %d (%d %% %d)\n", bktr_name(bktr), frequency, frequency / 16, frequency % 16);
850 afcDelta = frequency - oldFrequency;
851 printf("%s: changed by: %d clicks (%d mod %d)\n", bktr_name(bktr), afcDelta, afcDelta / 16, afcDelta % 16);
852#endif
853 }
854#endif /* TUNER_AFC */
855
856 bktr->tuner.frequency = frequency;
857 }
858
859 if ( type == FM_RADIO_FREQUENCY ) {
860 band_select = FM_RADIO_BAND;
861
862 /*
863 * N = { fRF(pc) + fIF(pc) }/step_size
864 * The step size is 50kHz for FM radio.
865 * (eg after 102.35MHz comes 102.40 MHz)
866 * fIF is 10.7 MHz (as detailed in the specs)
867 *
868 * frequency is passed in as MHz * 100
869 *
870 * So, we have N = (frequency/100 + 10.70) /(50/1000)
871 */
872 N = (frequency + 1070)/5;
873
874 /* set the address of the PLL */
875 addr = bktr->card.tuner_pllAddr;
876 control = tuner->pllControl[ band_select ];
877 band = tuner->bandAddrs[ band_select ];
878
879 if(!(band && control)) /* Don't try to set un- */
880 return(-1); /* supported modes. */
881
882 band |= bktr->tuner.radio_mode; /* tuner.radio_mode is set in
883 * the ioctls RADIO_SETMODE
884 * and RADIO_GETMODE */
885
886 i2cWrite( bktr, addr, control, band );
887 i2cWrite( bktr, addr, (N>>8) & 0x7f, N & 0xff );
888
889 bktr->tuner.frequency = (N * 5) - 1070;
890
891
892 }
893
894
895 return( 0 );
896}
897
898
899
900#if defined( TUNER_AFC )
901/*
902 *
903 */
904int
905do_afc( bktr_ptr_t bktr, int addr, int frequency )
906{
907 int step;
908 int status;
909 int origFrequency;
910
911 origFrequency = frequency;
912
913 /* wait for first setting to take effect */
377d4740 914 tsleep( BKTR_SLEEP, 0, "tuning", hz/8 );
984263bc
MD
915
916 if ( (status = i2cRead( bktr, addr + 1 )) < 0 )
917 return( -1 );
918
919#if defined( TEST_TUNER_AFC )
920 printf( "%s: Original freq: %d, status: 0x%02x\n", bktr_name(bktr), frequency, status );
921#endif
922 for ( step = 0; step < AFC_MAX_STEP; ++step ) {
923 if ( (status = i2cRead( bktr, addr + 1 )) < 0 )
924 goto fubar;
925 if ( !(status & 0x40) ) {
926#if defined( TEST_TUNER_AFC )
927 printf( "%s: no lock!\n", bktr_name(bktr) );
928#endif
929 goto fubar;
930 }
931
932 switch( status & AFC_BITS ) {
933 case AFC_FREQ_CENTERED:
934#if defined( TEST_TUNER_AFC )
935 printf( "%s: Centered, freq: %d, status: 0x%02x\n", bktr_name(bktr), frequency, status );
936#endif
937 return( frequency );
938
939 case AFC_FREQ_MINUS_125:
940 case AFC_FREQ_MINUS_62:
941#if defined( TEST_TUNER_AFC )
942 printf( "%s: Low, freq: %d, status: 0x%02x\n", bktr_name(bktr), frequency, status );
943#endif
944 --frequency;
945 break;
946
947 case AFC_FREQ_PLUS_62:
948 case AFC_FREQ_PLUS_125:
949#if defined( TEST_TUNER_AFC )
950 printf( "%s: Hi, freq: %d, status: 0x%02x\n", bktr_name(bktr), frequency, status );
951#endif
952 ++frequency;
953 break;
954 }
955
956 i2cWrite( bktr, addr,
957 (frequency>>8) & 0x7f, frequency & 0xff );
958 DELAY( AFC_DELAY );
959 }
960
961 fubar:
962 i2cWrite( bktr, addr,
963 (origFrequency>>8) & 0x7f, origFrequency & 0xff );
964
965 return( -1 );
966}
967#endif /* TUNER_AFC */
968#undef TBL_IF
969
970
971/*
972 * Get the Tuner status and signal strength
973 */
974int get_tuner_status( bktr_ptr_t bktr ) {
7f5487a0
SS
975 if (bktr->card.tuner == &tuners[TUNER_MT2032])
976 return 0;
984263bc
MD
977 return i2cRead( bktr, bktr->card.tuner_pllAddr + 1 );
978}
979
980/*
981 * set the channel of the tuner
982 */
983int
984tv_channel( bktr_ptr_t bktr, int channel )
985{
986 int frequency;
987
988 /* calculate the frequency according to tuner type */
989 if ( (frequency = frequency_lookup( bktr, channel )) < 0 )
990 return( -1 );
991
992 /* set the new frequency */
993 if ( tv_freq( bktr, frequency, TV_FREQUENCY ) < 0 )
994 return( -1 );
995
996 /* OK to update records */
997 return( (bktr->tuner.channel = channel) );
998}
999
1000/*
1001 * get channelset name
1002 */
1003int
1004tuner_getchnlset(struct bktr_chnlset *chnlset)
1005{
1006 if (( chnlset->index < CHNLSET_MIN ) ||
1007 ( chnlset->index > CHNLSET_MAX ))
1008 return( EINVAL );
1009
1010 memcpy(&chnlset->name, &freqTable[chnlset->index].name,
1011 BT848_MAX_CHNLSET_NAME_LEN);
1012
1013 chnlset->max_channel=freqTable[chnlset->index].ptr[0];
1014 return( 0 );
1015}
7f5487a0
SS
1016
1017
1018
1019
1020#define TDA9887_ADDR 0x86
1021
1022static int
1023TDA9887_init(bktr_ptr_t bktr, int output2_enable)
1024{
1025 u_char addr = TDA9887_ADDR;
1026
1027 i2cWrite(bktr, addr, 0, output2_enable ? 0x50 : 0xd0);
1028 i2cWrite(bktr, addr, 1, 0x6e); /* takeover point / de-emphasis */
1029
1030 /* PAL BG: 0x09 PAL I: 0x0a NTSC: 0x04 */
1031#ifdef MT2032_NTSC
1032 i2cWrite(bktr, addr, 2, 0x04);
1033#else
1034 i2cWrite(bktr, addr, 2, 0x09);
1035#endif
1036 return 0;
1037}
1038
1039
1040
1041#define MT2032_OPTIMIZE_VCO 1
1042
1043/* holds the value of XOGC register after init */
1044static int MT2032_XOGC = 4;
1045
1046/* card.tuner_pllAddr not set during init */
1047#define MT2032_ADDR 0xc0
1048
1049#ifndef MT2032_ADDR
1050#define MT2032_ADDR (bktr->card.tuner_pllAddr)
1051#endif
1052
1053static int
1054_MT2032_GetRegister(bktr_ptr_t bktr, u_char regNum)
1055{
1056 int ch;
1057
1058 if (i2cWrite(bktr, MT2032_ADDR, regNum, -1) == -1) {
1059 if (bootverbose)
1060 printf("%s: MT2032 write failed (i2c addr %#x)\n",
1061 bktr_name(bktr), MT2032_ADDR);
1062 return -1;
1063 }
1064 if ((ch = i2cRead(bktr, MT2032_ADDR + 1)) == -1) {
1065 if (bootverbose)
1066 printf("%s: MT2032 get register %d failed\n",
1067 bktr_name(bktr), regNum);
1068 return -1;
1069 }
1070 return ch;
1071}
1072
1073static void
1074_MT2032_SetRegister(bktr_ptr_t bktr, u_char regNum, u_char data)
1075{
1076 i2cWrite(bktr, MT2032_ADDR, regNum, data);
1077}
1078
1079#define MT2032_GetRegister(r) _MT2032_GetRegister(bktr,r)
1080#define MT2032_SetRegister(r,d) _MT2032_SetRegister(bktr,r,d)
1081
1082
1083int
1084mt2032_init(bktr_ptr_t bktr)
1085{
1086 u_char rdbuf[22];
1087 int xogc, xok = 0;
1088 int i;
1089 int x;
1090
1091 TDA9887_init(bktr, 0);
1092
1093 for (i = 0; i < 21; i++) {
1094 if ((x = MT2032_GetRegister(i)) == -1)
1095 break;
1096 rdbuf[i] = x;
1097 }
1098 if (i < 21)
1099 return -1;
1100
1101 printf("%s: MT2032: Companycode=%02x%02x Part=%02x Revision=%02x\n",
1102 bktr_name(bktr),
1103 rdbuf[0x11], rdbuf[0x12], rdbuf[0x13], rdbuf[0x14]);
1104 if (rdbuf[0x13] != 4) {
1105 printf("%s: MT2032 not found or unknown type\n", bktr_name(bktr));
1106 return -1;
1107 }
1108
1109 /* Initialize Registers per spec. */
1110 MT2032_SetRegister(2, 0xff);
1111 MT2032_SetRegister(3, 0x0f);
1112 MT2032_SetRegister(4, 0x1f);
1113 MT2032_SetRegister(6, 0xe4);
1114 MT2032_SetRegister(7, 0x8f);
1115 MT2032_SetRegister(8, 0xc3);
1116 MT2032_SetRegister(9, 0x4e);
1117 MT2032_SetRegister(10, 0xec);
1118 MT2032_SetRegister(13, 0x32);
1119
1120 /* Adjust XOGC (register 7), wait for XOK */
1121 xogc = 7;
1122 do {
1123 DELAY(10000);
1124 xok = MT2032_GetRegister(0x0e) & 0x01;
1125 if (xok == 1) {
1126 break;
1127 }
1128 xogc--;
1129 if (xogc == 3) {
1130 xogc = 4; /* min. 4 per spec */
1131 break;
1132 }
1133 MT2032_SetRegister(7, 0x88 + xogc);
1134 } while (xok != 1);
1135
1136 TDA9887_init(bktr, 1);
1137
1138 MT2032_XOGC = xogc;
1139
1140 return 0;
1141}
1142
1143static int
1144MT2032_SpurCheck(int f1, int f2, int spectrum_from, int spectrum_to)
1145{
1146 int n1 = 1, n2, f;
1147
1148 f1 = f1 / 1000; /* scale to kHz to avoid 32bit overflows */
1149 f2 = f2 / 1000;
1150 spectrum_from /= 1000;
1151 spectrum_to /= 1000;
1152
1153 do {
1154 n2 = -n1;
1155 f = n1 * (f1 - f2);
1156 do {
1157 n2--;
1158 f = f - f2;
1159 if ((f > spectrum_from) && (f < spectrum_to)) {
1160 return 1;
1161 }
1162 } while ((f > (f2 - spectrum_to)) || (n2 > -5));
1163 n1++;
1164 } while (n1 < 5);
1165
1166 return 0;
1167}
1168
1169static int
1170MT2032_ComputeFreq(
1171 int rfin,
1172 int if1,
1173 int if2,
1174 int spectrum_from,
1175 int spectrum_to,
1176 unsigned char *buf,
1177 int *ret_sel,
1178 int xogc
1179)
1180{ /* all in Hz */
1181 int fref, lo1, lo1n, lo1a, s, sel;
1182 int lo1freq, desired_lo1, desired_lo2, lo2, lo2n, lo2a,
1183 lo2num, lo2freq;
1184 int nLO1adjust;
1185
1186 fref = 5250 * 1000; /* 5.25MHz */
1187
1188 /* per spec 2.3.1 */
1189 desired_lo1 = rfin + if1;
1190 lo1 = (2 * (desired_lo1 / 1000) + (fref / 1000)) / (2 * fref / 1000);
1191 lo1freq = lo1 * fref;
1192 desired_lo2 = lo1freq - rfin - if2;
1193
1194 /* per spec 2.3.2 */
1195 for (nLO1adjust = 1; nLO1adjust < 3; nLO1adjust++) {
1196 if (!MT2032_SpurCheck(lo1freq, desired_lo2, spectrum_from, spectrum_to)) {
1197 break;
1198 }
1199 if (lo1freq < desired_lo1) {
1200 lo1 += nLO1adjust;
1201 } else {
1202 lo1 -= nLO1adjust;
1203 }
1204
1205 lo1freq = lo1 * fref;
1206 desired_lo2 = lo1freq - rfin - if2;
1207 }
1208
1209 /* per spec 2.3.3 */
1210 s = lo1freq / 1000 / 1000;
1211
1212 if (MT2032_OPTIMIZE_VCO) {
1213 if (s > 1890) {
1214 sel = 0;
1215 } else if (s > 1720) {
1216 sel = 1;
1217 } else if (s > 1530) {
1218 sel = 2;
1219 } else if (s > 1370) {
1220 sel = 3;
1221 } else {
1222 sel = 4;/* >1090 */
1223 }
1224 } else {
1225 if (s > 1790) {
1226 sel = 0;/* <1958 */
1227 } else if (s > 1617) {
1228 sel = 1;
1229 } else if (s > 1449) {
1230 sel = 2;
1231 } else if (s > 1291) {
1232 sel = 3;
1233 } else {
1234 sel = 4;/* >1090 */
1235 }
1236 }
1237
1238 *ret_sel = sel;
1239
1240 /* per spec 2.3.4 */
1241 lo1n = lo1 / 8;
1242 lo1a = lo1 - (lo1n * 8);
1243 lo2 = desired_lo2 / fref;
1244 lo2n = lo2 / 8;
1245 lo2a = lo2 - (lo2n * 8);
1246 /* scale to fit in 32bit arith */
1247 lo2num = ((desired_lo2 / 1000) % (fref / 1000)) * 3780 / (fref / 1000);
1248 lo2freq = (lo2a + 8 * lo2n) * fref + lo2num * (fref / 1000) / 3780 * 1000;
1249
1250 if (lo1a < 0 || lo1a > 7 || lo1n < 17 || lo1n > 48 || lo2a < 0 ||
1251 lo2a > 7 || lo2n < 17 || lo2n > 30) {
1252 printf("MT2032: parameter out of range\n");
1253 return -1;
1254 }
1255 /* set up MT2032 register map for transfer over i2c */
1256 buf[0] = lo1n - 1;
1257 buf[1] = lo1a | (sel << 4);
1258 buf[2] = 0x86; /* LOGC */
1259 buf[3] = 0x0f; /* reserved */
1260 buf[4] = 0x1f;
1261 buf[5] = (lo2n - 1) | (lo2a << 5);
1262 if (rfin < 400 * 1000 * 1000) {
1263 buf[6] = 0xe4;
1264 } else {
1265 buf[6] = 0xf4; /* set PKEN per rev 1.2 */
1266 }
1267
1268 buf[7] = 8 + xogc;
1269 buf[8] = 0xc3; /* reserved */
1270 buf[9] = 0x4e; /* reserved */
1271 buf[10] = 0xec; /* reserved */
1272 buf[11] = (lo2num & 0xff);
1273 buf[12] = (lo2num >> 8) | 0x80; /* Lo2RST */
1274
1275 return 0;
1276}
1277
1278static int
1279MT2032_CheckLOLock(bktr_ptr_t bktr)
1280{
1281 int t, lock = 0;
1282 for (t = 0; t < 10; t++) {
1283 lock = MT2032_GetRegister(0x0e) & 0x06;
1284 if (lock == 6) {
1285 break;
1286 }
1287 DELAY(1000);
1288 }
1289 return lock;
1290}
1291
1292static int
1293MT2032_OptimizeVCO(bktr_ptr_t bktr, int sel, int lock)
1294{
1295 int tad1, lo1a;
1296
1297 tad1 = MT2032_GetRegister(0x0f) & 0x07;
1298
1299 if (tad1 == 0) {
1300 return lock;
1301 }
1302 if (tad1 == 1) {
1303 return lock;
1304 }
1305 if (tad1 == 2) {
1306 if (sel == 0) {
1307 return lock;
1308 } else {
1309 sel--;
1310 }
1311 } else {
1312 if (sel < 4) {
1313 sel++;
1314 } else {
1315 return lock;
1316 }
1317 }
1318 lo1a = MT2032_GetRegister(0x01) & 0x07;
1319 MT2032_SetRegister(0x01, lo1a | (sel << 4));
1320 lock = MT2032_CheckLOLock(bktr);
1321 return lock;
1322}
1323
1324static int
1325MT2032_SetIFFreq(bktr_ptr_t bktr, int rfin, int if1, int if2, int from, int to)
1326{
1327 u_char buf[21];
1328 int lint_try, sel, lock = 0;
1329
1330 if (MT2032_ComputeFreq(rfin, if1, if2, from, to, &buf[0], &sel, MT2032_XOGC) == -1)
1331 return -1;
1332
1333 TDA9887_init(bktr, 0);
1334
1335 /* send only the relevant registers per Rev. 1.2 */
1336 MT2032_SetRegister(0, buf[0x00]);
1337 MT2032_SetRegister(1, buf[0x01]);
1338 MT2032_SetRegister(2, buf[0x02]);
1339
1340 MT2032_SetRegister(5, buf[0x05]);
1341 MT2032_SetRegister(6, buf[0x06]);
1342 MT2032_SetRegister(7, buf[0x07]);
1343
1344 MT2032_SetRegister(11, buf[0x0B]);
1345 MT2032_SetRegister(12, buf[0x0C]);
1346
1347 /* wait for PLLs to lock (per manual), retry LINT if not. */
1348 for (lint_try = 0; lint_try < 2; lint_try++) {
1349 lock = MT2032_CheckLOLock(bktr);
1350
1351 if (MT2032_OPTIMIZE_VCO) {
1352 lock = MT2032_OptimizeVCO(bktr, sel, lock);
1353 }
1354 if (lock == 6) {
1355 break;
1356 }
1357 /* set LINT to re-init PLLs */
1358 MT2032_SetRegister(7, 0x80 + 8 + MT2032_XOGC);
1359 DELAY(10000);
1360 MT2032_SetRegister(7, 8 + MT2032_XOGC);
1361 }
1362 if (lock != 6)
1363 printf("%s: PLL didn't lock\n", bktr_name(bktr));
1364
1365 MT2032_SetRegister(2, 0x20);
1366
1367 TDA9887_init(bktr, 1);
1368 return 0;
1369}
1370
1371static void
1372mt2032_set_tv_freq(bktr_ptr_t bktr, unsigned int freq)
1373{
1374 int if2,from,to;
1375 int stat, tad;
1376
1377#ifdef MT2032_NTSC
1378 from=40750*1000;
1379 to=46750*1000;
1380 if2=45750*1000;
1381#else
1382 from=32900*1000;
1383 to=39900*1000;
1384 if2=38900*1000;
1385#endif
1386
1387 if (MT2032_SetIFFreq(bktr, freq*62500 /* freq*1000*1000/16 */,
1388 1090*1000*1000, if2, from, to) == 0) {
1389 bktr->tuner.frequency = freq;
1390 stat = MT2032_GetRegister(0x0e);
1391 tad = MT2032_GetRegister(0x0f);
1392 if (bootverbose)
1393 printf("%s: frequency set to %d, st = %#x, tad = %#x\n",
1394 bktr_name(bktr), freq*62500, stat, tad);
1395 }
1396}