Initial import from FreeBSD RELENG_4:
[dragonfly.git] / sys / dev / misc / tw / tw.c
CommitLineData
984263bc
MD
1/*-
2 * Copyright (c) 1992, 1993, 1995 Eugene W. Stark
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by Eugene W. Stark.
16 * 4. The name of the author may not be used to endorse or promote products
17 * derived from this software without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY EUGENE W. STARK (THE AUTHOR) ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
23 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * $FreeBSD: src/sys/i386/isa/tw.c,v 1.38 2000/01/29 16:00:32 peter Exp $
32 *
33 */
34
35#include "tw.h"
36
37/*
38 * Driver configuration parameters
39 */
40
41/*
42 * Time for 1/2 of a power line cycle, in microseconds.
43 * Change this to 10000 for 50Hz power. Phil Sampson
44 * (vk2jnt@gw.vk2jnt.ampr.org OR sampson@gidday.enet.dec.com)
45 * reports that this works (at least in Australia) using a
46 * TW7223 module (a local version of the TW523).
47 */
48#define HALFCYCLE 8333 /* 1/2 cycle = 8333us at 60Hz */
49
50/*
51 * Undefine the following if you don't have the high-resolution "microtime"
52 * routines (leave defined for FreeBSD, which has them).
53 */
54#define HIRESTIME
55
56/*
57 * End of driver configuration parameters
58 */
59
60/*
61 * FreeBSD Device Driver for X-10 POWERHOUSE (tm)
62 * Two-Way Power Line Interface, Model #TW523
63 *
64 * written by Eugene W. Stark (stark@cs.sunysb.edu)
65 * December 2, 1992
66 *
67 * NOTES:
68 *
69 * The TW523 is a carrier-current modem for home control/automation purposes.
70 * It is made by:
71 *
72 * X-10 Inc.
73 * 185A LeGrand Ave.
74 * Northvale, NJ 07647
75 * USA
76 * (201) 784-9700 or 1-800-526-0027
77 *
78 * X-10 Home Controls Inc.
79 * 1200 Aerowood Drive, Unit 20
80 * Mississauga, Ontario
81 * (416) 624-4446 or 1-800-387-3346
82 *
83 * The TW523 is designed for communications using the X-10 protocol,
84 * which is compatible with a number of home control systems, including
85 * Radio Shack "Plug 'n Power(tm)" and Stanley "Lightmaker(tm)."
86 * I bought my TW523 from:
87 *
88 * Home Control Concepts
89 * 9353-C Activity Road
90 * San Diego, CA 92126
91 * (619) 693-8887
92 *
93 * They supplied me with the TW523 (which has an RJ-11 four-wire modular
94 * telephone connector), a modular cable, an RJ-11 to DB-25 connector with
95 * internal wiring, documentation from X-10 on the TW523 (very good),
96 * an instruction manual by Home Control Concepts (not very informative),
97 * and a floppy disk containing binary object code of some demonstration/test
98 * programs and of a C function library suitable for controlling the TW523
99 * by an IBM PC under MS-DOS (not useful to me other than to verify that
100 * the unit worked). I suggest saving money and buying the bare TW523
101 * rather than the TW523 development kit (what I bought), because if you
102 * are running FreeBSD you don't really care about the DOS binaries.
103 *
104 * The interface to the TW-523 consists of four wires on the RJ-11 connector,
105 * which are jumpered to somewhat more wires on the DB-25 connector, which
106 * in turn is intended to plug into the PC parallel printer port. I dismantled
107 * the DB-25 connector to find out what they had done:
108 *
109 * Signal RJ-11 pin DB-25 pin(s) Parallel Port
110 * Transmit TX 4 (Y) 2, 4, 6, 8 Data out
111 * Receive RX 3 (G) 10, 14 -ACK, -AutoFeed
112 * Common 2 (R) 25 Common
113 * Zero crossing 1 (B) 17 or 12 -Select or +PaperEnd
114 *
115 * NOTE: In the original cable I have (which I am still using, May, 1997)
116 * the Zero crossing signal goes to pin 17 (-Select) on the parallel port.
117 * In retrospect, this doesn't make a whole lot of sense, given that the
118 * -Select signal propagates the other direction. Indeed, some people have
119 * reported problems with this, and have had success using pin 12 (+PaperEnd)
120 * instead. This driver searches for the zero crossing signal on either
121 * pin 17 or pin 12, so it should work with either cable configuration.
122 * My suggestion would be to start by making the cable so that the zero
123 * crossing signal goes to pin 12 on the parallel port.
124 *
125 * The zero crossing signal is used to synchronize transmission to the
126 * zero crossings of the AC line, as detailed in the X-10 documentation.
127 * It would be nice if one could generate interrupts with this signal,
128 * however one needs interrupts on both the rising and falling edges,
129 * and the -ACK signal to the parallel port interrupts only on the falling
130 * edge, so it can't be done without additional hardware.
131 *
132 * In this driver, the transmit function is performed in a non-interrupt-driven
133 * fashion, by polling the zero crossing signal to determine when a transition
134 * has occurred. This wastes CPU time during transmission, but it seems like
135 * the best that can be done without additional hardware. One problem with
136 * the scheme is that preemption of the CPU during transmission can cause loss
137 * of sync. The driver tries to catch this, by noticing that a long delay
138 * loop has somehow become foreshortened, and the transmission is aborted with
139 * an error return. It is up to the user level software to handle this
140 * situation (most likely by retrying the transmission).
141 */
142
143#include <sys/param.h>
144#include <sys/systm.h>
145#include <sys/conf.h>
146#include <sys/kernel.h>
147#include <sys/uio.h>
148#include <sys/syslog.h>
149#include <sys/select.h>
150#include <sys/poll.h>
151#define MIN(a,b) ((a)<(b)?(a):(b))
152
153#ifdef HIRESTIME
154#include <sys/time.h>
155#endif /* HIRESTIME */
156
157#include <i386/isa/isa_device.h>
158
159/*
160 * Transmission is done by calling write() to send three byte packets of data.
161 * The first byte contains a four bit house code (0=A to 15=P).
162 * The second byte contains five bit unit/key code (0=unit 1 to 15=unit 16,
163 * 16=All Units Off to 31 = Status Request). The third byte specifies
164 * the number of times the packet is to be transmitted without any
165 * gaps between successive transmissions. Normally this is 2, as per
166 * the X-10 documentation, but sometimes (e.g. for bright and dim codes)
167 * it can be another value. Each call to write can specify an arbitrary
168 * number of data bytes. An incomplete packet is buffered until a subsequent
169 * call to write() provides data to complete it. At most one packet will
170 * actually be processed in any call to write(). Successive calls to write()
171 * leave a three-cycle gap between transmissions, per the X-10 documentation.
172 *
173 * Reception is done using read().
174 * The driver produces a series of three-character packets.
175 * In each packet, the first character consists of flags,
176 * the second character is a four bit house code (0-15),
177 * and the third character is a five bit key/function code (0-31).
178 * The flags are the following:
179 */
180
181#define TW_RCV_LOCAL 1 /* The packet arrived during a local transmission */
182#define TW_RCV_ERROR 2 /* An invalid/corrupted packet was received */
183
184/*
185 * IBM PC parallel port definitions relevant to TW523
186 */
187
188#define tw_data 0 /* Data to tw523 (R/W) */
189
190#define tw_status 1 /* Status of tw523 (R) */
191#define TWS_RDATA 0x40 /* tw523 receive data */
192#define TWS_OUT 0x20 /* pin 12, out of paper */
193
194#define tw_control 2 /* Control tw523 (R/W) */
195#define TWC_SYNC 0x08 /* tw523 sync (pin 17) */
196#define TWC_ENA 0x10 /* tw523 interrupt enable */
197
198/*
199 * Miscellaneous defines
200 */
201
202#define TWUNIT(dev) (minor(dev)) /* Extract unit number from device */
203#define TWPRI (PZERO+8) /* I don't know any better, so let's */
204 /* use the same as the line printer */
205
206static int twprobe(struct isa_device *idp);
207static int twattach(struct isa_device *idp);
208
209struct isa_driver twdriver = {
210 twprobe, twattach, "tw"
211};
212
213static d_open_t twopen;
214static d_close_t twclose;
215static d_read_t twread;
216static d_write_t twwrite;
217static d_poll_t twpoll;
218
219#define CDEV_MAJOR 19
220static struct cdevsw tw_cdevsw = {
221 /* open */ twopen,
222 /* close */ twclose,
223 /* read */ twread,
224 /* write */ twwrite,
225 /* ioctl */ noioctl,
226 /* poll */ twpoll,
227 /* mmap */ nommap,
228 /* strategy */ nostrategy,
229 /* name */ "tw",
230 /* maj */ CDEV_MAJOR,
231 /* dump */ nodump,
232 /* psize */ nopsize,
233 /* flags */ 0,
234 /* bmaj */ -1
235};
236
237/*
238 * Software control structure for TW523
239 */
240
241#define TWS_XMITTING 1 /* Transmission in progress */
242#define TWS_RCVING 2 /* Reception in progress */
243#define TWS_WANT 4 /* A process wants received data */
244#define TWS_OPEN 8 /* Is it currently open? */
245
246#define TW_SIZE 3*60 /* Enough for about 10 sec. of input */
247#define TW_MIN_DELAY 1500 /* Ignore interrupts of lesser latency */
248
249static struct tw_sc {
250 u_int sc_port; /* I/O Port */
251 u_int sc_state; /* Current software control state */
252 struct selinfo sc_selp; /* Information for select() */
253 u_char sc_xphase; /* Current state of sync (for transmitter) */
254 u_char sc_rphase; /* Current state of sync (for receiver) */
255 u_char sc_flags; /* Flags for current reception */
256 short sc_rcount; /* Number of bits received so far */
257 int sc_bits; /* Bits received so far */
258 u_char sc_pkt[3]; /* Packet not yet transmitted */
259 short sc_pktsize; /* How many bytes in the packet? */
260 u_char sc_buf[TW_SIZE]; /* We buffer our own input */
261 int sc_nextin; /* Next free slot in circular buffer */
262 int sc_nextout; /* First used slot in circular buffer */
263 /* Callout for canceling our abortrcv timeout */
264 struct callout_handle abortrcv_ch;
265#ifdef HIRESTIME
266 int sc_xtimes[22]; /* Times for bits in current xmit packet */
267 int sc_rtimes[22]; /* Times for bits in current rcv packet */
268 int sc_no_rcv; /* number of interrupts received */
269#define SC_RCV_TIME_LEN 128
270 int sc_rcv_time[SC_RCV_TIME_LEN]; /* usec time stamp on interrupt */
271#endif /* HIRESTIME */
272} tw_sc[NTW];
273
274static int tw_zcport; /* offset of port for zero crossing signal */
275static int tw_zcmask; /* mask for the zero crossing signal */
276
277static void twdelay25(void);
278static void twdelayn(int n);
279static void twsetuptimes(int *a);
280static int wait_for_zero(struct tw_sc *sc);
281static int twputpkt(struct tw_sc *sc, u_char *p);
282static ointhand2_t twintr;
283static int twgetbytes(struct tw_sc *sc, u_char *p, int cnt);
284static timeout_t twabortrcv;
285static int twsend(struct tw_sc *sc, int h, int k, int cnt);
286static int next_zero(struct tw_sc *sc);
287static int twchecktime(int target, int tol);
288static void twdebugtimes(struct tw_sc *sc);
289
290/*
291 * Counter value for delay loop.
292 * It is adjusted by twprobe so that the delay loop takes about 25us.
293 */
294
295#define TWDELAYCOUNT 161 /* Works on my 486DX/33 */
296static int twdelaycount;
297
298/*
299 * Twdelay25 is used for very short delays of about 25us.
300 * It is implemented with a calibrated delay loop, and should be
301 * fairly accurate ... unless we are preempted by an interrupt.
302 *
303 * We use this to wait for zero crossings because the X-10 specs say we
304 * are supposed to assert carrier within 25us when one happens.
305 * I don't really believe we can do this, but the X-10 devices seem to be
306 * fairly forgiving.
307 */
308
309static void twdelay25(void)
310{
311 int cnt;
312 for(cnt = twdelaycount; cnt; cnt--); /* Should take about 25us */
313}
314
315/*
316 * Twdelayn is used to time the length of the 1ms carrier pulse.
317 * This is not very critical, but if we have high-resolution time-of-day
318 * we check it every apparent 200us to make sure we don't get too far off
319 * if we happen to be interrupted during the delay.
320 */
321
322static void twdelayn(int n)
323{
324#ifdef HIRESTIME
325 int t, d;
326 struct timeval tv;
327 microtime(&tv);
328 t = tv.tv_usec;
329 t += n;
330#endif /* HIRESTIME */
331 while(n > 0) {
332 twdelay25();
333 n -= 25;
334#ifdef HIRESTIME
335 if((n & 0x7) == 0) {
336 microtime(&tv);
337 d = tv.tv_usec - t;
338 if(d >= 0 && d < 1000000) return;
339 }
340#endif /* HIRESTIME */
341 }
342}
343
344static int twprobe(idp)
345 struct isa_device *idp;
346{
347 struct tw_sc sc;
348 int d;
349 int tries;
350 static int once;
351
352 if (!once++)
353 cdevsw_add(&tw_cdevsw);
354 sc.sc_port = idp->id_iobase;
355 /* Search for the zero crossing signal at ports, bit combinations. */
356 tw_zcport = tw_control;
357 tw_zcmask = TWC_SYNC;
358 sc.sc_xphase = inb(idp->id_iobase + tw_zcport) & tw_zcmask;
359 if(wait_for_zero(&sc) < 0) {
360 tw_zcport = tw_status;
361 tw_zcmask = TWS_OUT;
362 sc.sc_xphase = inb(idp->id_iobase + tw_zcport) & tw_zcmask;
363 }
364 if(wait_for_zero(&sc) < 0)
365 return(0);
366 /*
367 * Iteratively check the timing of a few sync transitions, and adjust
368 * the loop delay counter, if necessary, to bring the timing reported
369 * by wait_for_zero() close to HALFCYCLE. Give up if anything
370 * ridiculous happens.
371 */
372 if(twdelaycount == 0) { /* Only adjust timing for first unit */
373 twdelaycount = TWDELAYCOUNT;
374 for(tries = 0; tries < 10; tries++) {
375 sc.sc_xphase = inb(idp->id_iobase + tw_zcport) & tw_zcmask;
376 if(wait_for_zero(&sc) >= 0) {
377 d = wait_for_zero(&sc);
378 if(d <= HALFCYCLE/100 || d >= HALFCYCLE*100) {
379 twdelaycount = 0;
380 return(0);
381 }
382 twdelaycount = (twdelaycount * d)/HALFCYCLE;
383 }
384 }
385 }
386 /*
387 * Now do a final check, just to make sure
388 */
389 sc.sc_xphase = inb(idp->id_iobase + tw_zcport) & tw_zcmask;
390 if(wait_for_zero(&sc) >= 0) {
391 d = wait_for_zero(&sc);
392 if(d <= (HALFCYCLE * 110)/100 && d >= (HALFCYCLE * 90)/100) return(8);
393 }
394 return(0);
395}
396
397static int twattach(idp)
398 struct isa_device *idp;
399{
400 struct tw_sc *sc;
401 int unit;
402
403 idp->id_ointr = twintr;
404 sc = &tw_sc[unit = idp->id_unit];
405 sc->sc_port = idp->id_iobase;
406 sc->sc_state = 0;
407 sc->sc_rcount = 0;
408 callout_handle_init(&sc->abortrcv_ch);
409 make_dev(&tw_cdevsw, unit, 0, 0, 0600, "tw%d", unit);
410 return (1);
411}
412
413int twopen(dev, flag, mode, p)
414 dev_t dev;
415 int flag;
416 int mode;
417 struct proc *p;
418{
419 struct tw_sc *sc = &tw_sc[TWUNIT(dev)];
420 int s;
421
422 s = spltty();
423 if(sc->sc_state == 0) {
424 sc->sc_state = TWS_OPEN;
425 sc->sc_nextin = sc->sc_nextout = 0;
426 sc->sc_pktsize = 0;
427 outb(sc->sc_port+tw_control, TWC_ENA);
428 }
429 splx(s);
430 return(0);
431}
432
433int twclose(dev, flag, mode, p)
434 dev_t dev;
435 int flag;
436 int mode;
437 struct proc *p;
438{
439 struct tw_sc *sc = &tw_sc[TWUNIT(dev)];
440 int s;
441
442 s = spltty();
443 sc->sc_state = 0;
444 outb(sc->sc_port+tw_control, 0);
445 splx(s);
446 return(0);
447}
448
449int twread(dev, uio, ioflag)
450 dev_t dev;
451 struct uio *uio;
452 int ioflag;
453{
454 u_char buf[3];
455 struct tw_sc *sc = &tw_sc[TWUNIT(dev)];
456 int error, cnt, s;
457
458 s = spltty();
459 cnt = MIN(uio->uio_resid, 3);
460 if((error = twgetbytes(sc, buf, cnt)) == 0) {
461 error = uiomove(buf, cnt, uio);
462 }
463 splx(s);
464 return(error);
465}
466
467int twwrite(dev, uio, ioflag)
468 dev_t dev;
469 struct uio *uio;
470 int ioflag;
471{
472 struct tw_sc *sc;
473 int house, key, reps;
474 int s, error;
475 int cnt;
476
477 sc = &tw_sc[TWUNIT(dev)];
478 /*
479 * Note: Although I had intended to allow concurrent transmitters,
480 * there is a potential problem here if two processes both write
481 * into the sc_pkt buffer at the same time. The following code
482 * is an additional critical section that needs to be synchronized.
483 */
484 s = spltty();
485 cnt = MIN(3 - sc->sc_pktsize, uio->uio_resid);
486 error = uiomove(&(sc->sc_pkt[sc->sc_pktsize]), cnt, uio);
487 if(error) {
488 splx(s);
489 return(error);
490 }
491 sc->sc_pktsize += cnt;
492 if(sc->sc_pktsize < 3) { /* Only transmit 3-byte packets */
493 splx(s);
494 return(0);
495 }
496 sc->sc_pktsize = 0;
497 /*
498 * Collect house code, key code, and rep count, and check for sanity.
499 */
500 house = sc->sc_pkt[0];
501 key = sc->sc_pkt[1];
502 reps = sc->sc_pkt[2];
503 if(house >= 16 || key >= 32) {
504 splx(s);
505 return(ENODEV);
506 }
507 /*
508 * Synchronize with the receiver operating in the bottom half, and
509 * also with concurrent transmitters.
510 * We don't want to interfere with a packet currently being received,
511 * and we would like the receiver to recognize when a packet has
512 * originated locally.
513 */
514 while(sc->sc_state & (TWS_RCVING | TWS_XMITTING)) {
515 error = tsleep((caddr_t)sc, TWPRI|PCATCH, "twwrite", 0);
516 if(error) {
517 splx(s);
518 return(error);
519 }
520 }
521 sc->sc_state |= TWS_XMITTING;
522 /*
523 * Everything looks OK, let's do the transmission.
524 */
525 splx(s); /* Enable interrupts because this takes a LONG time */
526 error = twsend(sc, house, key, reps);
527 s = spltty();
528 sc->sc_state &= ~TWS_XMITTING;
529 wakeup((caddr_t)sc);
530 splx(s);
531 if(error) return(EIO);
532 else return(0);
533}
534
535/*
536 * Determine if there is data available for reading
537 */
538
539int twpoll(dev, events, p)
540 dev_t dev;
541 int events;
542 struct proc *p;
543{
544 struct tw_sc *sc;
545 int s;
546 int revents = 0;
547
548 sc = &tw_sc[TWUNIT(dev)];
549 s = spltty();
550 /* XXX is this correct? the original code didn't test select rw mode!! */
551 if (events & (POLLIN | POLLRDNORM)) {
552 if(sc->sc_nextin != sc->sc_nextout)
553 revents |= events & (POLLIN | POLLRDNORM);
554 else
555 selrecord(p, &sc->sc_selp);
556 }
557 splx(s);
558 return(revents);
559}
560
561/*
562 * X-10 Protocol
563 */
564
565#define X10_START_LENGTH 4
566static char X10_START[] = { 1, 1, 1, 0 };
567
568/*
569 * Each bit of the 4-bit house code and 5-bit key code
570 * is transmitted twice, once in true form, and then in
571 * complemented form. This is already taken into account
572 * in the following tables.
573 */
574
575#define X10_HOUSE_LENGTH 8
576static char X10_HOUSE[16][8] = {
577 0, 1, 1, 0, 1, 0, 0, 1, /* A = 0110 */
578 1, 0, 1, 0, 1, 0, 0, 1, /* B = 1110 */
579 0, 1, 0, 1, 1, 0, 0, 1, /* C = 0010 */
580 1, 0, 0, 1, 1, 0, 0, 1, /* D = 1010 */
581 0, 1, 0, 1, 0, 1, 1, 0, /* E = 0001 */
582 1, 0, 0, 1, 0, 1, 1, 0, /* F = 1001 */
583 0, 1, 1, 0, 0, 1, 1, 0, /* G = 0101 */
584 1, 0, 1, 0, 0, 1, 1, 0, /* H = 1101 */
585 0, 1, 1, 0, 1, 0, 1, 0, /* I = 0111 */
586 1, 0, 1, 0, 1, 0, 1, 0, /* J = 1111 */
587 0, 1, 0, 1, 1, 0, 1, 0, /* K = 0011 */
588 1, 0, 0, 1, 1, 0, 1, 0, /* L = 1011 */
589 0, 1, 0, 1, 0, 1, 0, 1, /* M = 0000 */
590 1, 0, 0, 1, 0, 1, 0, 1, /* N = 1000 */
591 0, 1, 1, 0, 0, 1, 0, 1, /* O = 0100 */
592 1, 0, 1, 0, 0, 1, 0, 1 /* P = 1100 */
593};
594
595#define X10_KEY_LENGTH 10
596static char X10_KEY[32][10] = {
597 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, /* 01100 => 1 */
598 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, /* 11100 => 2 */
599 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, /* 00100 => 3 */
600 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, /* 10100 => 4 */
601 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, /* 00010 => 5 */
602 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, /* 10010 => 6 */
603 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, /* 01010 => 7 */
604 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, /* 11010 => 8 */
605 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, /* 01110 => 9 */
606 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, /* 11110 => 10 */
607 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, /* 00110 => 11 */
608 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, /* 10110 => 12 */
609 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, /* 00000 => 13 */
610 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, /* 10000 => 14 */
611 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, /* 01000 => 15 */
612 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, /* 11000 => 16 */
613 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, /* 00001 => All Units Off */
614 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, /* 00011 => All Units On */
615 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, /* 00101 => On */
616 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, /* 00111 => Off */
617 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, /* 01001 => Dim */
618 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, /* 01011 => Bright */
619 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, /* 01101 => All LIGHTS Off */
620 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, /* 01111 => Extended Code */
621 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, /* 10001 => Hail Request */
622 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, /* 10011 => Hail Acknowledge */
623 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, /* 10101 => Preset Dim 0 */
624 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, /* 10111 => Preset Dim 1 */
625 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, /* 11000 => Extended Data (analog) */
626 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, /* 11011 => Status = on */
627 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, /* 11101 => Status = off */
628 1, 0, 1, 0, 1, 0, 1, 0, 1, 0 /* 11111 => Status request */
629};
630
631/*
632 * Tables for mapping received X-10 code back to house/key number.
633 */
634
635static short X10_HOUSE_INV[16] = {
636 12, 4, 2, 10, 14, 6, 0, 8,
637 13, 5, 3, 11, 15, 7, 1, 9
638};
639
640static short X10_KEY_INV[32] = {
641 12, 16, 4, 17, 2, 18, 10, 19,
642 14, 20, 6, 21, 0, 22, 8, 23,
643 13, 24, 5, 25, 3, 26, 11, 27,
644 15, 28, 7, 29, 1, 30, 9, 31
645};
646
647static char *X10_KEY_LABEL[32] = {
648 "1",
649 "2",
650 "3",
651 "4",
652 "5",
653 "6",
654 "7",
655 "8",
656 "9",
657 "10",
658 "11",
659 "12",
660 "13",
661 "14",
662 "15",
663 "16",
664 "All Units Off",
665 "All Units On",
666 "On",
667 "Off",
668 "Dim",
669 "Bright",
670 "All LIGHTS Off",
671 "Extended Code",
672 "Hail Request",
673 "Hail Acknowledge",
674 "Preset Dim 0",
675 "Preset Dim 1",
676 "Extended Data (analog)",
677 "Status = on",
678 "Status = off",
679 "Status request"
680};
681/*
682 * Transmit a packet containing house code h and key code k
683 */
684
685#define TWRETRY 10 /* Try 10 times to sync with AC line */
686
687static int twsend(sc, h, k, cnt)
688struct tw_sc *sc;
689int h, k, cnt;
690{
691 int i;
692 int port = sc->sc_port;
693
694 /*
695 * Make sure we get a reliable sync with a power line zero crossing
696 */
697 for(i = 0; i < TWRETRY; i++) {
698 if(wait_for_zero(sc) > 100) goto insync;
699 }
700 log(LOG_ERR, "TWXMIT: failed to sync.\n");
701 return(-1);
702
703 insync:
704 /*
705 * Be sure to leave 3 cycles space between transmissions
706 */
707 for(i = 6; i > 0; i--)
708 if(next_zero(sc) < 0) return(-1);
709 /*
710 * The packet is transmitted cnt times, with no gaps.
711 */
712 while(cnt--) {
713 /*
714 * Transmit the start code
715 */
716 for(i = 0; i < X10_START_LENGTH; i++) {
717 outb(port+tw_data, X10_START[i] ? 0xff : 0x00); /* Waste no time! */
718#ifdef HIRESTIME
719 if(i == 0) twsetuptimes(sc->sc_xtimes);
720 if(twchecktime(sc->sc_xtimes[i], HALFCYCLE/20) == 0) {
721 outb(port+tw_data, 0);
722 return(-1);
723 }
724#endif /* HIRESTIME */
725 twdelayn(1000); /* 1ms pulse width */
726 outb(port+tw_data, 0);
727 if(next_zero(sc) < 0) return(-1);
728 }
729 /*
730 * Transmit the house code
731 */
732 for(i = 0; i < X10_HOUSE_LENGTH; i++) {
733 outb(port+tw_data, X10_HOUSE[h][i] ? 0xff : 0x00); /* Waste no time! */
734#ifdef HIRESTIME
735 if(twchecktime(sc->sc_xtimes[i+X10_START_LENGTH], HALFCYCLE/20) == 0) {
736 outb(port+tw_data, 0);
737 return(-1);
738 }
739#endif /* HIRESTIME */
740 twdelayn(1000); /* 1ms pulse width */
741 outb(port+tw_data, 0);
742 if(next_zero(sc) < 0) return(-1);
743 }
744 /*
745 * Transmit the unit/key code
746 */
747 for(i = 0; i < X10_KEY_LENGTH; i++) {
748 outb(port+tw_data, X10_KEY[k][i] ? 0xff : 0x00);
749#ifdef HIRESTIME
750 if(twchecktime(sc->sc_xtimes[i+X10_START_LENGTH+X10_HOUSE_LENGTH],
751 HALFCYCLE/20) == 0) {
752 outb(port+tw_data, 0);
753 return(-1);
754 }
755#endif /* HIRESTIME */
756 twdelayn(1000); /* 1ms pulse width */
757 outb(port+tw_data, 0);
758 if(next_zero(sc) < 0) return(-1);
759 }
760 }
761 return(0);
762}
763
764/*
765 * Waste CPU cycles to get in sync with a power line zero crossing.
766 * The value returned is roughly how many microseconds we wasted before
767 * seeing the transition. To avoid wasting time forever, we give up after
768 * waiting patiently for 1/4 sec (15 power line cycles at 60 Hz),
769 * which is more than the 11 cycles it takes to transmit a full
770 * X-10 packet.
771 */
772
773static int wait_for_zero(sc)
774struct tw_sc *sc;
775{
776 int i, old, new, max;
777 int port = sc->sc_port + tw_zcport;
778
779 old = sc->sc_xphase;
780 max = 10000; /* 10000 * 25us = 0.25 sec */
781 i = 0;
782 while(max--) {
783 new = inb(port) & tw_zcmask;
784 if(new != old) {
785 sc->sc_xphase = new;
786 return(i*25);
787 }
788 i++;
789 twdelay25();
790 }
791 return(-1);
792}
793
794/*
795 * Wait for the next zero crossing transition, and if we don't have
796 * high-resolution time-of-day, check to see that the zero crossing
797 * appears to be arriving on schedule.
798 * We expect to be waiting almost a full half-cycle (8.333ms-1ms = 7.333ms).
799 * If we don't seem to wait very long, something is wrong (like we got
800 * preempted!) and we should abort the transmission because
801 * there's no telling how long it's really been since the
802 * last bit was transmitted.
803 */
804
805static int next_zero(sc)
806struct tw_sc *sc;
807{
808 int d;
809#ifdef HIRESTIME
810 if((d = wait_for_zero(sc)) < 0) {
811#else
812 if((d = wait_for_zero(sc)) < 6000 || d > 8500) {
813 /* No less than 6.0ms, no more than 8.5ms */
814#endif /* HIRESTIME */
815 log(LOG_ERR, "TWXMIT framing error: %d\n", d);
816 return(-1);
817 }
818 return(0);
819}
820
821/*
822 * Put a three-byte packet into the circular buffer
823 * Should be called at priority spltty()
824 */
825
826static int twputpkt(sc, p)
827struct tw_sc *sc;
828u_char *p;
829{
830 int i, next;
831
832 for(i = 0; i < 3; i++) {
833 next = sc->sc_nextin+1;
834 if(next >= TW_SIZE) next = 0;
835 if(next == sc->sc_nextout) { /* Buffer full */
836/*
837 log(LOG_ERR, "TWRCV: Buffer overrun\n");
838 */
839 return(1);
840 }
841 sc->sc_buf[sc->sc_nextin] = *p++;
842 sc->sc_nextin = next;
843 }
844 if(sc->sc_state & TWS_WANT) {
845 sc->sc_state &= ~TWS_WANT;
846 wakeup((caddr_t)(&sc->sc_buf));
847 }
848 selwakeup(&sc->sc_selp);
849 return(0);
850}
851
852/*
853 * Get bytes from the circular buffer
854 * Should be called at priority spltty()
855 */
856
857static int twgetbytes(sc, p, cnt)
858struct tw_sc *sc;
859u_char *p;
860int cnt;
861{
862 int error;
863
864 while(cnt--) {
865 while(sc->sc_nextin == sc->sc_nextout) { /* Buffer empty */
866 sc->sc_state |= TWS_WANT;
867 error = tsleep((caddr_t)(&sc->sc_buf), TWPRI|PCATCH, "twread", 0);
868 if(error) {
869 return(error);
870 }
871 }
872 *p++ = sc->sc_buf[sc->sc_nextout++];
873 if(sc->sc_nextout >= TW_SIZE) sc->sc_nextout = 0;
874 }
875 return(0);
876}
877
878/*
879 * Abort reception that has failed to complete in the required time.
880 */
881
882static void
883twabortrcv(arg)
884 void *arg;
885{
886 struct tw_sc *sc = arg;
887 int s;
888 u_char pkt[3];
889
890 s = spltty();
891 sc->sc_state &= ~TWS_RCVING;
892 /* simply ignore single isolated interrupts. */
893 if (sc->sc_no_rcv > 1) {
894 sc->sc_flags |= TW_RCV_ERROR;
895 pkt[0] = sc->sc_flags;
896 pkt[1] = pkt[2] = 0;
897 twputpkt(sc, pkt);
898 log(LOG_ERR, "TWRCV: aborting (%x, %d)\n", sc->sc_bits, sc->sc_rcount);
899 twdebugtimes(sc);
900 }
901 wakeup((caddr_t)sc);
902 splx(s);
903}
904
905static int
906tw_is_within(int value, int expected, int tolerance)
907{
908 int diff;
909 diff = value - expected;
910 if (diff < 0)
911 diff *= -1;
912 if (diff < tolerance)
913 return 1;
914 return 0;
915}
916
917/*
918 * This routine handles interrupts that occur when there is a falling
919 * transition on the RX input. There isn't going to be a transition
920 * on every bit (some are zero), but if we are smart and keep track of
921 * how long it's been since the last interrupt (via the zero crossing
922 * detect line and/or high-resolution time-of-day routine), we can
923 * reconstruct the transmission without having to poll.
924 */
925
926static void twintr(unit)
927int unit;
928{
929 struct tw_sc *sc = &tw_sc[unit];
930 int port;
931 int newphase;
932 u_char pkt[3];
933 int delay = 0;
934 struct timeval tv;
935
936 port = sc->sc_port;
937 /*
938 * Ignore any interrupts that occur if the device is not open.
939 */
940 if(sc->sc_state == 0) return;
941 newphase = inb(port + tw_zcport) & tw_zcmask;
942 microtime(&tv);
943
944 /*
945 * NEW PACKET:
946 * If we aren't currently receiving a packet, set up a new packet
947 * and put in the first "1" bit that has just arrived.
948 * Arrange for the reception to be aborted if too much time goes by.
949 */
950 if((sc->sc_state & TWS_RCVING) == 0) {
951#ifdef HIRESTIME
952 twsetuptimes(sc->sc_rtimes);
953#endif /* HIRESTIME */
954 sc->sc_state |= TWS_RCVING;
955 sc->sc_rcount = 1;
956 if(sc->sc_state & TWS_XMITTING) sc->sc_flags = TW_RCV_LOCAL;
957 else sc->sc_flags = 0;
958 sc->sc_bits = 0;
959 sc->sc_rphase = newphase;
960 /* 3 cycles of silence = 3/60 = 1/20 = 50 msec */
961 sc->abortrcv_ch = timeout(twabortrcv, (caddr_t)sc, hz/20);
962 sc->sc_rcv_time[0] = tv.tv_usec;
963 sc->sc_no_rcv = 1;
964 return;
965 }
966 untimeout(twabortrcv, (caddr_t)sc, sc->abortrcv_ch);
967 sc->abortrcv_ch = timeout(twabortrcv, (caddr_t)sc, hz/20);
968 newphase = inb(port + tw_zcport) & tw_zcmask;
969
970 /* enforce a minimum delay since the last interrupt */
971 delay = tv.tv_usec - sc->sc_rcv_time[sc->sc_no_rcv - 1];
972 if (delay < 0)
973 delay += 1000000;
974 if (delay < TW_MIN_DELAY)
975 return;
976
977 sc->sc_rcv_time[sc->sc_no_rcv] = tv.tv_usec;
978 if (sc->sc_rcv_time[sc->sc_no_rcv] < sc->sc_rcv_time[0])
979 sc->sc_rcv_time[sc->sc_no_rcv] += 1000000;
980 sc->sc_no_rcv++;
981
982 /*
983 * START CODE:
984 * The second and third bits are a special case.
985 */
986 if (sc->sc_rcount < 3) {
987 if (
988#ifdef HIRESTIME
989 tw_is_within(delay, HALFCYCLE, HALFCYCLE / 6)
990#else
991 newphase != sc->sc_rphase
992#endif
993 ) {
994 sc->sc_rcount++;
995 } else {
996 /*
997 * Invalid start code -- abort reception.
998 */
999 sc->sc_state &= ~TWS_RCVING;
1000 sc->sc_flags |= TW_RCV_ERROR;
1001 untimeout(twabortrcv, (caddr_t)sc, sc->abortrcv_ch);
1002 log(LOG_ERR, "TWRCV: Invalid start code\n");
1003 twdebugtimes(sc);
1004 sc->sc_no_rcv = 0;
1005 return;
1006 }
1007 if(sc->sc_rcount == 3) {
1008 /*
1009 * We've gotten three "1" bits in a row. The start code
1010 * is really 1110, but this might be followed by a zero
1011 * bit from the house code, so if we wait any longer we
1012 * might be confused about the first house code bit.
1013 * So, we guess that the start code is correct and insert
1014 * the trailing zero without actually having seen it.
1015 * We don't change sc_rphase in this case, because two
1016 * bit arrivals in a row preserve parity.
1017 */
1018 sc->sc_rcount++;
1019 return;
1020 }
1021 /*
1022 * Update sc_rphase to the current phase before returning.
1023 */
1024 sc->sc_rphase = newphase;
1025 return;
1026 }
1027 /*
1028 * GENERAL CASE:
1029 * Now figure out what the current bit is that just arrived.
1030 * The X-10 protocol transmits each data bit twice: once in
1031 * true form and once in complemented form on the next half
1032 * cycle. So, there will be at least one interrupt per bit.
1033 * By comparing the phase we see at the time of the interrupt
1034 * with the saved sc_rphase, we can tell on which half cycle
1035 * the interrupt occrred. This assumes, of course, that the
1036 * packet is well-formed. We do the best we can at trying to
1037 * catch errors by aborting if too much time has gone by, and
1038 * by tossing out a packet if too many bits arrive, but the
1039 * whole scheme is probably not as robust as if we had a nice
1040 * interrupt on every half cycle of the power line.
1041 * If we have high-resolution time-of-day routines, then we
1042 * can do a bit more sanity checking.
1043 */
1044
1045 /*
1046 * A complete packet is 22 half cycles.
1047 */
1048 if(sc->sc_rcount <= 20) {
1049#ifdef HIRESTIME
1050 int bit = 0, last_bit;
1051 if (sc->sc_rcount == 4)
1052 last_bit = 1; /* Start (1110) ends in 10, a 'one' code. */
1053 else
1054 last_bit = sc->sc_bits & 0x1;
1055 if ( ( (last_bit == 1)
1056 && (tw_is_within(delay, HALFCYCLE * 2, HALFCYCLE / 6)))
1057 || ( (last_bit == 0)
1058 && (tw_is_within(delay, HALFCYCLE * 1, HALFCYCLE / 6))))
1059 bit = 1;
1060 else if ( ( (last_bit == 1)
1061 && (tw_is_within(delay, HALFCYCLE * 3, HALFCYCLE / 6)))
1062 || ( (last_bit == 0)
1063 && (tw_is_within(delay, HALFCYCLE * 2, HALFCYCLE / 6))))
1064 bit = 0;
1065 else {
1066 sc->sc_flags |= TW_RCV_ERROR;
1067 log(LOG_ERR, "TWRCV: %d cycle after %d bit, delay %d%%\n",
1068 sc->sc_rcount, last_bit, 100 * delay / HALFCYCLE);
1069 }
1070 sc->sc_bits = (sc->sc_bits << 1) | bit;
1071#else
1072 sc->sc_bits = (sc->sc_bits << 1)
1073 | ((newphase == sc->sc_rphase) ? 0x0 : 0x1);
1074#endif /* HIRESTIME */
1075 sc->sc_rcount += 2;
1076 }
1077 if(sc->sc_rcount >= 22 || sc->sc_flags & TW_RCV_ERROR) {
1078 if(sc->sc_rcount != 22) {
1079 sc->sc_flags |= TW_RCV_ERROR;
1080 pkt[0] = sc->sc_flags;
1081 pkt[1] = pkt[2] = 0;
1082 } else {
1083 pkt[0] = sc->sc_flags;
1084 pkt[1] = X10_HOUSE_INV[(sc->sc_bits & 0x1e0) >> 5];
1085 pkt[2] = X10_KEY_INV[sc->sc_bits & 0x1f];
1086 }
1087 sc->sc_state &= ~TWS_RCVING;
1088 twputpkt(sc, pkt);
1089 untimeout(twabortrcv, (caddr_t)sc, sc->abortrcv_ch);
1090 if(sc->sc_flags & TW_RCV_ERROR) {
1091 log(LOG_ERR, "TWRCV: invalid packet: (%d, %x) %c %s\n",
1092 sc->sc_rcount, sc->sc_bits, 'A' + pkt[1], X10_KEY_LABEL[pkt[2]]);
1093 twdebugtimes(sc);
1094 } else {
1095/* log(LOG_ERR, "TWRCV: valid packet: (%d, %x) %c %s\n",
1096 sc->sc_rcount, sc->sc_bits, 'A' + pkt[1], X10_KEY_LABEL[pkt[2]]); */
1097 }
1098 sc->sc_rcount = 0;
1099 wakeup((caddr_t)sc);
1100 }
1101}
1102
1103static void twdebugtimes(struct tw_sc *sc)
1104{
1105 int i;
1106 for (i = 0; (i < sc->sc_no_rcv) && (i < SC_RCV_TIME_LEN); i++)
1107 log(LOG_ERR, "TWRCV: interrupt %2d: %d\t%d%%\n", i, sc->sc_rcv_time[i],
1108 (sc->sc_rcv_time[i] - sc->sc_rcv_time[(i?i-1:0)])*100/HALFCYCLE);
1109}
1110
1111#ifdef HIRESTIME
1112/*
1113 * Initialize an array of 22 times, starting from the current
1114 * microtime and continuing for the next 21 half cycles.
1115 * We use the times as a reference to make sure transmission
1116 * or reception is on schedule.
1117 */
1118
1119static void twsetuptimes(int *a)
1120{
1121 struct timeval tv;
1122 int i, t;
1123
1124 microtime(&tv);
1125 t = tv.tv_usec;
1126 for(i = 0; i < 22; i++) {
1127 *a++ = t;
1128 t += HALFCYCLE;
1129 if(t >= 1000000) t -= 1000000;
1130 }
1131}
1132
1133/*
1134 * Check the current time against a slot in a previously set up
1135 * timing array, and make sure that it looks like we are still
1136 * on schedule.
1137 */
1138
1139static int twchecktime(int target, int tol)
1140{
1141 struct timeval tv;
1142 int t, d;
1143
1144 microtime(&tv);
1145 t = tv.tv_usec;
1146 d = (target - t) >= 0 ? (target - t) : (t - target);
1147 if(d > 500000) d = 1000000-d;
1148 if(d <= tol && d >= -tol) {
1149 return(1);
1150 } else {
1151 return(0);
1152 }
1153}
1154#endif /* HIRESTIME */