libm: cacos(3) character magic zapped
[dragonfly.git] / lib / libm / man / cacos.3
CommitLineData
6ff43c94
PA
1.\" Copyright (c) 2013 David Schultz <das@FreeBSD.org>
2.\" All rights reserved.
3.\"
4.\" Redistribution and use in source and binary forms, with or without
5.\" modification, are permitted provided that the following conditions
6.\" are met:
7.\" 1. Redistributions of source code must retain the above copyright
8.\" notice, this list of conditions and the following disclaimer.
9.\" 2. Redistributions in binary form must reproduce the above copyright
10.\" notice, this list of conditions and the following disclaimer in the
11.\" documentation and/or other materials provided with the distribution.
12.\"
13.\" THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14.\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15.\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16.\" ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17.\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18.\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19.\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20.\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21.\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22.\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23.\" SUCH DAMAGE.
24.\"
25.\" $FreeBSD: head/lib/msun/man/cacos.3 251121 2013-05-30 04:49:26Z das $
26.\"
27.Dd May 27, 2013
28.Dt CACOS 3
29.Os
30.Sh NAME
31.Nm cacos ,
32.Nm cacosf ,
33.Nm cacosh ,
34.Nm cacoshf ,
35.Nm casin ,
36.Nm casinf
37.Nm casinh ,
38.Nm casinhf
39.Nm catan ,
40.Nm catanf
41.Nm catanh ,
42.Nm catanhf
43.Nd complex arc trigonometric and hyperbolic functions
44.Sh LIBRARY
45.Lb libm
46.Sh SYNOPSIS
47.In complex.h
48.Ft double complex
49.Fn cacos "double complex z"
50.Ft float complex
51.Fn cacosf "float complex z"
52.Ft double complex
53.Fn cacosh "double complex z"
54.Ft float complex
55.Fn cacoshf "float complex z"
56.Ft double complex
57.Fn casin "double complex z"
58.Ft float complex
59.Fn casinf "float complex z"
60.Ft double complex
61.Fn casinh "double complex z"
62.Ft float complex
63.Fn casinhf "float complex z"
64.Ft double complex
65.Fn catan "double complex z"
66.Ft float complex
67.Fn catanf "float complex z"
68.Ft double complex
69.Fn catanh "double complex z"
70.Ft float complex
71.Fn catanhf "float complex z"
72.Sh DESCRIPTION
73The
74.Fn cacos ,
75.Fn casin ,
76and
77.Fn catan
78functions compute the principal value of the inverse cosine, sine,
79and tangent of the complex number
80.Fa z ,
81respectively.
82The
83.Fn cacosh ,
84.Fn casinh ,
85and
86.Fn catanh
87functions compute the principal value of the inverse hyperbolic
88cosine, sine, and tangent.
89The
90.Fn cacosf ,
91.Fn casinf ,
92.Fn catanf
93.Fn cacoshf ,
94.Fn casinhf ,
95and
96.Fn catanhf
97functions perform the same operations in
98.Fa float
99precision.
100.Pp
6ff43c94
PA
101There is no universal convention for defining the principal values of
102these functions. The following table gives the branch cuts, and the
103corresponding ranges for the return values, adopted by the C language.
cdf379d2 104.Bl -column ".Sy Function" ".Sy (-\*(If*I, -I) \(cu (I, \*(If*I)" ".Sy [-\*(Pi/2*I, \*(Pi/2*I]"
6ff43c94 105.It Sy Function Ta Sy Branch Cut(s) Ta Sy Range
cdf379d2
FF
106.It cacos Ta (-\*(If, -1) \(cu (1, \*(If) Ta [0, \*(Pi]
107.It casin Ta (-\*(If, -1) \(cu (1, \*(If) Ta [-\*(Pi/2, \*(Pi/2]
108.It catan Ta (-\*(If*I, -i) \(cu (I, \*(If*I) Ta [-\*(Pi/2, \*(Pi/2]
6ff43c94 109.It cacosh Ta (-\*(If, 1) Ta [-\*(Pi*I, \*(Pi*I]
cdf379d2
FF
110.It casinh Ta (-\*(If*I, -i) \(cu (I, \*(If*I) Ta [-\*(Pi/2*I, \*(Pi/2*I]
111.It catanh Ta (-\*(If, -1) \(cu (1, \*(If) Ta [-\*(Pi/2*I, \*(Pi/2*I]
6ff43c94
PA
112.El
113.Sh SEE ALSO
114.Xr ccos 3 ,
115.Xr ccosh 3 ,
116.Xr complex 3 ,
117.Xr cos 3 ,
118.Xr math 3 ,
119.Xr sin 3 ,
120.Xr tan 3
121.Sh STANDARDS
122These functions conform to
123.St -isoC-99 .