Improve the contigmalloc() memory allocator. Fix a starting index bug,
[dragonfly.git] / sys / vm / vm_page.h
CommitLineData
984263bc
MD
1/*
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * from: @(#)vm_page.h 8.2 (Berkeley) 12/13/93
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
57 * School of Computer Science
58 * Carnegie Mellon University
59 * Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 *
64 * $FreeBSD: src/sys/vm/vm_page.h,v 1.75.2.8 2002/03/06 01:07:09 dillon Exp $
ec59a781 65 * $DragonFly: src/sys/vm/vm_page.h,v 1.17 2005/02/22 21:35:33 dillon Exp $
984263bc
MD
66 */
67
68/*
69 * Resident memory system definitions.
70 */
71
74232d8e
MD
72#ifndef _VM_PAGE_H_
73#define _VM_PAGE_H_
984263bc 74
3c923499 75#if !defined(KLD_MODULE) && defined(_KERNEL)
984263bc
MD
76#include "opt_vmpage.h"
77#endif
78
79#include <vm/pmap.h>
80#include <machine/atomic.h>
81
82/*
83 * Management of resident (logical) pages.
84 *
85 * A small structure is kept for each resident
86 * page, indexed by page number. Each structure
87 * is an element of several lists:
88 *
89 * A hash table bucket used to quickly
90 * perform object/offset lookups
91 *
92 * A list of all pages for a given object,
93 * so they can be quickly deactivated at
94 * time of deallocation.
95 *
96 * An ordered list of pages due for pageout.
97 *
98 * In addition, the structure contains the object
99 * and offset to which this page belongs (for pageout),
100 * and sundry status bits.
101 *
102 * Fields in this structure are locked either by the lock on the
103 * object that the page belongs to (O) or by the lock on the page
104 * queues (P).
105 *
106 * The 'valid' and 'dirty' fields are distinct. A page may have dirty
107 * bits set without having associated valid bits set. This is used by
108 * NFS to implement piecemeal writes.
109 */
110
111TAILQ_HEAD(pglist, vm_page);
112
113struct vm_page {
a441ad78 114 TAILQ_ENTRY(vm_page) pageq; /* vm_page_queues[] list (P) */
984263bc
MD
115 struct vm_page *hnext; /* hash table link (O,P) */
116 TAILQ_ENTRY(vm_page) listq; /* pages in same object (O) */
117
118 vm_object_t object; /* which object am I in (O,P)*/
119 vm_pindex_t pindex; /* offset into object (O,P) */
6ef943a3 120 vm_paddr_t phys_addr; /* physical address of page */
984263bc
MD
121 struct md_page md; /* machine dependant stuff */
122 u_short queue; /* page queue index */
a441ad78
MD
123 u_short flags; /* see below */
124 u_short pc; /* page color */
984263bc
MD
125 u_short wire_count; /* wired down maps refs (P) */
126 short hold_count; /* page hold count */
127 u_char act_count; /* page usage count */
128 u_char busy; /* page busy count */
a441ad78
MD
129
130 /*
131 * NOTE that these must support one bit per DEV_BSIZE in a page!!!
132 * so, on normal X86 kernels, they must be at least 8 bits wide.
133 */
984263bc
MD
134#if PAGE_SIZE == 4096
135 u_char valid; /* map of valid DEV_BSIZE chunks */
136 u_char dirty; /* map of dirty DEV_BSIZE chunks */
137#elif PAGE_SIZE == 8192
138 u_short valid; /* map of valid DEV_BSIZE chunks */
139 u_short dirty; /* map of dirty DEV_BSIZE chunks */
140#endif
141};
142
143/*
144 * note: currently use SWAPBLK_NONE as an absolute value rather then
145 * a flag bit.
146 */
984263bc
MD
147#define SWAPBLK_MASK ((daddr_t)((u_daddr_t)-1 >> 1)) /* mask */
148#define SWAPBLK_NONE ((daddr_t)((u_daddr_t)SWAPBLK_MASK + 1))/* flag */
149
984263bc 150/*
74232d8e
MD
151 * Page coloring parameters. We default to a middle of the road optimization.
152 * Larger selections would not really hurt us but if a machine does not have
153 * a lot of memory it could cause vm_page_alloc() to eat more cpu cycles
154 * looking for free pages.
155 *
156 * Page coloring cannot be disabled. Modules do not have access to most PQ
157 * constants because they can change between builds.
984263bc 158 */
74232d8e 159#if defined(_KERNEL) && !defined(KLD_MODULE)
984263bc 160
984263bc 161#if !defined(PQ_CACHESIZE)
74232d8e 162#define PQ_CACHESIZE 256 /* max is 1024 (MB) */
984263bc
MD
163#endif
164
165#if PQ_CACHESIZE >= 1024
166#define PQ_PRIME1 31 /* Prime number somewhat less than PQ_HASH_SIZE */
167#define PQ_PRIME2 23 /* Prime number somewhat less than PQ_HASH_SIZE */
168#define PQ_L2_SIZE 256 /* A number of colors opt for 1M cache */
169
170#elif PQ_CACHESIZE >= 512
171#define PQ_PRIME1 31 /* Prime number somewhat less than PQ_HASH_SIZE */
172#define PQ_PRIME2 23 /* Prime number somewhat less than PQ_HASH_SIZE */
173#define PQ_L2_SIZE 128 /* A number of colors opt for 512K cache */
174
175#elif PQ_CACHESIZE >= 256
176#define PQ_PRIME1 13 /* Prime number somewhat less than PQ_HASH_SIZE */
177#define PQ_PRIME2 7 /* Prime number somewhat less than PQ_HASH_SIZE */
178#define PQ_L2_SIZE 64 /* A number of colors opt for 256K cache */
179
180#elif PQ_CACHESIZE >= 128
181#define PQ_PRIME1 9 /* Produces a good PQ_L2_SIZE/3 + PQ_PRIME1 */
182#define PQ_PRIME2 5 /* Prime number somewhat less than PQ_HASH_SIZE */
183#define PQ_L2_SIZE 32 /* A number of colors opt for 128k cache */
184
74232d8e 185#else
984263bc
MD
186#define PQ_PRIME1 5 /* Prime number somewhat less than PQ_HASH_SIZE */
187#define PQ_PRIME2 3 /* Prime number somewhat less than PQ_HASH_SIZE */
188#define PQ_L2_SIZE 16 /* A reasonable number of colors (opt for 64K cache) */
189
984263bc
MD
190#endif
191
74232d8e 192#define PQ_L2_MASK (PQ_L2_SIZE - 1)
984263bc 193
74232d8e
MD
194#endif /* KERNEL && !KLD_MODULE */
195
196/*
197 *
198 * The queue array is always based on PQ_MAXL2_SIZE regardless of the actual
199 * cache size chosen in order to present a uniform interface for modules.
200 */
201#define PQ_MAXL2_SIZE 256 /* fixed maximum (in pages) / module compat */
202
203#if PQ_L2_SIZE > PQ_MAXL2_SIZE
204#error "Illegal PQ_L2_SIZE"
205#endif
206
207#define PQ_NONE 0
208#define PQ_FREE 1
209#define PQ_INACTIVE (1 + 1*PQ_MAXL2_SIZE)
210#define PQ_ACTIVE (2 + 1*PQ_MAXL2_SIZE)
211#define PQ_CACHE (3 + 1*PQ_MAXL2_SIZE)
212#define PQ_HOLD (3 + 2*PQ_MAXL2_SIZE)
213#define PQ_COUNT (4 + 2*PQ_MAXL2_SIZE)
984263bc
MD
214
215struct vpgqueues {
216 struct pglist pl;
217 int *cnt;
218 int lcnt;
161399b3 219 int flipflop; /* probably not the best place */
984263bc
MD
220};
221
222extern struct vpgqueues vm_page_queues[PQ_COUNT];
223
984263bc
MD
224/*
225 * These are the flags defined for vm_page.
226 *
984263bc
MD
227 * Note: PG_UNMANAGED (used by OBJT_PHYS) indicates that the page is
228 * not under PV management but otherwise should be treated as a
229 * normal page. Pages not under PV management cannot be paged out
230 * via the object/vm_page_t because there is no knowledge of their
231 * pte mappings, nor can they be removed from their objects via
232 * the object, and such pages are also not on any PQ queue.
233 */
234#define PG_BUSY 0x0001 /* page is in transit (O) */
235#define PG_WANTED 0x0002 /* someone is waiting for page (O) */
236#define PG_WINATCFLS 0x0004 /* flush dirty page on inactive q */
237#define PG_FICTITIOUS 0x0008 /* physical page doesn't exist (O) */
238#define PG_WRITEABLE 0x0010 /* page is mapped writeable */
239#define PG_MAPPED 0x0020 /* page is mapped */
240#define PG_ZERO 0x0040 /* page is zeroed */
241#define PG_REFERENCED 0x0080 /* page has been referenced */
242#define PG_CLEANCHK 0x0100 /* page will be checked for cleaning */
243#define PG_SWAPINPROG 0x0200 /* swap I/O in progress on page */
244#define PG_NOSYNC 0x0400 /* do not collect for syncer */
245#define PG_UNMANAGED 0x0800 /* No PV management for page */
246#define PG_MARKER 0x1000 /* special queue marker page */
247
248/*
249 * Misc constants.
250 */
251
252#define ACT_DECLINE 1
253#define ACT_ADVANCE 3
254#define ACT_INIT 5
255#define ACT_MAX 64
984263bc
MD
256
257#ifdef _KERNEL
258/*
259 * Each pageable resident page falls into one of four lists:
260 *
261 * free
262 * Available for allocation now.
263 *
264 * The following are all LRU sorted:
265 *
266 * cache
267 * Almost available for allocation. Still in an
268 * object, but clean and immediately freeable at
269 * non-interrupt times.
270 *
271 * inactive
272 * Low activity, candidates for reclamation.
273 * This is the list of pages that should be
274 * paged out next.
275 *
276 * active
277 * Pages that are "active" i.e. they have been
278 * recently referenced.
279 *
280 * zero
281 * Pages that are really free and have been pre-zeroed
282 *
283 */
284
285extern int vm_page_zero_count;
984263bc
MD
286extern vm_page_t vm_page_array; /* First resident page in table */
287extern int vm_page_array_size; /* number of vm_page_t's */
288extern long first_page; /* first physical page number */
289
a441ad78
MD
290#define VM_PAGE_TO_PHYS(entry) \
291 ((entry)->phys_addr)
984263bc 292
a441ad78
MD
293#define PHYS_TO_VM_PAGE(pa) \
294 (&vm_page_array[atop(pa) - first_page])
984263bc
MD
295
296/*
297 * Functions implemented as macros
298 */
299
300static __inline void
301vm_page_flag_set(vm_page_t m, unsigned int bits)
302{
303 atomic_set_short(&(m)->flags, bits);
304}
305
306static __inline void
307vm_page_flag_clear(vm_page_t m, unsigned int bits)
308{
309 atomic_clear_short(&(m)->flags, bits);
310}
311
984263bc
MD
312static __inline void
313vm_page_busy(vm_page_t m)
314{
a441ad78
MD
315 KASSERT((m->flags & PG_BUSY) == 0,
316 ("vm_page_busy: page already busy!!!"));
984263bc
MD
317 vm_page_flag_set(m, PG_BUSY);
318}
319
320/*
321 * vm_page_flash:
322 *
323 * wakeup anyone waiting for the page.
324 */
325
326static __inline void
327vm_page_flash(vm_page_t m)
328{
329 if (m->flags & PG_WANTED) {
330 vm_page_flag_clear(m, PG_WANTED);
331 wakeup(m);
332 }
333}
334
335/*
a441ad78
MD
336 * Clear the PG_BUSY flag and wakeup anyone waiting for the page. This
337 * is typically the last call you make on a page before moving onto
338 * other things.
984263bc 339 */
984263bc
MD
340static __inline void
341vm_page_wakeup(vm_page_t m)
342{
343 KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
344 vm_page_flag_clear(m, PG_BUSY);
345 vm_page_flash(m);
346}
347
a441ad78
MD
348/*
349 * These routines manipulate the 'soft busy' count for a page. A soft busy
350 * is almost like PG_BUSY except that it allows certain compatible operations
351 * to occur on the page while it is busy. For example, a page undergoing a
352 * write can still be mapped read-only.
353 */
984263bc
MD
354static __inline void
355vm_page_io_start(vm_page_t m)
356{
357 atomic_add_char(&(m)->busy, 1);
358}
359
360static __inline void
361vm_page_io_finish(vm_page_t m)
362{
363 atomic_subtract_char(&m->busy, 1);
364 if (m->busy == 0)
365 vm_page_flash(m);
366}
367
368
369#if PAGE_SIZE == 4096
370#define VM_PAGE_BITS_ALL 0xff
371#endif
372
373#if PAGE_SIZE == 8192
374#define VM_PAGE_BITS_ALL 0xffff
375#endif
376
dc1fd4b3
MD
377/*
378 * Note: the code will always use nominally free pages from the free list
379 * before trying other flag-specified sources.
380 *
381 * At least one of VM_ALLOC_NORMAL|VM_ALLOC_SYSTEM|VM_ALLOC_INTERRUPT
382 * must be specified. VM_ALLOC_RETRY may only be specified if VM_ALLOC_NORMAL
383 * is also specified.
384 */
385#define VM_ALLOC_NORMAL 0x01 /* ok to use cache pages */
386#define VM_ALLOC_SYSTEM 0x02 /* ok to exhaust most of free list */
387#define VM_ALLOC_INTERRUPT 0x04 /* ok to exhaust entire free list */
388#define VM_ALLOC_ZERO 0x08 /* req pre-zero'd memory if avail */
389#define VM_ALLOC_RETRY 0x80 /* indefinite block (vm_page_grab()) */
984263bc
MD
390
391void vm_page_unhold(vm_page_t mem);
984263bc
MD
392void vm_page_activate (vm_page_t);
393vm_page_t vm_page_alloc (vm_object_t, vm_pindex_t, int);
394vm_page_t vm_page_grab (vm_object_t, vm_pindex_t, int);
5f910b2f 395void vm_page_cache (vm_page_t);
984263bc
MD
396int vm_page_try_to_cache (vm_page_t);
397int vm_page_try_to_free (vm_page_t);
5f910b2f 398void vm_page_dontneed (vm_page_t);
984263bc
MD
399void vm_page_deactivate (vm_page_t);
400void vm_page_insert (vm_page_t, vm_object_t, vm_pindex_t);
401vm_page_t vm_page_lookup (vm_object_t, vm_pindex_t);
402void vm_page_remove (vm_page_t);
403void vm_page_rename (vm_page_t, vm_object_t, vm_pindex_t);
404vm_offset_t vm_page_startup (vm_offset_t, vm_offset_t, vm_offset_t);
6ef943a3 405vm_page_t vm_add_new_page (vm_paddr_t pa);
984263bc
MD
406void vm_page_unmanage (vm_page_t);
407void vm_page_unwire (vm_page_t, int);
408void vm_page_wire (vm_page_t);
409void vm_page_unqueue (vm_page_t);
410void vm_page_unqueue_nowakeup (vm_page_t);
411void vm_page_set_validclean (vm_page_t, int, int);
412void vm_page_set_dirty (vm_page_t, int, int);
413void vm_page_clear_dirty (vm_page_t, int, int);
414void vm_page_set_invalid (vm_page_t, int, int);
984263bc
MD
415int vm_page_is_valid (vm_page_t, int, int);
416void vm_page_test_dirty (vm_page_t);
417int vm_page_bits (int, int);
74232d8e 418vm_page_t vm_page_list_find(int basequeue, int index, boolean_t prefer_zero);
984263bc
MD
419void vm_page_zero_invalid(vm_page_t m, boolean_t setvalid);
420void vm_page_free_toq(vm_page_t m);
ba0fefd4 421vm_offset_t vm_contig_pg_kmap(int, u_long, vm_map_t, int);
d1fcdd16
HP
422void vm_contig_pg_free(int, u_long);
423
984263bc 424/*
06ecca5a
MD
425 * Holding a page keeps it from being reused. Other parts of the system
426 * can still disassociate the page from its current object and free it, or
427 * perform read or write I/O on it and/or otherwise manipulate the page,
428 * but if the page is held the VM system will leave the page and its data
429 * intact and not reuse the page for other purposes until the last hold
430 * reference is released. (see vm_page_wire() if you want to prevent the
431 * page from being disassociated from its object too).
432 *
433 * This routine must be called while at splvm() or better.
434 *
435 * The caller must still validate the contents of the page and, if necessary,
436 * wait for any pending I/O (e.g. vm_page_sleep_busy() loop) to complete
437 * before manipulating the page.
984263bc
MD
438 */
439static __inline void
440vm_page_hold(vm_page_t mem)
441{
442 mem->hold_count++;
443}
444
445/*
06ecca5a
MD
446 * Reduce the protection of a page. This routine never raises the
447 * protection and therefore can be safely called if the page is already
448 * at VM_PROT_NONE (it will be a NOP effectively ).
449 *
450 * VM_PROT_NONE will remove all user mappings of a page. This is often
451 * necessary when a page changes state (for example, turns into a copy-on-write
452 * page or needs to be frozen for write I/O) in order to force a fault, or
453 * to force a page's dirty bits to be synchronized and avoid hardware
454 * (modified/accessed) bit update races with pmap changes.
455 *
456 * Since 'prot' is usually a constant, this inline usually winds up optimizing
457 * out the primary conditional.
984263bc 458 */
984263bc
MD
459static __inline void
460vm_page_protect(vm_page_t mem, int prot)
461{
462 if (prot == VM_PROT_NONE) {
463 if (mem->flags & (PG_WRITEABLE|PG_MAPPED)) {
464 pmap_page_protect(mem, VM_PROT_NONE);
465 vm_page_flag_clear(mem, PG_WRITEABLE|PG_MAPPED);
466 }
467 } else if ((prot == VM_PROT_READ) && (mem->flags & PG_WRITEABLE)) {
468 pmap_page_protect(mem, VM_PROT_READ);
469 vm_page_flag_clear(mem, PG_WRITEABLE);
470 }
471}
472
473/*
06ecca5a
MD
474 * Zero-fill the specified page. The entire contents of the page will be
475 * zero'd out.
984263bc
MD
476 */
477static __inline boolean_t
06ecca5a 478vm_page_zero_fill(vm_page_t m)
984263bc
MD
479{
480 pmap_zero_page(VM_PAGE_TO_PHYS(m));
481 return (TRUE);
482}
483
484/*
06ecca5a
MD
485 * Copy the contents of src_m to dest_m. The pages must be stable but spl
486 * and other protections depend on context.
984263bc
MD
487 */
488static __inline void
06ecca5a 489vm_page_copy(vm_page_t src_m, vm_page_t dest_m)
984263bc
MD
490{
491 pmap_copy_page(VM_PAGE_TO_PHYS(src_m), VM_PAGE_TO_PHYS(dest_m));
492 dest_m->valid = VM_PAGE_BITS_ALL;
493}
494
495/*
a441ad78 496 * Free a page. The page must be marked BUSY.
984263bc 497 *
a441ad78
MD
498 * The clearing of PG_ZERO is a temporary safety until the code can be
499 * reviewed to determine that PG_ZERO is being properly cleared on
500 * write faults or maps. PG_ZERO was previously cleared in
501 * vm_page_alloc().
984263bc
MD
502 */
503static __inline void
a441ad78 504vm_page_free(vm_page_t m)
984263bc
MD
505{
506 vm_page_flag_clear(m, PG_ZERO);
507 vm_page_free_toq(m);
508}
509
510/*
a441ad78 511 * Free a page to the zerod-pages queue
984263bc
MD
512 */
513static __inline void
a441ad78 514vm_page_free_zero(vm_page_t m)
984263bc
MD
515{
516 vm_page_flag_set(m, PG_ZERO);
517 vm_page_free_toq(m);
518}
519
520/*
a441ad78
MD
521 * Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE)
522 * m->busy is zero. Returns TRUE if it had to sleep ( including if
523 * it almost had to sleep and made temporary spl*() mods), FALSE
524 * otherwise.
525 *
526 * This routine assumes that interrupts can only remove the busy
527 * status from a page, not set the busy status or change it from
528 * PG_BUSY to m->busy or vise versa (which would create a timing
529 * window).
530 *
531 * Note: as an inline, 'also_m_busy' is usually a constant and well
532 * optimized.
984263bc 533 */
984263bc
MD
534static __inline int
535vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
536{
537 if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
538 int s = splvm();
539 if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
540 /*
541 * Page is busy. Wait and retry.
542 */
543 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
377d4740 544 tsleep(m, 0, msg, 0);
984263bc
MD
545 }
546 splx(s);
547 return(TRUE);
548 /* not reached */
549 }
550 return(FALSE);
551}
552
553/*
a441ad78 554 * Make page all dirty
984263bc 555 */
984263bc
MD
556static __inline void
557vm_page_dirty(vm_page_t m)
558{
74232d8e
MD
559 KASSERT(m->queue - m->pc != PQ_CACHE,
560 ("vm_page_dirty: page in cache!"));
984263bc
MD
561 m->dirty = VM_PAGE_BITS_ALL;
562}
563
564/*
a441ad78 565 * Set page to not be dirty. Note: does not clear pmap modify bits .
984263bc 566 */
984263bc
MD
567static __inline void
568vm_page_undirty(vm_page_t m)
569{
570 m->dirty = 0;
571}
572
984263bc
MD
573#endif /* _KERNEL */
574#endif /* !_VM_PAGE_ */