nrelease - fix/improve livecd
[dragonfly.git] / sys / kern / kern_synch.c
CommitLineData
984263bc
MD
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
dc71b7ab 18 * 3. Neither the name of the University nor the names of its contributors
984263bc
MD
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
35 * $FreeBSD: src/sys/kern/kern_synch.c,v 1.87.2.6 2002/10/13 07:29:53 kbyanc Exp $
36 */
37
38#include "opt_ktrace.h"
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/proc.h>
43#include <sys/kernel.h>
44#include <sys/signalvar.h>
45#include <sys/resourcevar.h>
46#include <sys/vmmeter.h>
47#include <sys/sysctl.h>
344ad853 48#include <sys/lock.h>
2b3f93ea 49#include <sys/caps.h>
f6aeec64 50#include <sys/kcollect.h>
e2164e29 51#include <sys/malloc.h>
fc9ae81d 52#ifdef KTRACE
984263bc
MD
53#include <sys/ktrace.h>
54#endif
9afb0ffd 55#include <sys/ktr.h>
684a93c4 56#include <sys/serialize.h>
984263bc 57
684a93c4 58#include <sys/signal2.h>
bf765287
MD
59#include <sys/thread2.h>
60#include <sys/spinlock2.h>
7f6220a9 61#include <sys/mutex2.h>
bf765287 62
984263bc 63#include <machine/cpu.h>
984263bc
MD
64#include <machine/smp.h>
65
1bc11bc6
SZ
66#include <vm/vm_extern.h>
67
8acf0617
MD
68struct tslpque {
69 TAILQ_HEAD(, thread) queue;
70 const volatile void *ident0;
71 const volatile void *ident1;
72 const volatile void *ident2;
73 const volatile void *ident3;
74};
fc17ad60 75
402ed7e1 76static void sched_setup (void *dummy);
f3f3eadb 77SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL);
666ff13c
MD
78static void sched_dyninit (void *dummy);
79SYSINIT(sched_dyninit, SI_BOOT1_DYNALLOC, SI_ORDER_FIRST, sched_dyninit, NULL);
984263bc 80
984263bc 81int lbolt;
50e4012a 82void *lbolt_syncer;
ac7fb7ba 83__read_mostly int tsleep_crypto_dump = 0;
e3c330f0
MD
84__read_mostly int ncpus;
85__read_mostly int ncpus_fit, ncpus_fit_mask; /* note: mask not cpumask_t */
86__read_mostly int safepri;
87__read_mostly int tsleep_now_works;
984263bc 88
fc17ad60 89MALLOC_DEFINE(M_TSLEEP, "tslpque", "tsleep queues");
984263bc 90
5decebc7
MD
91#define __DEALL(ident) __DEQUALIFY(void *, ident)
92
9afb0ffd
MD
93#if !defined(KTR_TSLEEP)
94#define KTR_TSLEEP KTR_ALL
95#endif
96KTR_INFO_MASTER(tsleep);
5bf48697
AE
97KTR_INFO(KTR_TSLEEP, tsleep, tsleep_beg, 0, "tsleep enter %p", const volatile void *ident);
98KTR_INFO(KTR_TSLEEP, tsleep, tsleep_end, 1, "tsleep exit");
99KTR_INFO(KTR_TSLEEP, tsleep, wakeup_beg, 2, "wakeup enter %p", const volatile void *ident);
100KTR_INFO(KTR_TSLEEP, tsleep, wakeup_end, 3, "wakeup exit");
101KTR_INFO(KTR_TSLEEP, tsleep, ilockfail, 4, "interlock failed %p", const volatile void *ident);
8aa3430c
MD
102
103#define logtsleep1(name) KTR_LOG(tsleep_ ## name)
104#define logtsleep2(name, val) KTR_LOG(tsleep_ ## name, val)
9afb0ffd 105
ac7fb7ba 106__exclusive_cache_line
984263bc
MD
107struct loadavg averunnable =
108 { {0, 0, 0}, FSCALE }; /* load average, of runnable procs */
109/*
110 * Constants for averages over 1, 5, and 15 minutes
111 * when sampling at 5 second intervals.
112 */
ac7fb7ba 113__read_mostly
984263bc
MD
114static fixpt_t cexp[3] = {
115 0.9200444146293232 * FSCALE, /* exp(-1/12) */
116 0.9834714538216174 * FSCALE, /* exp(-1/60) */
117 0.9944598480048967 * FSCALE, /* exp(-1/180) */
118};
119
402ed7e1
RG
120static void endtsleep (void *);
121static void loadav (void *arg);
402ed7e1 122static void schedcpu (void *arg);
984263bc 123
ac7fb7ba 124__read_mostly static int pctcpu_decay = 10;
a8eec89c
MD
125SYSCTL_INT(_kern, OID_AUTO, pctcpu_decay, CTLFLAG_RW,
126 &pctcpu_decay, 0, "");
dcc99b62
MD
127
128/*
bce6845a 129 * kernel uses `FSCALE', userland (SHOULD) use kern.fscale
984263bc 130 */
ac7fb7ba 131__read_mostly int fscale __unused = FSCALE; /* exported to systat */
dcc99b62 132SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
984263bc 133
a8eec89c
MD
134/*
135 * Issue a wakeup() from userland (debugging)
136 */
137static int
138sysctl_wakeup(SYSCTL_HANDLER_ARGS)
139{
140 uint64_t ident = 1;
141 int error = 0;
142
143 if (req->newptr != NULL) {
2b3f93ea 144 if (caps_priv_check_self(SYSCAP_RESTRICTEDROOT))
a8eec89c
MD
145 return (EPERM);
146 error = SYSCTL_IN(req, &ident, sizeof(ident));
147 if (error)
148 return error;
149 kprintf("issue wakeup %016jx\n", ident);
150 wakeup((void *)(intptr_t)ident);
151 }
152 if (req->oldptr != NULL) {
153 error = SYSCTL_OUT(req, &ident, sizeof(ident));
154 }
155 return error;
156}
157
63c41f05
MD
158static int
159sysctl_wakeup_umtx(SYSCTL_HANDLER_ARGS)
160{
161 uint64_t ident = 1;
162 int error = 0;
163
164 if (req->newptr != NULL) {
2b3f93ea 165 if (caps_priv_check_self(SYSCAP_RESTRICTEDROOT))
63c41f05
MD
166 return (EPERM);
167 error = SYSCTL_IN(req, &ident, sizeof(ident));
168 if (error)
169 return error;
170 kprintf("issue wakeup %016jx, PDOMAIN_UMTX\n", ident);
171 wakeup_domain((void *)(intptr_t)ident, PDOMAIN_UMTX);
172 }
173 if (req->oldptr != NULL) {
174 error = SYSCTL_OUT(req, &ident, sizeof(ident));
175 }
176 return error;
177}
178
a8eec89c
MD
179SYSCTL_PROC(_debug, OID_AUTO, wakeup, CTLTYPE_UQUAD|CTLFLAG_RW, 0, 0,
180 sysctl_wakeup, "Q", "issue wakeup(addr)");
63c41f05
MD
181SYSCTL_PROC(_debug, OID_AUTO, wakeup_umtx, CTLTYPE_UQUAD|CTLFLAG_RW, 0, 0,
182 sysctl_wakeup_umtx, "Q", "issue wakeup(addr, PDOMAIN_UMTX)");
a8eec89c 183
984263bc 184/*
0a3f9b47 185 * Recompute process priorities, once a second.
dcc99b62
MD
186 *
187 * Since the userland schedulers are typically event oriented, if the
188 * estcpu calculation at wakeup() time is not sufficient to make a
189 * process runnable relative to other processes in the system we have
190 * a 1-second recalc to help out.
191 *
192 * This code also allows us to store sysclock_t data in the process structure
bce6845a 193 * without fear of an overrun, since sysclock_t are guarenteed to hold
dcc99b62 194 * several seconds worth of count.
8fa76237
MD
195 *
196 * WARNING! callouts can preempt normal threads. However, they will not
197 * preempt a thread holding a spinlock so we *can* safely use spinlocks.
984263bc 198 */
8fa76237
MD
199static int schedcpu_stats(struct proc *p, void *data __unused);
200static int schedcpu_resource(struct proc *p, void *data __unused);
201
984263bc 202static void
26a0694b 203schedcpu(void *arg)
984263bc 204{
586c4308
MD
205 allproc_scan(schedcpu_stats, NULL, 1);
206 allproc_scan(schedcpu_resource, NULL, 1);
207 if (mycpu->gd_cpuid == 0) {
208 wakeup((caddr_t)&lbolt);
209 wakeup(lbolt_syncer);
210 }
211 callout_reset(&mycpu->gd_schedcpu_callout, hz, schedcpu, NULL);
8fa76237
MD
212}
213
214/*
215 * General process statistics once a second
216 */
217static int
218schedcpu_stats(struct proc *p, void *data __unused)
219{
08f2f1bb
SS
220 struct lwp *lp;
221
7bea4e64
MD
222 /*
223 * Threads may not be completely set up if process in SIDL state.
224 */
225 if (p->p_stat == SIDL)
226 return(0);
227
0d78b86e 228 PHOLD(p);
85946b6c
MD
229 if (lwkt_trytoken(&p->p_token) == FALSE) {
230 PRELE(p);
231 return(0);
232 }
0d78b86e 233
8fa76237 234 p->p_swtime++;
c7e98b2f 235 FOREACH_LWP_IN_PROC(lp, p) {
de4d4cb0
MD
236 if (lp->lwp_stat == LSSLEEP) {
237 ++lp->lwp_slptime;
238 if (lp->lwp_slptime == 1)
239 p->p_usched->uload_update(lp);
240 }
4b5f931b 241
c7e98b2f
SS
242 /*
243 * Only recalculate processes that are active or have slept
244 * less then 2 seconds. The schedulers understand this.
bc55d64f 245 * Otherwise decay by 50% per second.
5f4788b4
MD
246 *
247 * NOTE: uload_update is called separately from kern_synch.c
248 * when slptime == 1, removing the thread's
249 * uload/ucount.
c7e98b2f
SS
250 */
251 if (lp->lwp_slptime <= 1) {
252 p->p_usched->recalculate(lp);
253 } else {
bc55d64f
MD
254 int decay;
255
256 decay = pctcpu_decay;
257 cpu_ccfence();
258 if (decay <= 1)
259 decay = 1;
260 if (decay > 100)
261 decay = 100;
262 lp->lwp_pctcpu = (lp->lwp_pctcpu * (decay - 1)) / decay;
c7e98b2f 263 }
8fa76237 264 }
0d78b86e 265 lwkt_reltoken(&p->p_token);
d2d8515b 266 lwkt_yield();
0d78b86e 267 PRELE(p);
8fa76237
MD
268 return(0);
269}
a46fac56 270
8fa76237 271/*
84204577 272 * Resource checks. XXX break out since ksignal/killproc can block,
8fa76237
MD
273 * limiting us to one process killed per second. There is probably
274 * a better way.
275 */
276static int
277schedcpu_resource(struct proc *p, void *data __unused)
278{
279 u_int64_t ttime;
08f2f1bb 280 struct lwp *lp;
8fa76237 281
0d78b86e
MD
282 if (p->p_stat == SIDL)
283 return(0);
284
285 PHOLD(p);
85946b6c
MD
286 if (lwkt_trytoken(&p->p_token) == FALSE) {
287 PRELE(p);
288 return(0);
289 }
0d78b86e
MD
290
291 if (p->p_stat == SZOMB || p->p_limit == NULL) {
292 lwkt_reltoken(&p->p_token);
293 PRELE(p);
8fa76237 294 return(0);
984263bc 295 }
344ad853 296
c7e98b2f
SS
297 ttime = 0;
298 FOREACH_LWP_IN_PROC(lp, p) {
e595c6cd
MD
299 /*
300 * We may have caught an lp in the middle of being
301 * created, lwp_thread can be NULL.
302 */
303 if (lp->lwp_thread) {
304 ttime += lp->lwp_thread->td_sticks;
305 ttime += lp->lwp_thread->td_uticks;
306 }
c7e98b2f 307 }
8fa76237 308
384ee8f0 309 switch(plimit_testcpulimit(p, ttime)) {
8fa76237
MD
310 case PLIMIT_TESTCPU_KILL:
311 killproc(p, "exceeded maximum CPU limit");
312 break;
313 case PLIMIT_TESTCPU_XCPU:
4643740a
MD
314 if ((p->p_flags & P_XCPU) == 0) {
315 p->p_flags |= P_XCPU;
84204577 316 ksignal(p, SIGXCPU);
344ad853 317 }
8fa76237
MD
318 break;
319 default:
c0b8a06d 320 break;
344ad853 321 }
0d78b86e 322 lwkt_reltoken(&p->p_token);
d2d8515b 323 lwkt_yield();
0d78b86e 324 PRELE(p);
8fa76237 325 return(0);
984263bc
MD
326}
327
328/*
dcc99b62
MD
329 * This is only used by ps. Generate a cpu percentage use over
330 * a period of one second.
984263bc 331 */
dcc99b62 332void
553ea3c8 333updatepcpu(struct lwp *lp, int cpticks, int ttlticks)
984263bc 334{
dcc99b62
MD
335 fixpt_t acc;
336 int remticks;
337
338 acc = (cpticks << FSHIFT) / ttlticks;
339 if (ttlticks >= ESTCPUFREQ) {
553ea3c8 340 lp->lwp_pctcpu = acc;
dcc99b62
MD
341 } else {
342 remticks = ESTCPUFREQ - ttlticks;
553ea3c8 343 lp->lwp_pctcpu = (acc * ttlticks + lp->lwp_pctcpu * remticks) /
dcc99b62 344 ESTCPUFREQ;
a46fac56 345 }
984263bc
MD
346}
347
348/*
666ff13c
MD
349 * Handy macros to calculate hash indices. LOOKUP() calculates the
350 * global cpumask hash index, TCHASHSHIFT() converts that into the
351 * pcpu hash index.
fc17ad60 352 *
666ff13c
MD
353 * By making the pcpu hash arrays smaller we save a significant amount
354 * of memory at very low cost. The real cost is in IPIs, which are handled
355 * by the much larger global cpumask hash table.
984263bc 356 */
41c11378
SZ
357#define LOOKUP_PRIME 66555444443333333ULL
358#define LOOKUP(x) ((((uintptr_t)(x) + ((uintptr_t)(x) >> 18)) ^ \
359 LOOKUP_PRIME) % slpque_tablesize)
666ff13c 360#define TCHASHSHIFT(x) ((x) >> 4)
984263bc 361
a7c16d7a
MD
362__read_mostly static uint32_t slpque_tablesize;
363__read_mostly static cpumask_t *slpque_cpumasks;
984263bc 364
4e8fa957
SZ
365SYSCTL_UINT(_kern, OID_AUTO, slpque_tablesize, CTLFLAG_RD, &slpque_tablesize,
366 0, "");
367
ae8e83e6
MD
368/*
369 * This is a dandy function that allows us to interlock tsleep/wakeup
370 * operations with unspecified upper level locks, such as lockmgr locks,
371 * simply by holding a critical section. The sequence is:
372 *
373 * (acquire upper level lock)
374 * tsleep_interlock(blah)
375 * (release upper level lock)
376 * tsleep(blah, ...)
377 *
378 * Basically this functions queues us on the tsleep queue without actually
379 * descheduling us. When tsleep() is later called with PINTERLOCK it
380 * assumes the thread was already queued, otherwise it queues it there.
381 *
382 * Thus it is possible to receive the wakeup prior to going to sleep and
383 * the race conditions are covered.
384 */
385static __inline void
5decebc7 386_tsleep_interlock(globaldata_t gd, const volatile void *ident, int flags)
ae8e83e6
MD
387{
388 thread_t td = gd->gd_curthread;
8acf0617 389 struct tslpque *qp;
666ff13c
MD
390 uint32_t cid;
391 uint32_t gid;
ae8e83e6 392
a8eec89c
MD
393 if (ident == NULL) {
394 kprintf("tsleep_interlock: NULL ident %s\n", td->td_comm);
395 print_backtrace(5);
396 }
397
ae8e83e6
MD
398 crit_enter_quick(td);
399 if (td->td_flags & TDF_TSLEEPQ) {
afd7f124
MD
400 /*
401 * Shortcut if unchanged
402 */
403 if (td->td_wchan == ident &&
404 td->td_wdomain == (flags & PDOMAIN_MASK)) {
405 crit_exit_quick(td);
406 return;
407 }
408
409 /*
410 * Remove current sleepq
411 */
666ff13c
MD
412 cid = LOOKUP(td->td_wchan);
413 gid = TCHASHSHIFT(cid);
8acf0617
MD
414 qp = &gd->gd_tsleep_hash[gid];
415 TAILQ_REMOVE(&qp->queue, td, td_sleepq);
416 if (TAILQ_FIRST(&qp->queue) == NULL) {
8acf0617
MD
417 qp->ident0 = NULL;
418 qp->ident1 = NULL;
419 qp->ident2 = NULL;
420 qp->ident3 = NULL;
b4d1b684
MD
421 ATOMIC_CPUMASK_NANDBIT(slpque_cpumasks[cid],
422 gd->gd_cpuid);
b12defdc 423 }
ae8e83e6
MD
424 } else {
425 td->td_flags |= TDF_TSLEEPQ;
426 }
666ff13c
MD
427 cid = LOOKUP(ident);
428 gid = TCHASHSHIFT(cid);
8acf0617
MD
429 qp = &gd->gd_tsleep_hash[gid];
430 TAILQ_INSERT_TAIL(&qp->queue, td, td_sleepq);
431 if (qp->ident0 != ident && qp->ident1 != ident &&
432 qp->ident2 != ident && qp->ident3 != ident) {
433 if (qp->ident0 == NULL)
434 qp->ident0 = ident;
435 else if (qp->ident1 == NULL)
436 qp->ident1 = ident;
437 else if (qp->ident2 == NULL)
438 qp->ident2 = ident;
439 else if (qp->ident3 == NULL)
440 qp->ident3 = ident;
441 else
442 qp->ident0 = (void *)(intptr_t)-1;
443 }
666ff13c 444 ATOMIC_CPUMASK_ORBIT(slpque_cpumasks[cid], gd->gd_cpuid);
ae8e83e6
MD
445 td->td_wchan = ident;
446 td->td_wdomain = flags & PDOMAIN_MASK;
ae8e83e6
MD
447 crit_exit_quick(td);
448}
449
450void
5decebc7 451tsleep_interlock(const volatile void *ident, int flags)
ae8e83e6
MD
452{
453 _tsleep_interlock(mycpu, ident, flags);
454}
455
456/*
457 * Remove thread from sleepq. Must be called with a critical section held.
4643740a 458 * The thread must not be migrating.
ae8e83e6
MD
459 */
460static __inline void
461_tsleep_remove(thread_t td)
462{
463 globaldata_t gd = mycpu;
8acf0617 464 struct tslpque *qp;
666ff13c
MD
465 uint32_t cid;
466 uint32_t gid;
ae8e83e6 467
957625b2 468 KKASSERT(td->td_gd == gd && IN_CRITICAL_SECT(td));
4643740a 469 KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
ae8e83e6
MD
470 if (td->td_flags & TDF_TSLEEPQ) {
471 td->td_flags &= ~TDF_TSLEEPQ;
666ff13c
MD
472 cid = LOOKUP(td->td_wchan);
473 gid = TCHASHSHIFT(cid);
8acf0617
MD
474 qp = &gd->gd_tsleep_hash[gid];
475 TAILQ_REMOVE(&qp->queue, td, td_sleepq);
476 if (TAILQ_FIRST(&qp->queue) == NULL) {
666ff13c 477 ATOMIC_CPUMASK_NANDBIT(slpque_cpumasks[cid],
c07315c4
MD
478 gd->gd_cpuid);
479 }
ae8e83e6
MD
480 td->td_wchan = NULL;
481 td->td_wdomain = 0;
482 }
483}
484
485void
486tsleep_remove(thread_t td)
487{
488 _tsleep_remove(td);
489}
490
984263bc
MD
491/*
492 * General sleep call. Suspends the current process until a wakeup is
493 * performed on the specified identifier. The process will then be made
494 * runnable with the specified priority. Sleeps at most timo/hz seconds
377d4740 495 * (0 means no timeout). If flags includes PCATCH flag, signals are checked
984263bc
MD
496 * before and after sleeping, else signals are not checked. Returns 0 if
497 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
498 * signal needs to be delivered, ERESTART is returned if the current system
499 * call should be restarted if possible, and EINTR is returned if the system
500 * call should be interrupted by the signal (return EINTR).
26a0694b 501 *
0a3f9b47
MD
502 * Note that if we are a process, we release_curproc() before messing with
503 * the LWKT scheduler.
a46fac56
MD
504 *
505 * During autoconfiguration or after a panic, a sleep will simply
506 * lower the priority briefly to allow interrupts, then return.
94f98873
MD
507 *
508 * WARNING! This code can't block (short of switching away), or bad things
509 * will happen. No getting tokens, no blocking locks, etc.
984263bc
MD
510 */
511int
5decebc7 512tsleep(const volatile void *ident, int flags, const char *wmesg, int timo)
984263bc 513{
dadab5e9 514 struct thread *td = curthread;
08f2f1bb 515 struct lwp *lp = td->td_lwp;
0cfcada1 516 struct proc *p = td->td_proc; /* may be NULL */
fc17ad60 517 globaldata_t gd;
344ad853
MD
518 int sig;
519 int catch;
344ad853 520 int error;
e43a034f 521 int oldpri;
fac0eb3c
MD
522 struct callout thandle1;
523 struct _callout thandle2;
984263bc 524
b0da0c88
MD
525 /*
526 * Currently a severe hack. Make sure any delayed wakeups
527 * are flushed before we sleep or we might deadlock on whatever
528 * event we are sleeping on.
529 */
530 if (td->td_flags & TDF_DELAYED_WAKEUP)
531 wakeup_end_delayed();
532
0cfcada1
MD
533 /*
534 * NOTE: removed KTRPOINT, it could cause races due to blocking
535 * even in stable. Just scrap it for now.
536 */
5ea440eb 537 if (!tsleep_crypto_dump && (tsleep_now_works == 0 || panicstr)) {
984263bc 538 /*
dbcd0c9b
MD
539 * After a panic, or before we actually have an operational
540 * softclock, just give interrupts a chance, then just return;
541 *
984263bc
MD
542 * don't run any other procs or panic below,
543 * in case this is the idle process and already asleep.
544 */
e43a034f 545 splz();
f9235b6d 546 oldpri = td->td_pri;
e43a034f
MD
547 lwkt_setpri_self(safepri);
548 lwkt_switch();
549 lwkt_setpri_self(oldpri);
984263bc
MD
550 return (0);
551 }
8aa3430c 552 logtsleep2(tsleep_beg, ident);
fc17ad60
MD
553 gd = td->td_gd;
554 KKASSERT(td != &gd->gd_idlethread); /* you must be kidding! */
344ad853
MD
555
556 /*
557 * NOTE: all of this occurs on the current cpu, including any
558 * callout-based wakeups, so a critical section is a sufficient
559 * interlock.
560 *
561 * The entire sequence through to where we actually sleep must
562 * run without breaking the critical section.
563 */
344ad853
MD
564 catch = flags & PCATCH;
565 error = 0;
566 sig = 0;
567
37af14fe 568 crit_enter_quick(td);
344ad853 569
0cfcada1 570 KASSERT(ident != NULL, ("tsleep: no ident"));
7278a846
SS
571 KASSERT(lp == NULL ||
572 lp->lwp_stat == LSRUN || /* Obvious */
573 lp->lwp_stat == LSSTOP, /* Set in tstop */
574 ("tsleep %p %s %d",
575 ident, wmesg, lp->lwp_stat));
0cfcada1 576
5686ec5a
MD
577 /*
578 * We interlock the sleep queue if the caller has not already done
579 * it for us. This must be done before we potentially acquire any
580 * tokens or we can loose the wakeup.
581 */
582 if ((flags & PINTERLOCKED) == 0) {
5686ec5a
MD
583 _tsleep_interlock(gd, ident, flags);
584 }
585
344ad853 586 /*
4643740a
MD
587 * Setup for the current process (if this is a process). We must
588 * interlock with lwp_token to avoid remote wakeup races via
589 * setrunnable()
344ad853 590 */
08f2f1bb 591 if (lp) {
4643740a 592 lwkt_gettoken(&lp->lwp_token);
1a3f33f1
MD
593
594 /*
595 * If the umbrella process is in the SCORE state then
596 * make sure that the thread is flagged going into a
597 * normal sleep to allow the core dump to proceed, otherwise
598 * the coredump can end up waiting forever. If the normal
599 * sleep is woken up, the thread will enter a stopped state
600 * upon return to userland.
601 *
602 * We do not want to interrupt or cause a thread exist at
603 * this juncture because that will mess-up the state the
604 * coredump is trying to save.
605 */
ac39aef5
MD
606 if (p->p_stat == SCORE) {
607 lwkt_gettoken(&p->p_token);
608 if ((lp->lwp_mpflags & LWP_MP_WSTOP) == 0) {
609 atomic_set_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
610 ++p->p_nstopped;
611 }
612 lwkt_reltoken(&p->p_token);
1a3f33f1
MD
613 }
614
615 /*
616 * PCATCH requested.
617 */
344ad853
MD
618 if (catch) {
619 /*
620 * Early termination if PCATCH was set and a
621 * signal is pending, interlocked with the
622 * critical section.
623 *
624 * Early termination only occurs when tsleep() is
164b8401 625 * entered while in a normal LSRUN state.
344ad853 626 */
08f2f1bb 627 if ((sig = CURSIG(lp)) != 0)
344ad853
MD
628 goto resume;
629
630 /*
5686ec5a 631 * Causes ksignal to wake us up if a signal is
a094cc95 632 * received (interlocked with lp->lwp_token).
344ad853 633 */
4643740a 634 lp->lwp_flags |= LWP_SINTR;
344ad853 635 }
5686ec5a
MD
636 } else {
637 KKASSERT(p == NULL);
4ecd8190 638 }
344ad853 639
4ecd8190 640 /*
4ecd8190
MD
641 * Make sure the current process has been untangled from
642 * the userland scheduler and initialize slptime to start
5686ec5a 643 * counting.
c75e41b7
MD
644 *
645 * NOTE: td->td_wakefromcpu is pre-set by the release function
646 * for the dfly scheduler, and then adjusted by _wakeup()
4ecd8190
MD
647 */
648 if (lp) {
08f2f1bb
SS
649 p->p_usched->release_curproc(lp);
650 lp->lwp_slptime = 0;
0a3f9b47 651 }
fc17ad60 652
d9345d3a 653 /*
afd7f124
MD
654 * For PINTERLOCKED operation, TDF_TSLEEPQ might not be set if
655 * a wakeup() was processed before the thread could go to sleep.
656 *
657 * If TDF_TSLEEPQ is set, make sure the ident matches the recorded
658 * ident. If it does not then the thread slept inbetween the
659 * caller's initial tsleep_interlock() call and the caller's tsleep()
660 * call.
d9345d3a 661 *
4ecd8190
MD
662 * Extreme loads can cause the sending of an IPI (e.g. wakeup()'s)
663 * to process incoming IPIs, thus draining incoming wakeups.
d9345d3a 664 */
4ecd8190
MD
665 if ((td->td_flags & TDF_TSLEEPQ) == 0) {
666 logtsleep2(ilockfail, ident);
667 goto resume;
afd7f124
MD
668 } else if (td->td_wchan != ident ||
669 td->td_wdomain != (flags & PDOMAIN_MASK)) {
670 logtsleep2(ilockfail, ident);
671 goto resume;
d9345d3a 672 }
4ecd8190
MD
673
674 /*
675 * scheduling is blocked while in a critical section. Coincide
676 * the descheduled-by-tsleep flag with the descheduling of the
677 * lwkt.
8d446850
MD
678 *
679 * The timer callout is localized on our cpu and interlocked by
680 * our critical section.
4ecd8190 681 */
37af14fe 682 lwkt_deschedule_self(td);
ae8e83e6 683 td->td_flags |= TDF_TSLEEP_DESCHEDULED;
344ad853 684 td->td_wmesg = wmesg;
344ad853
MD
685
686 /*
8d446850
MD
687 * Setup the timeout, if any. The timeout is only operable while
688 * the thread is flagged descheduled.
344ad853 689 */
8d446850 690 KKASSERT((td->td_flags & TDF_TIMEOUT) == 0);
076fecef 691 if (timo) {
fac0eb3c 692 _callout_setup_quick(&thandle1, &thandle2, timo, endtsleep, td);
076fecef 693 }
344ad853 694
984263bc 695 /*
344ad853 696 * Beddy bye bye.
984263bc 697 */
08f2f1bb 698 if (lp) {
26a0694b 699 /*
52eedfb5 700 * Ok, we are sleeping. Place us in the SSLEEP state.
26a0694b 701 */
4643740a 702 KKASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
6b4d33c2 703
7278a846
SS
704 /*
705 * tstop() sets LSSTOP, so don't fiddle with that.
706 */
707 if (lp->lwp_stat != LSSTOP)
708 lp->lwp_stat = LSSLEEP;
08f2f1bb 709 lp->lwp_ru.ru_nvcsw++;
e28d8b15 710 p->p_usched->uload_update(lp);
de4d4cb0 711 lwkt_switch();
ab554892
MD
712
713 /*
164b8401 714 * And when we are woken up, put us back in LSRUN. If we
ab554892
MD
715 * slept for over a second, recalculate our estcpu.
716 */
164b8401 717 lp->lwp_stat = LSRUN;
de4d4cb0
MD
718 if (lp->lwp_slptime) {
719 p->p_usched->uload_update(lp);
08f2f1bb 720 p->p_usched->recalculate(lp);
de4d4cb0 721 }
08f2f1bb 722 lp->lwp_slptime = 0;
0cfcada1
MD
723 } else {
724 lwkt_switch();
725 }
344ad853 726
bce6845a 727 /*
fc17ad60 728 * Make sure we haven't switched cpus while we were asleep. It's
344ad853 729 * not supposed to happen. Cleanup our temporary flags.
fc17ad60
MD
730 */
731 KKASSERT(gd == td->td_gd);
344ad853
MD
732
733 /*
8d446850 734 * Cleanup the timeout. If the timeout has already occured thandle
8ef3e14a
MD
735 * has already been stopped, otherwise stop thandle.
736 *
737 * If the timeout is still running the callout thread must be blocked
738 * trying to get lwp_token, or this is a VM where cpu-cpu races are
739 * common, then wait for us to get scheduled.
344ad853
MD
740 */
741 if (timo) {
4643740a 742 while (td->td_flags & TDF_TIMEOUT_RUNNING) {
a739e4f8
MD
743 /* else we won't get rescheduled! */
744 if (lp->lwp_stat != LSSTOP)
745 lp->lwp_stat = LSSLEEP;
4643740a
MD
746 lwkt_deschedule_self(td);
747 td->td_wmesg = "tsrace";
748 lwkt_switch();
4643740a 749 }
344ad853
MD
750 if (td->td_flags & TDF_TIMEOUT) {
751 td->td_flags &= ~TDF_TIMEOUT;
a40da8f0 752 error = EWOULDBLOCK;
344ad853 753 } else {
fac0eb3c
MD
754 /*
755 * We are on the same cpu so use the quick version
756 * which is guaranteed not to block or race.
757 */
758 _callout_cancel_quick(&thandle2);
344ad853 759 }
0cfcada1 760 }
4643740a 761 td->td_flags &= ~TDF_TSLEEP_DESCHEDULED;
344ad853
MD
762
763 /*
8d446850
MD
764 * Make sure we have been removed from the sleepq. In most
765 * cases this will have been done for us already but it is
766 * possible for a scheduling IPI to be in-flight from a
767 * previous tsleep/tsleep_interlock() or due to a straight-out
768 * call to lwkt_schedule() (in the case of an interrupt thread),
769 * causing a spurious wakeup.
344ad853 770 */
ae8e83e6 771 _tsleep_remove(td);
344ad853 772 td->td_wmesg = NULL;
344ad853
MD
773
774 /*
7c1212ec 775 * Figure out the correct error return. If interrupted by a
bce6845a 776 * signal we want to return EINTR or ERESTART.
344ad853
MD
777 */
778resume:
4643740a 779 if (lp) {
7c1212ec 780 if (catch && error == 0) {
94f98873 781 if (sig != 0 || (sig = CURSIG(lp))) {
7c1212ec
MD
782 if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
783 error = EINTR;
784 else
785 error = ERESTART;
786 }
984263bc 787 }
5525fede 788
4643740a 789 lp->lwp_flags &= ~LWP_SINTR;
5525fede
MD
790
791 /*
9c960153
MD
792 * Unconditionally set us to LSRUN on resume. lwp_stat could
793 * be in a weird state due to the goto resume, particularly
794 * when tsleep() is called from tstop().
5525fede 795 */
9c960153 796 lp->lwp_stat = LSRUN;
4643740a 797 lwkt_reltoken(&lp->lwp_token);
984263bc 798 }
8aa3430c 799 logtsleep1(tsleep_end);
344ad853 800 crit_exit_quick(td);
afd7f124 801
344ad853 802 return (error);
984263bc
MD
803}
804
bf765287
MD
805/*
806 * Interlocked spinlock sleep. An exclusively held spinlock must
e590ee86 807 * be passed to ssleep(). The function will atomically release the
bf765287
MD
808 * spinlock and tsleep on the ident, then reacquire the spinlock and
809 * return.
810 *
811 * This routine is fairly important along the critical path, so optimize it
812 * heavily.
813 */
814int
5decebc7 815ssleep(const volatile void *ident, struct spinlock *spin, int flags,
bf765287
MD
816 const char *wmesg, int timo)
817{
818 globaldata_t gd = mycpu;
819 int error;
16523a43 820
ae8e83e6 821 _tsleep_interlock(gd, ident, flags);
7cfe2b28 822 spin_unlock_quick(gd, spin);
ef48be0d 823 error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
a8eec89c 824 KKASSERT(gd == mycpu);
050032ec 825 _spin_lock_quick(gd, spin, wmesg);
bf765287
MD
826
827 return (error);
16523a43
MD
828}
829
bed060de 830int
5decebc7
MD
831lksleep(const volatile void *ident, struct lock *lock, int flags,
832 const char *wmesg, int timo)
bed060de
AH
833{
834 globaldata_t gd = mycpu;
835 int error;
836
837 _tsleep_interlock(gd, ident, flags);
838 lockmgr(lock, LK_RELEASE);
839 error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
840 lockmgr(lock, LK_EXCLUSIVE);
841
842 return (error);
843}
844
7f6220a9
MD
845/*
846 * Interlocked mutex sleep. An exclusively held mutex must be passed
847 * to mtxsleep(). The function will atomically release the mutex
848 * and tsleep on the ident, then reacquire the mutex and return.
849 */
850int
5decebc7 851mtxsleep(const volatile void *ident, struct mtx *mtx, int flags,
7f6220a9
MD
852 const char *wmesg, int timo)
853{
854 globaldata_t gd = mycpu;
855 int error;
856
857 _tsleep_interlock(gd, ident, flags);
858 mtx_unlock(mtx);
859 error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
cabfc9f6 860 mtx_lock_ex_quick(mtx);
7f6220a9
MD
861
862 return (error);
863}
864
362e59be
SZ
865/*
866 * Interlocked serializer sleep. An exclusively held serializer must
ed3f6624 867 * be passed to zsleep(). The function will atomically release
362e59be
SZ
868 * the serializer and tsleep on the ident, then reacquire the serializer
869 * and return.
870 */
871int
5decebc7 872zsleep(const volatile void *ident, struct lwkt_serialize *slz, int flags,
ed3f6624 873 const char *wmesg, int timo)
362e59be 874{
ae8e83e6 875 globaldata_t gd = mycpu;
362e59be
SZ
876 int ret;
877
878 ASSERT_SERIALIZED(slz);
879
ae8e83e6 880 _tsleep_interlock(gd, ident, flags);
362e59be 881 lwkt_serialize_exit(slz);
ef48be0d 882 ret = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
362e59be 883 lwkt_serialize_enter(slz);
362e59be
SZ
884
885 return ret;
886}
887
a22c590e
MD
888/*
889 * Directly block on the LWKT thread by descheduling it. This
890 * is much faster then tsleep(), but the only legal way to wake
891 * us up is to directly schedule the thread.
892 *
893 * Setting TDF_SINTR will cause new signals to directly schedule us.
894 *
ae8e83e6 895 * This routine must be called while in a critical section.
a22c590e
MD
896 */
897int
898lwkt_sleep(const char *wmesg, int flags)
899{
900 thread_t td = curthread;
901 int sig;
902
903 if ((flags & PCATCH) == 0 || td->td_lwp == NULL) {
904 td->td_flags |= TDF_BLOCKED;
905 td->td_wmesg = wmesg;
906 lwkt_deschedule_self(td);
907 lwkt_switch();
908 td->td_wmesg = NULL;
909 td->td_flags &= ~TDF_BLOCKED;
910 return(0);
911 }
912 if ((sig = CURSIG(td->td_lwp)) != 0) {
913 if (SIGISMEMBER(td->td_proc->p_sigacts->ps_sigintr, sig))
914 return(EINTR);
915 else
916 return(ERESTART);
bce6845a 917
a22c590e
MD
918 }
919 td->td_flags |= TDF_BLOCKED | TDF_SINTR;
920 td->td_wmesg = wmesg;
921 lwkt_deschedule_self(td);
922 lwkt_switch();
923 td->td_flags &= ~(TDF_BLOCKED | TDF_SINTR);
924 td->td_wmesg = NULL;
925 return(0);
926}
927
984263bc 928/*
344ad853 929 * Implement the timeout for tsleep.
fc17ad60 930 *
344ad853
MD
931 * This type of callout timeout is scheduled on the same cpu the process
932 * is sleeping on. Also, at the moment, the MP lock is held.
984263bc
MD
933 */
934static void
0cfcada1 935endtsleep(void *arg)
984263bc 936{
0cfcada1 937 thread_t td = arg;
9a379a4a 938 struct lwp *lp;
984263bc 939
8d446850 940 /*
4643740a
MD
941 * We are going to have to get the lwp_token, which means we might
942 * block. This can race a tsleep getting woken up by other means
943 * so set TDF_TIMEOUT_RUNNING to force the tsleep to wait for our
944 * processing to complete (sorry tsleep!).
945 *
946 * We can safely set td_flags because td MUST be on the same cpu
947 * as we are.
8d446850 948 */
4643740a
MD
949 KKASSERT(td->td_gd == mycpu);
950 crit_enter();
951 td->td_flags |= TDF_TIMEOUT_RUNNING | TDF_TIMEOUT;
344ad853
MD
952
953 /*
4643740a
MD
954 * This can block but TDF_TIMEOUT_RUNNING will prevent the thread
955 * from exiting the tsleep on us. The flag is interlocked by virtue
956 * of lp being on the same cpu as we are.
344ad853 957 */
8d446850 958 if ((lp = td->td_lwp) != NULL)
e2b148c6 959 lwkt_gettoken(&lp->lwp_token);
344ad853 960
4643740a
MD
961 KKASSERT(td->td_flags & TDF_TSLEEP_DESCHEDULED);
962
963 if (lp) {
d4688a1e 964 /*
9c960153
MD
965 * callout timer should normally never be set in tstop()
966 * because it passes a timeout of 0. However, there is a
967 * case during thread exit (which SSTOP's all the threads)
968 * for which tstop() must break out and can (properly) leave
969 * the thread in LSSTOP.
d4688a1e 970 */
9c960153
MD
971 KKASSERT(lp->lwp_stat != LSSTOP ||
972 (lp->lwp_mpflags & LWP_MP_WEXIT));
d4688a1e 973 setrunnable(lp);
e2b148c6 974 lwkt_reltoken(&lp->lwp_token);
4643740a
MD
975 } else {
976 _tsleep_remove(td);
977 lwkt_schedule(td);
978 }
979 KKASSERT(td->td_gd == mycpu);
980 td->td_flags &= ~TDF_TIMEOUT_RUNNING;
37af14fe 981 crit_exit();
984263bc
MD
982}
983
8fb8bca6
EN
984/*
985 * Make all processes sleeping on the specified identifier runnable.
fc17ad60
MD
986 * count may be zero or one only.
987 *
c75e41b7
MD
988 * The domain encodes the sleep/wakeup domain, flags, plus the originating
989 * cpu.
344ad853
MD
990 *
991 * This call may run without the MP lock held. We can only manipulate thread
992 * state on the cpu owning the thread. We CANNOT manipulate process state
993 * at all.
5decebc7
MD
994 *
995 * _wakeup() can be passed to an IPI so we can't use (const volatile
996 * void *ident).
8fb8bca6
EN
997 */
998static void
fc17ad60 999_wakeup(void *ident, int domain)
984263bc 1000{
fc17ad60 1001 struct tslpque *qp;
0cfcada1
MD
1002 struct thread *td;
1003 struct thread *ntd;
fc17ad60 1004 globaldata_t gd;
fc17ad60 1005 cpumask_t mask;
666ff13c
MD
1006 uint32_t cid;
1007 uint32_t gid;
8acf0617 1008 int wids = 0;
984263bc 1009
37af14fe 1010 crit_enter();
8aa3430c 1011 logtsleep2(wakeup_beg, ident);
fc17ad60 1012 gd = mycpu;
666ff13c
MD
1013 cid = LOOKUP(ident);
1014 gid = TCHASHSHIFT(cid);
1015 qp = &gd->gd_tsleep_hash[gid];
984263bc 1016restart:
8acf0617 1017 for (td = TAILQ_FIRST(&qp->queue); td != NULL; td = ntd) {
ae8e83e6 1018 ntd = TAILQ_NEXT(td, td_sleepq);
bce6845a 1019 if (td->td_wchan == ident &&
fc17ad60
MD
1020 td->td_wdomain == (domain & PDOMAIN_MASK)
1021 ) {
ae8e83e6
MD
1022 KKASSERT(td->td_gd == gd);
1023 _tsleep_remove(td);
c75e41b7 1024 td->td_wakefromcpu = PWAKEUP_DECODE(domain);
ae8e83e6 1025 if (td->td_flags & TDF_TSLEEP_DESCHEDULED) {
ae8e83e6
MD
1026 lwkt_schedule(td);
1027 if (domain & PWAKEUP_ONE)
1028 goto done;
fc17ad60 1029 }
0cfcada1 1030 goto restart;
984263bc 1031 }
8acf0617
MD
1032 if (td->td_wchan == qp->ident0)
1033 wids |= 1;
1034 else if (td->td_wchan == qp->ident1)
1035 wids |= 2;
1036 else if (td->td_wchan == qp->ident2)
1037 wids |= 4;
1038 else if (td->td_wchan == qp->ident3)
1039 wids |= 8;
1040 else
1041 wids |= 16; /* force ident0 to be retained (-1) */
984263bc 1042 }
fc17ad60 1043
f26f7bb3
MD
1044 /*
1045 * Because a bunch of cpumask array entries cover the same queue, it
1046 * is possible for our bit to remain set in some of them and cause
1047 * spurious wakeup IPIs later on. Make sure that the bit is cleared
1048 * when a spurious IPI occurs to prevent further spurious IPIs.
1049 */
8acf0617 1050 if (TAILQ_FIRST(&qp->queue) == NULL) {
f26f7bb3 1051 ATOMIC_CPUMASK_NANDBIT(slpque_cpumasks[cid], gd->gd_cpuid);
8acf0617
MD
1052 qp->ident0 = NULL;
1053 qp->ident1 = NULL;
1054 qp->ident2 = NULL;
1055 qp->ident3 = NULL;
1056 } else {
1057 if ((wids & 1) == 0) {
a8eec89c 1058 if ((wids & 16) == 0) {
8acf0617 1059 qp->ident0 = NULL;
a8eec89c
MD
1060 } else {
1061 KKASSERT(qp->ident0 == (void *)(intptr_t)-1);
1062 }
8acf0617
MD
1063 }
1064 if ((wids & 2) == 0)
1065 qp->ident1 = NULL;
1066 if ((wids & 4) == 0)
1067 qp->ident2 = NULL;
1068 if ((wids & 8) == 0)
1069 qp->ident3 = NULL;
f26f7bb3
MD
1070 }
1071
fc17ad60
MD
1072 /*
1073 * We finished checking the current cpu but there still may be
1074 * more work to do. Either wakeup_one was requested and no matching
1075 * thread was found, or a normal wakeup was requested and we have
1076 * to continue checking cpus.
1077 *
fc17ad60 1078 * It should be noted that this scheme is actually less expensive then
bce6845a 1079 * the old scheme when waking up multiple threads, since we send
fc17ad60
MD
1080 * only one IPI message per target candidate which may then schedule
1081 * multiple threads. Before we could have wound up sending an IPI
1082 * message for each thread on the target cpu (!= current cpu) that
1083 * needed to be woken up.
1084 *
1085 * NOTE: Wakeups occuring on remote cpus are asynchronous. This
e676ebda
MD
1086 * should be ok since we are passing idents in the IPI rather
1087 * then thread pointers.
1088 *
9b302485 1089 * NOTE: We MUST mfence (or use an atomic op) prior to reading
e676ebda
MD
1090 * the cpumask, as another cpu may have written to it in
1091 * a fashion interlocked with whatever the caller did before
1092 * calling wakeup(). Otherwise we might miss the interaction
1093 * (kern_mutex.c can cause this problem).
9b302485
MD
1094 *
1095 * lfence is insufficient as it may allow a written state to
1096 * reorder around the cpumask load.
fc17ad60 1097 */
c07315c4 1098 if ((domain & PWAKEUP_MYCPU) == 0) {
8acf0617 1099 globaldata_t tgd;
35a64553 1100 const volatile void *id0;
8acf0617
MD
1101 int n;
1102
9b302485 1103 cpu_mfence();
a8eec89c 1104 /* cpu_lfence(); */
666ff13c 1105 mask = slpque_cpumasks[cid];
c07315c4 1106 CPUMASK_ANDMASK(mask, gd->gd_other_cpus);
8acf0617
MD
1107 while (CPUMASK_TESTNZERO(mask)) {
1108 n = BSRCPUMASK(mask);
1109 CPUMASK_NANDBIT(mask, n);
1110 tgd = globaldata_find(n);
b4d1b684
MD
1111
1112 /*
1113 * Both ident0 compares must from a single load
1114 * to avoid ident0 update races crossing the two
1115 * compares.
1116 */
a8eec89c 1117 qp = &tgd->gd_tsleep_hash[gid];
b4d1b684
MD
1118 id0 = qp->ident0;
1119 cpu_ccfence();
1120 if (id0 == (void *)(intptr_t)-1) {
1121 lwkt_send_ipiq2(tgd, _wakeup, ident,
1122 domain | PWAKEUP_MYCPU);
8acf0617 1123 ++tgd->gd_cnt.v_wakeup_colls;
b4d1b684
MD
1124 } else if (id0 == ident ||
1125 qp->ident1 == ident ||
1126 qp->ident2 == ident ||
1127 qp->ident3 == ident) {
8acf0617
MD
1128 lwkt_send_ipiq2(tgd, _wakeup, ident,
1129 domain | PWAKEUP_MYCPU);
1130 }
a8eec89c 1131 }
8acf0617 1132#if 0
a8eec89c 1133 if (CPUMASK_TESTNZERO(mask)) {
c07315c4
MD
1134 lwkt_send_ipiq2_mask(mask, _wakeup, ident,
1135 domain | PWAKEUP_MYCPU);
1136 }
a8eec89c 1137#endif
fc17ad60 1138 }
fc17ad60 1139done:
8aa3430c 1140 logtsleep1(wakeup_end);
37af14fe 1141 crit_exit();
984263bc
MD
1142}
1143
b336a9b1
MD
1144/*
1145 * Wakeup all threads tsleep()ing on the specified ident, on all cpus
1146 */
984263bc 1147void
5decebc7 1148wakeup(const volatile void *ident)
984263bc 1149{
b0da0c88
MD
1150 globaldata_t gd = mycpu;
1151 thread_t td = gd->gd_curthread;
1152
1153 if (td && (td->td_flags & TDF_DELAYED_WAKEUP)) {
2e90abac
MD
1154 /*
1155 * If we are in a delayed wakeup section, record up to two wakeups in
1156 * a per-CPU queue and issue them when we block or exit the delayed
1157 * wakeup section.
1158 */
1159 if (atomic_cmpset_ptr(&gd->gd_delayed_wakeup[0], NULL, ident))
1160 return;
1161 if (atomic_cmpset_ptr(&gd->gd_delayed_wakeup[1], NULL, ident))
1162 return;
1163
1164 ident = atomic_swap_ptr(__DEQUALIFY(volatile void **, &gd->gd_delayed_wakeup[1]),
1165 __DEALL(ident));
1166 ident = atomic_swap_ptr(__DEQUALIFY(volatile void **, &gd->gd_delayed_wakeup[0]),
1167 __DEALL(ident));
b0da0c88 1168 }
2e90abac 1169
b0da0c88 1170 _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, gd->gd_cpuid));
0cfcada1 1171}
984263bc 1172
b336a9b1
MD
1173/*
1174 * Wakeup one thread tsleep()ing on the specified ident, on any cpu.
1175 */
0cfcada1 1176void
5decebc7 1177wakeup_one(const volatile void *ident)
0cfcada1 1178{
fc17ad60 1179 /* XXX potentially round-robin the first responding cpu */
c75e41b7
MD
1180 _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) |
1181 PWAKEUP_ONE);
da5fb9ef
MD
1182}
1183
b336a9b1
MD
1184/*
1185 * Wakeup threads tsleep()ing on the specified ident on the current cpu
1186 * only.
1187 */
1188void
5decebc7 1189wakeup_mycpu(const volatile void *ident)
b336a9b1 1190{
c75e41b7
MD
1191 _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) |
1192 PWAKEUP_MYCPU);
b336a9b1
MD
1193}
1194
1195/*
1196 * Wakeup one thread tsleep()ing on the specified ident on the current cpu
1197 * only.
1198 */
1199void
5decebc7 1200wakeup_mycpu_one(const volatile void *ident)
b336a9b1
MD
1201{
1202 /* XXX potentially round-robin the first responding cpu */
c75e41b7
MD
1203 _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) |
1204 PWAKEUP_MYCPU | PWAKEUP_ONE);
b336a9b1
MD
1205}
1206
1207/*
1208 * Wakeup all thread tsleep()ing on the specified ident on the specified cpu
1209 * only.
1210 */
1211void
5decebc7 1212wakeup_oncpu(globaldata_t gd, const volatile void *ident)
b336a9b1 1213{
c75e41b7 1214 globaldata_t mygd = mycpu;
b336a9b1 1215 if (gd == mycpu) {
c75e41b7
MD
1216 _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1217 PWAKEUP_MYCPU);
b336a9b1 1218 } else {
c75e41b7
MD
1219 lwkt_send_ipiq2(gd, _wakeup, __DEALL(ident),
1220 PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1221 PWAKEUP_MYCPU);
b336a9b1
MD
1222 }
1223}
1224
1225/*
1226 * Wakeup one thread tsleep()ing on the specified ident on the specified cpu
1227 * only.
1228 */
1229void
5decebc7 1230wakeup_oncpu_one(globaldata_t gd, const volatile void *ident)
b336a9b1 1231{
c75e41b7
MD
1232 globaldata_t mygd = mycpu;
1233 if (gd == mygd) {
1234 _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1235 PWAKEUP_MYCPU | PWAKEUP_ONE);
b336a9b1 1236 } else {
5decebc7 1237 lwkt_send_ipiq2(gd, _wakeup, __DEALL(ident),
c75e41b7 1238 PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
5decebc7 1239 PWAKEUP_MYCPU | PWAKEUP_ONE);
b336a9b1
MD
1240 }
1241}
1242
1243/*
1244 * Wakeup all threads waiting on the specified ident that slept using
1245 * the specified domain, on all cpus.
1246 */
da5fb9ef 1247void
5decebc7 1248wakeup_domain(const volatile void *ident, int domain)
da5fb9ef 1249{
5decebc7 1250 _wakeup(__DEALL(ident), PWAKEUP_ENCODE(domain, mycpu->gd_cpuid));
da5fb9ef
MD
1251}
1252
b336a9b1
MD
1253/*
1254 * Wakeup one thread waiting on the specified ident that slept using
1255 * the specified domain, on any cpu.
1256 */
da5fb9ef 1257void
5decebc7 1258wakeup_domain_one(const volatile void *ident, int domain)
da5fb9ef 1259{
fc17ad60 1260 /* XXX potentially round-robin the first responding cpu */
5decebc7
MD
1261 _wakeup(__DEALL(ident),
1262 PWAKEUP_ENCODE(domain, mycpu->gd_cpuid) | PWAKEUP_ONE);
984263bc
MD
1263}
1264
b0da0c88
MD
1265void
1266wakeup_start_delayed(void)
1267{
1268 globaldata_t gd = mycpu;
1269
1270 crit_enter();
1271 gd->gd_curthread->td_flags |= TDF_DELAYED_WAKEUP;
1272 crit_exit();
1273}
1274
1275void
1276wakeup_end_delayed(void)
1277{
1278 globaldata_t gd = mycpu;
1279
1280 if (gd->gd_curthread->td_flags & TDF_DELAYED_WAKEUP) {
1281 crit_enter();
1282 gd->gd_curthread->td_flags &= ~TDF_DELAYED_WAKEUP;
1283 if (gd->gd_delayed_wakeup[0] || gd->gd_delayed_wakeup[1]) {
1284 if (gd->gd_delayed_wakeup[0]) {
1285 wakeup(gd->gd_delayed_wakeup[0]);
1286 gd->gd_delayed_wakeup[0] = NULL;
1287 }
1288 if (gd->gd_delayed_wakeup[1]) {
1289 wakeup(gd->gd_delayed_wakeup[1]);
1290 gd->gd_delayed_wakeup[1] = NULL;
1291 }
1292 }
1293 crit_exit();
1294 }
1295}
1296
984263bc 1297/*
344ad853
MD
1298 * setrunnable()
1299 *
4643740a
MD
1300 * Make a process runnable. lp->lwp_token must be held on call and this
1301 * function must be called from the cpu owning lp.
37af14fe 1302 *
4643740a 1303 * This only has an effect if we are in LSSTOP or LSSLEEP.
984263bc
MD
1304 */
1305void
9a379a4a 1306setrunnable(struct lwp *lp)
984263bc 1307{
4643740a
MD
1308 thread_t td = lp->lwp_thread;
1309
e2b148c6 1310 ASSERT_LWKT_TOKEN_HELD(&lp->lwp_token);
4643740a 1311 KKASSERT(td->td_gd == mycpu);
344ad853 1312 crit_enter();
2daf83b0
SS
1313 if (lp->lwp_stat == LSSTOP)
1314 lp->lwp_stat = LSSLEEP;
4643740a
MD
1315 if (lp->lwp_stat == LSSLEEP) {
1316 _tsleep_remove(td);
1317 lwkt_schedule(td);
1318 } else if (td->td_flags & TDF_SINTR) {
1319 lwkt_schedule(td);
1320 }
344ad853 1321 crit_exit();
984263bc
MD
1322}
1323
1324/*
164b8401 1325 * The process is stopped due to some condition, usually because p_stat is
bce6845a 1326 * set to SSTOP, but also possibly due to being traced.
fc17ad60 1327 *
4643740a
MD
1328 * Caller must hold p->p_token
1329 *
164b8401 1330 * NOTE! If the caller sets SSTOP, the caller must also clear P_WAITED
344ad853
MD
1331 * because the parent may check the child's status before the child actually
1332 * gets to this routine.
1333 *
9a379a4a 1334 * This routine is called with the current lwp only, typically just
4643740a
MD
1335 * before returning to userland if the process state is detected as
1336 * possibly being in a stopped state.
984263bc
MD
1337 */
1338void
9a379a4a 1339tstop(void)
984263bc 1340{
9a379a4a 1341 struct lwp *lp = curthread->td_lwp;
7278a846 1342 struct proc *p = lp->lwp_proc;
8c986a82 1343 struct proc *q;
9a379a4a 1344
4643740a 1345 lwkt_gettoken(&lp->lwp_token);
7278a846 1346 crit_enter();
4643740a 1347
f33e8653 1348 /*
4643740a 1349 * If LWP_MP_WSTOP is set, we were sleeping
f33e8653
SS
1350 * while our process was stopped. At this point
1351 * we were already counted as stopped.
1352 */
4643740a 1353 if ((lp->lwp_mpflags & LWP_MP_WSTOP) == 0) {
f33e8653
SS
1354 /*
1355 * If we're the last thread to stop, signal
1356 * our parent.
1357 */
1358 p->p_nstopped++;
4643740a 1359 atomic_set_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
ea59a697 1360 wakeup(&p->p_nstopped);
f33e8653 1361 if (p->p_nstopped == p->p_nthreads) {
8c986a82
MD
1362 /*
1363 * Token required to interlock kern_wait()
1364 */
1365 q = p->p_pptr;
1366 PHOLD(q);
1367 lwkt_gettoken(&q->p_token);
4643740a 1368 p->p_flags &= ~P_WAITED;
f33e8653 1369 wakeup(p->p_pptr);
8c986a82
MD
1370 if ((q->p_sigacts->ps_flag & PS_NOCLDSTOP) == 0)
1371 ksignal(q, SIGCHLD);
1372 lwkt_reltoken(&q->p_token);
1373 PRELE(q);
f33e8653
SS
1374 }
1375 }
0001762f
MD
1376
1377 /*
1378 * Wait here while in a stopped state, interlocked with lwp_token.
1379 * We must break-out if the whole process is trying to exit.
1380 */
9c960153 1381 while (STOPLWP(p, lp)) {
ea59a697
SS
1382 lp->lwp_stat = LSSTOP;
1383 tsleep(p, 0, "stop", 0);
1384 }
7278a846 1385 p->p_nstopped--;
4643740a 1386 atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
7278a846 1387 crit_exit();
4643740a 1388 lwkt_reltoken(&lp->lwp_token);
26a0694b
MD
1389}
1390
984263bc
MD
1391/*
1392 * Compute a tenex style load average of a quantity on
586c4308
MD
1393 * 1, 5 and 15 minute intervals. This is a pcpu callout.
1394 *
1395 * We segment the lwp scan on a pcpu basis. This does NOT
1396 * mean the associated lwps are on this cpu, it is done
1397 * just to break the work up.
1398 *
1399 * The callout on cpu0 rolls up the stats from the other
1400 * cpus.
984263bc 1401 */
c7e98b2f 1402static int loadav_count_runnable(struct lwp *p, void *data);
8fa76237 1403
984263bc
MD
1404static void
1405loadav(void *arg)
1406{
586c4308 1407 globaldata_t gd = mycpu;
984263bc 1408 struct loadavg *avg;
8fa76237 1409 int i, nrun;
984263bc 1410
984263bc 1411 nrun = 0;
586c4308
MD
1412 alllwp_scan(loadav_count_runnable, &nrun, 1);
1413 gd->gd_loadav_nrunnable = nrun;
1414 if (gd->gd_cpuid == 0) {
1415 avg = &averunnable;
1416 nrun = 0;
1417 for (i = 0; i < ncpus; ++i)
1418 nrun += globaldata_find(i)->gd_loadav_nrunnable;
1419 for (i = 0; i < 3; i++) {
1420 avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1421 (long)nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1422 }
8fa76237 1423 }
984263bc
MD
1424
1425 /*
1426 * Schedule the next update to occur after 5 seconds, but add a
1427 * random variation to avoid synchronisation with processes that
1428 * run at regular intervals.
1429 */
586c4308
MD
1430 callout_reset(&gd->gd_loadav_callout,
1431 hz * 4 + (int)(krandom() % (hz * 2 + 1)),
8fa76237
MD
1432 loadav, NULL);
1433}
1434
1435static int
c7e98b2f 1436loadav_count_runnable(struct lwp *lp, void *data)
8fa76237
MD
1437{
1438 int *nrunp = data;
1439 thread_t td;
1440
164b8401
SS
1441 switch (lp->lwp_stat) {
1442 case LSRUN:
08f2f1bb 1443 if ((td = lp->lwp_thread) == NULL)
8fa76237
MD
1444 break;
1445 if (td->td_flags & TDF_BLOCKED)
1446 break;
8fa76237
MD
1447 ++*nrunp;
1448 break;
1449 default:
1450 break;
1451 }
d2d8515b 1452 lwkt_yield();
8fa76237 1453 return(0);
984263bc
MD
1454}
1455
f6aeec64
MD
1456/*
1457 * Regular data collection
1458 */
1459static uint64_t
1460collect_load_callback(int n)
1461{
77bc82e1
MD
1462 int fscale = averunnable.fscale;
1463
1464 return ((averunnable.ldavg[0] * 100 + (fscale >> 1)) / fscale);
f6aeec64
MD
1465}
1466
984263bc 1467static void
666ff13c 1468sched_setup(void *dummy __unused)
984263bc 1469{
666ff13c
MD
1470 globaldata_t save_gd = mycpu;
1471 globaldata_t gd;
1472 int n;
1473
f6aeec64
MD
1474 kcollect_register(KCOLLECT_LOAD, "load", collect_load_callback,
1475 KCOLLECT_SCALE(KCOLLECT_LOAD_FORMAT, 0));
666ff13c
MD
1476
1477 /*
1478 * Kick off timeout driven events by calling first time. We
1479 * split the work across available cpus to help scale it,
1480 * it can eat a lot of cpu when there are a lot of processes
1481 * on the system.
1482 */
1483 for (n = 0; n < ncpus; ++n) {
1484 gd = globaldata_find(n);
1485 lwkt_setcpu_self(gd);
1486 callout_init_mp(&gd->gd_loadav_callout);
1487 callout_init_mp(&gd->gd_schedcpu_callout);
1488 schedcpu(NULL);
1489 loadav(NULL);
1490 }
1491 lwkt_setcpu_self(save_gd);
1492}
1493
1494/*
1495 * Extremely early initialization, dummy-up the tables so we don't have
1496 * to conditionalize for NULL in _wakeup() and tsleep_interlock(). Even
1497 * though the system isn't blocking this early, these functions still
1498 * try to access the hash table.
1499 *
1500 * This setup will be overridden once sched_dyninit() -> sleep_gdinit()
1501 * is called.
1502 */
1503void
1504sleep_early_gdinit(globaldata_t gd)
1505{
1506 static struct tslpque dummy_slpque;
1507 static cpumask_t dummy_cpumasks;
1508
1509 slpque_tablesize = 1;
1510 gd->gd_tsleep_hash = &dummy_slpque;
1511 slpque_cpumasks = &dummy_cpumasks;
8acf0617 1512 TAILQ_INIT(&dummy_slpque.queue);
666ff13c
MD
1513}
1514
1515/*
1516 * PCPU initialization. Called after KMALLOC is operational, by
1517 * sched_dyninit() for cpu 0, and by mi_gdinit() for other cpus later.
1518 *
1519 * WARNING! The pcpu hash table is smaller than the global cpumask
1520 * hash table, which can save us a lot of memory when maxproc
1521 * is set high.
1522 */
1523void
1524sleep_gdinit(globaldata_t gd)
1525{
1526 struct thread *td;
1bc11bc6 1527 size_t hash_size;
666ff13c
MD
1528 uint32_t n;
1529 uint32_t i;
1530
1531 /*
1532 * This shouldn't happen, that is there shouldn't be any threads
1533 * waiting on the dummy tsleep queue this early in the boot.
1534 */
1535 if (gd->gd_cpuid == 0) {
8acf0617
MD
1536 struct tslpque *qp = &gd->gd_tsleep_hash[0];
1537 TAILQ_FOREACH(td, &qp->queue, td_sleepq) {
666ff13c
MD
1538 kprintf("SLEEP_GDINIT SWITCH %s\n", td->td_comm);
1539 }
1540 }
1541
1542 /*
1543 * Note that we have to allocate one extra slot because we are
1544 * shifting a modulo value. TCHASHSHIFT(slpque_tablesize - 1) can
1545 * return the same value as TCHASHSHIFT(slpque_tablesize).
1546 */
1547 n = TCHASHSHIFT(slpque_tablesize) + 1;
1548
1bc11bc6 1549 hash_size = sizeof(struct tslpque) * n;
1eeaf6b2 1550 gd->gd_tsleep_hash = (void *)kmem_alloc3(kernel_map, hash_size,
1bc11bc6
SZ
1551 VM_SUBSYS_GD,
1552 KM_CPU(gd->gd_cpuid));
1553 memset(gd->gd_tsleep_hash, 0, hash_size);
666ff13c 1554 for (i = 0; i < n; ++i)
8acf0617 1555 TAILQ_INIT(&gd->gd_tsleep_hash[i].queue);
666ff13c
MD
1556}
1557
1558/*
1559 * Dynamic initialization after the memory system is operational.
1560 */
1561static void
1562sched_dyninit(void *dummy __unused)
1563{
1564 int tblsize;
1565 int tblsize2;
1566 int n;
1567
1568 /*
1569 * Calculate table size for slpque hash. We want a prime number
1570 * large enough to avoid overloading slpque_cpumasks when the
1571 * system has a large number of sleeping processes, which will
1572 * spam IPIs on wakeup().
1573 *
1574 * While it is true this is really a per-lwp factor, generally
1575 * speaking the maxproc limit is a good metric to go by.
1576 */
1577 for (tblsize = maxproc | 1; ; tblsize += 2) {
1578 if (tblsize % 3 == 0)
1579 continue;
1580 if (tblsize % 5 == 0)
1581 continue;
1582 tblsize2 = (tblsize / 2) | 1;
1583 for (n = 7; n < tblsize2; n += 2) {
1584 if (tblsize % n == 0)
1585 break;
1586 }
1587 if (n == tblsize2)
1588 break;
1589 }
1590
1591 /*
1592 * PIDs are currently limited to 6 digits. Cap the table size
1593 * at double this.
1594 */
1595 if (tblsize > 2000003)
1596 tblsize = 2000003;
1597
1598 slpque_tablesize = tblsize;
1599 slpque_cpumasks = kmalloc(sizeof(*slpque_cpumasks) * slpque_tablesize,
1600 M_TSLEEP, M_WAITOK | M_ZERO);
1601 sleep_gdinit(mycpu);
984263bc 1602}