Missing ether_ifdetach in error path.
[dragonfly.git] / sys / dev / netif / fxp / if_fxp.c
... / ...
CommitLineData
1/*-
2 * Copyright (c) 1995, David Greenman
3 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice unmodified, this list of conditions, and the following
11 * disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * $FreeBSD: src/sys/dev/fxp/if_fxp.c,v 1.110.2.30 2003/06/12 16:47:05 mux Exp $
29 * $DragonFly: src/sys/dev/netif/fxp/if_fxp.c,v 1.35 2005/06/15 11:15:37 joerg Exp $
30 */
31
32/*
33 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
34 */
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/mbuf.h>
39#include <sys/malloc.h>
40#include <sys/kernel.h>
41#include <sys/socket.h>
42#include <sys/sysctl.h>
43#include <sys/thread2.h>
44
45#include <net/if.h>
46#include <net/ifq_var.h>
47#include <net/if_dl.h>
48#include <net/if_media.h>
49
50#ifdef NS
51#include <netns/ns.h>
52#include <netns/ns_if.h>
53#endif
54
55#include <net/bpf.h>
56#include <sys/sockio.h>
57#include <sys/bus.h>
58#include <machine/bus.h>
59#include <sys/rman.h>
60#include <machine/resource.h>
61
62#include <net/ethernet.h>
63#include <net/if_arp.h>
64
65#include <vm/vm.h> /* for vtophys */
66#include <vm/pmap.h> /* for vtophys */
67
68#include <net/if_types.h>
69#include <net/vlan/if_vlan_var.h>
70
71#include <bus/pci/pcivar.h>
72#include <bus/pci/pcireg.h> /* for PCIM_CMD_xxx */
73
74#include "../mii_layer/mii.h"
75#include "../mii_layer/miivar.h"
76
77#include "if_fxpreg.h"
78#include "if_fxpvar.h"
79#include "rcvbundl.h"
80
81#include "miibus_if.h"
82
83/*
84 * NOTE! On the Alpha, we have an alignment constraint. The
85 * card DMAs the packet immediately following the RFA. However,
86 * the first thing in the packet is a 14-byte Ethernet header.
87 * This means that the packet is misaligned. To compensate,
88 * we actually offset the RFA 2 bytes into the cluster. This
89 * alignes the packet after the Ethernet header at a 32-bit
90 * boundary. HOWEVER! This means that the RFA is misaligned!
91 */
92#define RFA_ALIGNMENT_FUDGE 2
93
94/*
95 * Set initial transmit threshold at 64 (512 bytes). This is
96 * increased by 64 (512 bytes) at a time, to maximum of 192
97 * (1536 bytes), if an underrun occurs.
98 */
99static int tx_threshold = 64;
100
101/*
102 * The configuration byte map has several undefined fields which
103 * must be one or must be zero. Set up a template for these bits
104 * only, (assuming a 82557 chip) leaving the actual configuration
105 * to fxp_init.
106 *
107 * See struct fxp_cb_config for the bit definitions.
108 */
109static u_char fxp_cb_config_template[] = {
110 0x0, 0x0, /* cb_status */
111 0x0, 0x0, /* cb_command */
112 0x0, 0x0, 0x0, 0x0, /* link_addr */
113 0x0, /* 0 */
114 0x0, /* 1 */
115 0x0, /* 2 */
116 0x0, /* 3 */
117 0x0, /* 4 */
118 0x0, /* 5 */
119 0x32, /* 6 */
120 0x0, /* 7 */
121 0x0, /* 8 */
122 0x0, /* 9 */
123 0x6, /* 10 */
124 0x0, /* 11 */
125 0x0, /* 12 */
126 0x0, /* 13 */
127 0xf2, /* 14 */
128 0x48, /* 15 */
129 0x0, /* 16 */
130 0x40, /* 17 */
131 0xf0, /* 18 */
132 0x0, /* 19 */
133 0x3f, /* 20 */
134 0x5 /* 21 */
135};
136
137struct fxp_ident {
138 u_int16_t devid;
139 int16_t revid; /* -1 matches anything */
140 char *name;
141};
142
143/*
144 * Claim various Intel PCI device identifiers for this driver. The
145 * sub-vendor and sub-device field are extensively used to identify
146 * particular variants, but we don't currently differentiate between
147 * them.
148 */
149static struct fxp_ident fxp_ident_table[] = {
150 { 0x1029, -1, "Intel 82559 PCI/CardBus Pro/100" },
151 { 0x1030, -1, "Intel 82559 Pro/100 Ethernet" },
152 { 0x1031, -1, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
153 { 0x1032, -1, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
154 { 0x1033, -1, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
155 { 0x1034, -1, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
156 { 0x1035, -1, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
157 { 0x1036, -1, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
158 { 0x1037, -1, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
159 { 0x1038, -1, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
160 { 0x1039, -1, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
161 { 0x103A, -1, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
162 { 0x103B, -1, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
163 { 0x103C, -1, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
164 { 0x103D, -1, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
165 { 0x103E, -1, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
166 { 0x1050, -1, "Intel 82801BA (D865) Pro/100 VE Ethernet" },
167 { 0x1051, -1, "Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
168 { 0x1059, -1, "Intel 82551QM Pro/100 M Mobile Connection" },
169 { 0x1064, -1, "Intel 82562ET/EZ/GT/GZ (ICH6/ICH6R) Pro/100 VE Ethernet" },
170 { 0x1209, -1, "Intel 82559ER Embedded 10/100 Ethernet" },
171 { 0x1229, 0x01, "Intel 82557 Pro/100 Ethernet" },
172 { 0x1229, 0x02, "Intel 82557 Pro/100 Ethernet" },
173 { 0x1229, 0x03, "Intel 82557 Pro/100 Ethernet" },
174 { 0x1229, 0x04, "Intel 82558 Pro/100 Ethernet" },
175 { 0x1229, 0x05, "Intel 82558 Pro/100 Ethernet" },
176 { 0x1229, 0x06, "Intel 82559 Pro/100 Ethernet" },
177 { 0x1229, 0x07, "Intel 82559 Pro/100 Ethernet" },
178 { 0x1229, 0x08, "Intel 82559 Pro/100 Ethernet" },
179 { 0x1229, 0x09, "Intel 82559ER Pro/100 Ethernet" },
180 { 0x1229, 0x0c, "Intel 82550 Pro/100 Ethernet" },
181 { 0x1229, 0x0d, "Intel 82550 Pro/100 Ethernet" },
182 { 0x1229, 0x0e, "Intel 82550 Pro/100 Ethernet" },
183 { 0x1229, 0x0f, "Intel 82551 Pro/100 Ethernet" },
184 { 0x1229, 0x10, "Intel 82551 Pro/100 Ethernet" },
185 { 0x1229, -1, "Intel 82557/8/9 Pro/100 Ethernet" },
186 { 0x2449, -1, "Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
187 { 0, -1, NULL },
188};
189
190static int fxp_probe(device_t dev);
191static int fxp_attach(device_t dev);
192static int fxp_detach(device_t dev);
193static int fxp_shutdown(device_t dev);
194static int fxp_suspend(device_t dev);
195static int fxp_resume(device_t dev);
196
197static void fxp_intr(void *xsc);
198static void fxp_intr_body(struct fxp_softc *sc,
199 u_int8_t statack, int count);
200
201static void fxp_init(void *xsc);
202static void fxp_tick(void *xsc);
203static void fxp_powerstate_d0(device_t dev);
204static void fxp_start(struct ifnet *ifp);
205static void fxp_stop(struct fxp_softc *sc);
206static void fxp_release(device_t dev);
207static int fxp_ioctl(struct ifnet *ifp, u_long command,
208 caddr_t data, struct ucred *);
209static void fxp_watchdog(struct ifnet *ifp);
210static int fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm);
211static int fxp_mc_addrs(struct fxp_softc *sc);
212static void fxp_mc_setup(struct fxp_softc *sc);
213static u_int16_t fxp_eeprom_getword(struct fxp_softc *sc, int offset,
214 int autosize);
215static void fxp_eeprom_putword(struct fxp_softc *sc, int offset,
216 u_int16_t data);
217static void fxp_autosize_eeprom(struct fxp_softc *sc);
218static void fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
219 int offset, int words);
220static void fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
221 int offset, int words);
222static int fxp_ifmedia_upd(struct ifnet *ifp);
223static void fxp_ifmedia_sts(struct ifnet *ifp,
224 struct ifmediareq *ifmr);
225static int fxp_serial_ifmedia_upd(struct ifnet *ifp);
226static void fxp_serial_ifmedia_sts(struct ifnet *ifp,
227 struct ifmediareq *ifmr);
228static volatile int fxp_miibus_readreg(device_t dev, int phy, int reg);
229static void fxp_miibus_writereg(device_t dev, int phy, int reg,
230 int value);
231static void fxp_load_ucode(struct fxp_softc *sc);
232static int sysctl_int_range(SYSCTL_HANDLER_ARGS,
233 int low, int high);
234static int sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
235static int sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
236#ifdef DEVICE_POLLING
237static poll_handler_t fxp_poll;
238#endif
239
240static void fxp_lwcopy(volatile u_int32_t *src,
241 volatile u_int32_t *dst);
242static void fxp_scb_wait(struct fxp_softc *sc);
243static void fxp_scb_cmd(struct fxp_softc *sc, int cmd);
244static void fxp_dma_wait(volatile u_int16_t *status,
245 struct fxp_softc *sc);
246
247static device_method_t fxp_methods[] = {
248 /* Device interface */
249 DEVMETHOD(device_probe, fxp_probe),
250 DEVMETHOD(device_attach, fxp_attach),
251 DEVMETHOD(device_detach, fxp_detach),
252 DEVMETHOD(device_shutdown, fxp_shutdown),
253 DEVMETHOD(device_suspend, fxp_suspend),
254 DEVMETHOD(device_resume, fxp_resume),
255
256 /* MII interface */
257 DEVMETHOD(miibus_readreg, fxp_miibus_readreg),
258 DEVMETHOD(miibus_writereg, fxp_miibus_writereg),
259
260 { 0, 0 }
261};
262
263static driver_t fxp_driver = {
264 "fxp",
265 fxp_methods,
266 sizeof(struct fxp_softc),
267};
268
269static devclass_t fxp_devclass;
270
271DECLARE_DUMMY_MODULE(if_fxp);
272MODULE_DEPEND(if_fxp, miibus, 1, 1, 1);
273DRIVER_MODULE(if_fxp, pci, fxp_driver, fxp_devclass, 0, 0);
274DRIVER_MODULE(if_fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
275DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
276
277static int fxp_rnr;
278SYSCTL_INT(_hw, OID_AUTO, fxp_rnr, CTLFLAG_RW, &fxp_rnr, 0, "fxp rnr events");
279
280/*
281 * Copy a 16-bit aligned 32-bit quantity.
282 */
283static void
284fxp_lwcopy(volatile u_int32_t *src, volatile u_int32_t *dst)
285{
286#ifdef __i386__
287 *dst = *src;
288#else
289 volatile u_int16_t *a = (volatile u_int16_t *)src;
290 volatile u_int16_t *b = (volatile u_int16_t *)dst;
291
292 b[0] = a[0];
293 b[1] = a[1];
294#endif
295}
296
297/*
298 * Wait for the previous command to be accepted (but not necessarily
299 * completed).
300 */
301static void
302fxp_scb_wait(struct fxp_softc *sc)
303{
304 int i = 10000;
305
306 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
307 DELAY(2);
308 if (i == 0) {
309 if_printf(&sc->arpcom.ac_if,
310 "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
311 CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
312 CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
313 CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
314 CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
315 }
316}
317
318static void
319fxp_scb_cmd(struct fxp_softc *sc, int cmd)
320{
321
322 if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
323 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
324 fxp_scb_wait(sc);
325 }
326 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
327}
328
329static void
330fxp_dma_wait(volatile u_int16_t *status, struct fxp_softc *sc)
331{
332 int i = 10000;
333
334 while (!(*status & FXP_CB_STATUS_C) && --i)
335 DELAY(2);
336 if (i == 0)
337 if_printf(&sc->arpcom.ac_if, "DMA timeout\n");
338}
339
340/*
341 * Return identification string if this is device is ours.
342 */
343static int
344fxp_probe(device_t dev)
345{
346 u_int16_t devid;
347 u_int8_t revid;
348 struct fxp_ident *ident;
349
350 if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
351 devid = pci_get_device(dev);
352 revid = pci_get_revid(dev);
353 for (ident = fxp_ident_table; ident->name != NULL; ident++) {
354 if (ident->devid == devid &&
355 (ident->revid == revid || ident->revid == -1)) {
356 device_set_desc(dev, ident->name);
357 return (0);
358 }
359 }
360 }
361 return (ENXIO);
362}
363
364static void
365fxp_powerstate_d0(device_t dev)
366{
367 u_int32_t iobase, membase, irq;
368
369 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
370 /* Save important PCI config data. */
371 iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
372 membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
373 irq = pci_read_config(dev, PCIR_INTLINE, 4);
374
375 /* Reset the power state. */
376 device_printf(dev, "chip is in D%d power mode "
377 "-- setting to D0\n", pci_get_powerstate(dev));
378
379 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
380
381 /* Restore PCI config data. */
382 pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
383 pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
384 pci_write_config(dev, PCIR_INTLINE, irq, 4);
385 }
386}
387
388static int
389fxp_attach(device_t dev)
390{
391 int error = 0;
392 struct fxp_softc *sc = device_get_softc(dev);
393 struct ifnet *ifp;
394 u_int32_t val;
395 u_int16_t data;
396 int i, rid, m1, m2, prefer_iomap;
397
398 callout_init(&sc->fxp_stat_timer);
399 sysctl_ctx_init(&sc->sysctl_ctx);
400
401 /*
402 * Enable bus mastering. Enable memory space too, in case
403 * BIOS/Prom forgot about it.
404 */
405 pci_enable_busmaster(dev);
406 pci_enable_io(dev, SYS_RES_MEMORY);
407 val = pci_read_config(dev, PCIR_COMMAND, 2);
408
409 fxp_powerstate_d0(dev);
410
411 /*
412 * Figure out which we should try first - memory mapping or i/o mapping?
413 * We default to memory mapping. Then we accept an override from the
414 * command line. Then we check to see which one is enabled.
415 */
416 m1 = PCIM_CMD_MEMEN;
417 m2 = PCIM_CMD_PORTEN;
418 prefer_iomap = 0;
419 if (resource_int_value(device_get_name(dev), device_get_unit(dev),
420 "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
421 m1 = PCIM_CMD_PORTEN;
422 m2 = PCIM_CMD_MEMEN;
423 }
424
425 if (val & m1) {
426 sc->rtp =
427 (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
428 sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
429 sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
430 RF_ACTIVE);
431 }
432 if (sc->mem == NULL && (val & m2)) {
433 sc->rtp =
434 (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
435 sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
436 sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
437 RF_ACTIVE);
438 }
439
440 if (!sc->mem) {
441 device_printf(dev, "could not map device registers\n");
442 error = ENXIO;
443 goto fail;
444 }
445 if (bootverbose) {
446 device_printf(dev, "using %s space register mapping\n",
447 sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
448 }
449
450 sc->sc_st = rman_get_bustag(sc->mem);
451 sc->sc_sh = rman_get_bushandle(sc->mem);
452
453 /*
454 * Allocate our interrupt.
455 */
456 rid = 0;
457 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
458 RF_SHAREABLE | RF_ACTIVE);
459 if (sc->irq == NULL) {
460 device_printf(dev, "could not map interrupt\n");
461 error = ENXIO;
462 goto fail;
463 }
464
465 /*
466 * Reset to a stable state.
467 */
468 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
469 DELAY(10);
470
471 sc->cbl_base = malloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB,
472 M_DEVBUF, M_WAITOK | M_ZERO);
473
474 sc->fxp_stats = malloc(sizeof(struct fxp_stats), M_DEVBUF,
475 M_WAITOK | M_ZERO);
476
477 sc->mcsp = malloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_WAITOK);
478
479 /*
480 * Pre-allocate our receive buffers.
481 */
482 for (i = 0; i < FXP_NRFABUFS; i++) {
483 if (fxp_add_rfabuf(sc, NULL) != 0) {
484 goto failmem;
485 }
486 }
487
488 /*
489 * Find out how large of an SEEPROM we have.
490 */
491 fxp_autosize_eeprom(sc);
492
493 /*
494 * Determine whether we must use the 503 serial interface.
495 */
496 fxp_read_eeprom(sc, &data, 6, 1);
497 if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
498 (data & FXP_PHY_SERIAL_ONLY))
499 sc->flags |= FXP_FLAG_SERIAL_MEDIA;
500
501 /*
502 * Create the sysctl tree
503 */
504 sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
505 SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
506 device_get_nameunit(dev), CTLFLAG_RD, 0, "");
507 if (sc->sysctl_tree == NULL)
508 goto fail;
509 SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
510 OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
511 &sc->tunable_int_delay, 0, &sysctl_hw_fxp_int_delay, "I",
512 "FXP driver receive interrupt microcode bundling delay");
513 SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
514 OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
515 &sc->tunable_bundle_max, 0, &sysctl_hw_fxp_bundle_max, "I",
516 "FXP driver receive interrupt microcode bundle size limit");
517
518 /*
519 * Pull in device tunables.
520 */
521 sc->tunable_int_delay = TUNABLE_INT_DELAY;
522 sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
523 (void) resource_int_value(device_get_name(dev), device_get_unit(dev),
524 "int_delay", &sc->tunable_int_delay);
525 (void) resource_int_value(device_get_name(dev), device_get_unit(dev),
526 "bundle_max", &sc->tunable_bundle_max);
527
528 /*
529 * Find out the chip revision; lump all 82557 revs together.
530 */
531 fxp_read_eeprom(sc, &data, 5, 1);
532 if ((data >> 8) == 1)
533 sc->revision = FXP_REV_82557;
534 else
535 sc->revision = pci_get_revid(dev);
536
537 /*
538 * Enable workarounds for certain chip revision deficiencies.
539 *
540 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
541 * some systems based a normal 82559 design, have a defect where
542 * the chip can cause a PCI protocol violation if it receives
543 * a CU_RESUME command when it is entering the IDLE state. The
544 * workaround is to disable Dynamic Standby Mode, so the chip never
545 * deasserts CLKRUN#, and always remains in an active state.
546 *
547 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
548 */
549 i = pci_get_device(dev);
550 if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
551 sc->revision >= FXP_REV_82559_A0) {
552 fxp_read_eeprom(sc, &data, 10, 1);
553 if (data & 0x02) { /* STB enable */
554 u_int16_t cksum;
555 int i;
556
557 device_printf(dev,
558 "Disabling dynamic standby mode in EEPROM\n");
559 data &= ~0x02;
560 fxp_write_eeprom(sc, &data, 10, 1);
561 device_printf(dev, "New EEPROM ID: 0x%x\n", data);
562 cksum = 0;
563 for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
564 fxp_read_eeprom(sc, &data, i, 1);
565 cksum += data;
566 }
567 i = (1 << sc->eeprom_size) - 1;
568 cksum = 0xBABA - cksum;
569 fxp_read_eeprom(sc, &data, i, 1);
570 fxp_write_eeprom(sc, &cksum, i, 1);
571 device_printf(dev,
572 "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
573 i, data, cksum);
574#if 1
575 /*
576 * If the user elects to continue, try the software
577 * workaround, as it is better than nothing.
578 */
579 sc->flags |= FXP_FLAG_CU_RESUME_BUG;
580#endif
581 }
582 }
583
584 /*
585 * If we are not a 82557 chip, we can enable extended features.
586 */
587 if (sc->revision != FXP_REV_82557) {
588 /*
589 * If MWI is enabled in the PCI configuration, and there
590 * is a valid cacheline size (8 or 16 dwords), then tell
591 * the board to turn on MWI.
592 */
593 if (val & PCIM_CMD_MWRICEN &&
594 pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
595 sc->flags |= FXP_FLAG_MWI_ENABLE;
596
597 /* turn on the extended TxCB feature */
598 sc->flags |= FXP_FLAG_EXT_TXCB;
599
600 /* enable reception of long frames for VLAN */
601 sc->flags |= FXP_FLAG_LONG_PKT_EN;
602 }
603
604 /*
605 * Read MAC address.
606 */
607 fxp_read_eeprom(sc, (u_int16_t *)sc->arpcom.ac_enaddr, 0, 3);
608 if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
609 device_printf(dev, "10Mbps\n");
610 if (bootverbose) {
611 device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
612 pci_get_vendor(dev), pci_get_device(dev),
613 pci_get_subvendor(dev), pci_get_subdevice(dev),
614 pci_get_revid(dev));
615 fxp_read_eeprom(sc, &data, 10, 1);
616 device_printf(dev, "Dynamic Standby mode is %s\n",
617 data & 0x02 ? "enabled" : "disabled");
618 }
619
620 /*
621 * If this is only a 10Mbps device, then there is no MII, and
622 * the PHY will use a serial interface instead.
623 *
624 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
625 * doesn't have a programming interface of any sort. The
626 * media is sensed automatically based on how the link partner
627 * is configured. This is, in essence, manual configuration.
628 */
629 if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
630 ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
631 fxp_serial_ifmedia_sts);
632 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
633 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
634 } else {
635 if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
636 fxp_ifmedia_sts)) {
637 device_printf(dev, "MII without any PHY!\n");
638 error = ENXIO;
639 goto fail;
640 }
641 }
642
643 ifp = &sc->arpcom.ac_if;
644 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
645 ifp->if_baudrate = 100000000;
646 ifp->if_init = fxp_init;
647 ifp->if_softc = sc;
648 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
649 ifp->if_ioctl = fxp_ioctl;
650 ifp->if_start = fxp_start;
651#ifdef DEVICE_POLLING
652 ifp->if_poll = fxp_poll;
653#endif
654 ifp->if_watchdog = fxp_watchdog;
655
656 /*
657 * Attach the interface.
658 */
659 ether_ifattach(ifp, sc->arpcom.ac_enaddr);
660
661 /*
662 * Tell the upper layer(s) we support long frames.
663 */
664 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
665
666 /*
667 * Let the system queue as many packets as we have available
668 * TX descriptors.
669 */
670 ifq_set_maxlen(&ifp->if_snd, FXP_NTXCB - 1);
671 ifq_set_ready(&ifp->if_snd);
672
673 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET,
674 fxp_intr, sc, &sc->ih, NULL);
675 if (error) {
676 ether_ifdetach(ifp);
677 if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
678 ifmedia_removeall(&sc->sc_media);
679 device_printf(dev, "could not setup irq\n");
680 goto fail;
681 }
682
683 return (0);
684
685failmem:
686 device_printf(dev, "Failed to malloc memory\n");
687 error = ENOMEM;
688fail:
689 fxp_release(dev);
690 return (error);
691}
692
693/*
694 * release all resources
695 */
696static void
697fxp_release(device_t dev)
698{
699 struct fxp_softc *sc = device_get_softc(dev);
700
701 if (sc->miibus)
702 device_delete_child(dev, sc->miibus);
703 bus_generic_detach(dev);
704
705 if (sc->cbl_base)
706 free(sc->cbl_base, M_DEVBUF);
707 if (sc->fxp_stats)
708 free(sc->fxp_stats, M_DEVBUF);
709 if (sc->mcsp)
710 free(sc->mcsp, M_DEVBUF);
711 if (sc->rfa_headm)
712 m_freem(sc->rfa_headm);
713
714 if (sc->irq)
715 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq);
716 if (sc->mem)
717 bus_release_resource(dev, sc->rtp, sc->rgd, sc->mem);
718
719 sysctl_ctx_free(&sc->sysctl_ctx);
720}
721
722/*
723 * Detach interface.
724 */
725static int
726fxp_detach(device_t dev)
727{
728 struct fxp_softc *sc = device_get_softc(dev);
729
730 /* disable interrupts */
731 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
732
733 crit_enter();
734
735 /*
736 * Stop DMA and drop transmit queue.
737 */
738 fxp_stop(sc);
739
740 /*
741 * Close down routes etc.
742 */
743 ether_ifdetach(&sc->arpcom.ac_if);
744
745 /*
746 * Free all media structures.
747 */
748 if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
749 ifmedia_removeall(&sc->sc_media);
750
751 if (sc->ih)
752 bus_teardown_intr(dev, sc->irq, sc->ih);
753
754 crit_exit();
755
756 /* Release our allocated resources. */
757 fxp_release(dev);
758
759 return (0);
760}
761
762/*
763 * Device shutdown routine. Called at system shutdown after sync. The
764 * main purpose of this routine is to shut off receiver DMA so that
765 * kernel memory doesn't get clobbered during warmboot.
766 */
767static int
768fxp_shutdown(device_t dev)
769{
770 /*
771 * Make sure that DMA is disabled prior to reboot. Not doing
772 * do could allow DMA to corrupt kernel memory during the
773 * reboot before the driver initializes.
774 */
775 fxp_stop((struct fxp_softc *) device_get_softc(dev));
776 return (0);
777}
778
779/*
780 * Device suspend routine. Stop the interface and save some PCI
781 * settings in case the BIOS doesn't restore them properly on
782 * resume.
783 */
784static int
785fxp_suspend(device_t dev)
786{
787 struct fxp_softc *sc = device_get_softc(dev);
788 int i;
789
790 crit_enter();
791
792 fxp_stop(sc);
793
794 for (i = 0; i < 5; i++)
795 sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
796 sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
797 sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
798 sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
799 sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
800
801 sc->suspended = 1;
802
803 crit_exit();
804 return (0);
805}
806
807/*
808 * Device resume routine. Restore some PCI settings in case the BIOS
809 * doesn't, re-enable busmastering, and restart the interface if
810 * appropriate.
811 */
812static int
813fxp_resume(device_t dev)
814{
815 struct fxp_softc *sc = device_get_softc(dev);
816 struct ifnet *ifp = &sc->arpcom.ac_if;
817 int i;
818
819 crit_enter();
820
821 fxp_powerstate_d0(dev);
822
823 /* better way to do this? */
824 for (i = 0; i < 5; i++)
825 pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
826 pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
827 pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
828 pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
829 pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
830
831 /* reenable busmastering and memory space */
832 pci_enable_busmaster(dev);
833 pci_enable_io(dev, SYS_RES_MEMORY);
834
835 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
836 DELAY(10);
837
838 /* reinitialize interface if necessary */
839 if (ifp->if_flags & IFF_UP)
840 fxp_init(sc);
841
842 sc->suspended = 0;
843
844 crit_exit();
845 return (0);
846}
847
848static void
849fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
850{
851 u_int16_t reg;
852 int x;
853
854 /*
855 * Shift in data.
856 */
857 for (x = 1 << (length - 1); x; x >>= 1) {
858 if (data & x)
859 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
860 else
861 reg = FXP_EEPROM_EECS;
862 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
863 DELAY(1);
864 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
865 DELAY(1);
866 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
867 DELAY(1);
868 }
869}
870
871/*
872 * Read from the serial EEPROM. Basically, you manually shift in
873 * the read opcode (one bit at a time) and then shift in the address,
874 * and then you shift out the data (all of this one bit at a time).
875 * The word size is 16 bits, so you have to provide the address for
876 * every 16 bits of data.
877 */
878static u_int16_t
879fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
880{
881 u_int16_t reg, data;
882 int x;
883
884 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
885 /*
886 * Shift in read opcode.
887 */
888 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
889 /*
890 * Shift in address.
891 */
892 data = 0;
893 for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
894 if (offset & x)
895 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
896 else
897 reg = FXP_EEPROM_EECS;
898 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
899 DELAY(1);
900 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
901 DELAY(1);
902 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
903 DELAY(1);
904 reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
905 data++;
906 if (autosize && reg == 0) {
907 sc->eeprom_size = data;
908 break;
909 }
910 }
911 /*
912 * Shift out data.
913 */
914 data = 0;
915 reg = FXP_EEPROM_EECS;
916 for (x = 1 << 15; x; x >>= 1) {
917 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
918 DELAY(1);
919 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
920 data |= x;
921 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
922 DELAY(1);
923 }
924 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
925 DELAY(1);
926
927 return (data);
928}
929
930static void
931fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
932{
933 int i;
934
935 /*
936 * Erase/write enable.
937 */
938 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
939 fxp_eeprom_shiftin(sc, 0x4, 3);
940 fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
941 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
942 DELAY(1);
943 /*
944 * Shift in write opcode, address, data.
945 */
946 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
947 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
948 fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
949 fxp_eeprom_shiftin(sc, data, 16);
950 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
951 DELAY(1);
952 /*
953 * Wait for EEPROM to finish up.
954 */
955 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
956 DELAY(1);
957 for (i = 0; i < 1000; i++) {
958 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
959 break;
960 DELAY(50);
961 }
962 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
963 DELAY(1);
964 /*
965 * Erase/write disable.
966 */
967 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
968 fxp_eeprom_shiftin(sc, 0x4, 3);
969 fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
970 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
971 DELAY(1);
972}
973
974/*
975 * From NetBSD:
976 *
977 * Figure out EEPROM size.
978 *
979 * 559's can have either 64-word or 256-word EEPROMs, the 558
980 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
981 * talks about the existance of 16 to 256 word EEPROMs.
982 *
983 * The only known sizes are 64 and 256, where the 256 version is used
984 * by CardBus cards to store CIS information.
985 *
986 * The address is shifted in msb-to-lsb, and after the last
987 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
988 * after which follows the actual data. We try to detect this zero, by
989 * probing the data-out bit in the EEPROM control register just after
990 * having shifted in a bit. If the bit is zero, we assume we've
991 * shifted enough address bits. The data-out should be tri-state,
992 * before this, which should translate to a logical one.
993 */
994static void
995fxp_autosize_eeprom(struct fxp_softc *sc)
996{
997
998 /* guess maximum size of 256 words */
999 sc->eeprom_size = 8;
1000
1001 /* autosize */
1002 (void) fxp_eeprom_getword(sc, 0, 1);
1003}
1004
1005static void
1006fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1007{
1008 int i;
1009
1010 for (i = 0; i < words; i++)
1011 data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1012}
1013
1014static void
1015fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1016{
1017 int i;
1018
1019 for (i = 0; i < words; i++)
1020 fxp_eeprom_putword(sc, offset + i, data[i]);
1021}
1022
1023/*
1024 * Start packet transmission on the interface.
1025 */
1026static void
1027fxp_start(struct ifnet *ifp)
1028{
1029 struct fxp_softc *sc = ifp->if_softc;
1030 struct fxp_cb_tx *txp;
1031
1032 /*
1033 * See if we need to suspend xmit until the multicast filter
1034 * has been reprogrammed (which can only be done at the head
1035 * of the command chain).
1036 */
1037 if (sc->need_mcsetup) {
1038 return;
1039 }
1040
1041 txp = NULL;
1042
1043 /*
1044 * We're finished if there is nothing more to add to the list or if
1045 * we're all filled up with buffers to transmit.
1046 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1047 * a NOP command when needed.
1048 */
1049 while (!ifq_is_empty(&ifp->if_snd) && sc->tx_queued < FXP_NTXCB - 1) {
1050 struct mbuf *m, *mb_head;
1051 int segment, ntries = 0;
1052
1053 /*
1054 * Grab a packet to transmit. The packet is dequeued,
1055 * once we are sure that we have enough free descriptors.
1056 */
1057 mb_head = ifq_poll(&ifp->if_snd);
1058 if (mb_head == NULL)
1059 break;
1060
1061 /*
1062 * Get pointer to next available tx desc.
1063 */
1064 txp = sc->cbl_last->next;
1065
1066 /*
1067 * Go through each of the mbufs in the chain and initialize
1068 * the transmit buffer descriptors with the physical address
1069 * and size of the mbuf.
1070 */
1071tbdinit:
1072 for (m = mb_head, segment = 0; m != NULL; m = m->m_next) {
1073 if (m->m_len != 0) {
1074 if (segment == FXP_NTXSEG)
1075 break;
1076 txp->tbd[segment].tb_addr =
1077 vtophys(mtod(m, vm_offset_t));
1078 txp->tbd[segment].tb_size = m->m_len;
1079 segment++;
1080 }
1081 }
1082 if (m != NULL) {
1083 struct mbuf *mn;
1084
1085 /*
1086 * We ran out of segments. We have to recopy this
1087 * mbuf chain first. Bail out if we can't get the
1088 * new buffers.
1089 */
1090 if (ntries > 0)
1091 break;
1092 mn = m_dup(mb_head, MB_DONTWAIT);
1093 if (mn == NULL)
1094 break;
1095 /* We can transmit the packet, dequeue it. */
1096 mb_head = ifq_dequeue(&ifp->if_snd);
1097 m_freem(mb_head);
1098 mb_head = mn;
1099 ntries = 1;
1100 goto tbdinit;
1101 } else {
1102 /* Nothing to worry about, just dequeue. */
1103 mb_head = ifq_dequeue(&ifp->if_snd);
1104 }
1105
1106 txp->tbd_number = segment;
1107 txp->mb_head = mb_head;
1108 txp->cb_status = 0;
1109 if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1110 txp->cb_command =
1111 FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1112 FXP_CB_COMMAND_S;
1113 } else {
1114 txp->cb_command =
1115 FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1116 FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1117 /*
1118 * Set a 5 second timer just in case we don't hear
1119 * from the card again.
1120 */
1121 ifp->if_timer = 5;
1122 }
1123 txp->tx_threshold = tx_threshold;
1124
1125 /*
1126 * Advance the end of list forward.
1127 */
1128
1129 sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
1130 sc->cbl_last = txp;
1131
1132 /*
1133 * Advance the beginning of the list forward if there are
1134 * no other packets queued (when nothing is queued, cbl_first
1135 * sits on the last TxCB that was sent out).
1136 */
1137 if (sc->tx_queued == 0)
1138 sc->cbl_first = txp;
1139
1140 sc->tx_queued++;
1141
1142 BPF_MTAP(ifp, mb_head);
1143 }
1144
1145 /*
1146 * We're finished. If we added to the list, issue a RESUME to get DMA
1147 * going again if suspended.
1148 */
1149 if (txp != NULL) {
1150 fxp_scb_wait(sc);
1151 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1152 }
1153}
1154
1155#ifdef DEVICE_POLLING
1156
1157static void
1158fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1159{
1160 struct fxp_softc *sc = ifp->if_softc;
1161 u_int8_t statack;
1162
1163 switch(cmd) {
1164 case POLL_REGISTER:
1165 /* disable interrupts */
1166 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1167 break;
1168 case POLL_DEREGISTER:
1169 /* enable interrupts */
1170 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1171 break;
1172 default:
1173 statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1174 FXP_SCB_STATACK_FR;
1175 if (cmd == POLL_AND_CHECK_STATUS) {
1176 u_int8_t tmp;
1177
1178 tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1179 if (tmp == 0xff || tmp == 0)
1180 return; /* nothing to do */
1181 tmp &= ~statack;
1182 /* ack what we can */
1183 if (tmp != 0)
1184 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1185 statack |= tmp;
1186 }
1187 fxp_intr_body(sc, statack, count);
1188 break;
1189 }
1190}
1191
1192#endif /* DEVICE_POLLING */
1193
1194/*
1195 * Process interface interrupts.
1196 */
1197static void
1198fxp_intr(void *xsc)
1199{
1200 struct fxp_softc *sc = xsc;
1201 u_int8_t statack;
1202
1203 if (sc->suspended) {
1204 return;
1205 }
1206
1207 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1208 /*
1209 * It should not be possible to have all bits set; the
1210 * FXP_SCB_INTR_SWI bit always returns 0 on a read. If
1211 * all bits are set, this may indicate that the card has
1212 * been physically ejected, so ignore it.
1213 */
1214 if (statack == 0xff)
1215 return;
1216
1217 /*
1218 * First ACK all the interrupts in this pass.
1219 */
1220 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1221 fxp_intr_body(sc, statack, -1);
1222 }
1223}
1224
1225static void
1226fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count)
1227{
1228 struct ifnet *ifp = &sc->arpcom.ac_if;
1229 struct mbuf *m;
1230 struct fxp_rfa *rfa;
1231 int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1232
1233 if (rnr)
1234 fxp_rnr++;
1235#ifdef DEVICE_POLLING
1236 /* Pick up a deferred RNR condition if `count' ran out last time. */
1237 if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1238 sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1239 rnr = 1;
1240 }
1241#endif
1242
1243 /*
1244 * Free any finished transmit mbuf chains.
1245 *
1246 * Handle the CNA event likt a CXTNO event. It used to
1247 * be that this event (control unit not ready) was not
1248 * encountered, but it is now with the SMPng modifications.
1249 * The exact sequence of events that occur when the interface
1250 * is brought up are different now, and if this event
1251 * goes unhandled, the configuration/rxfilter setup sequence
1252 * can stall for several seconds. The result is that no
1253 * packets go out onto the wire for about 5 to 10 seconds
1254 * after the interface is ifconfig'ed for the first time.
1255 */
1256 if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1257 struct fxp_cb_tx *txp;
1258
1259 for (txp = sc->cbl_first; sc->tx_queued &&
1260 (txp->cb_status & FXP_CB_STATUS_C) != 0;
1261 txp = txp->next) {
1262 if ((m = txp->mb_head) != NULL) {
1263 txp->mb_head = NULL;
1264 sc->tx_queued--;
1265 m_freem(m);
1266 } else {
1267 sc->tx_queued--;
1268 }
1269 }
1270 sc->cbl_first = txp;
1271 ifp->if_timer = 0;
1272 if (sc->tx_queued == 0) {
1273 if (sc->need_mcsetup)
1274 fxp_mc_setup(sc);
1275 }
1276 /*
1277 * Try to start more packets transmitting.
1278 */
1279 if (!ifq_is_empty(&ifp->if_snd))
1280 (*ifp->if_start)(ifp);
1281 }
1282
1283 /*
1284 * Just return if nothing happened on the receive side.
1285 */
1286 if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1287 return;
1288
1289 /*
1290 * Process receiver interrupts. If a no-resource (RNR)
1291 * condition exists, get whatever packets we can and
1292 * re-start the receiver.
1293 *
1294 * When using polling, we do not process the list to completion,
1295 * so when we get an RNR interrupt we must defer the restart
1296 * until we hit the last buffer with the C bit set.
1297 * If we run out of cycles and rfa_headm has the C bit set,
1298 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1299 * that the info will be used in the subsequent polling cycle.
1300 */
1301 for (;;) {
1302 m = sc->rfa_headm;
1303 rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1304 RFA_ALIGNMENT_FUDGE);
1305
1306#ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1307 if (count >= 0 && count-- == 0) {
1308 if (rnr) {
1309 /* Defer RNR processing until the next time. */
1310 sc->flags |= FXP_FLAG_DEFERRED_RNR;
1311 rnr = 0;
1312 }
1313 break;
1314 }
1315#endif /* DEVICE_POLLING */
1316
1317 if ( (rfa->rfa_status & FXP_RFA_STATUS_C) == 0)
1318 break;
1319
1320 /*
1321 * Remove first packet from the chain.
1322 */
1323 sc->rfa_headm = m->m_next;
1324 m->m_next = NULL;
1325
1326 /*
1327 * Add a new buffer to the receive chain.
1328 * If this fails, the old buffer is recycled
1329 * instead.
1330 */
1331 if (fxp_add_rfabuf(sc, m) == 0) {
1332 int total_len;
1333
1334 /*
1335 * Fetch packet length (the top 2 bits of
1336 * actual_size are flags set by the controller
1337 * upon completion), and drop the packet in case
1338 * of bogus length or CRC errors.
1339 */
1340 total_len = rfa->actual_size & 0x3fff;
1341 if (total_len < sizeof(struct ether_header) ||
1342 total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1343 sizeof(struct fxp_rfa) ||
1344 rfa->rfa_status & FXP_RFA_STATUS_CRC) {
1345 m_freem(m);
1346 continue;
1347 }
1348 m->m_pkthdr.len = m->m_len = total_len;
1349 (*ifp->if_input)(ifp, m);
1350 }
1351 }
1352 if (rnr) {
1353 fxp_scb_wait(sc);
1354 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1355 vtophys(sc->rfa_headm->m_ext.ext_buf) +
1356 RFA_ALIGNMENT_FUDGE);
1357 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1358 }
1359}
1360
1361/*
1362 * Update packet in/out/collision statistics. The i82557 doesn't
1363 * allow you to access these counters without doing a fairly
1364 * expensive DMA to get _all_ of the statistics it maintains, so
1365 * we do this operation here only once per second. The statistics
1366 * counters in the kernel are updated from the previous dump-stats
1367 * DMA and then a new dump-stats DMA is started. The on-chip
1368 * counters are zeroed when the DMA completes. If we can't start
1369 * the DMA immediately, we don't wait - we just prepare to read
1370 * them again next time.
1371 */
1372static void
1373fxp_tick(void *xsc)
1374{
1375 struct fxp_softc *sc = xsc;
1376 struct ifnet *ifp = &sc->arpcom.ac_if;
1377 struct fxp_stats *sp = sc->fxp_stats;
1378 struct fxp_cb_tx *txp;
1379 struct mbuf *m;
1380
1381 ifp->if_opackets += sp->tx_good;
1382 ifp->if_collisions += sp->tx_total_collisions;
1383 if (sp->rx_good) {
1384 ifp->if_ipackets += sp->rx_good;
1385 sc->rx_idle_secs = 0;
1386 } else {
1387 /*
1388 * Receiver's been idle for another second.
1389 */
1390 sc->rx_idle_secs++;
1391 }
1392 ifp->if_ierrors +=
1393 sp->rx_crc_errors +
1394 sp->rx_alignment_errors +
1395 sp->rx_rnr_errors +
1396 sp->rx_overrun_errors;
1397 /*
1398 * If any transmit underruns occured, bump up the transmit
1399 * threshold by another 512 bytes (64 * 8).
1400 */
1401 if (sp->tx_underruns) {
1402 ifp->if_oerrors += sp->tx_underruns;
1403 if (tx_threshold < 192)
1404 tx_threshold += 64;
1405 }
1406
1407 crit_enter();
1408
1409 /*
1410 * Release any xmit buffers that have completed DMA. This isn't
1411 * strictly necessary to do here, but it's advantagous for mbufs
1412 * with external storage to be released in a timely manner rather
1413 * than being defered for a potentially long time. This limits
1414 * the delay to a maximum of one second.
1415 */
1416 for (txp = sc->cbl_first; sc->tx_queued &&
1417 (txp->cb_status & FXP_CB_STATUS_C) != 0;
1418 txp = txp->next) {
1419 if ((m = txp->mb_head) != NULL) {
1420 txp->mb_head = NULL;
1421 sc->tx_queued--;
1422 m_freem(m);
1423 } else {
1424 sc->tx_queued--;
1425 }
1426 }
1427 sc->cbl_first = txp;
1428 /*
1429 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1430 * then assume the receiver has locked up and attempt to clear
1431 * the condition by reprogramming the multicast filter. This is
1432 * a work-around for a bug in the 82557 where the receiver locks
1433 * up if it gets certain types of garbage in the syncronization
1434 * bits prior to the packet header. This bug is supposed to only
1435 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1436 * mode as well (perhaps due to a 10/100 speed transition).
1437 */
1438 if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1439 sc->rx_idle_secs = 0;
1440 fxp_mc_setup(sc);
1441 }
1442 /*
1443 * If there is no pending command, start another stats
1444 * dump. Otherwise punt for now.
1445 */
1446 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1447 /*
1448 * Start another stats dump.
1449 */
1450 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1451 } else {
1452 /*
1453 * A previous command is still waiting to be accepted.
1454 * Just zero our copy of the stats and wait for the
1455 * next timer event to update them.
1456 */
1457 sp->tx_good = 0;
1458 sp->tx_underruns = 0;
1459 sp->tx_total_collisions = 0;
1460
1461 sp->rx_good = 0;
1462 sp->rx_crc_errors = 0;
1463 sp->rx_alignment_errors = 0;
1464 sp->rx_rnr_errors = 0;
1465 sp->rx_overrun_errors = 0;
1466 }
1467 if (sc->miibus != NULL)
1468 mii_tick(device_get_softc(sc->miibus));
1469 /*
1470 * Schedule another timeout one second from now.
1471 */
1472 callout_reset(&sc->fxp_stat_timer, hz, fxp_tick, sc);
1473
1474 crit_exit();
1475}
1476
1477/*
1478 * Stop the interface. Cancels the statistics updater and resets
1479 * the interface.
1480 */
1481static void
1482fxp_stop(struct fxp_softc *sc)
1483{
1484 struct ifnet *ifp = &sc->arpcom.ac_if;
1485 struct fxp_cb_tx *txp;
1486 int i;
1487
1488 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1489 ifp->if_timer = 0;
1490
1491 /*
1492 * Cancel stats updater.
1493 */
1494 callout_stop(&sc->fxp_stat_timer);
1495
1496 /*
1497 * Issue software reset, which also unloads the microcode.
1498 */
1499 sc->flags &= ~FXP_FLAG_UCODE;
1500 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1501 DELAY(50);
1502
1503 /*
1504 * Release any xmit buffers.
1505 */
1506 txp = sc->cbl_base;
1507 if (txp != NULL) {
1508 for (i = 0; i < FXP_NTXCB; i++) {
1509 if (txp[i].mb_head != NULL) {
1510 m_freem(txp[i].mb_head);
1511 txp[i].mb_head = NULL;
1512 }
1513 }
1514 }
1515 sc->tx_queued = 0;
1516
1517 /*
1518 * Free all the receive buffers then reallocate/reinitialize
1519 */
1520 if (sc->rfa_headm != NULL)
1521 m_freem(sc->rfa_headm);
1522 sc->rfa_headm = NULL;
1523 sc->rfa_tailm = NULL;
1524 for (i = 0; i < FXP_NRFABUFS; i++) {
1525 if (fxp_add_rfabuf(sc, NULL) != 0) {
1526 /*
1527 * This "can't happen" - we're at splimp()
1528 * and we just freed all the buffers we need
1529 * above.
1530 */
1531 panic("fxp_stop: no buffers!");
1532 }
1533 }
1534}
1535
1536/*
1537 * Watchdog/transmission transmit timeout handler. Called when a
1538 * transmission is started on the interface, but no interrupt is
1539 * received before the timeout. This usually indicates that the
1540 * card has wedged for some reason.
1541 */
1542static void
1543fxp_watchdog(struct ifnet *ifp)
1544{
1545 if_printf(ifp, "device timeout\n");
1546 ifp->if_oerrors++;
1547 fxp_init(ifp->if_softc);
1548}
1549
1550static void
1551fxp_init(void *xsc)
1552{
1553 struct fxp_softc *sc = xsc;
1554 struct ifnet *ifp = &sc->arpcom.ac_if;
1555 struct fxp_cb_config *cbp;
1556 struct fxp_cb_ias *cb_ias;
1557 struct fxp_cb_tx *txp;
1558 struct fxp_cb_mcs *mcsp;
1559 int i, prm;
1560
1561 crit_enter();
1562
1563 /*
1564 * Cancel any pending I/O
1565 */
1566 fxp_stop(sc);
1567
1568 prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1569
1570 /*
1571 * Initialize base of CBL and RFA memory. Loading with zero
1572 * sets it up for regular linear addressing.
1573 */
1574 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1575 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1576
1577 fxp_scb_wait(sc);
1578 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1579
1580 /*
1581 * Initialize base of dump-stats buffer.
1582 */
1583 fxp_scb_wait(sc);
1584 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats));
1585 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1586
1587 /*
1588 * Attempt to load microcode if requested.
1589 */
1590 if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1591 fxp_load_ucode(sc);
1592
1593 /*
1594 * Initialize the multicast address list.
1595 */
1596 if (fxp_mc_addrs(sc)) {
1597 mcsp = sc->mcsp;
1598 mcsp->cb_status = 0;
1599 mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL;
1600 mcsp->link_addr = -1;
1601 /*
1602 * Start the multicast setup command.
1603 */
1604 fxp_scb_wait(sc);
1605 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
1606 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1607 /* ...and wait for it to complete. */
1608 fxp_dma_wait(&mcsp->cb_status, sc);
1609 }
1610
1611 /*
1612 * We temporarily use memory that contains the TxCB list to
1613 * construct the config CB. The TxCB list memory is rebuilt
1614 * later.
1615 */
1616 cbp = (struct fxp_cb_config *) sc->cbl_base;
1617
1618 /*
1619 * This bcopy is kind of disgusting, but there are a bunch of must be
1620 * zero and must be one bits in this structure and this is the easiest
1621 * way to initialize them all to proper values.
1622 */
1623 bcopy(fxp_cb_config_template,
1624 (void *)(uintptr_t)(volatile void *)&cbp->cb_status,
1625 sizeof(fxp_cb_config_template));
1626
1627 cbp->cb_status = 0;
1628 cbp->cb_command = FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
1629 cbp->link_addr = -1; /* (no) next command */
1630 cbp->byte_count = 22; /* (22) bytes to config */
1631 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */
1632 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */
1633 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
1634 cbp->mwi_enable = sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
1635 cbp->type_enable = 0; /* actually reserved */
1636 cbp->read_align_en = sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
1637 cbp->end_wr_on_cl = sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
1638 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
1639 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
1640 cbp->dma_mbce = 0; /* (disable) dma max counters */
1641 cbp->late_scb = 0; /* (don't) defer SCB update */
1642 cbp->direct_dma_dis = 1; /* disable direct rcv dma mode */
1643 cbp->tno_int_or_tco_en =0; /* (disable) tx not okay interrupt */
1644 cbp->ci_int = 1; /* interrupt on CU idle */
1645 cbp->ext_txcb_dis = sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
1646 cbp->ext_stats_dis = 1; /* disable extended counters */
1647 cbp->keep_overrun_rx = 0; /* don't pass overrun frames to host */
1648 cbp->save_bf = sc->revision == FXP_REV_82557 ? 1 : prm;
1649 cbp->disc_short_rx = !prm; /* discard short packets */
1650 cbp->underrun_retry = 1; /* retry mode (once) on DMA underrun */
1651 cbp->two_frames = 0; /* do not limit FIFO to 2 frames */
1652 cbp->dyn_tbd = 0; /* (no) dynamic TBD mode */
1653 cbp->mediatype = sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
1654 cbp->csma_dis = 0; /* (don't) disable link */
1655 cbp->tcp_udp_cksum = 0; /* (don't) enable checksum */
1656 cbp->vlan_tco = 0; /* (don't) enable vlan wakeup */
1657 cbp->link_wake_en = 0; /* (don't) assert PME# on link change */
1658 cbp->arp_wake_en = 0; /* (don't) assert PME# on arp */
1659 cbp->mc_wake_en = 0; /* (don't) enable PME# on mcmatch */
1660 cbp->nsai = 1; /* (don't) disable source addr insert */
1661 cbp->preamble_length = 2; /* (7 byte) preamble */
1662 cbp->loopback = 0; /* (don't) loopback */
1663 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
1664 cbp->linear_pri_mode = 0; /* (wait after xmit only) */
1665 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
1666 cbp->promiscuous = prm; /* promiscuous mode */
1667 cbp->bcast_disable = 0; /* (don't) disable broadcasts */
1668 cbp->wait_after_win = 0; /* (don't) enable modified backoff alg*/
1669 cbp->ignore_ul = 0; /* consider U/L bit in IA matching */
1670 cbp->crc16_en = 0; /* (don't) enable crc-16 algorithm */
1671 cbp->crscdt = sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
1672
1673 cbp->stripping = !prm; /* truncate rx packet to byte count */
1674 cbp->padding = 1; /* (do) pad short tx packets */
1675 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
1676 cbp->long_rx_en = sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
1677 cbp->ia_wake_en = 0; /* (don't) wake up on address match */
1678 cbp->magic_pkt_dis = 0; /* (don't) disable magic packet */
1679 /* must set wake_en in PMCSR also */
1680 cbp->force_fdx = 0; /* (don't) force full duplex */
1681 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */
1682 cbp->multi_ia = 0; /* (don't) accept multiple IAs */
1683 cbp->mc_all = sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
1684
1685 if (sc->revision == FXP_REV_82557) {
1686 /*
1687 * The 82557 has no hardware flow control, the values
1688 * below are the defaults for the chip.
1689 */
1690 cbp->fc_delay_lsb = 0;
1691 cbp->fc_delay_msb = 0x40;
1692 cbp->pri_fc_thresh = 3;
1693 cbp->tx_fc_dis = 0;
1694 cbp->rx_fc_restop = 0;
1695 cbp->rx_fc_restart = 0;
1696 cbp->fc_filter = 0;
1697 cbp->pri_fc_loc = 1;
1698 } else {
1699 cbp->fc_delay_lsb = 0x1f;
1700 cbp->fc_delay_msb = 0x01;
1701 cbp->pri_fc_thresh = 3;
1702 cbp->tx_fc_dis = 0; /* enable transmit FC */
1703 cbp->rx_fc_restop = 1; /* enable FC restop frames */
1704 cbp->rx_fc_restart = 1; /* enable FC restart frames */
1705 cbp->fc_filter = !prm; /* drop FC frames to host */
1706 cbp->pri_fc_loc = 1; /* FC pri location (byte31) */
1707 }
1708
1709 /*
1710 * Start the config command/DMA.
1711 */
1712 fxp_scb_wait(sc);
1713 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
1714 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1715 /* ...and wait for it to complete. */
1716 fxp_dma_wait(&cbp->cb_status, sc);
1717
1718 /*
1719 * Now initialize the station address. Temporarily use the TxCB
1720 * memory area like we did above for the config CB.
1721 */
1722 cb_ias = (struct fxp_cb_ias *) sc->cbl_base;
1723 cb_ias->cb_status = 0;
1724 cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
1725 cb_ias->link_addr = -1;
1726 bcopy(sc->arpcom.ac_enaddr,
1727 (void *)(uintptr_t)(volatile void *)cb_ias->macaddr,
1728 sizeof(sc->arpcom.ac_enaddr));
1729
1730 /*
1731 * Start the IAS (Individual Address Setup) command/DMA.
1732 */
1733 fxp_scb_wait(sc);
1734 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1735 /* ...and wait for it to complete. */
1736 fxp_dma_wait(&cb_ias->cb_status, sc);
1737
1738 /*
1739 * Initialize transmit control block (TxCB) list.
1740 */
1741
1742 txp = sc->cbl_base;
1743 bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
1744 for (i = 0; i < FXP_NTXCB; i++) {
1745 txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK;
1746 txp[i].cb_command = FXP_CB_COMMAND_NOP;
1747 txp[i].link_addr =
1748 vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status);
1749 if (sc->flags & FXP_FLAG_EXT_TXCB)
1750 txp[i].tbd_array_addr = vtophys(&txp[i].tbd[2]);
1751 else
1752 txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]);
1753 txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK];
1754 }
1755 /*
1756 * Set the suspend flag on the first TxCB and start the control
1757 * unit. It will execute the NOP and then suspend.
1758 */
1759 txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
1760 sc->cbl_first = sc->cbl_last = txp;
1761 sc->tx_queued = 1;
1762
1763 fxp_scb_wait(sc);
1764 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1765
1766 /*
1767 * Initialize receiver buffer area - RFA.
1768 */
1769 fxp_scb_wait(sc);
1770 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1771 vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE);
1772 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1773
1774 /*
1775 * Set current media.
1776 */
1777 if (sc->miibus != NULL)
1778 mii_mediachg(device_get_softc(sc->miibus));
1779
1780 ifp->if_flags |= IFF_RUNNING;
1781 ifp->if_flags &= ~IFF_OACTIVE;
1782
1783 /*
1784 * Enable interrupts.
1785 */
1786#ifdef DEVICE_POLLING
1787 /*
1788 * ... but only do that if we are not polling. And because (presumably)
1789 * the default is interrupts on, we need to disable them explicitly!
1790 */
1791 if ( ifp->if_flags & IFF_POLLING )
1792 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1793 else
1794#endif /* DEVICE_POLLING */
1795 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1796
1797 /*
1798 * Start stats updater.
1799 */
1800 callout_reset(&sc->fxp_stat_timer, hz, fxp_tick, sc);
1801
1802 crit_exit();
1803}
1804
1805static int
1806fxp_serial_ifmedia_upd(struct ifnet *ifp)
1807{
1808
1809 return (0);
1810}
1811
1812static void
1813fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1814{
1815
1816 ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
1817}
1818
1819/*
1820 * Change media according to request.
1821 */
1822static int
1823fxp_ifmedia_upd(struct ifnet *ifp)
1824{
1825 struct fxp_softc *sc = ifp->if_softc;
1826 struct mii_data *mii;
1827
1828 mii = device_get_softc(sc->miibus);
1829 mii_mediachg(mii);
1830 return (0);
1831}
1832
1833/*
1834 * Notify the world which media we're using.
1835 */
1836static void
1837fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1838{
1839 struct fxp_softc *sc = ifp->if_softc;
1840 struct mii_data *mii;
1841
1842 mii = device_get_softc(sc->miibus);
1843 mii_pollstat(mii);
1844 ifmr->ifm_active = mii->mii_media_active;
1845 ifmr->ifm_status = mii->mii_media_status;
1846
1847 if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
1848 sc->cu_resume_bug = 1;
1849 else
1850 sc->cu_resume_bug = 0;
1851}
1852
1853/*
1854 * Add a buffer to the end of the RFA buffer list.
1855 * Return 0 if successful, 1 for failure. A failure results in
1856 * adding the 'oldm' (if non-NULL) on to the end of the list -
1857 * tossing out its old contents and recycling it.
1858 * The RFA struct is stuck at the beginning of mbuf cluster and the
1859 * data pointer is fixed up to point just past it.
1860 */
1861static int
1862fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm)
1863{
1864 u_int32_t v;
1865 struct mbuf *m;
1866 struct fxp_rfa *rfa, *p_rfa;
1867
1868 m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1869 if (m == NULL) { /* try to recycle the old mbuf instead */
1870 if (oldm == NULL)
1871 return 1;
1872 m = oldm;
1873 m->m_data = m->m_ext.ext_buf;
1874 }
1875
1876 /*
1877 * Move the data pointer up so that the incoming data packet
1878 * will be 32-bit aligned.
1879 */
1880 m->m_data += RFA_ALIGNMENT_FUDGE;
1881
1882 /*
1883 * Get a pointer to the base of the mbuf cluster and move
1884 * data start past it.
1885 */
1886 rfa = mtod(m, struct fxp_rfa *);
1887 m->m_data += sizeof(struct fxp_rfa);
1888 rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) - RFA_ALIGNMENT_FUDGE);
1889
1890 /*
1891 * Initialize the rest of the RFA. Note that since the RFA
1892 * is misaligned, we cannot store values directly. Instead,
1893 * we use an optimized, inline copy.
1894 */
1895
1896 rfa->rfa_status = 0;
1897 rfa->rfa_control = FXP_RFA_CONTROL_EL;
1898 rfa->actual_size = 0;
1899
1900 v = -1;
1901 fxp_lwcopy(&v, (volatile u_int32_t *) rfa->link_addr);
1902 fxp_lwcopy(&v, (volatile u_int32_t *) rfa->rbd_addr);
1903
1904 /*
1905 * If there are other buffers already on the list, attach this
1906 * one to the end by fixing up the tail to point to this one.
1907 */
1908 if (sc->rfa_headm != NULL) {
1909 p_rfa = (struct fxp_rfa *) (sc->rfa_tailm->m_ext.ext_buf +
1910 RFA_ALIGNMENT_FUDGE);
1911 sc->rfa_tailm->m_next = m;
1912 v = vtophys(rfa);
1913 fxp_lwcopy(&v, (volatile u_int32_t *) p_rfa->link_addr);
1914 p_rfa->rfa_control = 0;
1915 } else {
1916 sc->rfa_headm = m;
1917 }
1918 sc->rfa_tailm = m;
1919
1920 return (m == oldm);
1921}
1922
1923static volatile int
1924fxp_miibus_readreg(device_t dev, int phy, int reg)
1925{
1926 struct fxp_softc *sc = device_get_softc(dev);
1927 int count = 10000;
1928 int value;
1929
1930 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1931 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1932
1933 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1934 && count--)
1935 DELAY(10);
1936
1937 if (count <= 0)
1938 device_printf(dev, "fxp_miibus_readreg: timed out\n");
1939
1940 return (value & 0xffff);
1941}
1942
1943static void
1944fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
1945{
1946 struct fxp_softc *sc = device_get_softc(dev);
1947 int count = 10000;
1948
1949 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1950 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1951 (value & 0xffff));
1952
1953 while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1954 count--)
1955 DELAY(10);
1956
1957 if (count <= 0)
1958 device_printf(dev, "fxp_miibus_writereg: timed out\n");
1959}
1960
1961static int
1962fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1963{
1964 struct fxp_softc *sc = ifp->if_softc;
1965 struct ifreq *ifr = (struct ifreq *)data;
1966 struct mii_data *mii;
1967 int error = 0;
1968
1969 crit_enter();
1970
1971 switch (command) {
1972
1973 case SIOCSIFFLAGS:
1974 if (ifp->if_flags & IFF_ALLMULTI)
1975 sc->flags |= FXP_FLAG_ALL_MCAST;
1976 else
1977 sc->flags &= ~FXP_FLAG_ALL_MCAST;
1978
1979 /*
1980 * If interface is marked up and not running, then start it.
1981 * If it is marked down and running, stop it.
1982 * XXX If it's up then re-initialize it. This is so flags
1983 * such as IFF_PROMISC are handled.
1984 */
1985 if (ifp->if_flags & IFF_UP) {
1986 fxp_init(sc);
1987 } else {
1988 if (ifp->if_flags & IFF_RUNNING)
1989 fxp_stop(sc);
1990 }
1991 break;
1992
1993 case SIOCADDMULTI:
1994 case SIOCDELMULTI:
1995 if (ifp->if_flags & IFF_ALLMULTI)
1996 sc->flags |= FXP_FLAG_ALL_MCAST;
1997 else
1998 sc->flags &= ~FXP_FLAG_ALL_MCAST;
1999 /*
2000 * Multicast list has changed; set the hardware filter
2001 * accordingly.
2002 */
2003 if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2004 fxp_mc_setup(sc);
2005 /*
2006 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2007 * again rather than else {}.
2008 */
2009 if (sc->flags & FXP_FLAG_ALL_MCAST)
2010 fxp_init(sc);
2011 error = 0;
2012 break;
2013
2014 case SIOCSIFMEDIA:
2015 case SIOCGIFMEDIA:
2016 if (sc->miibus != NULL) {
2017 mii = device_get_softc(sc->miibus);
2018 error = ifmedia_ioctl(ifp, ifr,
2019 &mii->mii_media, command);
2020 } else {
2021 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2022 }
2023 break;
2024
2025 default:
2026 error = ether_ioctl(ifp, command, data);
2027 break;
2028 }
2029
2030 crit_exit();
2031
2032 return (error);
2033}
2034
2035/*
2036 * Fill in the multicast address list and return number of entries.
2037 */
2038static int
2039fxp_mc_addrs(struct fxp_softc *sc)
2040{
2041 struct fxp_cb_mcs *mcsp = sc->mcsp;
2042 struct ifnet *ifp = &sc->arpcom.ac_if;
2043 struct ifmultiaddr *ifma;
2044 int nmcasts;
2045
2046 nmcasts = 0;
2047 if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2048 LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2049 if (ifma->ifma_addr->sa_family != AF_LINK)
2050 continue;
2051 if (nmcasts >= MAXMCADDR) {
2052 sc->flags |= FXP_FLAG_ALL_MCAST;
2053 nmcasts = 0;
2054 break;
2055 }
2056 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2057 (void *)(uintptr_t)(volatile void *)
2058 &sc->mcsp->mc_addr[nmcasts][0], 6);
2059 nmcasts++;
2060 }
2061 }
2062 mcsp->mc_cnt = nmcasts * 6;
2063 return (nmcasts);
2064}
2065
2066/*
2067 * Program the multicast filter.
2068 *
2069 * We have an artificial restriction that the multicast setup command
2070 * must be the first command in the chain, so we take steps to ensure
2071 * this. By requiring this, it allows us to keep up the performance of
2072 * the pre-initialized command ring (esp. link pointers) by not actually
2073 * inserting the mcsetup command in the ring - i.e. its link pointer
2074 * points to the TxCB ring, but the mcsetup descriptor itself is not part
2075 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2076 * lead into the regular TxCB ring when it completes.
2077 *
2078 * This function must be called at splimp.
2079 */
2080static void
2081fxp_mc_setup(struct fxp_softc *sc)
2082{
2083 struct fxp_cb_mcs *mcsp = sc->mcsp;
2084 struct ifnet *ifp = &sc->arpcom.ac_if;
2085 int count;
2086
2087 /*
2088 * If there are queued commands, we must wait until they are all
2089 * completed. If we are already waiting, then add a NOP command
2090 * with interrupt option so that we're notified when all commands
2091 * have been completed - fxp_start() ensures that no additional
2092 * TX commands will be added when need_mcsetup is true.
2093 */
2094 if (sc->tx_queued) {
2095 struct fxp_cb_tx *txp;
2096
2097 /*
2098 * need_mcsetup will be true if we are already waiting for the
2099 * NOP command to be completed (see below). In this case, bail.
2100 */
2101 if (sc->need_mcsetup)
2102 return;
2103 sc->need_mcsetup = 1;
2104
2105 /*
2106 * Add a NOP command with interrupt so that we are notified
2107 * when all TX commands have been processed.
2108 */
2109 txp = sc->cbl_last->next;
2110 txp->mb_head = NULL;
2111 txp->cb_status = 0;
2112 txp->cb_command = FXP_CB_COMMAND_NOP |
2113 FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2114 /*
2115 * Advance the end of list forward.
2116 */
2117 sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
2118 sc->cbl_last = txp;
2119 sc->tx_queued++;
2120 /*
2121 * Issue a resume in case the CU has just suspended.
2122 */
2123 fxp_scb_wait(sc);
2124 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2125 /*
2126 * Set a 5 second timer just in case we don't hear from the
2127 * card again.
2128 */
2129 ifp->if_timer = 5;
2130
2131 return;
2132 }
2133 sc->need_mcsetup = 0;
2134
2135 /*
2136 * Initialize multicast setup descriptor.
2137 */
2138 mcsp->next = sc->cbl_base;
2139 mcsp->mb_head = NULL;
2140 mcsp->cb_status = 0;
2141 mcsp->cb_command = FXP_CB_COMMAND_MCAS |
2142 FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2143 mcsp->link_addr = vtophys(&sc->cbl_base->cb_status);
2144 (void) fxp_mc_addrs(sc);
2145 sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp;
2146 sc->tx_queued = 1;
2147
2148 /*
2149 * Wait until command unit is not active. This should never
2150 * be the case when nothing is queued, but make sure anyway.
2151 */
2152 count = 100;
2153 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2154 FXP_SCB_CUS_ACTIVE && --count)
2155 DELAY(10);
2156 if (count == 0) {
2157 if_printf(&sc->arpcom.ac_if, "command queue timeout\n");
2158 return;
2159 }
2160
2161 /*
2162 * Start the multicast setup command.
2163 */
2164 fxp_scb_wait(sc);
2165 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
2166 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2167
2168 ifp->if_timer = 2;
2169 return;
2170}
2171
2172static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2173static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2174static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2175static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2176static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2177static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2178
2179#define UCODE(x) x, sizeof(x)
2180
2181struct ucode {
2182 u_int32_t revision;
2183 u_int32_t *ucode;
2184 int length;
2185 u_short int_delay_offset;
2186 u_short bundle_max_offset;
2187} ucode_table[] = {
2188 { FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2189 { FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2190 { FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2191 D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2192 { FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2193 D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2194 { FXP_REV_82550, UCODE(fxp_ucode_d102),
2195 D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2196 { FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2197 D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2198 { 0, NULL, 0, 0, 0 }
2199};
2200
2201static void
2202fxp_load_ucode(struct fxp_softc *sc)
2203{
2204 struct ucode *uc;
2205 struct fxp_cb_ucode *cbp;
2206
2207 for (uc = ucode_table; uc->ucode != NULL; uc++)
2208 if (sc->revision == uc->revision)
2209 break;
2210 if (uc->ucode == NULL)
2211 return;
2212 cbp = (struct fxp_cb_ucode *)sc->cbl_base;
2213 cbp->cb_status = 0;
2214 cbp->cb_command = FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL;
2215 cbp->link_addr = -1; /* (no) next command */
2216 memcpy(cbp->ucode, uc->ucode, uc->length);
2217 if (uc->int_delay_offset)
2218 *(u_short *)&cbp->ucode[uc->int_delay_offset] =
2219 sc->tunable_int_delay + sc->tunable_int_delay / 2;
2220 if (uc->bundle_max_offset)
2221 *(u_short *)&cbp->ucode[uc->bundle_max_offset] =
2222 sc->tunable_bundle_max;
2223 /*
2224 * Download the ucode to the chip.
2225 */
2226 fxp_scb_wait(sc);
2227 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
2228 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2229 /* ...and wait for it to complete. */
2230 fxp_dma_wait(&cbp->cb_status, sc);
2231 if_printf(&sc->arpcom.ac_if,
2232 "Microcode loaded, int_delay: %d usec bundle_max: %d\n",
2233 sc->tunable_int_delay,
2234 uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2235 sc->flags |= FXP_FLAG_UCODE;
2236}
2237
2238static int
2239sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2240{
2241 int error, value;
2242
2243 value = *(int *)arg1;
2244 error = sysctl_handle_int(oidp, &value, 0, req);
2245 if (error || !req->newptr)
2246 return (error);
2247 if (value < low || value > high)
2248 return (EINVAL);
2249 *(int *)arg1 = value;
2250 return (0);
2251}
2252
2253/*
2254 * Interrupt delay is expressed in microseconds, a multiplier is used
2255 * to convert this to the appropriate clock ticks before using.
2256 */
2257static int
2258sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2259{
2260 return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2261}
2262
2263static int
2264sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2265{
2266 return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2267}