Fix typo.
[dragonfly.git] / sys / dev / disk / aic7xxx / aic79xx.seq
... / ...
CommitLineData
1/*
2 * Adaptec U320 device driver firmware for Linux and FreeBSD.
3 *
4 * Copyright (c) 1994-2001, 2004 Justin T. Gibbs.
5 * Copyright (c) 2000-2002 Adaptec Inc.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions, and the following disclaimer,
13 * without modification.
14 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
15 * substantially similar to the "NO WARRANTY" disclaimer below
16 * ("Disclaimer") and any redistribution must be conditioned upon
17 * including a substantially similar Disclaimer requirement for further
18 * binary redistribution.
19 * 3. Neither the names of the above-listed copyright holders nor the names
20 * of any contributors may be used to endorse or promote products derived
21 * from this software without specific prior written permission.
22 *
23 * Alternatively, this software may be distributed under the terms of the
24 * GNU General Public License ("GPL") version 2 as published by the Free
25 * Software Foundation.
26 *
27 * NO WARRANTY
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
36 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
37 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGES.
39 *
40 * $FreeBSD: src/sys/dev/aic7xxx/aic79xx.seq,v 1.19 2007/02/18 19:48:59 ceri Exp $
41 * $DragonFly: src/sys/dev/disk/aic7xxx/aic79xx.seq,v 1.9 2007/07/07 01:55:11 pavalos Exp $
42 */
43
44VERSION = "$Id: //depot/aic7xxx/aic7xxx/aic79xx.seq#119 $"
45PATCH_ARG_LIST = "struct ahd_softc *ahd"
46PREFIX = "ahd_"
47
48#include "aic79xx.reg"
49#include "scsi_message.h"
50
51restart:
52if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
53 test SEQINTCODE, 0xFF jz idle_loop;
54 SET_SEQINTCODE(NO_SEQINT)
55}
56
57idle_loop:
58
59 if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
60 /*
61 * Convert ERROR status into a sequencer
62 * interrupt to handle the case of an
63 * interrupt collision on the hardware
64 * setting of HWERR.
65 */
66 test ERROR, 0xFF jz no_error_set;
67 SET_SEQINTCODE(SAW_HWERR)
68no_error_set:
69 }
70 SET_MODE(M_SCSI, M_SCSI)
71 test SCSISEQ0, ENSELO|ENARBO jnz idle_loop_checkbus;
72 test SEQ_FLAGS2, SELECTOUT_QFROZEN jz check_waiting_list;
73 /*
74 * If the kernel has caught up with us, thaw the queue.
75 */
76 mov A, KERNEL_QFREEZE_COUNT;
77 cmp QFREEZE_COUNT, A jne check_frozen_completions;
78 mov A, KERNEL_QFREEZE_COUNT[1];
79 cmp QFREEZE_COUNT[1], A jne check_frozen_completions;
80 and SEQ_FLAGS2, ~SELECTOUT_QFROZEN;
81 jmp check_waiting_list;
82check_frozen_completions:
83 test SSTAT0, SELDO|SELINGO jnz idle_loop_checkbus;
84BEGIN_CRITICAL;
85 /*
86 * If we have completions stalled waiting for the qfreeze
87 * to take effect, move them over to the complete_scb list
88 * now that no selections are pending.
89 */
90 cmp COMPLETE_ON_QFREEZE_HEAD[1],SCB_LIST_NULL je idle_loop_checkbus;
91 /*
92 * Find the end of the qfreeze list. The first element has
93 * to be treated specially.
94 */
95 bmov SCBPTR, COMPLETE_ON_QFREEZE_HEAD, 2;
96 cmp SCB_NEXT_COMPLETE[1], SCB_LIST_NULL je join_lists;
97 /*
98 * Now the normal loop.
99 */
100 bmov SCBPTR, SCB_NEXT_COMPLETE, 2;
101 cmp SCB_NEXT_COMPLETE[1], SCB_LIST_NULL jne . - 1;
102join_lists:
103 bmov SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2;
104 bmov COMPLETE_SCB_HEAD, COMPLETE_ON_QFREEZE_HEAD, 2;
105 mvi COMPLETE_ON_QFREEZE_HEAD[1], SCB_LIST_NULL;
106 jmp idle_loop_checkbus;
107check_waiting_list:
108 cmp WAITING_TID_HEAD[1], SCB_LIST_NULL je idle_loop_checkbus;
109 /*
110 * ENSELO is cleared by a SELDO, so we must test for SELDO
111 * one last time.
112 */
113 test SSTAT0, SELDO jnz select_out;
114 call start_selection;
115idle_loop_checkbus:
116 test SSTAT0, SELDO jnz select_out;
117END_CRITICAL;
118 test SSTAT0, SELDI jnz select_in;
119 test SCSIPHASE, ~DATA_PHASE_MASK jz idle_loop_check_nonpackreq;
120 test SCSISIGO, ATNO jz idle_loop_check_nonpackreq;
121 call unexpected_nonpkt_phase_find_ctxt;
122idle_loop_check_nonpackreq:
123 test SSTAT2, NONPACKREQ jz . + 2;
124 call unexpected_nonpkt_phase_find_ctxt;
125 if ((ahd->bugs & AHD_FAINT_LED_BUG) != 0) {
126 /*
127 * On Rev A. hardware, the busy LED is only
128 * turned on automaically during selections
129 * and re-selections. Make the LED status
130 * more useful by forcing it to be on so
131 * long as one of our data FIFOs is active.
132 */
133 and A, FIFO0FREE|FIFO1FREE, DFFSTAT;
134 cmp A, FIFO0FREE|FIFO1FREE jne . + 3;
135 and SBLKCTL, ~DIAGLEDEN|DIAGLEDON;
136 jmp . + 2;
137 or SBLKCTL, DIAGLEDEN|DIAGLEDON;
138 }
139 call idle_loop_gsfifo_in_scsi_mode;
140 call idle_loop_service_fifos;
141 call idle_loop_cchan;
142 jmp idle_loop;
143
144idle_loop_gsfifo:
145 SET_MODE(M_SCSI, M_SCSI)
146BEGIN_CRITICAL;
147idle_loop_gsfifo_in_scsi_mode:
148 test LQISTAT2, LQIGSAVAIL jz return;
149 /*
150 * We have received good status for this transaction. There may
151 * still be data in our FIFOs draining to the host. Complete
152 * the SCB only if all data has transferred to the host.
153 */
154good_status_IU_done:
155 bmov SCBPTR, GSFIFO, 2;
156 clr SCB_SCSI_STATUS;
157 /*
158 * If a command completed before an attempted task management
159 * function completed, notify the host after disabling any
160 * pending select-outs.
161 */
162 test SCB_TASK_MANAGEMENT, 0xFF jz gsfifo_complete_normally;
163 test SSTAT0, SELDO|SELINGO jnz . + 2;
164 and SCSISEQ0, ~ENSELO;
165 SET_SEQINTCODE(TASKMGMT_CMD_CMPLT_OKAY)
166gsfifo_complete_normally:
167 or SCB_CONTROL, STATUS_RCVD;
168
169 /*
170 * Since this status did not consume a FIFO, we have to
171 * be a bit more dilligent in how we check for FIFOs pertaining
172 * to this transaction. There are two states that a FIFO still
173 * transferring data may be in.
174 *
175 * 1) Configured and draining to the host, with a FIFO handler.
176 * 2) Pending cfg4data, fifo not empty.
177 *
178 * Case 1 can be detected by noticing a non-zero FIFO active
179 * count in the SCB. In this case, we allow the routine servicing
180 * the FIFO to complete the SCB.
181 *
182 * Case 2 implies either a pending or yet to occur save data
183 * pointers for this same context in the other FIFO. So, if
184 * we detect case 1, we will properly defer the post of the SCB
185 * and achieve the desired result. The pending cfg4data will
186 * notice that status has been received and complete the SCB.
187 */
188 test SCB_FIFO_USE_COUNT, 0xFF jnz idle_loop_gsfifo_in_scsi_mode;
189 call complete;
190END_CRITICAL;
191 jmp idle_loop_gsfifo_in_scsi_mode;
192
193idle_loop_service_fifos:
194 SET_MODE(M_DFF0, M_DFF0)
195BEGIN_CRITICAL;
196 test LONGJMP_ADDR[1], INVALID_ADDR jnz idle_loop_next_fifo;
197 call longjmp;
198END_CRITICAL;
199idle_loop_next_fifo:
200 SET_MODE(M_DFF1, M_DFF1)
201BEGIN_CRITICAL;
202 test LONGJMP_ADDR[1], INVALID_ADDR jz longjmp;
203END_CRITICAL;
204return:
205 ret;
206
207idle_loop_cchan:
208 SET_MODE(M_CCHAN, M_CCHAN)
209 test QOFF_CTLSTA, HS_MAILBOX_ACT jz hs_mailbox_empty;
210 or QOFF_CTLSTA, HS_MAILBOX_ACT;
211 mov LOCAL_HS_MAILBOX, HS_MAILBOX;
212hs_mailbox_empty:
213BEGIN_CRITICAL;
214 test CCSCBCTL, CCARREN|CCSCBEN jz scbdma_idle;
215 test CCSCBCTL, CCSCBDIR jnz fetch_new_scb_inprog;
216 test CCSCBCTL, CCSCBDONE jz return;
217 /* FALLTHROUGH */
218scbdma_tohost_done:
219 test CCSCBCTL, CCARREN jz fill_qoutfifo_dmadone;
220 /*
221 * An SCB has been succesfully uploaded to the host.
222 * If the SCB was uploaded for some reason other than
223 * bad SCSI status (currently only for underruns), we
224 * queue the SCB for normal completion. Otherwise, we
225 * wait until any select-out activity has halted, and
226 * then queue the completion.
227 */
228 and CCSCBCTL, ~(CCARREN|CCSCBEN);
229 bmov COMPLETE_DMA_SCB_HEAD, SCB_NEXT_COMPLETE, 2;
230 cmp SCB_NEXT_COMPLETE[1], SCB_LIST_NULL jne . + 2;
231 mvi COMPLETE_DMA_SCB_TAIL[1], SCB_LIST_NULL;
232 test SCB_SCSI_STATUS, 0xff jz scbdma_queue_completion;
233 bmov SCB_NEXT_COMPLETE, COMPLETE_ON_QFREEZE_HEAD, 2;
234 bmov COMPLETE_ON_QFREEZE_HEAD, SCBPTR, 2 ret;
235scbdma_queue_completion:
236 bmov SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2;
237 bmov COMPLETE_SCB_HEAD, SCBPTR, 2 ret;
238fill_qoutfifo_dmadone:
239 and CCSCBCTL, ~(CCARREN|CCSCBEN);
240 call qoutfifo_updated;
241 mvi COMPLETE_SCB_DMAINPROG_HEAD[1], SCB_LIST_NULL;
242 bmov QOUTFIFO_NEXT_ADDR, SCBHADDR, 4;
243 test QOFF_CTLSTA, SDSCB_ROLLOVR jz return;
244 bmov QOUTFIFO_NEXT_ADDR, SHARED_DATA_ADDR, 4;
245 xor QOUTFIFO_ENTRY_VALID_TAG, QOUTFIFO_ENTRY_VALID_TOGGLE ret;
246END_CRITICAL;
247
248qoutfifo_updated:
249 /*
250 * If there are more commands waiting to be dma'ed
251 * to the host, always coalesce. Otherwise honor the
252 * host's wishes.
253 */
254 cmp COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne coalesce_by_count;
255 cmp COMPLETE_SCB_HEAD[1], SCB_LIST_NULL jne coalesce_by_count;
256 test LOCAL_HS_MAILBOX, ENINT_COALESCE jz issue_cmdcmplt;
257
258 /*
259 * If we have relatively few commands outstanding, don't
260 * bother waiting for another command to complete.
261 */
262 test CMDS_PENDING[1], 0xFF jnz coalesce_by_count;
263 /* Add -1 so that jnc means <= not just < */
264 add A, -1, INT_COALESCING_MINCMDS;
265 add NONE, A, CMDS_PENDING;
266 jnc issue_cmdcmplt;
267
268 /*
269 * If coalescing, only coalesce up to the limit
270 * provided by the host driver.
271 */
272coalesce_by_count:
273 mov A, INT_COALESCING_MAXCMDS;
274 add NONE, A, INT_COALESCING_CMDCOUNT;
275 jc issue_cmdcmplt;
276 /*
277 * If the timer is not currently active,
278 * fire it up.
279 */
280 test INTCTL, SWTMINTMASK jz return;
281 bmov SWTIMER, INT_COALESCING_TIMER, 2;
282 mvi CLRSEQINTSTAT, CLRSEQ_SWTMRTO;
283 or INTCTL, SWTMINTEN|SWTIMER_START;
284 and INTCTL, ~SWTMINTMASK ret;
285
286issue_cmdcmplt:
287 mvi INTSTAT, CMDCMPLT;
288 clr INT_COALESCING_CMDCOUNT;
289 or INTCTL, SWTMINTMASK ret;
290
291BEGIN_CRITICAL;
292fetch_new_scb_inprog:
293 test CCSCBCTL, ARRDONE jz return;
294fetch_new_scb_done:
295 and CCSCBCTL, ~(CCARREN|CCSCBEN);
296 clr A;
297 add CMDS_PENDING, 1;
298 adc CMDS_PENDING[1], A;
299 if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) {
300 /*
301 * "Short Luns" are not placed into outgoing LQ
302 * packets in the correct byte order. Use a full
303 * sized lun field instead and fill it with the
304 * one byte of lun information we support.
305 */
306 mov SCB_PKT_LUN[6], SCB_LUN;
307 }
308 /*
309 * The FIFO use count field is shared with the
310 * tag set by the host so that our SCB dma engine
311 * knows the correct location to store the SCB.
312 * Set it to zero before processing the SCB.
313 */
314 clr SCB_FIFO_USE_COUNT;
315 /* Update the next SCB address to download. */
316 bmov NEXT_QUEUED_SCB_ADDR, SCB_NEXT_SCB_BUSADDR, 4;
317 /*
318 * NULL out the SCB links since these fields
319 * occupy the same location as SCB_NEXT_SCB_BUSADDR.
320 */
321 mvi SCB_NEXT[1], SCB_LIST_NULL;
322 mvi SCB_NEXT2[1], SCB_LIST_NULL;
323 /* Increment our position in the QINFIFO. */
324 mov NONE, SNSCB_QOFF;
325
326 /*
327 * Save SCBID of this SCB in REG0 since
328 * SCBPTR will be clobbered during target
329 * list updates. We also record the SCB's
330 * flags so that we can refer to them even
331 * after SCBPTR has been changed.
332 */
333 bmov REG0, SCBPTR, 2;
334 mov A, SCB_CONTROL;
335
336 /*
337 * Find the tail SCB of the execution queue
338 * for this target.
339 */
340 shr SINDEX, 3, SCB_SCSIID;
341 and SINDEX, ~0x1;
342 mvi SINDEX[1], (WAITING_SCB_TAILS >> 8);
343 bmov DINDEX, SINDEX, 2;
344 bmov SCBPTR, SINDIR, 2;
345
346 /*
347 * Update the tail to point to the new SCB.
348 */
349 bmov DINDIR, REG0, 2;
350
351 /*
352 * If the queue was empty, queue this SCB as
353 * the first for this target.
354 */
355 cmp SCBPTR[1], SCB_LIST_NULL je first_new_target_scb;
356
357 /*
358 * SCBs that want to send messages must always be
359 * at the head of their per-target queue so that
360 * ATN can be asserted even if the current
361 * negotiation agreement is packetized. If the
362 * target queue is empty, the SCB can be queued
363 * immediately. If the queue is not empty, we must
364 * wait for it to empty before entering this SCB
365 * into the waiting for selection queue. Otherwise
366 * our batching and round-robin selection scheme
367 * could allow commands to be queued out of order.
368 * To simplify the implementation, we stop pulling
369 * new commands from the host until the MK_MESSAGE
370 * SCB can be queued to the waiting for selection
371 * list.
372 */
373 test A, MK_MESSAGE jz batch_scb;
374
375 /*
376 * If the last SCB is also a MK_MESSAGE SCB, then
377 * order is preserved even if we batch.
378 */
379 test SCB_CONTROL, MK_MESSAGE jz batch_scb;
380
381 /*
382 * Defer this SCB and stop fetching new SCBs until
383 * it can be queued. Since the SCB_SCSIID of the
384 * tail SCB must be the same as that of the newly
385 * queued SCB, there is no need to restore the SCBID
386 * here.
387 */
388 or SEQ_FLAGS2, PENDING_MK_MESSAGE;
389 bmov MK_MESSAGE_SCB, REG0, 2;
390 mov MK_MESSAGE_SCSIID, SCB_SCSIID ret;
391
392batch_scb:
393 /*
394 * Otherwise just update the previous tail SCB to
395 * point to the new tail.
396 */
397 bmov SCB_NEXT, REG0, 2 ret;
398
399first_new_target_scb:
400 /*
401 * Append SCB to the tail of the waiting for
402 * selection list.
403 */
404 cmp WAITING_TID_HEAD[1], SCB_LIST_NULL je first_new_scb;
405 bmov SCBPTR, WAITING_TID_TAIL, 2;
406 bmov SCB_NEXT2, REG0, 2;
407 bmov WAITING_TID_TAIL, REG0, 2 ret;
408first_new_scb:
409 /*
410 * Whole list is empty, so the head of
411 * the list must be initialized too.
412 */
413 bmov WAITING_TID_HEAD, REG0, 2;
414 bmov WAITING_TID_TAIL, REG0, 2 ret;
415END_CRITICAL;
416
417scbdma_idle:
418 /*
419 * Don't bother downloading new SCBs to execute
420 * if select-outs are currently frozen or we have
421 * a MK_MESSAGE SCB waiting to enter the queue.
422 */
423 test SEQ_FLAGS2, SELECTOUT_QFROZEN|PENDING_MK_MESSAGE
424 jnz scbdma_no_new_scbs;
425BEGIN_CRITICAL;
426 test QOFF_CTLSTA, NEW_SCB_AVAIL jnz fetch_new_scb;
427scbdma_no_new_scbs:
428 cmp COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne dma_complete_scb;
429 cmp COMPLETE_SCB_HEAD[1], SCB_LIST_NULL je return;
430 /* FALLTHROUGH */
431fill_qoutfifo:
432 /*
433 * Keep track of the SCBs we are dmaing just
434 * in case the DMA fails or is aborted.
435 */
436 bmov COMPLETE_SCB_DMAINPROG_HEAD, COMPLETE_SCB_HEAD, 2;
437 mvi CCSCBCTL, CCSCBRESET;
438 bmov SCBHADDR, QOUTFIFO_NEXT_ADDR, 4;
439 mov A, QOUTFIFO_NEXT_ADDR;
440 bmov SCBPTR, COMPLETE_SCB_HEAD, 2;
441fill_qoutfifo_loop:
442 bmov CCSCBRAM, SCBPTR, 2;
443 mov CCSCBRAM, SCB_SGPTR[0];
444 mov CCSCBRAM, QOUTFIFO_ENTRY_VALID_TAG;
445 mov NONE, SDSCB_QOFF;
446 inc INT_COALESCING_CMDCOUNT;
447 add CMDS_PENDING, -1;
448 adc CMDS_PENDING[1], -1;
449 cmp SCB_NEXT_COMPLETE[1], SCB_LIST_NULL je fill_qoutfifo_done;
450 cmp CCSCBADDR, CCSCBADDR_MAX je fill_qoutfifo_done;
451 test QOFF_CTLSTA, SDSCB_ROLLOVR jnz fill_qoutfifo_done;
452 /*
453 * Don't cross an ADB or Cachline boundary when DMA'ing
454 * completion entries. In PCI mode, at least in 32/33
455 * configurations, the SCB DMA engine may lose its place
456 * in the data-stream should the target force a retry on
457 * something other than an 8byte aligned boundary. In
458 * PCI-X mode, we do this to avoid split transactions since
459 * many chipsets seem to be unable to format proper split
460 * completions to continue the data transfer.
461 */
462 add SINDEX, A, CCSCBADDR;
463 test SINDEX, CACHELINE_MASK jz fill_qoutfifo_done;
464 bmov SCBPTR, SCB_NEXT_COMPLETE, 2;
465 jmp fill_qoutfifo_loop;
466fill_qoutfifo_done:
467 mov SCBHCNT, CCSCBADDR;
468 mvi CCSCBCTL, CCSCBEN|CCSCBRESET;
469 bmov COMPLETE_SCB_HEAD, SCB_NEXT_COMPLETE, 2;
470 mvi SCB_NEXT_COMPLETE[1], SCB_LIST_NULL ret;
471
472fetch_new_scb:
473 bmov SCBHADDR, NEXT_QUEUED_SCB_ADDR, 4;
474 mvi CCARREN|CCSCBEN|CCSCBDIR|CCSCBRESET jmp dma_scb;
475dma_complete_scb:
476 bmov SCBPTR, COMPLETE_DMA_SCB_HEAD, 2;
477 bmov SCBHADDR, SCB_BUSADDR, 4;
478 mvi CCARREN|CCSCBEN|CCSCBRESET jmp dma_scb;
479
480/*
481 * Either post or fetch an SCB from host memory. The caller
482 * is responsible for polling for transfer completion.
483 *
484 * Prerequisits: Mode == M_CCHAN
485 * SINDEX contains CCSCBCTL flags
486 * SCBHADDR set to Host SCB address
487 * SCBPTR set to SCB src location on "push" operations
488 */
489SET_SRC_MODE M_CCHAN;
490SET_DST_MODE M_CCHAN;
491dma_scb:
492 mvi SCBHCNT, SCB_TRANSFER_SIZE;
493 mov CCSCBCTL, SINDEX ret;
494
495setjmp:
496 /*
497 * At least on the A, a return in the same
498 * instruction as the bmov results in a return
499 * to the caller, not to the new address at the
500 * top of the stack. Since we want the latter
501 * (we use setjmp to register a handler from an
502 * interrupt context but not invoke that handler
503 * until we return to our idle loop), use a
504 * separate ret instruction.
505 */
506 bmov LONGJMP_ADDR, STACK, 2;
507 ret;
508setjmp_inline:
509 bmov LONGJMP_ADDR, STACK, 2;
510longjmp:
511 bmov STACK, LONGJMP_ADDR, 2 ret;
512END_CRITICAL;
513
514/*************************** Chip Bug Work Arounds ****************************/
515/*
516 * Must disable interrupts when setting the mode pointer
517 * register as an interrupt occurring mid update will
518 * fail to store the new mode value for restoration on
519 * an iret.
520 */
521if ((ahd->bugs & AHD_SET_MODE_BUG) != 0) {
522set_mode_work_around:
523 mvi SEQINTCTL, INTVEC1DSL;
524 mov MODE_PTR, SINDEX;
525 clr SEQINTCTL ret;
526}
527
528
529if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
530set_seqint_work_around:
531 mov SEQINTCODE, SINDEX;
532 mvi SEQINTCODE, NO_SEQINT ret;
533}
534
535/************************ Packetized LongJmp Routines *************************/
536SET_SRC_MODE M_SCSI;
537SET_DST_MODE M_SCSI;
538start_selection:
539BEGIN_CRITICAL;
540 if ((ahd->bugs & AHD_SENT_SCB_UPDATE_BUG) != 0) {
541 /*
542 * Razor #494
543 * Rev A hardware fails to update LAST/CURR/NEXTSCB
544 * correctly after a packetized selection in several
545 * situations:
546 *
547 * 1) If only one command existed in the queue, the
548 * LAST/CURR/NEXTSCB are unchanged.
549 *
550 * 2) In a non QAS, protocol allowed phase change,
551 * the queue is shifted 1 too far. LASTSCB is
552 * the last SCB that was correctly processed.
553 *
554 * 3) In the QAS case, if the full list of commands
555 * was successfully sent, NEXTSCB is NULL and neither
556 * CURRSCB nor LASTSCB can be trusted. We must
557 * manually walk the list counting MAXCMDCNT elements
558 * to find the last SCB that was sent correctly.
559 *
560 * To simplify the workaround for this bug in SELDO
561 * handling, we initialize LASTSCB prior to enabling
562 * selection so we can rely on it even for case #1 above.
563 */
564 bmov LASTSCB, WAITING_TID_HEAD, 2;
565 }
566 bmov CURRSCB, WAITING_TID_HEAD, 2;
567 bmov SCBPTR, WAITING_TID_HEAD, 2;
568 shr SELOID, 4, SCB_SCSIID;
569 /*
570 * If we want to send a message to the device, ensure
571 * we are selecting with atn irregardless of our packetized
572 * agreement. Since SPI4 only allows target reset or PPR
573 * messages if this is a packetized connection, the change
574 * to our negotiation table entry for this selection will
575 * be cleared when the message is acted on.
576 */
577 test SCB_CONTROL, MK_MESSAGE jz . + 3;
578 mov NEGOADDR, SELOID;
579 or NEGCONOPTS, ENAUTOATNO;
580 or SCSISEQ0, ENSELO ret;
581END_CRITICAL;
582
583/*
584 * Allocate a FIFO for a non-packetized transaction.
585 * In RevA hardware, both FIFOs must be free before we
586 * can allocate a FIFO for a non-packetized transaction.
587 */
588allocate_fifo_loop:
589 /*
590 * Do whatever work is required to free a FIFO.
591 */
592 call idle_loop_service_fifos;
593 SET_MODE(M_SCSI, M_SCSI)
594allocate_fifo:
595 if ((ahd->bugs & AHD_NONPACKFIFO_BUG) != 0) {
596 and A, FIFO0FREE|FIFO1FREE, DFFSTAT;
597 cmp A, FIFO0FREE|FIFO1FREE jne allocate_fifo_loop;
598 } else {
599 test DFFSTAT, FIFO1FREE jnz allocate_fifo1;
600 test DFFSTAT, FIFO0FREE jz allocate_fifo_loop;
601 mvi DFFSTAT, B_CURRFIFO_0;
602 SET_MODE(M_DFF0, M_DFF0)
603 bmov SCBPTR, ALLOCFIFO_SCBPTR, 2 ret;
604 }
605SET_SRC_MODE M_SCSI;
606SET_DST_MODE M_SCSI;
607allocate_fifo1:
608 mvi DFFSTAT, CURRFIFO_1;
609 SET_MODE(M_DFF1, M_DFF1)
610 bmov SCBPTR, ALLOCFIFO_SCBPTR, 2 ret;
611
612/*
613 * We have been reselected as an initiator
614 * or selected as a target.
615 */
616SET_SRC_MODE M_SCSI;
617SET_DST_MODE M_SCSI;
618select_in:
619 if ((ahd->bugs & AHD_FAINT_LED_BUG) != 0) {
620 /*
621 * On Rev A. hardware, the busy LED is only
622 * turned on automaically during selections
623 * and re-selections. Make the LED status
624 * more useful by forcing it to be on from
625 * the point of selection until our idle
626 * loop determines that neither of our FIFOs
627 * are busy. This handles the non-packetized
628 * case nicely as we will not return to the
629 * idle loop until the busfree at the end of
630 * each transaction.
631 */
632 or SBLKCTL, DIAGLEDEN|DIAGLEDON;
633 }
634 if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) {
635 /*
636 * Test to ensure that the bus has not
637 * already gone free prior to clearing
638 * any stale busfree status. This avoids
639 * a window whereby a busfree just after
640 * a selection could be missed.
641 */
642 test SCSISIGI, BSYI jz . + 2;
643 mvi CLRSINT1,CLRBUSFREE;
644 or SIMODE1, ENBUSFREE;
645 }
646 or SXFRCTL0, SPIOEN;
647 and SAVED_SCSIID, SELID_MASK, SELID;
648 and A, OID, IOWNID;
649 or SAVED_SCSIID, A;
650 mvi CLRSINT0, CLRSELDI;
651 jmp ITloop;
652
653/*
654 * We have successfully selected out.
655 *
656 * Clear SELDO.
657 * Dequeue all SCBs sent from the waiting queue
658 * Requeue all SCBs *not* sent to the tail of the waiting queue
659 * Take Razor #494 into account for above.
660 *
661 * In Packetized Mode:
662 * Return to the idle loop. Our interrupt handler will take
663 * care of any incoming L_Qs.
664 *
665 * In Non-Packetize Mode:
666 * Continue to our normal state machine.
667 */
668SET_SRC_MODE M_SCSI;
669SET_DST_MODE M_SCSI;
670select_out:
671BEGIN_CRITICAL;
672 if ((ahd->bugs & AHD_FAINT_LED_BUG) != 0) {
673 /*
674 * On Rev A. hardware, the busy LED is only
675 * turned on automaically during selections
676 * and re-selections. Make the LED status
677 * more useful by forcing it to be on from
678 * the point of re-selection until our idle
679 * loop determines that neither of our FIFOs
680 * are busy. This handles the non-packetized
681 * case nicely as we will not return to the
682 * idle loop until the busfree at the end of
683 * each transaction.
684 */
685 or SBLKCTL, DIAGLEDEN|DIAGLEDON;
686 }
687 /* Clear out all SCBs that have been successfully sent. */
688 if ((ahd->bugs & AHD_SENT_SCB_UPDATE_BUG) != 0) {
689 /*
690 * For packetized, the LQO manager clears ENSELO on
691 * the assertion of SELDO. If we are non-packetized,
692 * LASTSCB and CURRSCB are accurate.
693 */
694 test SCSISEQ0, ENSELO jnz use_lastscb;
695
696 /*
697 * The update is correct for LQOSTAT1 errors. All
698 * but LQOBUSFREE are handled by kernel interrupts.
699 * If we see LQOBUSFREE, return to the idle loop.
700 * Once we are out of the select_out critical section,
701 * the kernel will cleanup the LQOBUSFREE and we will
702 * eventually restart the selection if appropriate.
703 */
704 test LQOSTAT1, LQOBUSFREE jnz idle_loop;
705
706 /*
707 * On a phase change oustside of packet boundaries,
708 * LASTSCB points to the currently active SCB context
709 * on the bus.
710 */
711 test LQOSTAT2, LQOPHACHGOUTPKT jnz use_lastscb;
712
713 /*
714 * If the hardware has traversed the whole list, NEXTSCB
715 * will be NULL, CURRSCB and LASTSCB cannot be trusted,
716 * but MAXCMDCNT is accurate. If we stop part way through
717 * the list or only had one command to issue, NEXTSCB[1] is
718 * not NULL and LASTSCB is the last command to go out.
719 */
720 cmp NEXTSCB[1], SCB_LIST_NULL jne use_lastscb;
721
722 /*
723 * Brute force walk.
724 */
725 bmov SCBPTR, WAITING_TID_HEAD, 2;
726 mvi SEQINTCTL, INTVEC1DSL;
727 mvi MODE_PTR, MK_MODE(M_CFG, M_CFG);
728 mov A, MAXCMDCNT;
729 mvi MODE_PTR, MK_MODE(M_SCSI, M_SCSI);
730 clr SEQINTCTL;
731find_lastscb_loop:
732 dec A;
733 test A, 0xFF jz found_last_sent_scb;
734 bmov SCBPTR, SCB_NEXT, 2;
735 jmp find_lastscb_loop;
736use_lastscb:
737 bmov SCBPTR, LASTSCB, 2;
738found_last_sent_scb:
739 bmov CURRSCB, SCBPTR, 2;
740curscb_ww_done:
741 } else {
742 bmov SCBPTR, CURRSCB, 2;
743 }
744
745 /*
746 * The whole list made it. Clear our tail pointer to indicate
747 * that the per-target selection queue is now empty.
748 */
749 cmp SCB_NEXT[1], SCB_LIST_NULL je select_out_clear_tail;
750
751 /*
752 * Requeue any SCBs not sent, to the tail of the waiting Q.
753 * We know that neither the per-TID list nor the list of
754 * TIDs is empty. Use this knowledge to our advantage and
755 * queue the remainder to the tail of the global execution
756 * queue.
757 */
758 bmov REG0, SCB_NEXT, 2;
759select_out_queue_remainder:
760 bmov SCBPTR, WAITING_TID_TAIL, 2;
761 bmov SCB_NEXT2, REG0, 2;
762 bmov WAITING_TID_TAIL, REG0, 2;
763 jmp select_out_inc_tid_q;
764
765select_out_clear_tail:
766 /*
767 * Queue any pending MK_MESSAGE SCB for this target now
768 * that the queue is empty.
769 */
770 test SEQ_FLAGS2, PENDING_MK_MESSAGE jz select_out_no_mk_message_scb;
771 mov A, MK_MESSAGE_SCSIID;
772 cmp SCB_SCSIID, A jne select_out_no_mk_message_scb;
773 and SEQ_FLAGS2, ~PENDING_MK_MESSAGE;
774 bmov REG0, MK_MESSAGE_SCB, 2;
775 jmp select_out_queue_remainder;
776
777select_out_no_mk_message_scb:
778 /*
779 * Clear this target's execution tail and increment the queue.
780 */
781 shr DINDEX, 3, SCB_SCSIID;
782 or DINDEX, 1; /* Want only the second byte */
783 mvi DINDEX[1], ((WAITING_SCB_TAILS) >> 8);
784 mvi DINDIR, SCB_LIST_NULL;
785select_out_inc_tid_q:
786 bmov SCBPTR, WAITING_TID_HEAD, 2;
787 bmov WAITING_TID_HEAD, SCB_NEXT2, 2;
788 cmp WAITING_TID_HEAD[1], SCB_LIST_NULL jne . + 2;
789 mvi WAITING_TID_TAIL[1], SCB_LIST_NULL;
790 bmov SCBPTR, CURRSCB, 2;
791 mvi CLRSINT0, CLRSELDO;
792 test LQOSTAT2, LQOPHACHGOUTPKT jnz unexpected_nonpkt_mode_cleared;
793 test LQOSTAT1, LQOPHACHGINPKT jnz unexpected_nonpkt_mode_cleared;
794
795 /*
796 * If this is a packetized connection, return to our
797 * idle_loop and let our interrupt handler deal with
798 * any connection setup/teardown issues. The only
799 * exceptions are the case of MK_MESSAGE and task management
800 * SCBs.
801 */
802 if ((ahd->bugs & AHD_LQO_ATNO_BUG) != 0) {
803 /*
804 * In the A, the LQO manager transitions to LQOSTOP0 even if
805 * we have selected out with ATN asserted and the target
806 * REQs in a non-packet phase.
807 */
808 test SCB_CONTROL, MK_MESSAGE jz select_out_no_message;
809 test SCSISIGO, ATNO jnz select_out_non_packetized;
810select_out_no_message:
811 }
812 test LQOSTAT2, LQOSTOP0 jz select_out_non_packetized;
813 test SCB_TASK_MANAGEMENT, 0xFF jz idle_loop;
814 SET_SEQINTCODE(TASKMGMT_FUNC_COMPLETE)
815 jmp idle_loop;
816
817select_out_non_packetized:
818 /* Non packetized request. */
819 and SCSISEQ0, ~ENSELO;
820 if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) {
821 /*
822 * Test to ensure that the bus has not
823 * already gone free prior to clearing
824 * any stale busfree status. This avoids
825 * a window whereby a busfree just after
826 * a selection could be missed.
827 */
828 test SCSISIGI, BSYI jz . + 2;
829 mvi CLRSINT1,CLRBUSFREE;
830 or SIMODE1, ENBUSFREE;
831 }
832 mov SAVED_SCSIID, SCB_SCSIID;
833 mov SAVED_LUN, SCB_LUN;
834 mvi SEQ_FLAGS, NO_CDB_SENT;
835END_CRITICAL;
836 or SXFRCTL0, SPIOEN;
837
838 /*
839 * As soon as we get a successful selection, the target
840 * should go into the message out phase since we have ATN
841 * asserted.
842 */
843 mvi MSG_OUT, MSG_IDENTIFYFLAG;
844
845 /*
846 * Main loop for information transfer phases. Wait for the
847 * target to assert REQ before checking MSG, C/D and I/O for
848 * the bus phase.
849 */
850mesgin_phasemis:
851ITloop:
852 call phase_lock;
853
854 mov A, LASTPHASE;
855
856 test A, ~P_DATAIN_DT jz p_data;
857 cmp A,P_COMMAND je p_command;
858 cmp A,P_MESGOUT je p_mesgout;
859 cmp A,P_STATUS je p_status;
860 cmp A,P_MESGIN je p_mesgin;
861
862 SET_SEQINTCODE(BAD_PHASE)
863 jmp ITloop; /* Try reading the bus again. */
864
865/*
866 * Command phase. Set up the DMA registers and let 'er rip.
867 */
868p_command:
869 test SEQ_FLAGS, NOT_IDENTIFIED jz p_command_okay;
870 SET_SEQINTCODE(PROTO_VIOLATION)
871p_command_okay:
872 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1))
873 jnz p_command_allocate_fifo;
874 /*
875 * Command retry. Free our current FIFO and
876 * re-allocate a FIFO so transfer state is
877 * reset.
878 */
879SET_SRC_MODE M_DFF1;
880SET_DST_MODE M_DFF1;
881 mvi DFFSXFRCTL, RSTCHN|CLRSHCNT;
882 SET_MODE(M_SCSI, M_SCSI)
883p_command_allocate_fifo:
884 bmov ALLOCFIFO_SCBPTR, SCBPTR, 2;
885 call allocate_fifo;
886SET_SRC_MODE M_DFF1;
887SET_DST_MODE M_DFF1;
888 add NONE, -17, SCB_CDB_LEN;
889 jnc p_command_embedded;
890p_command_from_host:
891 bmov HADDR[0], SCB_HOST_CDB_PTR, 9;
892 mvi SG_CACHE_PRE, LAST_SEG;
893 mvi DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN);
894 jmp p_command_xfer;
895p_command_embedded:
896 bmov SHCNT[0], SCB_CDB_LEN, 1;
897 bmov DFDAT, SCB_CDB_STORE, 16;
898 mvi DFCNTRL, SCSIEN;
899p_command_xfer:
900 and SEQ_FLAGS, ~NO_CDB_SENT;
901 if ((ahd->features & AHD_FAST_CDB_DELIVERY) != 0) {
902 /*
903 * To speed up CDB delivery in Rev B, all CDB acks
904 * are "released" to the output sync as soon as the
905 * command phase starts. There is only one problem
906 * with this approach. If the target changes phase
907 * before all data are sent, we have left over acks
908 * that can go out on the bus in a data phase. Due
909 * to other chip contraints, this only happens if
910 * the target goes to data-in, but if the acks go
911 * out before we can test SDONE, we'll think that
912 * the transfer has completed successfully. Work
913 * around this by taking advantage of the 400ns or
914 * 800ns dead time between command phase and the REQ
915 * of the new phase. If the transfer has completed
916 * successfully, SCSIEN should fall *long* before we
917 * see a phase change. We thus treat any phasemiss
918 * that occurs before SCSIEN falls as an incomplete
919 * transfer.
920 */
921 test SSTAT1, PHASEMIS jnz p_command_xfer_failed;
922 test DFCNTRL, SCSIEN jnz . - 1;
923 } else {
924 test DFCNTRL, SCSIEN jnz .;
925 }
926 /*
927 * DMA Channel automatically disabled.
928 * Don't allow a data phase if the command
929 * was not fully transferred.
930 */
931 test SSTAT2, SDONE jnz ITloop;
932p_command_xfer_failed:
933 or SEQ_FLAGS, NO_CDB_SENT;
934 jmp ITloop;
935
936
937/*
938 * Status phase. Wait for the data byte to appear, then read it
939 * and store it into the SCB.
940 */
941SET_SRC_MODE M_SCSI;
942SET_DST_MODE M_SCSI;
943p_status:
944 test SEQ_FLAGS,NOT_IDENTIFIED jnz mesgin_proto_violation;
945p_status_okay:
946 mov SCB_SCSI_STATUS, SCSIDAT;
947 or SCB_CONTROL, STATUS_RCVD;
948 jmp ITloop;
949
950/*
951 * Message out phase. If MSG_OUT is MSG_IDENTIFYFLAG, build a full
952 * indentify message sequence and send it to the target. The host may
953 * override this behavior by setting the MK_MESSAGE bit in the SCB
954 * control byte. This will cause us to interrupt the host and allow
955 * it to handle the message phase completely on its own. If the bit
956 * associated with this target is set, we will also interrupt the host,
957 * thereby allowing it to send a message on the next selection regardless
958 * of the transaction being sent.
959 *
960 * If MSG_OUT is == HOST_MSG, also interrupt the host and take a message.
961 * This is done to allow the host to send messages outside of an identify
962 * sequence while protecting the seqencer from testing the MK_MESSAGE bit
963 * on an SCB that might not be for the current nexus. (For example, a
964 * BDR message in responce to a bad reselection would leave us pointed to
965 * an SCB that doesn't have anything to do with the current target).
966 *
967 * Otherwise, treat MSG_OUT as a 1 byte message to send (abort, abort tag,
968 * bus device reset).
969 *
970 * When there are no messages to send, MSG_OUT should be set to MSG_NOOP,
971 * in case the target decides to put us in this phase for some strange
972 * reason.
973 */
974p_mesgout_retry:
975 /* Turn on ATN for the retry */
976 mvi SCSISIGO, ATNO;
977p_mesgout:
978 mov SINDEX, MSG_OUT;
979 cmp SINDEX, MSG_IDENTIFYFLAG jne p_mesgout_from_host;
980 test SCB_CONTROL,MK_MESSAGE jnz host_message_loop;
981p_mesgout_identify:
982 or SINDEX, MSG_IDENTIFYFLAG|DISCENB, SCB_LUN;
983 test SCB_CONTROL, DISCENB jnz . + 2;
984 and SINDEX, ~DISCENB;
985/*
986 * Send a tag message if TAG_ENB is set in the SCB control block.
987 * Use SCB_NONPACKET_TAG as the tag value.
988 */
989p_mesgout_tag:
990 test SCB_CONTROL,TAG_ENB jz p_mesgout_onebyte;
991 mov SCSIDAT, SINDEX; /* Send the identify message */
992 call phase_lock;
993 cmp LASTPHASE, P_MESGOUT jne p_mesgout_done;
994 and SCSIDAT,TAG_ENB|SCB_TAG_TYPE,SCB_CONTROL;
995 call phase_lock;
996 cmp LASTPHASE, P_MESGOUT jne p_mesgout_done;
997 mov SCBPTR jmp p_mesgout_onebyte;
998/*
999 * Interrupt the driver, and allow it to handle this message
1000 * phase and any required retries.
1001 */
1002p_mesgout_from_host:
1003 cmp SINDEX, HOST_MSG jne p_mesgout_onebyte;
1004 jmp host_message_loop;
1005
1006p_mesgout_onebyte:
1007 mvi CLRSINT1, CLRATNO;
1008 mov SCSIDAT, SINDEX;
1009
1010/*
1011 * If the next bus phase after ATN drops is message out, it means
1012 * that the target is requesting that the last message(s) be resent.
1013 */
1014 call phase_lock;
1015 cmp LASTPHASE, P_MESGOUT je p_mesgout_retry;
1016
1017p_mesgout_done:
1018 mvi CLRSINT1,CLRATNO; /* Be sure to turn ATNO off */
1019 mov LAST_MSG, MSG_OUT;
1020 mvi MSG_OUT, MSG_NOOP; /* No message left */
1021 jmp ITloop;
1022
1023/*
1024 * Message in phase. Bytes are read using Automatic PIO mode.
1025 */
1026p_mesgin:
1027 /* read the 1st message byte */
1028 mvi ACCUM call inb_first;
1029
1030 test A,MSG_IDENTIFYFLAG jnz mesgin_identify;
1031 cmp A,MSG_DISCONNECT je mesgin_disconnect;
1032 cmp A,MSG_SAVEDATAPOINTER je mesgin_sdptrs;
1033 cmp ALLZEROS,A je mesgin_complete;
1034 cmp A,MSG_RESTOREPOINTERS je mesgin_rdptrs;
1035 cmp A,MSG_IGN_WIDE_RESIDUE je mesgin_ign_wide_residue;
1036 cmp A,MSG_NOOP je mesgin_done;
1037
1038/*
1039 * Pushed message loop to allow the kernel to
1040 * run it's own message state engine. To avoid an
1041 * extra nop instruction after signaling the kernel,
1042 * we perform the phase_lock before checking to see
1043 * if we should exit the loop and skip the phase_lock
1044 * in the ITloop. Performing back to back phase_locks
1045 * shouldn't hurt, but why do it twice...
1046 */
1047host_message_loop:
1048 call phase_lock; /* Benign the first time through. */
1049 SET_SEQINTCODE(HOST_MSG_LOOP)
1050 cmp RETURN_1, EXIT_MSG_LOOP je ITloop;
1051 cmp RETURN_1, CONT_MSG_LOOP_WRITE jne . + 3;
1052 mov SCSIDAT, RETURN_2;
1053 jmp host_message_loop;
1054 /* Must be CONT_MSG_LOOP_READ */
1055 mov NONE, SCSIDAT; /* ACK Byte */
1056 jmp host_message_loop;
1057
1058mesgin_ign_wide_residue:
1059 mov SAVED_MODE, MODE_PTR;
1060 SET_MODE(M_SCSI, M_SCSI)
1061 shr NEGOADDR, 4, SAVED_SCSIID;
1062 mov A, NEGCONOPTS;
1063 RESTORE_MODE(SAVED_MODE)
1064 test A, WIDEXFER jz mesgin_reject;
1065 /* Pull the residue byte */
1066 mvi REG0 call inb_next;
1067 cmp REG0, 0x01 jne mesgin_reject;
1068 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz . + 2;
1069 test SCB_TASK_ATTRIBUTE, SCB_XFERLEN_ODD jnz mesgin_done;
1070 SET_SEQINTCODE(IGN_WIDE_RES)
1071 jmp mesgin_done;
1072
1073mesgin_proto_violation:
1074 SET_SEQINTCODE(PROTO_VIOLATION)
1075 jmp mesgin_done;
1076mesgin_reject:
1077 mvi MSG_MESSAGE_REJECT call mk_mesg;
1078mesgin_done:
1079 mov NONE,SCSIDAT; /*dummy read from latch to ACK*/
1080 jmp ITloop;
1081
1082#define INDEX_DISC_LIST(scsiid, lun) \
1083 and A, 0xC0, scsiid; \
1084 or SCBPTR, A, lun; \
1085 clr SCBPTR[1]; \
1086 and SINDEX, 0x30, scsiid; \
1087 shr SINDEX, 3; /* Multiply by 2 */ \
1088 add SINDEX, (SCB_DISCONNECTED_LISTS & 0xFF); \
1089 mvi SINDEX[1], ((SCB_DISCONNECTED_LISTS >> 8) & 0xFF)
1090
1091mesgin_identify:
1092 /*
1093 * Determine whether a target is using tagged or non-tagged
1094 * transactions by first looking at the transaction stored in
1095 * the per-device, disconnected array. If there is no untagged
1096 * transaction for this target, this must be a tagged transaction.
1097 */
1098 and SAVED_LUN, MSG_IDENTIFY_LUNMASK, A;
1099 INDEX_DISC_LIST(SAVED_SCSIID, SAVED_LUN);
1100 bmov DINDEX, SINDEX, 2;
1101 bmov REG0, SINDIR, 2;
1102 cmp REG0[1], SCB_LIST_NULL je snoop_tag;
1103 /* Untagged. Clear the busy table entry and setup the SCB. */
1104 bmov DINDIR, ALLONES, 2;
1105 bmov SCBPTR, REG0, 2;
1106 jmp setup_SCB;
1107
1108/*
1109 * Here we "snoop" the bus looking for a SIMPLE QUEUE TAG message.
1110 * If we get one, we use the tag returned to find the proper
1111 * SCB. After receiving the tag, look for the SCB at SCB locations tag and
1112 * tag + 256.
1113 */
1114snoop_tag:
1115 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) {
1116 or SEQ_FLAGS, 0x80;
1117 }
1118 mov NONE, SCSIDAT; /* ACK Identify MSG */
1119 call phase_lock;
1120 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) {
1121 or SEQ_FLAGS, 0x1;
1122 }
1123 cmp LASTPHASE, P_MESGIN jne not_found_ITloop;
1124 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) {
1125 or SEQ_FLAGS, 0x2;
1126 }
1127 cmp SCSIBUS, MSG_SIMPLE_Q_TAG jne not_found;
1128get_tag:
1129 clr SCBPTR[1];
1130 mvi SCBPTR call inb_next; /* tag value */
1131verify_scb:
1132 test SCB_CONTROL,DISCONNECTED jz verify_other_scb;
1133 mov A, SAVED_SCSIID;
1134 cmp SCB_SCSIID, A jne verify_other_scb;
1135 mov A, SAVED_LUN;
1136 cmp SCB_LUN, A je setup_SCB_disconnected;
1137verify_other_scb:
1138 xor SCBPTR[1], 1;
1139 test SCBPTR[1], 0xFF jnz verify_scb;
1140 jmp not_found;
1141
1142/*
1143 * Ensure that the SCB the tag points to is for
1144 * an SCB transaction to the reconnecting target.
1145 */
1146setup_SCB:
1147 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) {
1148 or SEQ_FLAGS, 0x10;
1149 }
1150 test SCB_CONTROL,DISCONNECTED jz not_found;
1151setup_SCB_disconnected:
1152 and SCB_CONTROL,~DISCONNECTED;
1153 clr SEQ_FLAGS; /* make note of IDENTIFY */
1154 test SCB_SGPTR, SG_LIST_NULL jnz . + 3;
1155 bmov ALLOCFIFO_SCBPTR, SCBPTR, 2;
1156 call allocate_fifo;
1157 /* See if the host wants to send a message upon reconnection */
1158 test SCB_CONTROL, MK_MESSAGE jz mesgin_done;
1159 mvi HOST_MSG call mk_mesg;
1160 jmp mesgin_done;
1161
1162not_found:
1163 SET_SEQINTCODE(NO_MATCH)
1164 jmp mesgin_done;
1165
1166not_found_ITloop:
1167 SET_SEQINTCODE(NO_MATCH)
1168 jmp ITloop;
1169
1170/*
1171 * We received a "command complete" message. Put the SCB on the complete
1172 * queue and trigger a completion interrupt via the idle loop. Before doing
1173 * so, check to see if there is a residual or the status byte is something
1174 * other than STATUS_GOOD (0). In either of these conditions, we upload the
1175 * SCB back to the host so it can process this information.
1176 */
1177mesgin_complete:
1178
1179 /*
1180 * If ATN is raised, we still want to give the target a message.
1181 * Perhaps there was a parity error on this last message byte.
1182 * Either way, the target should take us to message out phase
1183 * and then attempt to complete the command again. We should use a
1184 * critical section here to guard against a timeout triggering
1185 * for this command and setting ATN while we are still processing
1186 * the completion.
1187 test SCSISIGI, ATNI jnz mesgin_done;
1188 */
1189
1190 /*
1191 * If we are identified and have successfully sent the CDB,
1192 * any status will do. Optimize this fast path.
1193 */
1194 test SCB_CONTROL, STATUS_RCVD jz mesgin_proto_violation;
1195 test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT jz complete_accepted;
1196
1197 /*
1198 * If the target never sent an identify message but instead went
1199 * to mesgin to give an invalid message, let the host abort us.
1200 */
1201 test SEQ_FLAGS, NOT_IDENTIFIED jnz mesgin_proto_violation;
1202
1203 /*
1204 * If we recevied good status but never successfully sent the
1205 * cdb, abort the command.
1206 */
1207 test SCB_SCSI_STATUS,0xff jnz complete_accepted;
1208 test SEQ_FLAGS, NO_CDB_SENT jnz mesgin_proto_violation;
1209complete_accepted:
1210
1211 /*
1212 * See if we attempted to deliver a message but the target ingnored us.
1213 */
1214 test SCB_CONTROL, MK_MESSAGE jz complete_nomsg;
1215 SET_SEQINTCODE(MKMSG_FAILED)
1216complete_nomsg:
1217 call queue_scb_completion;
1218 jmp await_busfree;
1219
1220BEGIN_CRITICAL;
1221freeze_queue:
1222 /* Cancel any pending select-out. */
1223 test SSTAT0, SELDO|SELINGO jnz . + 2;
1224 and SCSISEQ0, ~ENSELO;
1225 mov ACCUM_SAVE, A;
1226 clr A;
1227 add QFREEZE_COUNT, 1;
1228 adc QFREEZE_COUNT[1], A;
1229 or SEQ_FLAGS2, SELECTOUT_QFROZEN;
1230 mov A, ACCUM_SAVE ret;
1231END_CRITICAL;
1232
1233/*
1234 * Complete the current FIFO's SCB if data for this same
1235 * SCB is not transferring in the other FIFO.
1236 */
1237SET_SRC_MODE M_DFF1;
1238SET_DST_MODE M_DFF1;
1239pkt_complete_scb_if_fifos_idle:
1240 bmov ARG_1, SCBPTR, 2;
1241 mvi DFFSXFRCTL, CLRCHN;
1242 SET_MODE(M_SCSI, M_SCSI)
1243 bmov SCBPTR, ARG_1, 2;
1244 test SCB_FIFO_USE_COUNT, 0xFF jnz return;
1245queue_scb_completion:
1246 test SCB_SCSI_STATUS,0xff jnz bad_status;
1247 /*
1248 * Check for residuals
1249 */
1250 test SCB_SGPTR, SG_LIST_NULL jnz complete; /* No xfer */
1251 test SCB_SGPTR, SG_FULL_RESID jnz upload_scb;/* Never xfered */
1252 test SCB_RESIDUAL_SGPTR, SG_LIST_NULL jz upload_scb;
1253complete:
1254BEGIN_CRITICAL;
1255 bmov SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2;
1256 bmov COMPLETE_SCB_HEAD, SCBPTR, 2 ret;
1257END_CRITICAL;
1258bad_status:
1259 cmp SCB_SCSI_STATUS, STATUS_PKT_SENSE je upload_scb;
1260 call freeze_queue;
1261upload_scb:
1262 /*
1263 * Restore SCB TAG since we reuse this field
1264 * in the sequencer. We don't want to corrupt
1265 * it on the host.
1266 */
1267 bmov SCB_TAG, SCBPTR, 2;
1268BEGIN_CRITICAL;
1269 or SCB_SGPTR, SG_STATUS_VALID;
1270 mvi SCB_NEXT_COMPLETE[1], SCB_LIST_NULL;
1271 cmp COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne add_dma_scb_tail;
1272 bmov COMPLETE_DMA_SCB_HEAD, SCBPTR, 2;
1273 bmov COMPLETE_DMA_SCB_TAIL, SCBPTR, 2 ret;
1274add_dma_scb_tail:
1275 bmov REG0, SCBPTR, 2;
1276 bmov SCBPTR, COMPLETE_DMA_SCB_TAIL, 2;
1277 bmov SCB_NEXT_COMPLETE, REG0, 2;
1278 bmov COMPLETE_DMA_SCB_TAIL, REG0, 2 ret;
1279END_CRITICAL;
1280
1281/*
1282 * Is it a disconnect message? Set a flag in the SCB to remind us
1283 * and await the bus going free. If this is an untagged transaction
1284 * store the SCB id for it in our untagged target table for lookup on
1285 * a reselction.
1286 */
1287mesgin_disconnect:
1288 /*
1289 * If ATN is raised, we still want to give the target a message.
1290 * Perhaps there was a parity error on this last message byte
1291 * or we want to abort this command. Either way, the target
1292 * should take us to message out phase and then attempt to
1293 * disconnect again.
1294 * XXX - Wait for more testing.
1295 test SCSISIGI, ATNI jnz mesgin_done;
1296 */
1297 test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT
1298 jnz mesgin_proto_violation;
1299 or SCB_CONTROL,DISCONNECTED;
1300 test SCB_CONTROL, TAG_ENB jnz await_busfree;
1301queue_disc_scb:
1302 bmov REG0, SCBPTR, 2;
1303 INDEX_DISC_LIST(SAVED_SCSIID, SAVED_LUN);
1304 bmov DINDEX, SINDEX, 2;
1305 bmov DINDIR, REG0, 2;
1306 bmov SCBPTR, REG0, 2;
1307 /* FALLTHROUGH */
1308await_busfree:
1309 and SIMODE1, ~ENBUSFREE;
1310 if ((ahd->bugs & AHD_BUSFREEREV_BUG) == 0) {
1311 /*
1312 * In the BUSFREEREV_BUG case, the
1313 * busfree status was cleared at the
1314 * beginning of the connection.
1315 */
1316 mvi CLRSINT1,CLRBUSFREE;
1317 }
1318 mov NONE, SCSIDAT; /* Ack the last byte */
1319 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1))
1320 jnz await_busfree_not_m_dff;
1321SET_SRC_MODE M_DFF1;
1322SET_DST_MODE M_DFF1;
1323await_busfree_clrchn:
1324 mvi DFFSXFRCTL, CLRCHN;
1325await_busfree_not_m_dff:
1326 /* clear target specific flags */
1327 mvi SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT;
1328 test SSTAT1,REQINIT|BUSFREE jz .;
1329 /*
1330 * We only set BUSFREE status once either a new
1331 * phase has been detected or we are really
1332 * BUSFREE. This allows the driver to know
1333 * that we are active on the bus even though
1334 * no identified transaction exists should a
1335 * timeout occur while awaiting busfree.
1336 */
1337 mvi LASTPHASE, P_BUSFREE;
1338 test SSTAT1, BUSFREE jnz idle_loop;
1339 SET_SEQINTCODE(MISSED_BUSFREE)
1340
1341
1342/*
1343 * Save data pointers message:
1344 * Copying RAM values back to SCB, for Save Data Pointers message, but
1345 * only if we've actually been into a data phase to change them. This
1346 * protects against bogus data in scratch ram and the residual counts
1347 * since they are only initialized when we go into data_in or data_out.
1348 * Ack the message as soon as possible.
1349 */
1350SET_SRC_MODE M_DFF1;
1351SET_DST_MODE M_DFF1;
1352mesgin_sdptrs:
1353 mov NONE,SCSIDAT; /*dummy read from latch to ACK*/
1354 test SEQ_FLAGS, DPHASE jz ITloop;
1355 call save_pointers;
1356 jmp ITloop;
1357
1358save_pointers:
1359 /*
1360 * If we are asked to save our position at the end of the
1361 * transfer, just mark us at the end rather than perform a
1362 * full save.
1363 */
1364 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz save_pointers_full;
1365 or SCB_SGPTR, SG_LIST_NULL ret;
1366
1367save_pointers_full:
1368 /*
1369 * The SCB_DATAPTR becomes the current SHADDR.
1370 * All other information comes directly from our residual
1371 * state.
1372 */
1373 bmov SCB_DATAPTR, SHADDR, 8;
1374 bmov SCB_DATACNT, SCB_RESIDUAL_DATACNT, 8 ret;
1375
1376/*
1377 * Restore pointers message? Data pointers are recopied from the
1378 * SCB anytime we enter a data phase for the first time, so all
1379 * we need to do is clear the DPHASE flag and let the data phase
1380 * code do the rest. We also reset/reallocate the FIFO to make
1381 * sure we have a clean start for the next data or command phase.
1382 */
1383mesgin_rdptrs:
1384 and SEQ_FLAGS, ~DPHASE;
1385 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) jnz msgin_rdptrs_get_fifo;
1386 mvi DFFSXFRCTL, RSTCHN|CLRSHCNT;
1387 SET_MODE(M_SCSI, M_SCSI)
1388msgin_rdptrs_get_fifo:
1389 call allocate_fifo;
1390 jmp mesgin_done;
1391
1392phase_lock:
1393 if ((ahd->bugs & AHD_EARLY_REQ_BUG) != 0) {
1394 /*
1395 * Don't ignore persistent REQ assertions just because
1396 * they were asserted within the bus settle delay window.
1397 * This allows us to tolerate devices like the GEM318
1398 * that violate the SCSI spec. We are careful not to
1399 * count REQ while we are waiting for it to fall during
1400 * an async phase due to our asserted ACK. Each
1401 * sequencer instruction takes ~25ns, so the REQ must
1402 * last at least 100ns in order to be counted as a true
1403 * REQ.
1404 */
1405 test SCSIPHASE, 0xFF jnz phase_locked;
1406 test SCSISIGI, ACKI jnz phase_lock;
1407 test SCSISIGI, REQI jz phase_lock;
1408 test SCSIPHASE, 0xFF jnz phase_locked;
1409 test SCSISIGI, ACKI jnz phase_lock;
1410 test SCSISIGI, REQI jz phase_lock;
1411phase_locked:
1412 } else {
1413 test SCSIPHASE, 0xFF jz .;
1414 }
1415 test SSTAT1, SCSIPERR jnz phase_lock;
1416phase_lock_latch_phase:
1417 and LASTPHASE, PHASE_MASK, SCSISIGI ret;
1418
1419/*
1420 * Functions to read data in Automatic PIO mode.
1421 *
1422 * An ACK is not sent on input from the target until SCSIDATL is read from.
1423 * So we wait until SCSIDATL is latched (the usual way), then read the data
1424 * byte directly off the bus using SCSIBUSL. When we have pulled the ATN
1425 * line, or we just want to acknowledge the byte, then we do a dummy read
1426 * from SCISDATL. The SCSI spec guarantees that the target will hold the
1427 * data byte on the bus until we send our ACK.
1428 *
1429 * The assumption here is that these are called in a particular sequence,
1430 * and that REQ is already set when inb_first is called. inb_{first,next}
1431 * use the same calling convention as inb.
1432 */
1433inb_next:
1434 mov NONE,SCSIDAT; /*dummy read from latch to ACK*/
1435inb_next_wait:
1436 /*
1437 * If there is a parity error, wait for the kernel to
1438 * see the interrupt and prepare our message response
1439 * before continuing.
1440 */
1441 test SCSIPHASE, 0xFF jz .;
1442 test SSTAT1, SCSIPERR jnz inb_next_wait;
1443inb_next_check_phase:
1444 and LASTPHASE, PHASE_MASK, SCSISIGI;
1445 cmp LASTPHASE, P_MESGIN jne mesgin_phasemis;
1446inb_first:
1447 clr DINDEX[1];
1448 mov DINDEX,SINDEX;
1449 mov DINDIR,SCSIBUS ret; /*read byte directly from bus*/
1450inb_last:
1451 mov NONE,SCSIDAT ret; /*dummy read from latch to ACK*/
1452
1453mk_mesg:
1454 mvi SCSISIGO, ATNO;
1455 mov MSG_OUT,SINDEX ret;
1456
1457SET_SRC_MODE M_DFF1;
1458SET_DST_MODE M_DFF1;
1459disable_ccsgen:
1460 test SG_STATE, FETCH_INPROG jz disable_ccsgen_fetch_done;
1461 clr CCSGCTL;
1462disable_ccsgen_fetch_done:
1463 clr SG_STATE ret;
1464
1465service_fifo:
1466 /*
1467 * Do we have any prefetch left???
1468 */
1469 test SG_STATE, SEGS_AVAIL jnz idle_sg_avail;
1470
1471 /*
1472 * Can this FIFO have access to the S/G cache yet?
1473 */
1474 test CCSGCTL, SG_CACHE_AVAIL jz return;
1475
1476 /* Did we just finish fetching segs? */
1477 test CCSGCTL, CCSGDONE jnz idle_sgfetch_complete;
1478
1479 /* Are we actively fetching segments? */
1480 test CCSGCTL, CCSGENACK jnz return;
1481
1482 /*
1483 * Should the other FIFO get the S/G cache first? If
1484 * both FIFOs have been allocated since we last checked
1485 * any FIFO, it is important that we service a FIFO
1486 * that is not actively on the bus first. This guarantees
1487 * that a FIFO will be freed to handle snapshot requests for
1488 * any FIFO that is still on the bus. Chips with RTI do not
1489 * perform snapshots, so don't bother with this test there.
1490 */
1491 if ((ahd->features & AHD_RTI) == 0) {
1492 /*
1493 * If we're not still receiving SCSI data,
1494 * it is safe to allocate the S/G cache to
1495 * this FIFO.
1496 */
1497 test DFCNTRL, SCSIEN jz idle_sgfetch_start;
1498
1499 /*
1500 * Switch to the other FIFO. Non-RTI chips
1501 * also have the "set mode" bug, so we must
1502 * disable interrupts during the switch.
1503 */
1504 mvi SEQINTCTL, INTVEC1DSL;
1505 xor MODE_PTR, MK_MODE(M_DFF1, M_DFF1);
1506
1507 /*
1508 * If the other FIFO needs loading, then it
1509 * must not have claimed the S/G cache yet
1510 * (SG_CACHE_AVAIL would have been cleared in
1511 * the orginal FIFO mode and we test this above).
1512 * Return to the idle loop so we can process the
1513 * FIFO not currently on the bus first.
1514 */
1515 test SG_STATE, LOADING_NEEDED jz idle_sgfetch_okay;
1516 clr SEQINTCTL ret;
1517idle_sgfetch_okay:
1518 xor MODE_PTR, MK_MODE(M_DFF1, M_DFF1);
1519 clr SEQINTCTL;
1520 }
1521
1522idle_sgfetch_start:
1523 /*
1524 * We fetch a "cacheline aligned" and sized amount of data
1525 * so we don't end up referencing a non-existant page.
1526 * Cacheline aligned is in quotes because the kernel will
1527 * set the prefetch amount to a reasonable level if the
1528 * cacheline size is unknown.
1529 */
1530 bmov SGHADDR, SCB_RESIDUAL_SGPTR, 4;
1531 mvi SGHCNT, SG_PREFETCH_CNT;
1532 if ((ahd->bugs & AHD_REG_SLOW_SETTLE_BUG) != 0) {
1533 /*
1534 * Need two instructions between "touches" of SGHADDR.
1535 */
1536 nop;
1537 }
1538 and SGHADDR[0], SG_PREFETCH_ALIGN_MASK, SCB_RESIDUAL_SGPTR;
1539 mvi CCSGCTL, CCSGEN|CCSGRESET;
1540 or SG_STATE, FETCH_INPROG ret;
1541idle_sgfetch_complete:
1542 /*
1543 * Guard against SG_CACHE_AVAIL activating during sg fetch
1544 * request in the other FIFO.
1545 */
1546 test SG_STATE, FETCH_INPROG jz return;
1547 clr CCSGCTL;
1548 and CCSGADDR, SG_PREFETCH_ADDR_MASK, SCB_RESIDUAL_SGPTR;
1549 mvi SG_STATE, SEGS_AVAIL|LOADING_NEEDED;
1550idle_sg_avail:
1551 /* Does the hardware have space for another SG entry? */
1552 test DFSTATUS, PRELOAD_AVAIL jz return;
1553 /*
1554 * On the A, preloading a segment before HDMAENACK
1555 * comes true can clobber the shaddow address of the
1556 * first segment in the S/G FIFO. Wait until it is
1557 * safe to proceed.
1558 */
1559 if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) == 0) {
1560 test DFCNTRL, HDMAENACK jz return;
1561 }
1562 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
1563 bmov HADDR, CCSGRAM, 8;
1564 } else {
1565 bmov HADDR, CCSGRAM, 4;
1566 }
1567 bmov HCNT, CCSGRAM, 3;
1568 bmov SCB_RESIDUAL_DATACNT[3], CCSGRAM, 1;
1569 if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) {
1570 and HADDR[4], SG_HIGH_ADDR_BITS, SCB_RESIDUAL_DATACNT[3];
1571 }
1572 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
1573 /* Skip 4 bytes of pad. */
1574 add CCSGADDR, 4;
1575 }
1576sg_advance:
1577 clr A; /* add sizeof(struct scatter) */
1578 add SCB_RESIDUAL_SGPTR[0],SG_SIZEOF;
1579 adc SCB_RESIDUAL_SGPTR[1],A;
1580 adc SCB_RESIDUAL_SGPTR[2],A;
1581 adc SCB_RESIDUAL_SGPTR[3],A;
1582 mov SINDEX, SCB_RESIDUAL_SGPTR[0];
1583 test SCB_RESIDUAL_DATACNT[3], SG_LAST_SEG jz . + 3;
1584 or SINDEX, LAST_SEG;
1585 clr SG_STATE;
1586 mov SG_CACHE_PRE, SINDEX;
1587 if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) != 0) {
1588 /*
1589 * Use SCSIENWRDIS so that SCSIEN is never
1590 * modified by this operation.
1591 */
1592 or DFCNTRL, PRELOADEN|HDMAEN|SCSIENWRDIS;
1593 } else {
1594 or DFCNTRL, PRELOADEN|HDMAEN;
1595 }
1596 /*
1597 * Do we have another segment in the cache?
1598 */
1599 add NONE, SG_PREFETCH_CNT_LIMIT, CCSGADDR;
1600 jnc return;
1601 and SG_STATE, ~SEGS_AVAIL ret;
1602
1603/*
1604 * Initialize the DMA address and counter from the SCB.
1605 */
1606load_first_seg:
1607 bmov HADDR, SCB_DATAPTR, 11;
1608 and REG_ISR, ~SG_FULL_RESID, SCB_SGPTR[0];
1609 test SCB_DATACNT[3], SG_LAST_SEG jz . + 2;
1610 or REG_ISR, LAST_SEG;
1611 mov SG_CACHE_PRE, REG_ISR;
1612 mvi DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN);
1613 /*
1614 * Since we've are entering a data phase, we will
1615 * rely on the SCB_RESID* fields. Initialize the
1616 * residual and clear the full residual flag.
1617 */
1618 and SCB_SGPTR[0], ~SG_FULL_RESID;
1619 bmov SCB_RESIDUAL_DATACNT[3], SCB_DATACNT[3], 5;
1620 /* If we need more S/G elements, tell the idle loop */
1621 test SCB_RESIDUAL_DATACNT[3], SG_LAST_SEG jnz . + 2;
1622 mvi SG_STATE, LOADING_NEEDED ret;
1623 clr SG_STATE ret;
1624
1625p_data_handle_xfer:
1626 call setjmp;
1627 test SG_STATE, LOADING_NEEDED jnz service_fifo;
1628p_data_clear_handler:
1629 or LONGJMP_ADDR[1], INVALID_ADDR ret;
1630
1631p_data:
1632 test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT jz p_data_allowed;
1633 SET_SEQINTCODE(PROTO_VIOLATION)
1634p_data_allowed:
1635
1636 test SEQ_FLAGS, DPHASE jz data_phase_initialize;
1637
1638 /*
1639 * If we re-enter the data phase after going through another
1640 * phase, our transfer location has almost certainly been
1641 * corrupted by the interveining, non-data, transfers. Ask
1642 * the host driver to fix us up based on the transfer residual
1643 * unless we already know that we should be bitbucketing.
1644 */
1645 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jnz p_data_bitbucket;
1646 SET_SEQINTCODE(PDATA_REINIT)
1647 jmp data_phase_inbounds;
1648
1649p_data_bitbucket:
1650 /*
1651 * Turn on `Bit Bucket' mode, wait until the target takes
1652 * us to another phase, and then notify the host.
1653 */
1654 mov SAVED_MODE, MODE_PTR;
1655 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1))
1656 jnz bitbucket_not_m_dff;
1657 /*
1658 * Ensure that any FIFO contents are cleared out and the
1659 * FIFO free'd prior to starting the BITBUCKET. BITBUCKET
1660 * doesn't discard data already in the FIFO.
1661 */
1662 mvi DFFSXFRCTL, RSTCHN|CLRSHCNT;
1663 SET_MODE(M_SCSI, M_SCSI)
1664bitbucket_not_m_dff:
1665 or SXFRCTL1,BITBUCKET;
1666 /* Wait for non-data phase. */
1667 test SCSIPHASE, ~DATA_PHASE_MASK jz .;
1668 and SXFRCTL1, ~BITBUCKET;
1669 RESTORE_MODE(SAVED_MODE)
1670SET_SRC_MODE M_DFF1;
1671SET_DST_MODE M_DFF1;
1672 SET_SEQINTCODE(DATA_OVERRUN)
1673 jmp ITloop;
1674
1675data_phase_initialize:
1676 test SCB_SGPTR[0], SG_LIST_NULL jnz p_data_bitbucket;
1677 call load_first_seg;
1678data_phase_inbounds:
1679 /* We have seen a data phase at least once. */
1680 or SEQ_FLAGS, DPHASE;
1681 mov SAVED_MODE, MODE_PTR;
1682 test SG_STATE, LOADING_NEEDED jz data_group_dma_loop;
1683 call p_data_handle_xfer;
1684data_group_dma_loop:
1685 /*
1686 * The transfer is complete if either the last segment
1687 * completes or the target changes phase. Both conditions
1688 * will clear SCSIEN.
1689 */
1690 call idle_loop_service_fifos;
1691 call idle_loop_cchan;
1692 call idle_loop_gsfifo;
1693 RESTORE_MODE(SAVED_MODE)
1694 test DFCNTRL, SCSIEN jnz data_group_dma_loop;
1695
1696data_group_dmafinish:
1697 /*
1698 * The transfer has terminated either due to a phase
1699 * change, and/or the completion of the last segment.
1700 * We have two goals here. Do as much other work
1701 * as possible while the data fifo drains on a read
1702 * and respond as quickly as possible to the standard
1703 * messages (save data pointers/disconnect and command
1704 * complete) that usually follow a data phase.
1705 */
1706 call calc_residual;
1707
1708 /*
1709 * Go ahead and shut down the DMA engine now.
1710 */
1711 test DFCNTRL, DIRECTION jnz data_phase_finish;
1712data_group_fifoflush:
1713 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) {
1714 or DFCNTRL, FIFOFLUSH;
1715 }
1716 /*
1717 * We have enabled the auto-ack feature. This means
1718 * that the controller may have already transferred
1719 * some overrun bytes into the data FIFO and acked them
1720 * on the bus. The only way to detect this situation is
1721 * to wait for LAST_SEG_DONE to come true on a completed
1722 * transfer and then test to see if the data FIFO is
1723 * non-empty. We know there is more data yet to transfer
1724 * if SG_LIST_NULL is not yet set, thus there cannot be
1725 * an overrun.
1726 */
1727 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz data_phase_finish;
1728 test SG_CACHE_SHADOW, LAST_SEG_DONE jz .;
1729 test DFSTATUS, FIFOEMP jnz data_phase_finish;
1730 /* Overrun */
1731 jmp p_data;
1732data_phase_finish:
1733 /*
1734 * If the target has left us in data phase, loop through
1735 * the dma code again. We will only loop if there is a
1736 * data overrun.
1737 */
1738 if ((ahd->flags & AHD_TARGETROLE) != 0) {
1739 test SSTAT0, TARGET jnz data_phase_done;
1740 }
1741 if ((ahd->flags & AHD_INITIATORROLE) != 0) {
1742 test SSTAT1, REQINIT jz .;
1743 test SCSIPHASE, DATA_PHASE_MASK jnz p_data;
1744 }
1745
1746data_phase_done:
1747 /* Kill off any pending prefetch */
1748 call disable_ccsgen;
1749 or LONGJMP_ADDR[1], INVALID_ADDR;
1750
1751 if ((ahd->flags & AHD_TARGETROLE) != 0) {
1752 test SEQ_FLAGS, DPHASE_PENDING jz ITloop;
1753 /*
1754 and SEQ_FLAGS, ~DPHASE_PENDING;
1755 * For data-in phases, wait for any pending acks from the
1756 * initiator before changing phase. We only need to
1757 * send Ignore Wide Residue messages for data-in phases.
1758 test DFCNTRL, DIRECTION jz target_ITloop;
1759 test SSTAT1, REQINIT jnz .;
1760 test SCB_TASK_ATTRIBUTE, SCB_XFERLEN_ODD jz target_ITloop;
1761 SET_MODE(M_SCSI, M_SCSI)
1762 test NEGCONOPTS, WIDEXFER jz target_ITloop;
1763 */
1764 /*
1765 * Issue an Ignore Wide Residue Message.
1766 mvi P_MESGIN|BSYO call change_phase;
1767 mvi MSG_IGN_WIDE_RESIDUE call target_outb;
1768 mvi 1 call target_outb;
1769 jmp target_ITloop;
1770 */
1771 } else {
1772 jmp ITloop;
1773 }
1774
1775/*
1776 * We assume that, even though data may still be
1777 * transferring to the host, that the SCSI side of
1778 * the DMA engine is now in a static state. This
1779 * allows us to update our notion of where we are
1780 * in this transfer.
1781 *
1782 * If, by chance, we stopped before being able
1783 * to fetch additional segments for this transfer,
1784 * yet the last S/G was completely exhausted,
1785 * call our idle loop until it is able to load
1786 * another segment. This will allow us to immediately
1787 * pickup on the next segment on the next data phase.
1788 *
1789 * If we happened to stop on the last segment, then
1790 * our residual information is still correct from
1791 * the idle loop and there is no need to perform
1792 * any fixups.
1793 */
1794residual_before_last_seg:
1795 test MDFFSTAT, SHVALID jnz sgptr_fixup;
1796 /*
1797 * Can never happen from an interrupt as the packetized
1798 * hardware will only interrupt us once SHVALID or
1799 * LAST_SEG_DONE.
1800 */
1801 call idle_loop_service_fifos;
1802 RESTORE_MODE(SAVED_MODE)
1803 /* FALLTHROUGH */
1804calc_residual:
1805 test SG_CACHE_SHADOW, LAST_SEG jz residual_before_last_seg;
1806 /* Record if we've consumed all S/G entries */
1807 test MDFFSTAT, SHVALID jz . + 2;
1808 bmov SCB_RESIDUAL_DATACNT, SHCNT, 3 ret;
1809 or SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL ret;
1810
1811sgptr_fixup:
1812 /*
1813 * Fixup the residual next S/G pointer. The S/G preload
1814 * feature of the chip allows us to load two elements
1815 * in addition to the currently active element. We
1816 * store the bottom byte of the next S/G pointer in
1817 * the SG_CACHE_PTR register so we can restore the
1818 * correct value when the DMA completes. If the next
1819 * sg ptr value has advanced to the point where higher
1820 * bytes in the address have been affected, fix them
1821 * too.
1822 */
1823 test SG_CACHE_SHADOW, 0x80 jz sgptr_fixup_done;
1824 test SCB_RESIDUAL_SGPTR[0], 0x80 jnz sgptr_fixup_done;
1825 add SCB_RESIDUAL_SGPTR[1], -1;
1826 adc SCB_RESIDUAL_SGPTR[2], -1;
1827 adc SCB_RESIDUAL_SGPTR[3], -1;
1828sgptr_fixup_done:
1829 and SCB_RESIDUAL_SGPTR[0], SG_ADDR_MASK, SG_CACHE_SHADOW;
1830 clr SCB_RESIDUAL_DATACNT[3]; /* We are not the last seg */
1831 bmov SCB_RESIDUAL_DATACNT, SHCNT, 3 ret;
1832
1833export timer_isr:
1834 call issue_cmdcmplt;
1835 mvi CLRSEQINTSTAT, CLRSEQ_SWTMRTO;
1836 if ((ahd->bugs & AHD_SET_MODE_BUG) != 0) {
1837 /*
1838 * In H2A4, the mode pointer is not saved
1839 * for intvec2, but is restored on iret.
1840 * This can lead to the restoration of a
1841 * bogus mode ptr. Manually clear the
1842 * intmask bits and do a normal return
1843 * to compensate.
1844 */
1845 and SEQINTCTL, ~(INTMASK2|INTMASK1) ret;
1846 } else {
1847 or SEQINTCTL, IRET ret;
1848 }
1849
1850export seq_isr:
1851 if ((ahd->features & AHD_RTI) == 0) {
1852 /*
1853 * On RevA Silicon, if the target returns us to data-out
1854 * after we have already trained for data-out, it is
1855 * possible for us to transition the free running clock to
1856 * data-valid before the required 100ns P1 setup time (8 P1
1857 * assertions in fast-160 mode). This will only happen if
1858 * this L-Q is a continuation of a data transfer for which
1859 * we have already prefetched data into our FIFO (LQ/Data
1860 * followed by LQ/Data for the same write transaction).
1861 * This can cause some target implementations to miss the
1862 * first few data transfers on the bus. We detect this
1863 * situation by noticing that this is the first data transfer
1864 * after an LQ (LQIWORKONLQ true), that the data transfer is
1865 * a continuation of a transfer already setup in our FIFO
1866 * (SAVEPTRS interrupt), and that the transaction is a write
1867 * (DIRECTION set in DFCNTRL). The delay is performed by
1868 * disabling SCSIEN until we see the first REQ from the
1869 * target.
1870 *
1871 * First instruction in an ISR cannot be a branch on
1872 * Rev A. Snapshot LQISTAT2 so the status is not missed
1873 * and deffer the test by one instruction.
1874 */
1875 mov REG_ISR, LQISTAT2;
1876 test REG_ISR, LQIWORKONLQ jz main_isr;
1877 test SEQINTSRC, SAVEPTRS jz main_isr;
1878 test LONGJMP_ADDR[1], INVALID_ADDR jz saveptr_active_fifo;
1879 /*
1880 * Switch to the active FIFO after clearing the snapshot
1881 * savepointer in the current FIFO. We do this so that
1882 * a pending CTXTDONE or SAVEPTR is visible in the active
1883 * FIFO. This status is the only way we can detect if we
1884 * have lost the race (e.g. host paused us) and our attempts
1885 * to disable the channel occurred after all REQs were
1886 * already seen and acked (REQINIT never comes true).
1887 */
1888 mvi DFFSXFRCTL, CLRCHN;
1889 xor MODE_PTR, MK_MODE(M_DFF1, M_DFF1);
1890 test DFCNTRL, DIRECTION jz interrupt_return;
1891 and DFCNTRL, ~SCSIEN;
1892snapshot_wait_data_valid:
1893 test SEQINTSRC, (CTXTDONE|SAVEPTRS) jnz interrupt_return;
1894 test SSTAT1, REQINIT jz snapshot_wait_data_valid;
1895snapshot_data_valid:
1896 or DFCNTRL, SCSIEN;
1897 or SEQINTCTL, IRET ret;
1898snapshot_saveptr:
1899 mvi DFFSXFRCTL, CLRCHN;
1900 or SEQINTCTL, IRET ret;
1901main_isr:
1902 }
1903 test SEQINTSRC, CFG4DATA jnz cfg4data_intr;
1904 test SEQINTSRC, CFG4ISTAT jnz cfg4istat_intr;
1905 test SEQINTSRC, SAVEPTRS jnz saveptr_intr;
1906 test SEQINTSRC, CFG4ICMD jnz cfg4icmd_intr;
1907 SET_SEQINTCODE(INVALID_SEQINT)
1908
1909/*
1910 * There are two types of save pointers interrupts:
1911 * The first is a snapshot save pointers where the current FIFO is not
1912 * active and contains a snapshot of the current poniter information.
1913 * This happens between packets in a stream for a single L_Q. Since we
1914 * are not performing a pointer save, we can safely clear the channel
1915 * so it can be used for other transactions. On RTI capable controllers,
1916 * where snapshots can, and are, disabled, the code to handle this type
1917 * of snapshot is not active.
1918 *
1919 * The second case is a save pointers on an active FIFO which occurs
1920 * if the target changes to a new L_Q or busfrees/QASes and the transfer
1921 * has a residual. This should occur coincident with a ctxtdone. We
1922 * disable the interrupt and allow our active routine to handle the
1923 * save.
1924 */
1925saveptr_intr:
1926 if ((ahd->features & AHD_RTI) == 0) {
1927 test LONGJMP_ADDR[1], INVALID_ADDR jnz snapshot_saveptr;
1928 }
1929saveptr_active_fifo:
1930 and SEQIMODE, ~ENSAVEPTRS;
1931 or SEQINTCTL, IRET ret;
1932
1933cfg4data_intr:
1934 test SCB_SGPTR[0], SG_LIST_NULL jnz pkt_handle_overrun_inc_use_count;
1935 call load_first_seg;
1936 call pkt_handle_xfer;
1937 inc SCB_FIFO_USE_COUNT;
1938interrupt_return:
1939 or SEQINTCTL, IRET ret;
1940
1941cfg4istat_intr:
1942 call freeze_queue;
1943 add NONE, -13, SCB_CDB_LEN;
1944 jnc cfg4istat_have_sense_addr;
1945 test SCB_CDB_LEN, SCB_CDB_LEN_PTR jnz cfg4istat_have_sense_addr;
1946 /*
1947 * Host sets up address/count and enables transfer.
1948 */
1949 SET_SEQINTCODE(CFG4ISTAT_INTR)
1950 jmp cfg4istat_setup_handler;
1951cfg4istat_have_sense_addr:
1952 bmov HADDR, SCB_SENSE_BUSADDR, 4;
1953 mvi HCNT[1], (AHD_SENSE_BUFSIZE >> 8);
1954 mvi SG_CACHE_PRE, LAST_SEG;
1955 mvi DFCNTRL, PRELOADEN|SCSIEN|HDMAEN;
1956cfg4istat_setup_handler:
1957 /*
1958 * Status pkt is transferring to host.
1959 * Wait in idle loop for transfer to complete.
1960 * If a command completed before an attempted
1961 * task management function completed, notify the host.
1962 */
1963 test SCB_TASK_MANAGEMENT, 0xFF jz cfg4istat_no_taskmgmt_func;
1964 SET_SEQINTCODE(TASKMGMT_CMD_CMPLT_OKAY)
1965cfg4istat_no_taskmgmt_func:
1966 call pkt_handle_status;
1967 or SEQINTCTL, IRET ret;
1968
1969cfg4icmd_intr:
1970 /*
1971 * In the case of DMAing a CDB from the host, the normal
1972 * CDB buffer is formatted with an 8 byte address followed
1973 * by a 1 byte count.
1974 */
1975 bmov HADDR[0], SCB_HOST_CDB_PTR, 9;
1976 mvi SG_CACHE_PRE, LAST_SEG;
1977 mvi DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN);
1978 call pkt_handle_cdb;
1979 or SEQINTCTL, IRET ret;
1980
1981/*
1982 * See if the target has gone on in this context creating an
1983 * overrun condition. For the write case, the hardware cannot
1984 * ack bytes until data are provided. So, if the target begins
1985 * another packet without changing contexts, implying we are
1986 * not sitting on a packet boundary, we are in an overrun
1987 * situation. For the read case, the hardware will continue to
1988 * ack bytes into the FIFO, and may even ack the last overrun packet
1989 * into the FIFO. If the FIFO should become non-empty, we are in
1990 * a read overrun case.
1991 */
1992#define check_overrun \
1993 /* Not on a packet boundary. */ \
1994 test MDFFSTAT, DLZERO jz pkt_handle_overrun; \
1995 test DFSTATUS, FIFOEMP jz pkt_handle_overrun
1996
1997pkt_handle_xfer:
1998 test SG_STATE, LOADING_NEEDED jz pkt_last_seg;
1999 call setjmp;
2000 test SEQINTSRC, SAVEPTRS jnz pkt_saveptrs;
2001 test SCSIPHASE, ~DATA_PHASE_MASK jz . + 2;
2002 test SCSISIGO, ATNO jnz . + 2;
2003 test SSTAT2, NONPACKREQ jz pkt_service_fifo;
2004 /*
2005 * Defer handling of this NONPACKREQ until we
2006 * can be sure it pertains to this FIFO. SAVEPTRS
2007 * will not be asserted if the NONPACKREQ is for us,
2008 * so we must simulate it if shaddow is valid. If
2009 * shaddow is not valid, keep running this FIFO until we
2010 * have satisfied the transfer by loading segments and
2011 * waiting for either shaddow valid or last_seg_done.
2012 */
2013 test MDFFSTAT, SHVALID jnz pkt_saveptrs;
2014pkt_service_fifo:
2015 test SG_STATE, LOADING_NEEDED jnz service_fifo;
2016pkt_last_seg:
2017 call setjmp;
2018 test SEQINTSRC, SAVEPTRS jnz pkt_saveptrs;
2019 test SG_CACHE_SHADOW, LAST_SEG_DONE jnz pkt_last_seg_done;
2020 test SCSIPHASE, ~DATA_PHASE_MASK jz . + 2;
2021 test SCSISIGO, ATNO jnz . + 2;
2022 test SSTAT2, NONPACKREQ jz return;
2023 test MDFFSTAT, SHVALID jz return;
2024 /* FALLTHROUGH */
2025
2026/*
2027 * Either a SAVEPTRS interrupt condition is pending for this FIFO
2028 * or we have a pending NONPACKREQ for this FIFO. We differentiate
2029 * between the two by capturing the state of the SAVEPTRS interrupt
2030 * prior to clearing this status and executing the common code for
2031 * these two cases.
2032 */
2033pkt_saveptrs:
2034BEGIN_CRITICAL;
2035 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) {
2036 or DFCNTRL, FIFOFLUSH;
2037 }
2038 mov REG0, SEQINTSRC;
2039 call calc_residual;
2040 call save_pointers;
2041 mvi CLRSEQINTSRC, CLRSAVEPTRS;
2042 call disable_ccsgen;
2043 or SEQIMODE, ENSAVEPTRS;
2044 test DFCNTRL, DIRECTION jnz pkt_saveptrs_check_status;
2045 test DFSTATUS, FIFOEMP jnz pkt_saveptrs_check_status;
2046 /*
2047 * Keep a handler around for this FIFO until it drains
2048 * to the host to guarantee that we don't complete the
2049 * command to the host before the data arrives.
2050 */
2051pkt_saveptrs_wait_fifoemp:
2052 call setjmp;
2053 test DFSTATUS, FIFOEMP jz return;
2054pkt_saveptrs_check_status:
2055 or LONGJMP_ADDR[1], INVALID_ADDR;
2056 test REG0, SAVEPTRS jz unexpected_nonpkt_phase;
2057 dec SCB_FIFO_USE_COUNT;
2058 test SCB_CONTROL, STATUS_RCVD jnz pkt_complete_scb_if_fifos_idle;
2059 mvi DFFSXFRCTL, CLRCHN ret;
2060
2061/*
2062 * LAST_SEG_DONE status has been seen in the current FIFO.
2063 * This indicates that all of the allowed data for this
2064 * command has transferred across the SCSI and host buses.
2065 * Check for overrun and see if we can complete this command.
2066 */
2067pkt_last_seg_done:
2068 /*
2069 * Mark transfer as completed.
2070 */
2071 or SCB_SGPTR, SG_LIST_NULL;
2072
2073 /*
2074 * Wait for the current context to finish to verify that
2075 * no overrun condition has occurred.
2076 */
2077 test SEQINTSRC, CTXTDONE jnz pkt_ctxt_done;
2078 call setjmp;
2079pkt_wait_ctxt_done_loop:
2080 test SEQINTSRC, CTXTDONE jnz pkt_ctxt_done;
2081 /*
2082 * A sufficiently large overrun or a NONPACKREQ may
2083 * prevent CTXTDONE from ever asserting, so we must
2084 * poll for these statuses too.
2085 */
2086 check_overrun;
2087 test SSTAT2, NONPACKREQ jz return;
2088 test SEQINTSRC, CTXTDONE jz unexpected_nonpkt_phase;
2089 /* FALLTHROUGH */
2090
2091pkt_ctxt_done:
2092 check_overrun;
2093 or LONGJMP_ADDR[1], INVALID_ADDR;
2094 /*
2095 * If status has been received, it is safe to skip
2096 * the check to see if another FIFO is active because
2097 * LAST_SEG_DONE has been observed. However, we check
2098 * the FIFO anyway since it costs us only one extra
2099 * instruction to leverage common code to perform the
2100 * SCB completion.
2101 */
2102 dec SCB_FIFO_USE_COUNT;
2103 test SCB_CONTROL, STATUS_RCVD jnz pkt_complete_scb_if_fifos_idle;
2104 mvi DFFSXFRCTL, CLRCHN ret;
2105END_CRITICAL;
2106
2107/*
2108 * Must wait until CDB xfer is over before issuing the
2109 * clear channel.
2110 */
2111pkt_handle_cdb:
2112 call setjmp;
2113 test SG_CACHE_SHADOW, LAST_SEG_DONE jz return;
2114 or LONGJMP_ADDR[1], INVALID_ADDR;
2115 mvi DFFSXFRCTL, CLRCHN ret;
2116
2117/*
2118 * Watch over the status transfer. Our host sense buffer is
2119 * large enough to take the maximum allowed status packet.
2120 * None-the-less, we must still catch and report overruns to
2121 * the host. Additionally, properly catch unexpected non-packet
2122 * phases that are typically caused by CRC errors in status packet
2123 * transmission.
2124 */
2125pkt_handle_status:
2126 call setjmp;
2127 test SG_CACHE_SHADOW, LAST_SEG_DONE jnz pkt_status_check_overrun;
2128 test SEQINTSRC, CTXTDONE jz pkt_status_check_nonpackreq;
2129 test SG_CACHE_SHADOW, LAST_SEG_DONE jnz pkt_status_check_overrun;
2130pkt_status_IU_done:
2131 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) {
2132 or DFCNTRL, FIFOFLUSH;
2133 }
2134 test DFSTATUS, FIFOEMP jz return;
2135BEGIN_CRITICAL;
2136 or LONGJMP_ADDR[1], INVALID_ADDR;
2137 mvi SCB_SCSI_STATUS, STATUS_PKT_SENSE;
2138 or SCB_CONTROL, STATUS_RCVD;
2139 jmp pkt_complete_scb_if_fifos_idle;
2140END_CRITICAL;
2141pkt_status_check_overrun:
2142 /*
2143 * Status PKT overruns are unceremoniously recovered with a
2144 * bus reset. If we've overrun, let the host know so that
2145 * recovery can be performed.
2146 *
2147 * LAST_SEG_DONE has been observed. If either CTXTDONE or
2148 * a NONPACKREQ phase change have occurred and the FIFO is
2149 * empty, there is no overrun.
2150 */
2151 test DFSTATUS, FIFOEMP jz pkt_status_report_overrun;
2152 test SEQINTSRC, CTXTDONE jz . + 2;
2153 test DFSTATUS, FIFOEMP jnz pkt_status_IU_done;
2154 test SCSIPHASE, ~DATA_PHASE_MASK jz return;
2155 test DFSTATUS, FIFOEMP jnz pkt_status_check_nonpackreq;
2156pkt_status_report_overrun:
2157 SET_SEQINTCODE(STATUS_OVERRUN)
2158 /* SEQUENCER RESTARTED */
2159pkt_status_check_nonpackreq:
2160 /*
2161 * CTXTDONE may be held off if a NONPACKREQ is associated with
2162 * the current context. If a NONPACKREQ is observed, decide
2163 * if it is for the current context. If it is for the current
2164 * context, we must defer NONPACKREQ processing until all data
2165 * has transferred to the host.
2166 */
2167 test SCSIPHASE, ~DATA_PHASE_MASK jz return;
2168 test SCSISIGO, ATNO jnz . + 2;
2169 test SSTAT2, NONPACKREQ jz return;
2170 test SEQINTSRC, CTXTDONE jnz pkt_status_IU_done;
2171 test DFSTATUS, FIFOEMP jz return;
2172 /*
2173 * The unexpected nonpkt phase handler assumes that any
2174 * data channel use will have a FIFO reference count. It
2175 * turns out that the status handler doesn't need a refernce
2176 * count since the status received flag, and thus completion
2177 * processing, cannot be set until the handler is finished.
2178 * We increment the count here to make the nonpkt handler
2179 * happy.
2180 */
2181 inc SCB_FIFO_USE_COUNT;
2182 /* FALLTHROUGH */
2183
2184/*
2185 * Nonpackreq is a polled status. It can come true in three situations:
2186 * we have received an L_Q, we have sent one or more L_Qs, or there is no
2187 * L_Q context associated with this REQ (REQ occurs immediately after a
2188 * (re)selection). Routines that know that the context responsible for this
2189 * nonpackreq call directly into unexpected_nonpkt_phase. In the case of the
2190 * top level idle loop, we exhaust all active contexts prior to determining that
2191 * we simply do not have the full I_T_L_Q for this phase.
2192 */
2193unexpected_nonpkt_phase_find_ctxt:
2194 /*
2195 * This nonpackreq is most likely associated with one of the tags
2196 * in a FIFO or an outgoing LQ. Only treat it as an I_T only
2197 * nonpackreq if we've cleared out the FIFOs and handled any
2198 * pending SELDO.
2199 */
2200SET_SRC_MODE M_SCSI;
2201SET_DST_MODE M_SCSI;
2202 and A, FIFO1FREE|FIFO0FREE, DFFSTAT;
2203 cmp A, FIFO1FREE|FIFO0FREE jne return;
2204 test SSTAT0, SELDO jnz return;
2205 mvi SCBPTR[1], SCB_LIST_NULL;
2206unexpected_nonpkt_phase:
2207 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1))
2208 jnz unexpected_nonpkt_mode_cleared;
2209SET_SRC_MODE M_DFF0;
2210SET_DST_MODE M_DFF0;
2211 or LONGJMP_ADDR[1], INVALID_ADDR;
2212 dec SCB_FIFO_USE_COUNT;
2213 mvi DFFSXFRCTL, CLRCHN;
2214unexpected_nonpkt_mode_cleared:
2215 mvi CLRSINT2, CLRNONPACKREQ;
2216 if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) {
2217 /*
2218 * Test to ensure that the bus has not
2219 * already gone free prior to clearing
2220 * any stale busfree status. This avoids
2221 * a window whereby a busfree just after
2222 * a selection could be missed.
2223 */
2224 test SCSISIGI, BSYI jz . + 2;
2225 mvi CLRSINT1,CLRBUSFREE;
2226 or SIMODE1, ENBUSFREE;
2227 }
2228 test SCSIPHASE, ~(MSG_IN_PHASE|MSG_OUT_PHASE) jnz illegal_phase;
2229 SET_SEQINTCODE(ENTERING_NONPACK)
2230 jmp ITloop;
2231
2232illegal_phase:
2233 SET_SEQINTCODE(ILLEGAL_PHASE)
2234 jmp ITloop;
2235
2236/*
2237 * We have entered an overrun situation. If we have working
2238 * BITBUCKET, flip that on and let the hardware eat any overrun
2239 * data. Otherwise use an overrun buffer in the host to simulate
2240 * BITBUCKET.
2241 */
2242pkt_handle_overrun_inc_use_count:
2243 inc SCB_FIFO_USE_COUNT;
2244pkt_handle_overrun:
2245 SET_SEQINTCODE(CFG4OVERRUN)
2246 call freeze_queue;
2247 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) == 0) {
2248 or DFFSXFRCTL, DFFBITBUCKET;
2249SET_SRC_MODE M_DFF1;
2250SET_DST_MODE M_DFF1;
2251 } else {
2252 call load_overrun_buf;
2253 mvi DFCNTRL, (HDMAEN|SCSIEN|PRELOADEN);
2254 }
2255 call setjmp;
2256 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) {
2257 test DFSTATUS, PRELOAD_AVAIL jz overrun_load_done;
2258 call load_overrun_buf;
2259 or DFCNTRL, PRELOADEN;
2260overrun_load_done:
2261 test SEQINTSRC, CTXTDONE jnz pkt_overrun_end;
2262 } else {
2263 test DFFSXFRCTL, DFFBITBUCKET jz pkt_overrun_end;
2264 }
2265 test SSTAT2, NONPACKREQ jz return;
2266pkt_overrun_end:
2267 or SCB_RESIDUAL_SGPTR, SG_OVERRUN_RESID;
2268 test SEQINTSRC, CTXTDONE jz unexpected_nonpkt_phase;
2269 dec SCB_FIFO_USE_COUNT;
2270 or LONGJMP_ADDR[1], INVALID_ADDR;
2271 test SCB_CONTROL, STATUS_RCVD jnz pkt_complete_scb_if_fifos_idle;
2272 mvi DFFSXFRCTL, CLRCHN ret;
2273
2274if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) {
2275load_overrun_buf:
2276 /*
2277 * Load a dummy segment if preload space is available.
2278 */
2279 mov HADDR[0], SHARED_DATA_ADDR;
2280 add HADDR[1], PKT_OVERRUN_BUFOFFSET, SHARED_DATA_ADDR[1];
2281 mov ACCUM_SAVE, A;
2282 clr A;
2283 adc HADDR[2], A, SHARED_DATA_ADDR[2];
2284 adc HADDR[3], A, SHARED_DATA_ADDR[3];
2285 mov A, ACCUM_SAVE;
2286 bmov HADDR[4], ALLZEROS, 4;
2287 /* PKT_OVERRUN_BUFSIZE is a multiple of 256 */
2288 clr HCNT[0];
2289 mvi HCNT[1], ((PKT_OVERRUN_BUFSIZE >> 8) & 0xFF);
2290 clr HCNT[2] ret;
2291}