Add TDF_NETWORK lwkt flag, so various assertion could be performed to make sure
[dragonfly.git] / sys / sys / thread.h
... / ...
CommitLineData
1/*
2 * SYS/THREAD.H
3 *
4 * Implements the architecture independant portion of the LWKT
5 * subsystem.
6 *
7 * Types which must already be defined when this header is included by
8 * userland: struct md_thread
9 *
10 * $DragonFly: src/sys/sys/thread.h,v 1.97 2008/09/20 04:31:02 sephe Exp $
11 */
12
13#ifndef _SYS_THREAD_H_
14#define _SYS_THREAD_H_
15
16#ifndef _SYS_STDINT_H_
17#include <sys/stdint.h> /* __int types */
18#endif
19#ifndef _SYS_PARAM_H_
20#include <sys/param.h> /* MAXCOMLEN */
21#endif
22#ifndef _SYS_QUEUE_H_
23#include <sys/queue.h> /* TAILQ_* macros */
24#endif
25#ifndef _SYS_MSGPORT_H_
26#include <sys/msgport.h> /* lwkt_port */
27#endif
28#ifndef _SYS_TIME_H_
29#include <sys/time.h> /* struct timeval */
30#endif
31#ifndef _SYS_SPINLOCK_H_
32#include <sys/spinlock.h>
33#endif
34#ifndef _MACHINE_THREAD_H_
35#include <machine/thread.h>
36#endif
37
38struct globaldata;
39struct lwp;
40struct proc;
41struct thread;
42struct lwkt_queue;
43struct lwkt_token;
44struct lwkt_tokref;
45struct lwkt_ipiq;
46struct lwkt_cpu_msg;
47struct lwkt_cpu_port;
48struct lwkt_msg;
49struct lwkt_port;
50struct lwkt_cpusync;
51union sysunion;
52
53typedef struct lwkt_queue *lwkt_queue_t;
54typedef struct lwkt_token *lwkt_token_t;
55typedef struct lwkt_tokref *lwkt_tokref_t;
56typedef struct lwkt_cpu_msg *lwkt_cpu_msg_t;
57typedef struct lwkt_cpu_port *lwkt_cpu_port_t;
58typedef struct lwkt_ipiq *lwkt_ipiq_t;
59typedef struct lwkt_cpusync *lwkt_cpusync_t;
60typedef struct thread *thread_t;
61
62typedef TAILQ_HEAD(lwkt_queue, thread) lwkt_queue;
63
64/*
65 * Differentiation between kernel threads and user threads. Userland
66 * programs which want to access to kernel structures have to define
67 * _KERNEL_STRUCTURES. This is a kinda safety valve to prevent badly
68 * written user programs from getting an LWKT thread that is neither the
69 * kernel nor the user version.
70 */
71#if defined(_KERNEL) || defined(_KERNEL_STRUCTURES)
72#ifndef _MACHINE_THREAD_H_
73#include <machine/thread.h> /* md_thread */
74#endif
75#ifndef _MACHINE_FRAME_H_
76#include <machine/frame.h>
77#endif
78#else
79struct intrframe;
80#endif
81
82/*
83 * Tokens are used to serialize access to information. They are 'soft'
84 * serialization entities that only stay in effect while a thread is
85 * running. If the thread blocks, other threads can run holding the same
86 * token(s). The tokens are reacquired when the original thread resumes.
87 *
88 * A thread can depend on its serialization remaining intact through a
89 * preemption. An interrupt which attempts to use the same token as the
90 * thread being preempted will reschedule itself for non-preemptive
91 * operation, so the new token code is capable of interlocking against
92 * interrupts as well as other cpus. This means that your token can only
93 * be (temporarily) lost if you *explicitly* block.
94 *
95 * Tokens are managed through a helper reference structure, lwkt_tokref,
96 * which is typically declared on the caller's stack. Multiple tokref's
97 * may reference the same token.
98 *
99 * It is possible to detect that your token was temporarily lost via
100 * lwkt_token_is_stale(), which uses the t_lastowner field. This field
101 * does NOT necessarily represent the current owner and can become stale
102 * (not point to a valid structure). It is used solely to detect
103 * whether the token was temporarily lost to another thread. The lost
104 * state is cleared by the function.
105 */
106
107typedef struct lwkt_token {
108#ifdef SMP
109 struct spinlock t_spinlock; /* Controls access */
110#else
111 struct spinlock t_unused01;
112#endif
113 struct thread *t_owner; /* The current owner of the token */
114 int t_count; /* Per-thread count */
115 struct thread *t_lastowner; /* Last owner that acquired token */
116} lwkt_token;
117
118typedef struct lwkt_tokref {
119 lwkt_token_t tr_tok; /* token in question */
120 lwkt_tokref_t tr_next; /* linked list */
121 int tr_state; /* 0 = don't have, 1 = have */
122} lwkt_tokref;
123
124#define LWKT_TOKREF_INIT(tok) \
125 { tok, NULL, 0 }
126#define LWKT_TOKREF_DECLARE(name, tok) \
127 lwkt_tokref name = LWKT_TOKREF_INIT(tok)
128
129#define MAXCPUFIFO 16 /* power of 2 */
130#define MAXCPUFIFO_MASK (MAXCPUFIFO - 1)
131#define LWKT_MAXTOKENS 16 /* max tokens beneficially held by thread */
132
133/*
134 * Always cast to ipifunc_t when registering an ipi. The actual ipi function
135 * is called with both the data and an interrupt frame, but the ipi function
136 * that is registered might only declare a data argument.
137 */
138typedef void (*ipifunc1_t)(void *arg);
139typedef void (*ipifunc2_t)(void *arg, int arg2);
140typedef void (*ipifunc3_t)(void *arg, int arg2, struct intrframe *frame);
141
142typedef struct lwkt_ipiq {
143 int ip_rindex; /* only written by target cpu */
144 int ip_xindex; /* written by target, indicates completion */
145 int ip_windex; /* only written by source cpu */
146 ipifunc3_t ip_func[MAXCPUFIFO];
147 void *ip_arg1[MAXCPUFIFO];
148 int ip_arg2[MAXCPUFIFO];
149 u_int ip_npoll; /* synchronization to avoid excess IPIs */
150} lwkt_ipiq;
151
152/*
153 * CPU Synchronization structure. See lwkt_cpusync_start() and
154 * lwkt_cpusync_finish() for more information.
155 */
156typedef void (*cpusync_func_t)(lwkt_cpusync_t poll);
157typedef void (*cpusync_func2_t)(void *data);
158
159struct lwkt_cpusync {
160 cpusync_func_t cs_run_func; /* run (tandem w/ acquire) */
161 cpusync_func_t cs_fin1_func; /* fin1 (synchronized) */
162 cpusync_func2_t cs_fin2_func; /* fin2 (tandem w/ release) */
163 void *cs_data;
164 int cs_maxcount;
165 volatile int cs_count;
166 cpumask_t cs_mask;
167};
168
169/*
170 * The standard message and queue structure used for communications between
171 * cpus. Messages are typically queued via a machine-specific non-linked
172 * FIFO matrix allowing any cpu to send a message to any other cpu without
173 * blocking.
174 */
175typedef struct lwkt_cpu_msg {
176 void (*cm_func)(lwkt_cpu_msg_t msg); /* primary dispatch function */
177 int cm_code; /* request code if applicable */
178 int cm_cpu; /* reply to cpu */
179 thread_t cm_originator; /* originating thread for wakeup */
180} lwkt_cpu_msg;
181
182/*
183 * Thread structure. Note that ownership of a thread structure is special
184 * cased and there is no 'token'. A thread is always owned by the cpu
185 * represented by td_gd, any manipulation of the thread by some other cpu
186 * must be done through cpu_*msg() functions. e.g. you could request
187 * ownership of a thread that way, or hand a thread off to another cpu.
188 *
189 * NOTE: td_pri is bumped by TDPRI_CRIT when entering a critical section,
190 * but this does not effect how the thread is scheduled by LWKT.
191 */
192struct md_intr_info;
193struct caps_kinfo;
194
195struct thread {
196 TAILQ_ENTRY(thread) td_threadq;
197 TAILQ_ENTRY(thread) td_allq;
198 lwkt_port td_msgport; /* built-in message port for replies */
199 struct lwp *td_lwp; /* (optional) associated lwp */
200 struct proc *td_proc; /* (optional) associated process */
201 struct pcb *td_pcb; /* points to pcb and top of kstack */
202 struct globaldata *td_gd; /* associated with this cpu */
203 const char *td_wmesg; /* string name for blockage */
204 void *td_wchan; /* waiting on channel */
205 int td_pri; /* 0-31, 31=highest priority (note 1) */
206 int td_flags; /* TDF flags */
207 int td_wdomain; /* domain for wchan address (typ 0) */
208 void (*td_preemptable)(struct thread *td, int critpri);
209 void (*td_release)(struct thread *td);
210 char *td_kstack; /* kernel stack */
211 int td_kstack_size; /* size of kernel stack */
212 char *td_sp; /* kernel stack pointer for LWKT restore */
213 void (*td_switch)(struct thread *ntd);
214 __uint64_t td_uticks; /* Statclock hits in user mode (uS) */
215 __uint64_t td_sticks; /* Statclock hits in system mode (uS) */
216 __uint64_t td_iticks; /* Statclock hits processing intr (uS) */
217 int td_locks; /* lockmgr lock debugging */
218 int td_unused01;
219 int td_refs; /* hold position in gd_tdallq / hold free */
220 int td_nest_count; /* prevent splz nesting */
221#ifdef SMP
222 int td_mpcount; /* MP lock held (count) */
223 int td_cscount; /* cpu synchronization master */
224#else
225 int td_mpcount_unused; /* filler so size matches */
226 int td_cscount_unused;
227#endif
228 struct timeval td_start; /* start time for a thread/process */
229 char td_comm[MAXCOMLEN+1]; /* typ 16+1 bytes */
230 struct thread *td_preempted; /* we preempted this thread */
231 struct caps_kinfo *td_caps; /* list of client and server registrations */
232 lwkt_tokref_t td_toks; /* tokens beneficially held */
233#ifdef DEBUG_CRIT_SECTIONS
234#define CRIT_DEBUG_ARRAY_SIZE 32
235#define CRIT_DEBUG_ARRAY_MASK (CRIT_DEBUG_ARRAY_SIZE - 1)
236 const char *td_crit_debug_array[CRIT_DEBUG_ARRAY_SIZE];
237 int td_crit_debug_index;
238 int td_in_crit_report;
239#endif
240 struct md_thread td_mach;
241};
242
243/*
244 * Thread flags. Note that TDF_RUNNING is cleared on the old thread after
245 * we switch to the new one, which is necessary because LWKTs don't need
246 * to hold the BGL. This flag is used by the exit code and the managed
247 * thread migration code. Note in addition that preemption will cause
248 * TDF_RUNNING to be cleared temporarily, so any code checking TDF_RUNNING
249 * must also check TDF_PREEMPT_LOCK.
250 *
251 * LWKT threads stay on their (per-cpu) run queue while running, not to
252 * be confused with user processes which are removed from the user scheduling
253 * run queue while actually running.
254 *
255 * td_threadq can represent the thread on one of three queues... the LWKT
256 * run queue, a tsleep queue, or an lwkt blocking queue. The LWKT subsystem
257 * does not allow a thread to be scheduled if it already resides on some
258 * queue.
259 */
260#define TDF_RUNNING 0x0001 /* thread still active */
261#define TDF_RUNQ 0x0002 /* on an LWKT run queue */
262#define TDF_PREEMPT_LOCK 0x0004 /* I have been preempted */
263#define TDF_PREEMPT_DONE 0x0008 /* acknowledge preemption complete */
264#define TDF_IDLE_NOHLT 0x0010 /* we need to spin */
265#define TDF_MIGRATING 0x0020 /* thread is being migrated */
266#define TDF_SINTR 0x0040 /* interruptability hint for 'ps' */
267#define TDF_TSLEEPQ 0x0080 /* on a tsleep wait queue */
268
269#define TDF_SYSTHREAD 0x0100 /* allocations may use reserve */
270#define TDF_ALLOCATED_THREAD 0x0200 /* objcache allocated thread */
271#define TDF_ALLOCATED_STACK 0x0400 /* objcache allocated stack */
272#define TDF_VERBOSE 0x0800 /* verbose on exit */
273#define TDF_DEADLKTREAT 0x1000 /* special lockmgr deadlock treatment */
274#define TDF_STOPREQ 0x2000 /* suspend_kproc */
275#define TDF_WAKEREQ 0x4000 /* resume_kproc */
276#define TDF_TIMEOUT 0x8000 /* tsleep timeout */
277#define TDF_INTTHREAD 0x00010000 /* interrupt thread */
278#define TDF_UNUSED20000 0x00020000
279#define TDF_BLOCKED 0x00040000 /* Thread is blocked */
280#define TDF_PANICWARN 0x00080000 /* panic warning in switch */
281#define TDF_BLOCKQ 0x00100000 /* on block queue */
282#define TDF_MPSAFE 0x00200000 /* (thread creation) */
283#define TDF_EXITING 0x00400000 /* thread exiting */
284#define TDF_USINGFP 0x00800000 /* thread using fp coproc */
285#define TDF_KERNELFP 0x01000000 /* kernel using fp coproc */
286#define TDF_NETWORK 0x02000000 /* network proto thread */
287
288/*
289 * Thread priorities. Typically only one thread from any given
290 * user process scheduling queue is on the LWKT run queue at a time.
291 * Remember that there is one LWKT run queue per cpu.
292 *
293 * Critical sections are handled by bumping td_pri above TDPRI_MAX, which
294 * causes interrupts to be masked as they occur. When this occurs a
295 * rollup flag will be set in mycpu->gd_reqflags.
296 */
297#define TDPRI_IDLE_THREAD 0 /* the idle thread */
298#define TDPRI_USER_SCHEDULER 2 /* user scheduler helper */
299#define TDPRI_USER_IDLE 4 /* user scheduler idle */
300#define TDPRI_USER_NORM 6 /* user scheduler normal */
301#define TDPRI_USER_REAL 8 /* user scheduler real time */
302#define TDPRI_KERN_LPSCHED 9 /* scheduler helper for userland sch */
303#define TDPRI_KERN_USER 10 /* kernel / block in syscall */
304#define TDPRI_KERN_DAEMON 12 /* kernel daemon (pageout, etc) */
305#define TDPRI_SOFT_NORM 14 /* kernel / normal */
306#define TDPRI_SOFT_TIMER 16 /* kernel / timer */
307#define TDPRI_EXITING 19 /* exiting thread */
308#define TDPRI_INT_SUPPORT 20 /* kernel / high priority support */
309#define TDPRI_INT_LOW 27 /* low priority interrupt */
310#define TDPRI_INT_MED 28 /* medium priority interrupt */
311#define TDPRI_INT_HIGH 29 /* high priority interrupt */
312#define TDPRI_MAX 31
313
314#define TDPRI_MASK 31
315#define TDPRI_CRIT 32 /* high bits of td_pri used for crit */
316
317#ifdef _KERNEL
318#define LWKT_THREAD_STACK (UPAGES * PAGE_SIZE)
319#endif
320
321#define CACHE_NTHREADS 6
322
323#define IN_CRITICAL_SECT(td) ((td)->td_pri >= TDPRI_CRIT)
324
325extern void lwkt_init(void);
326extern struct thread *lwkt_alloc_thread(struct thread *, int, int, int);
327extern void lwkt_init_thread(struct thread *, void *, int, int,
328 struct globaldata *);
329extern void lwkt_set_comm(thread_t, const char *, ...);
330extern void lwkt_wait_free(struct thread *);
331extern void lwkt_free_thread(struct thread *);
332extern void lwkt_gdinit(struct globaldata *);
333extern void lwkt_switch(void);
334extern void lwkt_preempt(thread_t, int);
335extern void lwkt_schedule(thread_t);
336extern void lwkt_schedule_noresched(thread_t);
337extern void lwkt_schedule_self(thread_t);
338extern void lwkt_deschedule(thread_t);
339extern void lwkt_deschedule_self(thread_t);
340extern void lwkt_yield(void);
341extern void lwkt_yield_quick(void);
342extern void lwkt_token_wait(void);
343extern void lwkt_hold(thread_t);
344extern void lwkt_rele(thread_t);
345
346extern void lwkt_gettoken(lwkt_tokref_t, lwkt_token_t);
347extern int lwkt_trytoken(lwkt_tokref_t, lwkt_token_t);
348extern void lwkt_gettokref(lwkt_tokref_t);
349extern int lwkt_trytokref(lwkt_tokref_t);
350extern void lwkt_reltoken(lwkt_tokref_t);
351extern int lwkt_getalltokens(thread_t);
352extern void lwkt_relalltokens(thread_t);
353extern void lwkt_drain_token_requests(void);
354extern void lwkt_token_init(lwkt_token_t);
355extern void lwkt_token_uninit(lwkt_token_t);
356extern int lwkt_token_is_stale(lwkt_tokref_t);
357
358extern void lwkt_token_pool_init(void);
359extern lwkt_token_t lwkt_token_pool_get(void *);
360
361extern void lwkt_setpri(thread_t, int);
362extern void lwkt_setpri_self(int);
363extern void lwkt_setcpu_self(struct globaldata *);
364extern void lwkt_migratecpu(int);
365
366#ifdef SMP
367
368extern void lwkt_giveaway(struct thread *);
369extern void lwkt_acquire(struct thread *);
370extern int lwkt_send_ipiq3(struct globaldata *, ipifunc3_t, void *, int);
371extern int lwkt_send_ipiq3_passive(struct globaldata *, ipifunc3_t,
372 void *, int);
373extern int lwkt_send_ipiq3_nowait(struct globaldata *, ipifunc3_t,
374 void *, int);
375extern int lwkt_send_ipiq3_bycpu(int, ipifunc3_t, void *, int);
376extern int lwkt_send_ipiq3_mask(cpumask_t, ipifunc3_t, void *, int);
377extern void lwkt_wait_ipiq(struct globaldata *, int);
378extern int lwkt_seq_ipiq(struct globaldata *);
379extern void lwkt_process_ipiq(void);
380#ifdef _KERNEL
381extern void lwkt_process_ipiq_frame(struct intrframe *);
382#endif
383extern void lwkt_smp_stopped(void);
384extern void lwkt_synchronize_ipiqs(const char *);
385
386#endif /* SMP */
387
388extern void lwkt_cpusync_simple(cpumask_t, cpusync_func_t, void *);
389extern void lwkt_cpusync_fastdata(cpumask_t, cpusync_func2_t, void *);
390extern void lwkt_cpusync_start(cpumask_t, lwkt_cpusync_t);
391extern void lwkt_cpusync_add(cpumask_t, lwkt_cpusync_t);
392extern void lwkt_cpusync_finish(lwkt_cpusync_t);
393
394extern void crit_panic(void);
395extern struct lwp *lwkt_preempted_proc(void);
396
397extern int lwkt_create (void (*func)(void *), void *, struct thread **,
398 struct thread *, int, int, const char *, ...);
399extern void lwkt_exit (void) __dead2;
400extern void lwkt_remove_tdallq (struct thread *);
401extern void lwkt_mp_lock_contested(void);
402
403#endif
404