kevent(2): Set errno properly
[dragonfly.git] / sys / kern / kern_event.c
... / ...
CommitLineData
1/*-
2 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 *
26 * $FreeBSD: src/sys/kern/kern_event.c,v 1.2.2.10 2004/04/04 07:03:14 cperciva Exp $
27 * $DragonFly: src/sys/kern/kern_event.c,v 1.33 2007/02/03 17:05:57 corecode Exp $
28 */
29
30#include <sys/param.h>
31#include <sys/systm.h>
32#include <sys/kernel.h>
33#include <sys/proc.h>
34#include <sys/malloc.h>
35#include <sys/unistd.h>
36#include <sys/file.h>
37#include <sys/lock.h>
38#include <sys/fcntl.h>
39#include <sys/queue.h>
40#include <sys/event.h>
41#include <sys/eventvar.h>
42#include <sys/protosw.h>
43#include <sys/socket.h>
44#include <sys/socketvar.h>
45#include <sys/stat.h>
46#include <sys/sysctl.h>
47#include <sys/sysproto.h>
48#include <sys/thread.h>
49#include <sys/uio.h>
50#include <sys/signalvar.h>
51#include <sys/filio.h>
52#include <sys/ktr.h>
53
54#include <sys/thread2.h>
55#include <sys/file2.h>
56#include <sys/mplock2.h>
57
58/*
59 * Global token for kqueue subsystem
60 */
61struct lwkt_token kq_token = LWKT_TOKEN_INITIALIZER(kq_token);
62SYSCTL_LONG(_lwkt, OID_AUTO, kq_collisions,
63 CTLFLAG_RW, &kq_token.t_collisions, 0,
64 "Collision counter of kq_token");
65
66MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system");
67
68struct kevent_copyin_args {
69 struct kevent_args *ka;
70 int pchanges;
71};
72
73static int kqueue_sleep(struct kqueue *kq, struct timespec *tsp);
74static int kqueue_scan(struct kqueue *kq, struct kevent *kevp, int count,
75 struct knote *marker);
76static int kqueue_read(struct file *fp, struct uio *uio,
77 struct ucred *cred, int flags);
78static int kqueue_write(struct file *fp, struct uio *uio,
79 struct ucred *cred, int flags);
80static int kqueue_ioctl(struct file *fp, u_long com, caddr_t data,
81 struct ucred *cred, struct sysmsg *msg);
82static int kqueue_kqfilter(struct file *fp, struct knote *kn);
83static int kqueue_stat(struct file *fp, struct stat *st,
84 struct ucred *cred);
85static int kqueue_close(struct file *fp);
86static void kqueue_wakeup(struct kqueue *kq);
87static int filter_attach(struct knote *kn);
88static int filter_event(struct knote *kn, long hint);
89
90/*
91 * MPSAFE
92 */
93static struct fileops kqueueops = {
94 .fo_read = kqueue_read,
95 .fo_write = kqueue_write,
96 .fo_ioctl = kqueue_ioctl,
97 .fo_kqfilter = kqueue_kqfilter,
98 .fo_stat = kqueue_stat,
99 .fo_close = kqueue_close,
100 .fo_shutdown = nofo_shutdown
101};
102
103static void knote_attach(struct knote *kn);
104static void knote_drop(struct knote *kn);
105static void knote_detach_and_drop(struct knote *kn);
106static void knote_enqueue(struct knote *kn);
107static void knote_dequeue(struct knote *kn);
108static struct knote *knote_alloc(void);
109static void knote_free(struct knote *kn);
110
111static void filt_kqdetach(struct knote *kn);
112static int filt_kqueue(struct knote *kn, long hint);
113static int filt_procattach(struct knote *kn);
114static void filt_procdetach(struct knote *kn);
115static int filt_proc(struct knote *kn, long hint);
116static int filt_fileattach(struct knote *kn);
117static void filt_timerexpire(void *knx);
118static int filt_timerattach(struct knote *kn);
119static void filt_timerdetach(struct knote *kn);
120static int filt_timer(struct knote *kn, long hint);
121
122static struct filterops file_filtops =
123 { FILTEROP_ISFD, filt_fileattach, NULL, NULL };
124static struct filterops kqread_filtops =
125 { FILTEROP_ISFD, NULL, filt_kqdetach, filt_kqueue };
126static struct filterops proc_filtops =
127 { 0, filt_procattach, filt_procdetach, filt_proc };
128static struct filterops timer_filtops =
129 { 0, filt_timerattach, filt_timerdetach, filt_timer };
130
131static int kq_ncallouts = 0;
132static int kq_calloutmax = (4 * 1024);
133SYSCTL_INT(_kern, OID_AUTO, kq_calloutmax, CTLFLAG_RW,
134 &kq_calloutmax, 0, "Maximum number of callouts allocated for kqueue");
135static int kq_checkloop = 1000000;
136SYSCTL_INT(_kern, OID_AUTO, kq_checkloop, CTLFLAG_RW,
137 &kq_checkloop, 0, "Maximum number of callouts allocated for kqueue");
138
139#define KNOTE_ACTIVATE(kn) do { \
140 kn->kn_status |= KN_ACTIVE; \
141 if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) \
142 knote_enqueue(kn); \
143} while(0)
144
145#define KN_HASHSIZE 64 /* XXX should be tunable */
146#define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
147
148extern struct filterops aio_filtops;
149extern struct filterops sig_filtops;
150
151/*
152 * Table for for all system-defined filters.
153 */
154static struct filterops *sysfilt_ops[] = {
155 &file_filtops, /* EVFILT_READ */
156 &file_filtops, /* EVFILT_WRITE */
157 &aio_filtops, /* EVFILT_AIO */
158 &file_filtops, /* EVFILT_VNODE */
159 &proc_filtops, /* EVFILT_PROC */
160 &sig_filtops, /* EVFILT_SIGNAL */
161 &timer_filtops, /* EVFILT_TIMER */
162 &file_filtops, /* EVFILT_EXCEPT */
163};
164
165static int
166filt_fileattach(struct knote *kn)
167{
168 return (fo_kqfilter(kn->kn_fp, kn));
169}
170
171/*
172 * MPSAFE
173 */
174static int
175kqueue_kqfilter(struct file *fp, struct knote *kn)
176{
177 struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
178
179 if (kn->kn_filter != EVFILT_READ)
180 return (EOPNOTSUPP);
181
182 kn->kn_fop = &kqread_filtops;
183 knote_insert(&kq->kq_kqinfo.ki_note, kn);
184 return (0);
185}
186
187static void
188filt_kqdetach(struct knote *kn)
189{
190 struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
191
192 knote_remove(&kq->kq_kqinfo.ki_note, kn);
193}
194
195/*ARGSUSED*/
196static int
197filt_kqueue(struct knote *kn, long hint)
198{
199 struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
200
201 kn->kn_data = kq->kq_count;
202 return (kn->kn_data > 0);
203}
204
205static int
206filt_procattach(struct knote *kn)
207{
208 struct proc *p;
209 int immediate;
210
211 immediate = 0;
212 p = pfind(kn->kn_id);
213 if (p == NULL && (kn->kn_sfflags & NOTE_EXIT)) {
214 p = zpfind(kn->kn_id);
215 immediate = 1;
216 }
217 if (p == NULL) {
218 return (ESRCH);
219 }
220 if (!PRISON_CHECK(curthread->td_ucred, p->p_ucred)) {
221 if (p)
222 PRELE(p);
223 return (EACCES);
224 }
225
226 lwkt_gettoken(&p->p_token);
227 kn->kn_ptr.p_proc = p;
228 kn->kn_flags |= EV_CLEAR; /* automatically set */
229
230 /*
231 * internal flag indicating registration done by kernel
232 */
233 if (kn->kn_flags & EV_FLAG1) {
234 kn->kn_data = kn->kn_sdata; /* ppid */
235 kn->kn_fflags = NOTE_CHILD;
236 kn->kn_flags &= ~EV_FLAG1;
237 }
238
239 knote_insert(&p->p_klist, kn);
240
241 /*
242 * Immediately activate any exit notes if the target process is a
243 * zombie. This is necessary to handle the case where the target
244 * process, e.g. a child, dies before the kevent is negistered.
245 */
246 if (immediate && filt_proc(kn, NOTE_EXIT))
247 KNOTE_ACTIVATE(kn);
248 lwkt_reltoken(&p->p_token);
249 PRELE(p);
250
251 return (0);
252}
253
254/*
255 * The knote may be attached to a different process, which may exit,
256 * leaving nothing for the knote to be attached to. So when the process
257 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
258 * it will be deleted when read out. However, as part of the knote deletion,
259 * this routine is called, so a check is needed to avoid actually performing
260 * a detach, because the original process does not exist any more.
261 */
262static void
263filt_procdetach(struct knote *kn)
264{
265 struct proc *p;
266
267 if (kn->kn_status & KN_DETACHED)
268 return;
269 /* XXX locking? take proc_token here? */
270 p = kn->kn_ptr.p_proc;
271 knote_remove(&p->p_klist, kn);
272}
273
274static int
275filt_proc(struct knote *kn, long hint)
276{
277 u_int event;
278
279 /*
280 * mask off extra data
281 */
282 event = (u_int)hint & NOTE_PCTRLMASK;
283
284 /*
285 * if the user is interested in this event, record it.
286 */
287 if (kn->kn_sfflags & event)
288 kn->kn_fflags |= event;
289
290 /*
291 * Process is gone, so flag the event as finished. Detach the
292 * knote from the process now because the process will be poof,
293 * gone later on.
294 */
295 if (event == NOTE_EXIT) {
296 struct proc *p = kn->kn_ptr.p_proc;
297 if ((kn->kn_status & KN_DETACHED) == 0) {
298 knote_remove(&p->p_klist, kn);
299 kn->kn_status |= KN_DETACHED;
300 kn->kn_data = p->p_xstat;
301 kn->kn_ptr.p_proc = NULL;
302 }
303 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
304 return (1);
305 }
306
307 /*
308 * process forked, and user wants to track the new process,
309 * so attach a new knote to it, and immediately report an
310 * event with the parent's pid.
311 */
312 if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
313 struct kevent kev;
314 int error;
315
316 /*
317 * register knote with new process.
318 */
319 kev.ident = hint & NOTE_PDATAMASK; /* pid */
320 kev.filter = kn->kn_filter;
321 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
322 kev.fflags = kn->kn_sfflags;
323 kev.data = kn->kn_id; /* parent */
324 kev.udata = kn->kn_kevent.udata; /* preserve udata */
325 error = kqueue_register(kn->kn_kq, &kev);
326 if (error)
327 kn->kn_fflags |= NOTE_TRACKERR;
328 }
329
330 return (kn->kn_fflags != 0);
331}
332
333/*
334 * The callout interlocks with callout_terminate() but can still
335 * race a deletion so if KN_DELETING is set we just don't touch
336 * the knote.
337 */
338static void
339filt_timerexpire(void *knx)
340{
341 struct knote *kn = knx;
342 struct callout *calloutp;
343 struct timeval tv;
344 int tticks;
345
346 lwkt_gettoken(&kq_token);
347 if ((kn->kn_status & KN_DELETING) == 0) {
348 kn->kn_data++;
349 KNOTE_ACTIVATE(kn);
350
351 if ((kn->kn_flags & EV_ONESHOT) == 0) {
352 tv.tv_sec = kn->kn_sdata / 1000;
353 tv.tv_usec = (kn->kn_sdata % 1000) * 1000;
354 tticks = tvtohz_high(&tv);
355 calloutp = (struct callout *)kn->kn_hook;
356 callout_reset(calloutp, tticks, filt_timerexpire, kn);
357 }
358 }
359 lwkt_reltoken(&kq_token);
360}
361
362/*
363 * data contains amount of time to sleep, in milliseconds
364 */
365static int
366filt_timerattach(struct knote *kn)
367{
368 struct callout *calloutp;
369 struct timeval tv;
370 int tticks;
371
372 if (kq_ncallouts >= kq_calloutmax) {
373 kn->kn_hook = NULL;
374 return (ENOMEM);
375 }
376 kq_ncallouts++;
377
378 tv.tv_sec = kn->kn_sdata / 1000;
379 tv.tv_usec = (kn->kn_sdata % 1000) * 1000;
380 tticks = tvtohz_high(&tv);
381
382 kn->kn_flags |= EV_CLEAR; /* automatically set */
383 MALLOC(calloutp, struct callout *, sizeof(*calloutp),
384 M_KQUEUE, M_WAITOK);
385 callout_init(calloutp);
386 kn->kn_hook = (caddr_t)calloutp;
387 callout_reset(calloutp, tticks, filt_timerexpire, kn);
388
389 return (0);
390}
391
392/*
393 * This function is called with the knote flagged locked but it is
394 * still possible to race a callout event due to the callback blocking.
395 * We must call callout_terminate() instead of callout_stop() to deal
396 * with the race.
397 */
398static void
399filt_timerdetach(struct knote *kn)
400{
401 struct callout *calloutp;
402
403 calloutp = (struct callout *)kn->kn_hook;
404 callout_terminate(calloutp);
405 FREE(calloutp, M_KQUEUE);
406 kq_ncallouts--;
407}
408
409static int
410filt_timer(struct knote *kn, long hint)
411{
412
413 return (kn->kn_data != 0);
414}
415
416/*
417 * Acquire a knote, return non-zero on success, 0 on failure.
418 *
419 * If we cannot acquire the knote we sleep and return 0. The knote
420 * may be stale on return in this case and the caller must restart
421 * whatever loop they are in.
422 */
423static __inline
424int
425knote_acquire(struct knote *kn)
426{
427 if (kn->kn_status & KN_PROCESSING) {
428 kn->kn_status |= KN_WAITING | KN_REPROCESS;
429 tsleep(kn, 0, "kqepts", hz);
430 /* knote may be stale now */
431 return(0);
432 }
433 kn->kn_status |= KN_PROCESSING;
434 return(1);
435}
436
437/*
438 * Release an acquired knote, clearing KN_PROCESSING and handling any
439 * KN_REPROCESS events.
440 *
441 * Non-zero is returned if the knote is destroyed.
442 */
443static __inline
444int
445knote_release(struct knote *kn)
446{
447 while (kn->kn_status & KN_REPROCESS) {
448 kn->kn_status &= ~KN_REPROCESS;
449 if (kn->kn_status & KN_WAITING) {
450 kn->kn_status &= ~KN_WAITING;
451 wakeup(kn);
452 }
453 if (kn->kn_status & KN_DELETING) {
454 knote_detach_and_drop(kn);
455 return(1);
456 /* NOT REACHED */
457 }
458 if (filter_event(kn, 0))
459 KNOTE_ACTIVATE(kn);
460 }
461 kn->kn_status &= ~KN_PROCESSING;
462 return(0);
463}
464
465/*
466 * Initialize a kqueue.
467 *
468 * NOTE: The lwp/proc code initializes a kqueue for select/poll ops.
469 *
470 * MPSAFE
471 */
472void
473kqueue_init(struct kqueue *kq, struct filedesc *fdp)
474{
475 TAILQ_INIT(&kq->kq_knpend);
476 TAILQ_INIT(&kq->kq_knlist);
477 kq->kq_count = 0;
478 kq->kq_fdp = fdp;
479 SLIST_INIT(&kq->kq_kqinfo.ki_note);
480}
481
482/*
483 * Terminate a kqueue. Freeing the actual kq itself is left up to the
484 * caller (it might be embedded in a lwp so we don't do it here).
485 *
486 * The kq's knlist must be completely eradicated so block on any
487 * processing races.
488 */
489void
490kqueue_terminate(struct kqueue *kq)
491{
492 struct knote *kn;
493
494 lwkt_gettoken(&kq_token);
495 while ((kn = TAILQ_FIRST(&kq->kq_knlist)) != NULL) {
496 if (knote_acquire(kn))
497 knote_detach_and_drop(kn);
498 }
499 if (kq->kq_knhash) {
500 kfree(kq->kq_knhash, M_KQUEUE);
501 kq->kq_knhash = NULL;
502 kq->kq_knhashmask = 0;
503 }
504 lwkt_reltoken(&kq_token);
505}
506
507/*
508 * MPSAFE
509 */
510int
511sys_kqueue(struct kqueue_args *uap)
512{
513 struct thread *td = curthread;
514 struct kqueue *kq;
515 struct file *fp;
516 int fd, error;
517
518 error = falloc(td->td_lwp, &fp, &fd);
519 if (error)
520 return (error);
521 fp->f_flag = FREAD | FWRITE;
522 fp->f_type = DTYPE_KQUEUE;
523 fp->f_ops = &kqueueops;
524
525 kq = kmalloc(sizeof(struct kqueue), M_KQUEUE, M_WAITOK | M_ZERO);
526 kqueue_init(kq, td->td_proc->p_fd);
527 fp->f_data = kq;
528
529 fsetfd(kq->kq_fdp, fp, fd);
530 uap->sysmsg_result = fd;
531 fdrop(fp);
532 return (error);
533}
534
535/*
536 * Copy 'count' items into the destination list pointed to by uap->eventlist.
537 */
538static int
539kevent_copyout(void *arg, struct kevent *kevp, int count, int *res)
540{
541 struct kevent_copyin_args *kap;
542 int error;
543
544 kap = (struct kevent_copyin_args *)arg;
545
546 error = copyout(kevp, kap->ka->eventlist, count * sizeof(*kevp));
547 if (error == 0) {
548 kap->ka->eventlist += count;
549 *res += count;
550 } else {
551 *res = -1;
552 }
553
554 return (error);
555}
556
557/*
558 * Copy at most 'max' items from the list pointed to by kap->changelist,
559 * return number of items in 'events'.
560 */
561static int
562kevent_copyin(void *arg, struct kevent *kevp, int max, int *events)
563{
564 struct kevent_copyin_args *kap;
565 int error, count;
566
567 kap = (struct kevent_copyin_args *)arg;
568
569 count = min(kap->ka->nchanges - kap->pchanges, max);
570 error = copyin(kap->ka->changelist, kevp, count * sizeof *kevp);
571 if (error == 0) {
572 kap->ka->changelist += count;
573 kap->pchanges += count;
574 *events = count;
575 }
576
577 return (error);
578}
579
580/*
581 * MPSAFE
582 */
583int
584kern_kevent(struct kqueue *kq, int nevents, int *res, void *uap,
585 k_copyin_fn kevent_copyinfn, k_copyout_fn kevent_copyoutfn,
586 struct timespec *tsp_in)
587{
588 struct kevent *kevp;
589 struct timespec *tsp;
590 int i, n, total, error, nerrors = 0;
591 int lres;
592 int limit = kq_checkloop;
593 struct kevent kev[KQ_NEVENTS];
594 struct knote marker;
595
596 tsp = tsp_in;
597 *res = 0;
598
599 lwkt_gettoken(&kq_token);
600 for ( ;; ) {
601 n = 0;
602 error = kevent_copyinfn(uap, kev, KQ_NEVENTS, &n);
603 if (error)
604 goto done;
605 if (n == 0)
606 break;
607 for (i = 0; i < n; i++) {
608 kevp = &kev[i];
609 kevp->flags &= ~EV_SYSFLAGS;
610 error = kqueue_register(kq, kevp);
611
612 /*
613 * If a registration returns an error we
614 * immediately post the error. The kevent()
615 * call itself will fail with the error if
616 * no space is available for posting.
617 *
618 * Such errors normally bypass the timeout/blocking
619 * code. However, if the copyoutfn function refuses
620 * to post the error (see sys_poll()), then we
621 * ignore it too.
622 */
623 if (error) {
624 kevp->flags = EV_ERROR;
625 kevp->data = error;
626 lres = *res;
627 kevent_copyoutfn(uap, kevp, 1, res);
628 if (*res < 0) {
629 goto done;
630 } else if (lres != *res) {
631 nevents--;
632 nerrors++;
633 }
634 }
635 }
636 }
637 if (nerrors) {
638 error = 0;
639 goto done;
640 }
641
642 /*
643 * Acquire/wait for events - setup timeout
644 */
645 if (tsp != NULL) {
646 struct timespec ats;
647
648 if (tsp->tv_sec || tsp->tv_nsec) {
649 nanouptime(&ats);
650 timespecadd(tsp, &ats); /* tsp = target time */
651 }
652 }
653
654 /*
655 * Loop as required.
656 *
657 * Collect as many events as we can. Sleeping on successive
658 * loops is disabled if copyoutfn has incremented (*res).
659 *
660 * The loop stops if an error occurs, all events have been
661 * scanned (the marker has been reached), or fewer than the
662 * maximum number of events is found.
663 *
664 * The copyoutfn function does not have to increment (*res) in
665 * order for the loop to continue.
666 *
667 * NOTE: doselect() usually passes 0x7FFFFFFF for nevents.
668 */
669 total = 0;
670 error = 0;
671 marker.kn_filter = EVFILT_MARKER;
672 marker.kn_status = KN_PROCESSING;
673 TAILQ_INSERT_TAIL(&kq->kq_knpend, &marker, kn_tqe);
674 while ((n = nevents - total) > 0) {
675 if (n > KQ_NEVENTS)
676 n = KQ_NEVENTS;
677
678 /*
679 * If no events are pending sleep until timeout (if any)
680 * or an event occurs.
681 *
682 * After the sleep completes the marker is moved to the
683 * end of the list, making any received events available
684 * to our scan.
685 */
686 if (kq->kq_count == 0 && *res == 0) {
687 error = kqueue_sleep(kq, tsp);
688 if (error)
689 break;
690
691 TAILQ_REMOVE(&kq->kq_knpend, &marker, kn_tqe);
692 TAILQ_INSERT_TAIL(&kq->kq_knpend, &marker, kn_tqe);
693 }
694
695 /*
696 * Process all received events
697 * Account for all non-spurious events in our total
698 */
699 i = kqueue_scan(kq, kev, n, &marker);
700 if (i) {
701 lres = *res;
702 error = kevent_copyoutfn(uap, kev, i, res);
703 total += *res - lres;
704 if (error)
705 break;
706 }
707 if (limit && --limit == 0)
708 panic("kqueue: checkloop failed i=%d", i);
709
710 /*
711 * Normally when fewer events are returned than requested
712 * we can stop. However, if only spurious events were
713 * collected the copyout will not bump (*res) and we have
714 * to continue.
715 */
716 if (i < n && *res)
717 break;
718
719 /*
720 * Deal with an edge case where spurious events can cause
721 * a loop to occur without moving the marker. This can
722 * prevent kqueue_scan() from picking up new events which
723 * race us. We must be sure to move the marker for this
724 * case.
725 *
726 * NOTE: We do not want to move the marker if events
727 * were scanned because normal kqueue operations
728 * may reactivate events. Moving the marker in
729 * that case could result in duplicates for the
730 * same event.
731 */
732 if (i == 0) {
733 TAILQ_REMOVE(&kq->kq_knpend, &marker, kn_tqe);
734 TAILQ_INSERT_TAIL(&kq->kq_knpend, &marker, kn_tqe);
735 }
736 }
737 TAILQ_REMOVE(&kq->kq_knpend, &marker, kn_tqe);
738
739 /* Timeouts do not return EWOULDBLOCK. */
740 if (error == EWOULDBLOCK)
741 error = 0;
742
743done:
744 lwkt_reltoken(&kq_token);
745 return (error);
746}
747
748/*
749 * MPALMOSTSAFE
750 */
751int
752sys_kevent(struct kevent_args *uap)
753{
754 struct thread *td = curthread;
755 struct proc *p = td->td_proc;
756 struct timespec ts, *tsp;
757 struct kqueue *kq;
758 struct file *fp = NULL;
759 struct kevent_copyin_args *kap, ka;
760 int error;
761
762 if (uap->timeout) {
763 error = copyin(uap->timeout, &ts, sizeof(ts));
764 if (error)
765 return (error);
766 tsp = &ts;
767 } else {
768 tsp = NULL;
769 }
770
771 fp = holdfp(p->p_fd, uap->fd, -1);
772 if (fp == NULL)
773 return (EBADF);
774 if (fp->f_type != DTYPE_KQUEUE) {
775 fdrop(fp);
776 return (EBADF);
777 }
778
779 kq = (struct kqueue *)fp->f_data;
780
781 kap = &ka;
782 kap->ka = uap;
783 kap->pchanges = 0;
784
785 error = kern_kevent(kq, uap->nevents, &uap->sysmsg_result, kap,
786 kevent_copyin, kevent_copyout, tsp);
787
788 fdrop(fp);
789
790 return (error);
791}
792
793int
794kqueue_register(struct kqueue *kq, struct kevent *kev)
795{
796 struct filedesc *fdp = kq->kq_fdp;
797 struct filterops *fops;
798 struct file *fp = NULL;
799 struct knote *kn = NULL;
800 int error = 0;
801
802 if (kev->filter < 0) {
803 if (kev->filter + EVFILT_SYSCOUNT < 0)
804 return (EINVAL);
805 fops = sysfilt_ops[~kev->filter]; /* to 0-base index */
806 } else {
807 /*
808 * XXX
809 * filter attach routine is responsible for insuring that
810 * the identifier can be attached to it.
811 */
812 kprintf("unknown filter: %d\n", kev->filter);
813 return (EINVAL);
814 }
815
816 lwkt_gettoken(&kq_token);
817 if (fops->f_flags & FILTEROP_ISFD) {
818 /* validate descriptor */
819 fp = holdfp(fdp, kev->ident, -1);
820 if (fp == NULL) {
821 lwkt_reltoken(&kq_token);
822 return (EBADF);
823 }
824
825again1:
826 SLIST_FOREACH(kn, &fp->f_klist, kn_link) {
827 if (kn->kn_kq == kq &&
828 kn->kn_filter == kev->filter &&
829 kn->kn_id == kev->ident) {
830 if (knote_acquire(kn) == 0)
831 goto again1;
832 break;
833 }
834 }
835 } else {
836 if (kq->kq_knhashmask) {
837 struct klist *list;
838
839 list = &kq->kq_knhash[
840 KN_HASH((u_long)kev->ident, kq->kq_knhashmask)];
841again2:
842 SLIST_FOREACH(kn, list, kn_link) {
843 if (kn->kn_id == kev->ident &&
844 kn->kn_filter == kev->filter) {
845 if (knote_acquire(kn) == 0)
846 goto again2;
847 break;
848 }
849 }
850 }
851 }
852
853 /*
854 * NOTE: At this point if kn is non-NULL we will have acquired
855 * it and set KN_PROCESSING.
856 */
857 if (kn == NULL && ((kev->flags & EV_ADD) == 0)) {
858 error = ENOENT;
859 goto done;
860 }
861
862 /*
863 * kn now contains the matching knote, or NULL if no match
864 */
865 if (kev->flags & EV_ADD) {
866 if (kn == NULL) {
867 kn = knote_alloc();
868 if (kn == NULL) {
869 error = ENOMEM;
870 goto done;
871 }
872 kn->kn_fp = fp;
873 kn->kn_kq = kq;
874 kn->kn_fop = fops;
875
876 /*
877 * apply reference count to knote structure, and
878 * do not release it at the end of this routine.
879 */
880 fp = NULL;
881
882 kn->kn_sfflags = kev->fflags;
883 kn->kn_sdata = kev->data;
884 kev->fflags = 0;
885 kev->data = 0;
886 kn->kn_kevent = *kev;
887
888 /*
889 * KN_PROCESSING prevents the knote from getting
890 * ripped out from under us while we are trying
891 * to attach it, in case the attach blocks.
892 */
893 kn->kn_status = KN_PROCESSING;
894 knote_attach(kn);
895 if ((error = filter_attach(kn)) != 0) {
896 kn->kn_status |= KN_DELETING | KN_REPROCESS;
897 knote_drop(kn);
898 goto done;
899 }
900
901 /*
902 * Interlock against close races which either tried
903 * to remove our knote while we were blocked or missed
904 * it entirely prior to our attachment. We do not
905 * want to end up with a knote on a closed descriptor.
906 */
907 if ((fops->f_flags & FILTEROP_ISFD) &&
908 checkfdclosed(fdp, kev->ident, kn->kn_fp)) {
909 kn->kn_status |= KN_DELETING | KN_REPROCESS;
910 }
911 } else {
912 /*
913 * The user may change some filter values after the
914 * initial EV_ADD, but doing so will not reset any
915 * filter which have already been triggered.
916 */
917 KKASSERT(kn->kn_status & KN_PROCESSING);
918 kn->kn_sfflags = kev->fflags;
919 kn->kn_sdata = kev->data;
920 kn->kn_kevent.udata = kev->udata;
921 }
922
923 /*
924 * Execute the filter event to immediately activate the
925 * knote if necessary. If reprocessing events are pending
926 * due to blocking above we do not run the filter here
927 * but instead let knote_release() do it. Otherwise we
928 * might run the filter on a deleted event.
929 */
930 if ((kn->kn_status & KN_REPROCESS) == 0) {
931 if (filter_event(kn, 0))
932 KNOTE_ACTIVATE(kn);
933 }
934 } else if (kev->flags & EV_DELETE) {
935 /*
936 * Delete the existing knote
937 */
938 knote_detach_and_drop(kn);
939 goto done;
940 }
941
942 /*
943 * Disablement does not deactivate a knote here.
944 */
945 if ((kev->flags & EV_DISABLE) &&
946 ((kn->kn_status & KN_DISABLED) == 0)) {
947 kn->kn_status |= KN_DISABLED;
948 }
949
950 /*
951 * Re-enablement may have to immediately enqueue an active knote.
952 */
953 if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
954 kn->kn_status &= ~KN_DISABLED;
955 if ((kn->kn_status & KN_ACTIVE) &&
956 ((kn->kn_status & KN_QUEUED) == 0)) {
957 knote_enqueue(kn);
958 }
959 }
960
961 /*
962 * Handle any required reprocessing
963 */
964 knote_release(kn);
965 /* kn may be invalid now */
966
967done:
968 lwkt_reltoken(&kq_token);
969 if (fp != NULL)
970 fdrop(fp);
971 return (error);
972}
973
974/*
975 * Block as necessary until the target time is reached.
976 * If tsp is NULL we block indefinitely. If tsp->ts_secs/nsecs are both
977 * 0 we do not block at all.
978 */
979static int
980kqueue_sleep(struct kqueue *kq, struct timespec *tsp)
981{
982 int error = 0;
983
984 if (tsp == NULL) {
985 kq->kq_state |= KQ_SLEEP;
986 error = tsleep(kq, PCATCH, "kqread", 0);
987 } else if (tsp->tv_sec == 0 && tsp->tv_nsec == 0) {
988 error = EWOULDBLOCK;
989 } else {
990 struct timespec ats;
991 struct timespec atx = *tsp;
992 int timeout;
993
994 nanouptime(&ats);
995 timespecsub(&atx, &ats);
996 if (ats.tv_sec < 0) {
997 error = EWOULDBLOCK;
998 } else {
999 timeout = atx.tv_sec > 24 * 60 * 60 ?
1000 24 * 60 * 60 * hz : tstohz_high(&atx);
1001 kq->kq_state |= KQ_SLEEP;
1002 error = tsleep(kq, PCATCH, "kqread", timeout);
1003 }
1004 }
1005
1006 /* don't restart after signals... */
1007 if (error == ERESTART)
1008 return (EINTR);
1009
1010 return (error);
1011}
1012
1013/*
1014 * Scan the kqueue, return the number of active events placed in kevp up
1015 * to count.
1016 *
1017 * Continuous mode events may get recycled, do not continue scanning past
1018 * marker unless no events have been collected.
1019 */
1020static int
1021kqueue_scan(struct kqueue *kq, struct kevent *kevp, int count,
1022 struct knote *marker)
1023{
1024 struct knote *kn, local_marker;
1025 int total;
1026
1027 total = 0;
1028 local_marker.kn_filter = EVFILT_MARKER;
1029 local_marker.kn_status = KN_PROCESSING;
1030
1031 /*
1032 * Collect events.
1033 */
1034 TAILQ_INSERT_HEAD(&kq->kq_knpend, &local_marker, kn_tqe);
1035 while (count) {
1036 kn = TAILQ_NEXT(&local_marker, kn_tqe);
1037 if (kn->kn_filter == EVFILT_MARKER) {
1038 /* Marker reached, we are done */
1039 if (kn == marker)
1040 break;
1041
1042 /* Move local marker past some other threads marker */
1043 kn = TAILQ_NEXT(kn, kn_tqe);
1044 TAILQ_REMOVE(&kq->kq_knpend, &local_marker, kn_tqe);
1045 TAILQ_INSERT_BEFORE(kn, &local_marker, kn_tqe);
1046 continue;
1047 }
1048
1049 /*
1050 * We can't skip a knote undergoing processing, otherwise
1051 * we risk not returning it when the user process expects
1052 * it should be returned. Sleep and retry.
1053 */
1054 if (knote_acquire(kn) == 0)
1055 continue;
1056
1057 /*
1058 * Remove the event for processing.
1059 *
1060 * WARNING! We must leave KN_QUEUED set to prevent the
1061 * event from being KNOTE_ACTIVATE()d while
1062 * the queue state is in limbo, in case we
1063 * block.
1064 *
1065 * WARNING! We must set KN_PROCESSING to avoid races
1066 * against deletion or another thread's
1067 * processing.
1068 */
1069 TAILQ_REMOVE(&kq->kq_knpend, kn, kn_tqe);
1070 kq->kq_count--;
1071
1072 /*
1073 * We have to deal with an extremely important race against
1074 * file descriptor close()s here. The file descriptor can
1075 * disappear MPSAFE, and there is a small window of
1076 * opportunity between that and the call to knote_fdclose().
1077 *
1078 * If we hit that window here while doselect or dopoll is
1079 * trying to delete a spurious event they will not be able
1080 * to match up the event against a knote and will go haywire.
1081 */
1082 if ((kn->kn_fop->f_flags & FILTEROP_ISFD) &&
1083 checkfdclosed(kq->kq_fdp, kn->kn_kevent.ident, kn->kn_fp)) {
1084 kn->kn_status |= KN_DELETING | KN_REPROCESS;
1085 }
1086
1087 if (kn->kn_status & KN_DISABLED) {
1088 /*
1089 * If disabled we ensure the event is not queued
1090 * but leave its active bit set. On re-enablement
1091 * the event may be immediately triggered.
1092 */
1093 kn->kn_status &= ~KN_QUEUED;
1094 } else if ((kn->kn_flags & EV_ONESHOT) == 0 &&
1095 (kn->kn_status & KN_DELETING) == 0 &&
1096 filter_event(kn, 0) == 0) {
1097 /*
1098 * If not running in one-shot mode and the event
1099 * is no longer present we ensure it is removed
1100 * from the queue and ignore it.
1101 */
1102 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
1103 } else {
1104 /*
1105 * Post the event
1106 */
1107 *kevp++ = kn->kn_kevent;
1108 ++total;
1109 --count;
1110
1111 if (kn->kn_flags & EV_ONESHOT) {
1112 kn->kn_status &= ~KN_QUEUED;
1113 kn->kn_status |= KN_DELETING | KN_REPROCESS;
1114 } else if (kn->kn_flags & EV_CLEAR) {
1115 kn->kn_data = 0;
1116 kn->kn_fflags = 0;
1117 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
1118 } else {
1119 TAILQ_INSERT_TAIL(&kq->kq_knpend, kn, kn_tqe);
1120 kq->kq_count++;
1121 }
1122 }
1123
1124 /*
1125 * Handle any post-processing states
1126 */
1127 knote_release(kn);
1128 }
1129 TAILQ_REMOVE(&kq->kq_knpend, &local_marker, kn_tqe);
1130
1131 return (total);
1132}
1133
1134/*
1135 * XXX
1136 * This could be expanded to call kqueue_scan, if desired.
1137 *
1138 * MPSAFE
1139 */
1140static int
1141kqueue_read(struct file *fp, struct uio *uio, struct ucred *cred, int flags)
1142{
1143 return (ENXIO);
1144}
1145
1146/*
1147 * MPSAFE
1148 */
1149static int
1150kqueue_write(struct file *fp, struct uio *uio, struct ucred *cred, int flags)
1151{
1152 return (ENXIO);
1153}
1154
1155/*
1156 * MPALMOSTSAFE
1157 */
1158static int
1159kqueue_ioctl(struct file *fp, u_long com, caddr_t data,
1160 struct ucred *cred, struct sysmsg *msg)
1161{
1162 struct kqueue *kq;
1163 int error;
1164
1165 lwkt_gettoken(&kq_token);
1166 kq = (struct kqueue *)fp->f_data;
1167
1168 switch(com) {
1169 case FIOASYNC:
1170 if (*(int *)data)
1171 kq->kq_state |= KQ_ASYNC;
1172 else
1173 kq->kq_state &= ~KQ_ASYNC;
1174 error = 0;
1175 break;
1176 case FIOSETOWN:
1177 error = fsetown(*(int *)data, &kq->kq_sigio);
1178 break;
1179 default:
1180 error = ENOTTY;
1181 break;
1182 }
1183 lwkt_reltoken(&kq_token);
1184 return (error);
1185}
1186
1187/*
1188 * MPSAFE
1189 */
1190static int
1191kqueue_stat(struct file *fp, struct stat *st, struct ucred *cred)
1192{
1193 struct kqueue *kq = (struct kqueue *)fp->f_data;
1194
1195 bzero((void *)st, sizeof(*st));
1196 st->st_size = kq->kq_count;
1197 st->st_blksize = sizeof(struct kevent);
1198 st->st_mode = S_IFIFO;
1199 return (0);
1200}
1201
1202/*
1203 * MPSAFE
1204 */
1205static int
1206kqueue_close(struct file *fp)
1207{
1208 struct kqueue *kq = (struct kqueue *)fp->f_data;
1209
1210 kqueue_terminate(kq);
1211
1212 fp->f_data = NULL;
1213 funsetown(&kq->kq_sigio);
1214
1215 kfree(kq, M_KQUEUE);
1216 return (0);
1217}
1218
1219static void
1220kqueue_wakeup(struct kqueue *kq)
1221{
1222 if (kq->kq_state & KQ_SLEEP) {
1223 kq->kq_state &= ~KQ_SLEEP;
1224 wakeup(kq);
1225 }
1226 KNOTE(&kq->kq_kqinfo.ki_note, 0);
1227}
1228
1229/*
1230 * Calls filterops f_attach function, acquiring mplock if filter is not
1231 * marked as FILTEROP_MPSAFE.
1232 */
1233static int
1234filter_attach(struct knote *kn)
1235{
1236 int ret;
1237
1238 if (!(kn->kn_fop->f_flags & FILTEROP_MPSAFE)) {
1239 get_mplock();
1240 ret = kn->kn_fop->f_attach(kn);
1241 rel_mplock();
1242 } else {
1243 ret = kn->kn_fop->f_attach(kn);
1244 }
1245
1246 return (ret);
1247}
1248
1249/*
1250 * Detach the knote and drop it, destroying the knote.
1251 *
1252 * Calls filterops f_detach function, acquiring mplock if filter is not
1253 * marked as FILTEROP_MPSAFE.
1254 */
1255static void
1256knote_detach_and_drop(struct knote *kn)
1257{
1258 kn->kn_status |= KN_DELETING | KN_REPROCESS;
1259 if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
1260 kn->kn_fop->f_detach(kn);
1261 } else {
1262 get_mplock();
1263 kn->kn_fop->f_detach(kn);
1264 rel_mplock();
1265 }
1266 knote_drop(kn);
1267}
1268
1269/*
1270 * Calls filterops f_event function, acquiring mplock if filter is not
1271 * marked as FILTEROP_MPSAFE.
1272 *
1273 * If the knote is in the middle of being created or deleted we cannot
1274 * safely call the filter op.
1275 */
1276static int
1277filter_event(struct knote *kn, long hint)
1278{
1279 int ret;
1280
1281 if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
1282 ret = kn->kn_fop->f_event(kn, hint);
1283 } else {
1284 get_mplock();
1285 ret = kn->kn_fop->f_event(kn, hint);
1286 rel_mplock();
1287 }
1288 return (ret);
1289}
1290
1291/*
1292 * Walk down a list of knotes, activating them if their event has triggered.
1293 *
1294 * If we encounter any knotes which are undergoing processing we just mark
1295 * them for reprocessing and do not try to [re]activate the knote. However,
1296 * if a hint is being passed we have to wait and that makes things a bit
1297 * sticky.
1298 */
1299void
1300knote(struct klist *list, long hint)
1301{
1302 struct knote *kn;
1303
1304 lwkt_gettoken(&kq_token);
1305restart:
1306 SLIST_FOREACH(kn, list, kn_next) {
1307 if (kn->kn_status & KN_PROCESSING) {
1308 /*
1309 * Someone else is processing the knote, ask the
1310 * other thread to reprocess it and don't mess
1311 * with it otherwise.
1312 */
1313 if (hint == 0) {
1314 kn->kn_status |= KN_REPROCESS;
1315 continue;
1316 }
1317
1318 /*
1319 * If the hint is non-zero we have to wait or risk
1320 * losing the state the caller is trying to update.
1321 *
1322 * XXX This is a real problem, certain process
1323 * and signal filters will bump kn_data for
1324 * already-processed notes more than once if
1325 * we restart the list scan. FIXME.
1326 */
1327 kn->kn_status |= KN_WAITING | KN_REPROCESS;
1328 tsleep(kn, 0, "knotec", hz);
1329 goto restart;
1330 }
1331
1332 /*
1333 * Become the reprocessing master ourselves.
1334 *
1335 * If hint is non-zer running the event is mandatory
1336 * when not deleting so do it whether reprocessing is
1337 * set or not.
1338 */
1339 kn->kn_status |= KN_PROCESSING;
1340 if ((kn->kn_status & KN_DELETING) == 0) {
1341 if (filter_event(kn, hint))
1342 KNOTE_ACTIVATE(kn);
1343 }
1344 if (knote_release(kn))
1345 goto restart;
1346 }
1347 lwkt_reltoken(&kq_token);
1348}
1349
1350/*
1351 * Insert knote at head of klist.
1352 *
1353 * This function may only be called via a filter function and thus
1354 * kq_token should already be held and marked for processing.
1355 */
1356void
1357knote_insert(struct klist *klist, struct knote *kn)
1358{
1359 KKASSERT(kn->kn_status & KN_PROCESSING);
1360 ASSERT_LWKT_TOKEN_HELD(&kq_token);
1361 SLIST_INSERT_HEAD(klist, kn, kn_next);
1362}
1363
1364/*
1365 * Remove knote from a klist
1366 *
1367 * This function may only be called via a filter function and thus
1368 * kq_token should already be held and marked for processing.
1369 */
1370void
1371knote_remove(struct klist *klist, struct knote *kn)
1372{
1373 KKASSERT(kn->kn_status & KN_PROCESSING);
1374 ASSERT_LWKT_TOKEN_HELD(&kq_token);
1375 SLIST_REMOVE(klist, kn, knote, kn_next);
1376}
1377
1378/*
1379 * Remove all knotes from a specified klist
1380 *
1381 * Only called from aio.
1382 */
1383void
1384knote_empty(struct klist *list)
1385{
1386 struct knote *kn;
1387
1388 lwkt_gettoken(&kq_token);
1389 while ((kn = SLIST_FIRST(list)) != NULL) {
1390 if (knote_acquire(kn))
1391 knote_detach_and_drop(kn);
1392 }
1393 lwkt_reltoken(&kq_token);
1394}
1395
1396void
1397knote_assume_knotes(struct kqinfo *src, struct kqinfo *dst,
1398 struct filterops *ops, void *hook)
1399{
1400 struct knote *kn;
1401
1402 lwkt_gettoken(&kq_token);
1403 while ((kn = SLIST_FIRST(&src->ki_note)) != NULL) {
1404 if (knote_acquire(kn)) {
1405 knote_remove(&src->ki_note, kn);
1406 kn->kn_fop = ops;
1407 kn->kn_hook = hook;
1408 knote_insert(&dst->ki_note, kn);
1409 knote_release(kn);
1410 /* kn may be invalid now */
1411 }
1412 }
1413 lwkt_reltoken(&kq_token);
1414}
1415
1416/*
1417 * Remove all knotes referencing a specified fd
1418 */
1419void
1420knote_fdclose(struct file *fp, struct filedesc *fdp, int fd)
1421{
1422 struct knote *kn;
1423
1424 lwkt_gettoken(&kq_token);
1425restart:
1426 SLIST_FOREACH(kn, &fp->f_klist, kn_link) {
1427 if (kn->kn_kq->kq_fdp == fdp && kn->kn_id == fd) {
1428 if (knote_acquire(kn))
1429 knote_detach_and_drop(kn);
1430 goto restart;
1431 }
1432 }
1433 lwkt_reltoken(&kq_token);
1434}
1435
1436/*
1437 * Low level attach function.
1438 *
1439 * The knote should already be marked for processing.
1440 */
1441static void
1442knote_attach(struct knote *kn)
1443{
1444 struct klist *list;
1445 struct kqueue *kq = kn->kn_kq;
1446
1447 if (kn->kn_fop->f_flags & FILTEROP_ISFD) {
1448 KKASSERT(kn->kn_fp);
1449 list = &kn->kn_fp->f_klist;
1450 } else {
1451 if (kq->kq_knhashmask == 0)
1452 kq->kq_knhash = hashinit(KN_HASHSIZE, M_KQUEUE,
1453 &kq->kq_knhashmask);
1454 list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
1455 }
1456 SLIST_INSERT_HEAD(list, kn, kn_link);
1457 TAILQ_INSERT_HEAD(&kq->kq_knlist, kn, kn_kqlink);
1458}
1459
1460/*
1461 * Low level drop function.
1462 *
1463 * The knote should already be marked for processing.
1464 */
1465static void
1466knote_drop(struct knote *kn)
1467{
1468 struct kqueue *kq;
1469 struct klist *list;
1470
1471 kq = kn->kn_kq;
1472
1473 if (kn->kn_fop->f_flags & FILTEROP_ISFD)
1474 list = &kn->kn_fp->f_klist;
1475 else
1476 list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
1477
1478 SLIST_REMOVE(list, kn, knote, kn_link);
1479 TAILQ_REMOVE(&kq->kq_knlist, kn, kn_kqlink);
1480 if (kn->kn_status & KN_QUEUED)
1481 knote_dequeue(kn);
1482 if (kn->kn_fop->f_flags & FILTEROP_ISFD) {
1483 fdrop(kn->kn_fp);
1484 kn->kn_fp = NULL;
1485 }
1486 knote_free(kn);
1487}
1488
1489/*
1490 * Low level enqueue function.
1491 *
1492 * The knote should already be marked for processing.
1493 */
1494static void
1495knote_enqueue(struct knote *kn)
1496{
1497 struct kqueue *kq = kn->kn_kq;
1498
1499 KASSERT((kn->kn_status & KN_QUEUED) == 0, ("knote already queued"));
1500 TAILQ_INSERT_TAIL(&kq->kq_knpend, kn, kn_tqe);
1501 kn->kn_status |= KN_QUEUED;
1502 ++kq->kq_count;
1503
1504 /*
1505 * Send SIGIO on request (typically set up as a mailbox signal)
1506 */
1507 if (kq->kq_sigio && (kq->kq_state & KQ_ASYNC) && kq->kq_count == 1)
1508 pgsigio(kq->kq_sigio, SIGIO, 0);
1509
1510 kqueue_wakeup(kq);
1511}
1512
1513/*
1514 * Low level dequeue function.
1515 *
1516 * The knote should already be marked for processing.
1517 */
1518static void
1519knote_dequeue(struct knote *kn)
1520{
1521 struct kqueue *kq = kn->kn_kq;
1522
1523 KASSERT(kn->kn_status & KN_QUEUED, ("knote not queued"));
1524 TAILQ_REMOVE(&kq->kq_knpend, kn, kn_tqe);
1525 kn->kn_status &= ~KN_QUEUED;
1526 kq->kq_count--;
1527}
1528
1529static struct knote *
1530knote_alloc(void)
1531{
1532 return kmalloc(sizeof(struct knote), M_KQUEUE, M_WAITOK);
1533}
1534
1535static void
1536knote_free(struct knote *kn)
1537{
1538 kfree(kn, M_KQUEUE);
1539}