Merge from vendor branch BIND:
[dragonfly.git] / sys / dev / netif / bge / if_bge.c
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *      This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/bge/if_bge.c,v 1.3.2.39 2005/07/03 03:41:18 silby Exp $
34  * $DragonFly: src/sys/dev/netif/bge/if_bge.c,v 1.85 2007/06/26 15:10:23 sephe Exp $
35  *
36  */
37
38 /*
39  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
40  * 
41  * Written by Bill Paul <wpaul@windriver.com>
42  * Senior Engineer, Wind River Systems
43  */
44
45 /*
46  * The Broadcom BCM5700 is based on technology originally developed by
47  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
48  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
49  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
50  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
51  * frames, highly configurable RX filtering, and 16 RX and TX queues
52  * (which, along with RX filter rules, can be used for QOS applications).
53  * Other features, such as TCP segmentation, may be available as part
54  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
55  * firmware images can be stored in hardware and need not be compiled
56  * into the driver.
57  *
58  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
59  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
60  * 
61  * The BCM5701 is a single-chip solution incorporating both the BCM5700
62  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
63  * does not support external SSRAM.
64  *
65  * Broadcom also produces a variation of the BCM5700 under the "Altima"
66  * brand name, which is functionally similar but lacks PCI-X support.
67  *
68  * Without external SSRAM, you can only have at most 4 TX rings,
69  * and the use of the mini RX ring is disabled. This seems to imply
70  * that these features are simply not available on the BCM5701. As a
71  * result, this driver does not implement any support for the mini RX
72  * ring.
73  */
74
75 #include "opt_polling.h"
76 #include <sys/param.h>
77 #include <sys/bus.h>
78 #include <sys/endian.h>
79 #include <sys/kernel.h>
80 #include <sys/ktr.h>
81 #include <sys/mbuf.h>
82 #include <sys/malloc.h>
83 #include <sys/queue.h>
84 #include <sys/rman.h>
85 #include <sys/serialize.h>
86 #include <sys/socket.h>
87 #include <sys/sockio.h>
88 #include <sys/sysctl.h>
89
90 #include <net/bpf.h>
91 #include <net/ethernet.h>
92 #include <net/if.h>
93 #include <net/if_arp.h>
94 #include <net/if_dl.h>
95 #include <net/if_media.h>
96 #include <net/if_types.h>
97 #include <net/ifq_var.h>
98 #include <net/vlan/if_vlan_var.h>
99
100 #include <dev/netif/mii_layer/mii.h>
101 #include <dev/netif/mii_layer/miivar.h>
102 #include <dev/netif/mii_layer/brgphyreg.h>
103
104 #include <bus/pci/pcidevs.h>
105 #include <bus/pci/pcireg.h>
106 #include <bus/pci/pcivar.h>
107
108 #include <dev/netif/bge/if_bgereg.h>
109
110 /* "device miibus" required.  See GENERIC if you get errors here. */
111 #include "miibus_if.h"
112
113 #define BGE_CSUM_FEATURES       (CSUM_IP | CSUM_TCP | CSUM_UDP)
114 #define BGE_MIN_FRAME           60
115
116 /*
117  * Various supported device vendors/types and their names. Note: the
118  * spec seems to indicate that the hardware still has Alteon's vendor
119  * ID burned into it, though it will always be overriden by the vendor
120  * ID in the EEPROM. Just to be safe, we cover all possibilities.
121  */
122 #define BGE_DEVDESC_MAX         64      /* Maximum device description length */
123
124 static struct bge_type bge_devs[] = {
125         { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C996,
126                 "3COM 3C996 Gigabit Ethernet" },
127
128         { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700,
129                 "Alteon BCM5700 Gigabit Ethernet" },
130         { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5701,
131                 "Alteon BCM5701 Gigabit Ethernet" },
132
133         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1000,
134                 "Altima AC1000 Gigabit Ethernet" },
135         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1001,
136                 "Altima AC1002 Gigabit Ethernet" },
137         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC9100,
138                 "Altima AC9100 Gigabit Ethernet" },
139
140         { PCI_VENDOR_APPLE, PCI_PRODUCT_APPLE_BCM5701,
141                 "Apple BCM5701 Gigabit Ethernet" },
142
143         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5700,
144                 "Broadcom BCM5700 Gigabit Ethernet" },
145         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5701,
146                 "Broadcom BCM5701 Gigabit Ethernet" },
147         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702,
148                 "Broadcom BCM5702 Gigabit Ethernet" },
149         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702X,
150                 "Broadcom BCM5702X Gigabit Ethernet" },
151         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702_ALT,
152                 "Broadcom BCM5702 Gigabit Ethernet" },
153         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703,
154                 "Broadcom BCM5703 Gigabit Ethernet" },
155         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703X,
156                 "Broadcom BCM5703X Gigabit Ethernet" },
157         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703A3,
158                 "Broadcom BCM5703 Gigabit Ethernet" },
159         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704C,
160                 "Broadcom BCM5704C Dual Gigabit Ethernet" },
161         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S,
162                 "Broadcom BCM5704S Dual Gigabit Ethernet" },
163         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S_ALT,
164                 "Broadcom BCM5704S Dual Gigabit Ethernet" },
165         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705,
166                 "Broadcom BCM5705 Gigabit Ethernet" },
167         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705F,
168                 "Broadcom BCM5705F Gigabit Ethernet" },
169         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705K,
170                 "Broadcom BCM5705K Gigabit Ethernet" },
171         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M,
172                 "Broadcom BCM5705M Gigabit Ethernet" },
173         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
174                 "Broadcom BCM5705M Gigabit Ethernet" },
175         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714,
176                 "Broadcom BCM5714C Gigabit Ethernet" },
177         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714S,
178                 "Broadcom BCM5714S Gigabit Ethernet" },
179         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715,
180                 "Broadcom BCM5715 Gigabit Ethernet" },
181         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715S,
182                 "Broadcom BCM5715S Gigabit Ethernet" },
183         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5720,
184                 "Broadcom BCM5720 Gigabit Ethernet" },
185         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5721,
186                 "Broadcom BCM5721 Gigabit Ethernet" },
187         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5722,
188                 "Broadcom BCM5722 Gigabit Ethernet" },
189         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750,
190                 "Broadcom BCM5750 Gigabit Ethernet" },
191         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750M,
192                 "Broadcom BCM5750M Gigabit Ethernet" },
193         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751,
194                 "Broadcom BCM5751 Gigabit Ethernet" },
195         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751F,
196                 "Broadcom BCM5751F Gigabit Ethernet" },
197         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751M,
198                 "Broadcom BCM5751M Gigabit Ethernet" },
199         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752,
200                 "Broadcom BCM5752 Gigabit Ethernet" },
201         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752M,
202                 "Broadcom BCM5752M Gigabit Ethernet" },
203         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753,
204                 "Broadcom BCM5753 Gigabit Ethernet" },
205         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753F,
206                 "Broadcom BCM5753F Gigabit Ethernet" },
207         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753M,
208                 "Broadcom BCM5753M Gigabit Ethernet" },
209         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754,
210                 "Broadcom BCM5754 Gigabit Ethernet" },
211         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754M,
212                 "Broadcom BCM5754M Gigabit Ethernet" },
213         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755,
214                 "Broadcom BCM5755 Gigabit Ethernet" },
215         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755M,
216                 "Broadcom BCM5755M Gigabit Ethernet" },
217         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5756,
218                 "Broadcom BCM5756 Gigabit Ethernet" },
219         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780,
220                 "Broadcom BCM5780 Gigabit Ethernet" },
221         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780S,
222                 "Broadcom BCM5780S Gigabit Ethernet" },
223         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5781,
224                 "Broadcom BCM5781 Gigabit Ethernet" },
225         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5782,
226                 "Broadcom BCM5782 Gigabit Ethernet" },
227         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5786,
228                 "Broadcom BCM5786 Gigabit Ethernet" },
229         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787,
230                 "Broadcom BCM5787 Gigabit Ethernet" },
231         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787F,
232                 "Broadcom BCM5787F Gigabit Ethernet" },
233         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787M,
234                 "Broadcom BCM5787M Gigabit Ethernet" },
235         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5788,
236                 "Broadcom BCM5788 Gigabit Ethernet" },
237         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5789,
238                 "Broadcom BCM5789 Gigabit Ethernet" },
239         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901,
240                 "Broadcom BCM5901 Fast Ethernet" },
241         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901A2,
242                 "Broadcom BCM5901A2 Fast Ethernet" },
243         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5903M,
244                 "Broadcom BCM5903M Fast Ethernet" },
245
246         { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
247                 "SysKonnect Gigabit Ethernet" },
248
249         { 0, 0, NULL }
250 };
251
252 #define BGE_IS_JUMBO_CAPABLE(sc)        ((sc)->bge_flags & BGE_FLAG_JUMBO)
253 #define BGE_IS_5700_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
254 #define BGE_IS_5705_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5705_PLUS)
255 #define BGE_IS_5714_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
256 #define BGE_IS_575X_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_575X_PLUS)
257
258 static int      bge_probe(device_t);
259 static int      bge_attach(device_t);
260 static int      bge_detach(device_t);
261 static void     bge_txeof(struct bge_softc *);
262 static void     bge_rxeof(struct bge_softc *);
263
264 static void     bge_tick(void *);
265 static void     bge_stats_update(struct bge_softc *);
266 static void     bge_stats_update_regs(struct bge_softc *);
267 static int      bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
268
269 #ifdef DEVICE_POLLING
270 static void     bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
271 #endif
272 static void     bge_intr(void *);
273 static void     bge_enable_intr(struct bge_softc *);
274 static void     bge_disable_intr(struct bge_softc *);
275 static void     bge_start(struct ifnet *);
276 static int      bge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
277 static void     bge_init(void *);
278 static void     bge_stop(struct bge_softc *);
279 static void     bge_watchdog(struct ifnet *);
280 static void     bge_shutdown(device_t);
281 static int      bge_suspend(device_t);
282 static int      bge_resume(device_t);
283 static int      bge_ifmedia_upd(struct ifnet *);
284 static void     bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
285
286 static uint8_t  bge_eeprom_getbyte(struct bge_softc *, uint32_t, uint8_t *);
287 static int      bge_read_eeprom(struct bge_softc *, caddr_t, uint32_t, size_t);
288
289 static void     bge_setmulti(struct bge_softc *);
290 static void     bge_setpromisc(struct bge_softc *);
291
292 static int      bge_alloc_jumbo_mem(struct bge_softc *);
293 static void     bge_free_jumbo_mem(struct bge_softc *);
294 static struct bge_jslot
295                 *bge_jalloc(struct bge_softc *);
296 static void     bge_jfree(void *);
297 static void     bge_jref(void *);
298 static int      bge_newbuf_std(struct bge_softc *, int, struct mbuf *);
299 static int      bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
300 static int      bge_init_rx_ring_std(struct bge_softc *);
301 static void     bge_free_rx_ring_std(struct bge_softc *);
302 static int      bge_init_rx_ring_jumbo(struct bge_softc *);
303 static void     bge_free_rx_ring_jumbo(struct bge_softc *);
304 static void     bge_free_tx_ring(struct bge_softc *);
305 static int      bge_init_tx_ring(struct bge_softc *);
306
307 static int      bge_chipinit(struct bge_softc *);
308 static int      bge_blockinit(struct bge_softc *);
309
310 static uint32_t bge_readmem_ind(struct bge_softc *, uint32_t);
311 static void     bge_writemem_ind(struct bge_softc *, uint32_t, uint32_t);
312 #ifdef notdef
313 static uint32_t bge_readreg_ind(struct bge_softc *, uint32_t);
314 #endif
315 static void     bge_writereg_ind(struct bge_softc *, uint32_t, uint32_t);
316 static void     bge_writemem_direct(struct bge_softc *, uint32_t, uint32_t);
317
318 static int      bge_miibus_readreg(device_t, int, int);
319 static int      bge_miibus_writereg(device_t, int, int, int);
320 static void     bge_miibus_statchg(device_t);
321 static void     bge_bcm5700_link_upd(struct bge_softc *, uint32_t);
322 static void     bge_tbi_link_upd(struct bge_softc *, uint32_t);
323 static void     bge_copper_link_upd(struct bge_softc *, uint32_t);
324
325 static void     bge_reset(struct bge_softc *);
326
327 static void     bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
328 static void     bge_dma_map_mbuf(void *, bus_dma_segment_t *, int,
329                                  bus_size_t, int);
330 static int      bge_dma_alloc(struct bge_softc *);
331 static void     bge_dma_free(struct bge_softc *);
332 static int      bge_dma_block_alloc(struct bge_softc *, bus_size_t,
333                                     bus_dma_tag_t *, bus_dmamap_t *,
334                                     void **, bus_addr_t *);
335 static void     bge_dma_block_free(bus_dma_tag_t, bus_dmamap_t, void *);
336
337 static void     bge_coal_change(struct bge_softc *);
338 static int      bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS);
339 static int      bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS);
340 static int      bge_sysctl_rx_max_coal_bds(SYSCTL_HANDLER_ARGS);
341 static int      bge_sysctl_tx_max_coal_bds(SYSCTL_HANDLER_ARGS);
342 static int      bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *, uint32_t);
343
344 /*
345  * Set following tunable to 1 for some IBM blade servers with the DNLK
346  * switch module. Auto negotiation is broken for those configurations.
347  */
348 static int      bge_fake_autoneg = 0;
349 TUNABLE_INT("hw.bge.fake_autoneg", &bge_fake_autoneg);
350
351 /* Interrupt moderation control variables. */
352 static int      bge_rx_coal_ticks = 150;        /* usec */
353 static int      bge_tx_coal_ticks = 1000000;    /* usec */
354 static int      bge_rx_max_coal_bds = 16;
355 static int      bge_tx_max_coal_bds = 32;
356
357 TUNABLE_INT("hw.bge.rx_coal_ticks", &bge_rx_coal_ticks);
358 TUNABLE_INT("hw.bge.tx_coal_ticks", &bge_tx_coal_ticks);
359 TUNABLE_INT("hw.bge.rx_max_coal_bds", &bge_rx_max_coal_bds);
360 TUNABLE_INT("hw.bge.tx_max_coal_bds", &bge_tx_max_coal_bds);
361
362 #if !defined(KTR_IF_BGE)
363 #define KTR_IF_BGE      KTR_ALL
364 #endif
365 KTR_INFO_MASTER(if_bge);
366 KTR_INFO(KTR_IF_BGE, if_bge, intr, 0, "intr", 0);
367 KTR_INFO(KTR_IF_BGE, if_bge, rx_pkt, 1, "rx_pkt", 0);
368 KTR_INFO(KTR_IF_BGE, if_bge, tx_pkt, 2, "tx_pkt", 0);
369 #define logif(name)     KTR_LOG(if_bge_ ## name)
370
371 static device_method_t bge_methods[] = {
372         /* Device interface */
373         DEVMETHOD(device_probe,         bge_probe),
374         DEVMETHOD(device_attach,        bge_attach),
375         DEVMETHOD(device_detach,        bge_detach),
376         DEVMETHOD(device_shutdown,      bge_shutdown),
377         DEVMETHOD(device_suspend,       bge_suspend),
378         DEVMETHOD(device_resume,        bge_resume),
379
380         /* bus interface */
381         DEVMETHOD(bus_print_child,      bus_generic_print_child),
382         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
383
384         /* MII interface */
385         DEVMETHOD(miibus_readreg,       bge_miibus_readreg),
386         DEVMETHOD(miibus_writereg,      bge_miibus_writereg),
387         DEVMETHOD(miibus_statchg,       bge_miibus_statchg),
388
389         { 0, 0 }
390 };
391
392 static DEFINE_CLASS_0(bge, bge_driver, bge_methods, sizeof(struct bge_softc));
393 static devclass_t bge_devclass;
394
395 DECLARE_DUMMY_MODULE(if_bge);
396 DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, 0, 0);
397 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
398
399 static uint32_t
400 bge_readmem_ind(struct bge_softc *sc, uint32_t off)
401 {
402         device_t dev = sc->bge_dev;
403         uint32_t val;
404
405         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
406         val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
407         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
408         return (val);
409 }
410
411 static void
412 bge_writemem_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
413 {
414         device_t dev = sc->bge_dev;
415
416         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
417         pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
418         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
419 }
420
421 #ifdef notdef
422 static uint32_t
423 bge_readreg_ind(struct bge_softc *sc, uin32_t off)
424 {
425         device_t dev = sc->bge_dev;
426
427         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
428         return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
429 }
430 #endif
431
432 static void
433 bge_writereg_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
434 {
435         device_t dev = sc->bge_dev;
436
437         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
438         pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
439 }
440
441 static void
442 bge_writemem_direct(struct bge_softc *sc, uint32_t off, uint32_t val)
443 {
444         CSR_WRITE_4(sc, off, val);
445 }
446
447 /*
448  * Read a byte of data stored in the EEPROM at address 'addr.' The
449  * BCM570x supports both the traditional bitbang interface and an
450  * auto access interface for reading the EEPROM. We use the auto
451  * access method.
452  */
453 static uint8_t
454 bge_eeprom_getbyte(struct bge_softc *sc, uint32_t addr, uint8_t *dest)
455 {
456         int i;
457         uint32_t byte = 0;
458
459         /*
460          * Enable use of auto EEPROM access so we can avoid
461          * having to use the bitbang method.
462          */
463         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
464
465         /* Reset the EEPROM, load the clock period. */
466         CSR_WRITE_4(sc, BGE_EE_ADDR,
467             BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
468         DELAY(20);
469
470         /* Issue the read EEPROM command. */
471         CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
472
473         /* Wait for completion */
474         for(i = 0; i < BGE_TIMEOUT * 10; i++) {
475                 DELAY(10);
476                 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
477                         break;
478         }
479
480         if (i == BGE_TIMEOUT) {
481                 if_printf(&sc->arpcom.ac_if, "eeprom read timed out\n");
482                 return(1);
483         }
484
485         /* Get result. */
486         byte = CSR_READ_4(sc, BGE_EE_DATA);
487
488         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
489
490         return(0);
491 }
492
493 /*
494  * Read a sequence of bytes from the EEPROM.
495  */
496 static int
497 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, uint32_t off, size_t len)
498 {
499         size_t i;
500         int err;
501         uint8_t byte;
502
503         for (byte = 0, err = 0, i = 0; i < len; i++) {
504                 err = bge_eeprom_getbyte(sc, off + i, &byte);
505                 if (err)
506                         break;
507                 *(dest + i) = byte;
508         }
509
510         return(err ? 1 : 0);
511 }
512
513 static int
514 bge_miibus_readreg(device_t dev, int phy, int reg)
515 {
516         struct bge_softc *sc;
517         struct ifnet *ifp;
518         uint32_t val, autopoll;
519         int i;
520
521         sc = device_get_softc(dev);
522         ifp = &sc->arpcom.ac_if;
523
524         /*
525          * Broadcom's own driver always assumes the internal
526          * PHY is at GMII address 1. On some chips, the PHY responds
527          * to accesses at all addresses, which could cause us to
528          * bogusly attach the PHY 32 times at probe type. Always
529          * restricting the lookup to address 1 is simpler than
530          * trying to figure out which chips revisions should be
531          * special-cased.
532          */
533         if (phy != 1)
534                 return(0);
535
536         /* Reading with autopolling on may trigger PCI errors */
537         autopoll = CSR_READ_4(sc, BGE_MI_MODE);
538         if (autopoll & BGE_MIMODE_AUTOPOLL) {
539                 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
540                 DELAY(40);
541         }
542
543         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
544             BGE_MIPHY(phy)|BGE_MIREG(reg));
545
546         for (i = 0; i < BGE_TIMEOUT; i++) {
547                 val = CSR_READ_4(sc, BGE_MI_COMM);
548                 if (!(val & BGE_MICOMM_BUSY))
549                         break;
550         }
551
552         if (i == BGE_TIMEOUT) {
553                 if_printf(ifp, "PHY read timed out\n");
554                 val = 0;
555                 goto done;
556         }
557
558         val = CSR_READ_4(sc, BGE_MI_COMM);
559
560 done:
561         if (autopoll & BGE_MIMODE_AUTOPOLL) {
562                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
563                 DELAY(40);
564         }
565
566         if (val & BGE_MICOMM_READFAIL)
567                 return(0);
568
569         return(val & 0xFFFF);
570 }
571
572 static int
573 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
574 {
575         struct bge_softc *sc;
576         uint32_t autopoll;
577         int i;
578
579         sc = device_get_softc(dev);
580
581         /* Reading with autopolling on may trigger PCI errors */
582         autopoll = CSR_READ_4(sc, BGE_MI_MODE);
583         if (autopoll & BGE_MIMODE_AUTOPOLL) {
584                 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
585                 DELAY(40);
586         }
587
588         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
589             BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
590
591         for (i = 0; i < BGE_TIMEOUT; i++) {
592                 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
593                         break;
594         }
595
596         if (autopoll & BGE_MIMODE_AUTOPOLL) {
597                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
598                 DELAY(40);
599         }
600
601         if (i == BGE_TIMEOUT) {
602                 if_printf(&sc->arpcom.ac_if, "PHY read timed out\n");
603                 return(0);
604         }
605
606         return(0);
607 }
608
609 static void
610 bge_miibus_statchg(device_t dev)
611 {
612         struct bge_softc *sc;
613         struct mii_data *mii;
614
615         sc = device_get_softc(dev);
616         mii = device_get_softc(sc->bge_miibus);
617
618         BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
619         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
620                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
621         } else {
622                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
623         }
624
625         if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
626                 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
627         } else {
628                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
629         }
630 }
631
632 /*
633  * Memory management for jumbo frames.
634  */
635 static int
636 bge_alloc_jumbo_mem(struct bge_softc *sc)
637 {
638         struct ifnet *ifp = &sc->arpcom.ac_if;
639         struct bge_jslot *entry;
640         uint8_t *ptr;
641         bus_addr_t paddr;
642         int i, error;
643
644         /*
645          * Create tag for jumbo mbufs.
646          * This is really a bit of a kludge. We allocate a special
647          * jumbo buffer pool which (thanks to the way our DMA
648          * memory allocation works) will consist of contiguous
649          * pages. This means that even though a jumbo buffer might
650          * be larger than a page size, we don't really need to
651          * map it into more than one DMA segment. However, the
652          * default mbuf tag will result in multi-segment mappings,
653          * so we have to create a special jumbo mbuf tag that
654          * lets us get away with mapping the jumbo buffers as
655          * a single segment. I think eventually the driver should
656          * be changed so that it uses ordinary mbufs and cluster
657          * buffers, i.e. jumbo frames can span multiple DMA
658          * descriptors. But that's a project for another day.
659          */
660
661         /*
662          * Create DMA stuffs for jumbo RX ring.
663          */
664         error = bge_dma_block_alloc(sc, BGE_JUMBO_RX_RING_SZ,
665                                     &sc->bge_cdata.bge_rx_jumbo_ring_tag,
666                                     &sc->bge_cdata.bge_rx_jumbo_ring_map,
667                                     (void **)&sc->bge_ldata.bge_rx_jumbo_ring,
668                                     &sc->bge_ldata.bge_rx_jumbo_ring_paddr);
669         if (error) {
670                 if_printf(ifp, "could not create jumbo RX ring\n");
671                 return error;
672         }
673
674         /*
675          * Create DMA stuffs for jumbo buffer block.
676          */
677         error = bge_dma_block_alloc(sc, BGE_JMEM,
678                                     &sc->bge_cdata.bge_jumbo_tag,
679                                     &sc->bge_cdata.bge_jumbo_map,
680                                     (void **)&sc->bge_ldata.bge_jumbo_buf,
681                                     &paddr);
682         if (error) {
683                 if_printf(ifp, "could not create jumbo buffer\n");
684                 return error;
685         }
686
687         SLIST_INIT(&sc->bge_jfree_listhead);
688
689         /*
690          * Now divide it up into 9K pieces and save the addresses
691          * in an array. Note that we play an evil trick here by using
692          * the first few bytes in the buffer to hold the the address
693          * of the softc structure for this interface. This is because
694          * bge_jfree() needs it, but it is called by the mbuf management
695          * code which will not pass it to us explicitly.
696          */
697         for (i = 0, ptr = sc->bge_ldata.bge_jumbo_buf; i < BGE_JSLOTS; i++) {
698                 entry = &sc->bge_cdata.bge_jslots[i];
699                 entry->bge_sc = sc;
700                 entry->bge_buf = ptr;
701                 entry->bge_paddr = paddr;
702                 entry->bge_inuse = 0;
703                 entry->bge_slot = i;
704                 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jslot_link);
705
706                 ptr += BGE_JLEN;
707                 paddr += BGE_JLEN;
708         }
709         return 0;
710 }
711
712 static void
713 bge_free_jumbo_mem(struct bge_softc *sc)
714 {
715         /* Destroy jumbo RX ring. */
716         bge_dma_block_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
717                            sc->bge_cdata.bge_rx_jumbo_ring_map,
718                            sc->bge_ldata.bge_rx_jumbo_ring);
719
720         /* Destroy jumbo buffer block. */
721         bge_dma_block_free(sc->bge_cdata.bge_jumbo_tag,
722                            sc->bge_cdata.bge_jumbo_map,
723                            sc->bge_ldata.bge_jumbo_buf);
724 }
725
726 /*
727  * Allocate a jumbo buffer.
728  */
729 static struct bge_jslot *
730 bge_jalloc(struct bge_softc *sc)
731 {
732         struct bge_jslot *entry;
733
734         lwkt_serialize_enter(&sc->bge_jslot_serializer);
735         entry = SLIST_FIRST(&sc->bge_jfree_listhead);
736         if (entry) {
737                 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jslot_link);
738                 entry->bge_inuse = 1;
739         } else {
740                 if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n");
741         }
742         lwkt_serialize_exit(&sc->bge_jslot_serializer);
743         return(entry);
744 }
745
746 /*
747  * Adjust usage count on a jumbo buffer.
748  */
749 static void
750 bge_jref(void *arg)
751 {
752         struct bge_jslot *entry = (struct bge_jslot *)arg;
753         struct bge_softc *sc = entry->bge_sc;
754
755         if (sc == NULL)
756                 panic("bge_jref: can't find softc pointer!");
757
758         if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
759                 panic("bge_jref: asked to reference buffer "
760                     "that we don't manage!");
761         } else if (entry->bge_inuse == 0) {
762                 panic("bge_jref: buffer already free!");
763         } else {
764                 atomic_add_int(&entry->bge_inuse, 1);
765         }
766 }
767
768 /*
769  * Release a jumbo buffer.
770  */
771 static void
772 bge_jfree(void *arg)
773 {
774         struct bge_jslot *entry = (struct bge_jslot *)arg;
775         struct bge_softc *sc = entry->bge_sc;
776
777         if (sc == NULL)
778                 panic("bge_jfree: can't find softc pointer!");
779
780         if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
781                 panic("bge_jfree: asked to free buffer that we don't manage!");
782         } else if (entry->bge_inuse == 0) {
783                 panic("bge_jfree: buffer already free!");
784         } else {
785                 /*
786                  * Possible MP race to 0, use the serializer.  The atomic insn
787                  * is still needed for races against bge_jref().
788                  */
789                 lwkt_serialize_enter(&sc->bge_jslot_serializer);
790                 atomic_subtract_int(&entry->bge_inuse, 1);
791                 if (entry->bge_inuse == 0) {
792                         SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, 
793                                           entry, jslot_link);
794                 }
795                 lwkt_serialize_exit(&sc->bge_jslot_serializer);
796         }
797 }
798
799
800 /*
801  * Intialize a standard receive ring descriptor.
802  */
803 static int
804 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m)
805 {
806         struct mbuf *m_new = NULL;
807         struct bge_dmamap_arg ctx;
808         bus_dma_segment_t seg;
809         struct bge_rx_bd *r;
810         int error;
811
812         if (m == NULL) {
813                 m_new = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
814                 if (m_new == NULL)
815                         return ENOBUFS;
816         } else {
817                 m_new = m;
818                 m_new->m_data = m_new->m_ext.ext_buf;
819         }
820         m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
821
822         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
823                 m_adj(m_new, ETHER_ALIGN);
824
825         ctx.bge_maxsegs = 1;
826         ctx.bge_segs = &seg;
827         error = bus_dmamap_load_mbuf(sc->bge_cdata.bge_mtag,
828                                      sc->bge_cdata.bge_rx_std_dmamap[i],
829                                      m_new, bge_dma_map_mbuf, &ctx,
830                                      BUS_DMA_NOWAIT);
831         if (error || ctx.bge_maxsegs == 0) {
832                 if (m == NULL)
833                         m_freem(m_new);
834                 return ENOMEM;
835         }
836
837         sc->bge_cdata.bge_rx_std_chain[i] = m_new;
838
839         r = &sc->bge_ldata.bge_rx_std_ring[i];
840         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(ctx.bge_segs[0].ds_addr);
841         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(ctx.bge_segs[0].ds_addr);
842         r->bge_flags = BGE_RXBDFLAG_END;
843         r->bge_len = m_new->m_len;
844         r->bge_idx = i;
845
846         bus_dmamap_sync(sc->bge_cdata.bge_mtag,
847                         sc->bge_cdata.bge_rx_std_dmamap[i],
848                         BUS_DMASYNC_PREREAD);
849         return 0;
850 }
851
852 /*
853  * Initialize a jumbo receive ring descriptor. This allocates
854  * a jumbo buffer from the pool managed internally by the driver.
855  */
856 static int
857 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
858 {
859         struct mbuf *m_new = NULL;
860         struct bge_jslot *buf;
861         struct bge_rx_bd *r;
862         bus_addr_t paddr;
863
864         if (m == NULL) {
865                 /* Allocate the mbuf. */
866                 MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
867                 if (m_new == NULL)
868                         return(ENOBUFS);
869
870                 /* Allocate the jumbo buffer */
871                 buf = bge_jalloc(sc);
872                 if (buf == NULL) {
873                         m_freem(m_new);
874                         if_printf(&sc->arpcom.ac_if, "jumbo allocation failed "
875                             "-- packet dropped!\n");
876                         return ENOBUFS;
877                 }
878
879                 /* Attach the buffer to the mbuf. */
880                 m_new->m_ext.ext_arg = buf;
881                 m_new->m_ext.ext_buf = buf->bge_buf;
882                 m_new->m_ext.ext_free = bge_jfree;
883                 m_new->m_ext.ext_ref = bge_jref;
884                 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
885
886                 m_new->m_flags |= M_EXT;
887         } else {
888                 KKASSERT(m->m_flags & M_EXT);
889                 m_new = m;
890                 buf = m_new->m_ext.ext_arg;
891         }
892         m_new->m_data = m_new->m_ext.ext_buf;
893         m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
894
895         paddr = buf->bge_paddr;
896         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) {
897                 m_adj(m_new, ETHER_ALIGN);
898                 paddr += ETHER_ALIGN;
899         }
900
901         /* Set up the descriptor. */
902         sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
903
904         r = &sc->bge_ldata.bge_rx_jumbo_ring[i];
905         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(paddr);
906         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(paddr);
907         r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
908         r->bge_len = m_new->m_len;
909         r->bge_idx = i;
910
911         return 0;
912 }
913
914 /*
915  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
916  * that's 1MB or memory, which is a lot. For now, we fill only the first
917  * 256 ring entries and hope that our CPU is fast enough to keep up with
918  * the NIC.
919  */
920 static int
921 bge_init_rx_ring_std(struct bge_softc *sc)
922 {
923         int i;
924
925         for (i = 0; i < BGE_SSLOTS; i++) {
926                 if (bge_newbuf_std(sc, i, NULL) == ENOBUFS)
927                         return(ENOBUFS);
928         };
929
930         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
931                         sc->bge_cdata.bge_rx_std_ring_map,
932                         BUS_DMASYNC_PREWRITE);
933
934         sc->bge_std = i - 1;
935         CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
936
937         return(0);
938 }
939
940 static void
941 bge_free_rx_ring_std(struct bge_softc *sc)
942 {
943         int i;
944
945         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
946                 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
947                         bus_dmamap_unload(sc->bge_cdata.bge_mtag,
948                                           sc->bge_cdata.bge_rx_std_dmamap[i]);
949                         m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
950                         sc->bge_cdata.bge_rx_std_chain[i] = NULL;
951                 }
952                 bzero(&sc->bge_ldata.bge_rx_std_ring[i],
953                     sizeof(struct bge_rx_bd));
954         }
955 }
956
957 static int
958 bge_init_rx_ring_jumbo(struct bge_softc *sc)
959 {
960         int i;
961         struct bge_rcb *rcb;
962
963         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
964                 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
965                         return(ENOBUFS);
966         };
967
968         bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
969                         sc->bge_cdata.bge_rx_jumbo_ring_map,
970                         BUS_DMASYNC_PREWRITE);
971
972         sc->bge_jumbo = i - 1;
973
974         rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
975         rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
976         CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
977
978         CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
979
980         return(0);
981 }
982
983 static void
984 bge_free_rx_ring_jumbo(struct bge_softc *sc)
985 {
986         int i;
987
988         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
989                 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
990                         m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
991                         sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
992                 }
993                 bzero(&sc->bge_ldata.bge_rx_jumbo_ring[i],
994                     sizeof(struct bge_rx_bd));
995         }
996 }
997
998 static void
999 bge_free_tx_ring(struct bge_softc *sc)
1000 {
1001         int i;
1002
1003         for (i = 0; i < BGE_TX_RING_CNT; i++) {
1004                 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1005                         bus_dmamap_unload(sc->bge_cdata.bge_mtag,
1006                                           sc->bge_cdata.bge_tx_dmamap[i]);
1007                         m_freem(sc->bge_cdata.bge_tx_chain[i]);
1008                         sc->bge_cdata.bge_tx_chain[i] = NULL;
1009                 }
1010                 bzero(&sc->bge_ldata.bge_tx_ring[i],
1011                     sizeof(struct bge_tx_bd));
1012         }
1013 }
1014
1015 static int
1016 bge_init_tx_ring(struct bge_softc *sc)
1017 {
1018         sc->bge_txcnt = 0;
1019         sc->bge_tx_saved_considx = 0;
1020         sc->bge_tx_prodidx = 0;
1021
1022         /* Initialize transmit producer index for host-memory send ring. */
1023         CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1024
1025         /* 5700 b2 errata */
1026         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1027                 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
1028
1029         CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1030         /* 5700 b2 errata */
1031         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1032                 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1033
1034         return(0);
1035 }
1036
1037 static void
1038 bge_setmulti(struct bge_softc *sc)
1039 {
1040         struct ifnet *ifp;
1041         struct ifmultiaddr *ifma;
1042         uint32_t hashes[4] = { 0, 0, 0, 0 };
1043         int h, i;
1044
1045         ifp = &sc->arpcom.ac_if;
1046
1047         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1048                 for (i = 0; i < 4; i++)
1049                         CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1050                 return;
1051         }
1052
1053         /* First, zot all the existing filters. */
1054         for (i = 0; i < 4; i++)
1055                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1056
1057         /* Now program new ones. */
1058         LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1059                 if (ifma->ifma_addr->sa_family != AF_LINK)
1060                         continue;
1061                 h = ether_crc32_le(
1062                     LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1063                     ETHER_ADDR_LEN) & 0x7f;
1064                 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1065         }
1066
1067         for (i = 0; i < 4; i++)
1068                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1069 }
1070
1071 /*
1072  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1073  * self-test results.
1074  */
1075 static int
1076 bge_chipinit(struct bge_softc *sc)
1077 {
1078         int i;
1079         uint32_t dma_rw_ctl;
1080
1081         /* Set endian type before we access any non-PCI registers. */
1082         pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, BGE_INIT, 4);
1083
1084         /*
1085          * Check the 'ROM failed' bit on the RX CPU to see if
1086          * self-tests passed.
1087          */
1088         if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1089                 if_printf(&sc->arpcom.ac_if,
1090                           "RX CPU self-diagnostics failed!\n");
1091                 return(ENODEV);
1092         }
1093
1094         /* Clear the MAC control register */
1095         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1096
1097         /*
1098          * Clear the MAC statistics block in the NIC's
1099          * internal memory.
1100          */
1101         for (i = BGE_STATS_BLOCK;
1102             i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1103                 BGE_MEMWIN_WRITE(sc, i, 0);
1104
1105         for (i = BGE_STATUS_BLOCK;
1106             i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1107                 BGE_MEMWIN_WRITE(sc, i, 0);
1108
1109         /* Set up the PCI DMA control register. */
1110         if (sc->bge_flags & BGE_FLAG_PCIE) {
1111                 /* PCI Express */
1112                 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1113                     (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1114                     (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1115         } else if (sc->bge_flags & BGE_FLAG_PCIX) {
1116                 /* PCI-X bus */
1117                 if (BGE_IS_5714_FAMILY(sc)) {
1118                         dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD;
1119                         dma_rw_ctl &= ~BGE_PCIDMARWCTL_ONEDMA_ATONCE; /* XXX */
1120                         /* XXX magic values, Broadcom-supplied Linux driver */
1121                         if (sc->bge_asicrev == BGE_ASICREV_BCM5780) {
1122                                 dma_rw_ctl |= (1 << 20) | (1 << 18) | 
1123                                     BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1124                         } else {
1125                                 dma_rw_ctl |= (1 << 20) | (1 << 18) | (1 << 15);
1126                         }
1127                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1128                         /*
1129                          * The 5704 uses a different encoding of read/write
1130                          * watermarks.
1131                          */
1132                         dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1133                             (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1134                             (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1135                 } else {
1136                         dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1137                             (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1138                             (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1139                             (0x0F);
1140                 }
1141
1142                 /*
1143                  * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1144                  * for hardware bugs.
1145                  */
1146                 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1147                     sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1148                         uint32_t tmp;
1149
1150                         tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1151                         if (tmp == 0x6 || tmp == 0x7)
1152                                 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1153                 }
1154         } else {
1155                 /* Conventional PCI bus */
1156                 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1157                     (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1158                     (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1159                     (0x0F);
1160         }
1161
1162         if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1163             sc->bge_asicrev == BGE_ASICREV_BCM5704 ||
1164             sc->bge_asicrev == BGE_ASICREV_BCM5705)
1165                 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1166         pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1167
1168         /*
1169          * Set up general mode register.
1170          */
1171         CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1172             BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1173             BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
1174
1175         /*
1176          * Disable memory write invalidate.  Apparently it is not supported
1177          * properly by these devices.
1178          */
1179         PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
1180
1181         /* Set the timer prescaler (always 66Mhz) */
1182         CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1183
1184         return(0);
1185 }
1186
1187 static int
1188 bge_blockinit(struct bge_softc *sc)
1189 {
1190         struct bge_rcb *rcb;
1191         bus_size_t vrcb;
1192         bge_hostaddr taddr;
1193         uint32_t val;
1194         int i;
1195
1196         /*
1197          * Initialize the memory window pointer register so that
1198          * we can access the first 32K of internal NIC RAM. This will
1199          * allow us to set up the TX send ring RCBs and the RX return
1200          * ring RCBs, plus other things which live in NIC memory.
1201          */
1202         CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1203
1204         /* Note: the BCM5704 has a smaller mbuf space than other chips. */
1205
1206         if (!BGE_IS_5705_PLUS(sc)) {
1207                 /* Configure mbuf memory pool */
1208                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1209                 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1210                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1211                 else
1212                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1213
1214                 /* Configure DMA resource pool */
1215                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1216                     BGE_DMA_DESCRIPTORS);
1217                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1218         }
1219
1220         /* Configure mbuf pool watermarks */
1221         if (BGE_IS_5705_PLUS(sc)) {
1222                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1223                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1224         } else {
1225                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1226                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1227         }
1228         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1229
1230         /* Configure DMA resource watermarks */
1231         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1232         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1233
1234         /* Enable buffer manager */
1235         if (!BGE_IS_5705_PLUS(sc)) {
1236                 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1237                     BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1238
1239                 /* Poll for buffer manager start indication */
1240                 for (i = 0; i < BGE_TIMEOUT; i++) {
1241                         if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1242                                 break;
1243                         DELAY(10);
1244                 }
1245
1246                 if (i == BGE_TIMEOUT) {
1247                         if_printf(&sc->arpcom.ac_if,
1248                                   "buffer manager failed to start\n");
1249                         return(ENXIO);
1250                 }
1251         }
1252
1253         /* Enable flow-through queues */
1254         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1255         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1256
1257         /* Wait until queue initialization is complete */
1258         for (i = 0; i < BGE_TIMEOUT; i++) {
1259                 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1260                         break;
1261                 DELAY(10);
1262         }
1263
1264         if (i == BGE_TIMEOUT) {
1265                 if_printf(&sc->arpcom.ac_if,
1266                           "flow-through queue init failed\n");
1267                 return(ENXIO);
1268         }
1269
1270         /* Initialize the standard RX ring control block */
1271         rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
1272         rcb->bge_hostaddr.bge_addr_lo =
1273             BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
1274         rcb->bge_hostaddr.bge_addr_hi =
1275             BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
1276         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1277             sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
1278         if (BGE_IS_5705_PLUS(sc))
1279                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1280         else
1281                 rcb->bge_maxlen_flags =
1282                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1283         rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1284         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1285         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1286         CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1287         CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1288
1289         /*
1290          * Initialize the jumbo RX ring control block
1291          * We set the 'ring disabled' bit in the flags
1292          * field until we're actually ready to start
1293          * using this ring (i.e. once we set the MTU
1294          * high enough to require it).
1295          */
1296         if (BGE_IS_JUMBO_CAPABLE(sc)) {
1297                 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1298
1299                 rcb->bge_hostaddr.bge_addr_lo =
1300                     BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1301                 rcb->bge_hostaddr.bge_addr_hi =
1302                     BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1303                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1304                     sc->bge_cdata.bge_rx_jumbo_ring_map,
1305                     BUS_DMASYNC_PREREAD);
1306                 rcb->bge_maxlen_flags =
1307                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1308                     BGE_RCB_FLAG_RING_DISABLED);
1309                 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1310                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1311                     rcb->bge_hostaddr.bge_addr_hi);
1312                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1313                     rcb->bge_hostaddr.bge_addr_lo);
1314                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1315                     rcb->bge_maxlen_flags);
1316                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1317
1318                 /* Set up dummy disabled mini ring RCB */
1319                 rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
1320                 rcb->bge_maxlen_flags =
1321                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1322                 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1323                     rcb->bge_maxlen_flags);
1324         }
1325
1326         /*
1327          * Set the BD ring replentish thresholds. The recommended
1328          * values are 1/8th the number of descriptors allocated to
1329          * each ring.
1330          */
1331         if (BGE_IS_5705_PLUS(sc))
1332                 val = 8;
1333         else
1334                 val = BGE_STD_RX_RING_CNT / 8;
1335         CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
1336         CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1337
1338         /*
1339          * Disable all unused send rings by setting the 'ring disabled'
1340          * bit in the flags field of all the TX send ring control blocks.
1341          * These are located in NIC memory.
1342          */
1343         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1344         for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1345                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1346                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1347                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1348                 vrcb += sizeof(struct bge_rcb);
1349         }
1350
1351         /* Configure TX RCB 0 (we use only the first ring) */
1352         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1353         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
1354         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1355         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1356         RCB_WRITE_4(sc, vrcb, bge_nicaddr,
1357             BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1358         if (!BGE_IS_5705_PLUS(sc)) {
1359                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1360                     BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1361         }
1362
1363         /* Disable all unused RX return rings */
1364         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1365         for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1366                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
1367                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
1368                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1369                     BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1370                     BGE_RCB_FLAG_RING_DISABLED));
1371                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1372                 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1373                     (i * (sizeof(uint64_t))), 0);
1374                 vrcb += sizeof(struct bge_rcb);
1375         }
1376
1377         /* Initialize RX ring indexes */
1378         CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1379         CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1380         CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1381
1382         /*
1383          * Set up RX return ring 0
1384          * Note that the NIC address for RX return rings is 0x00000000.
1385          * The return rings live entirely within the host, so the
1386          * nicaddr field in the RCB isn't used.
1387          */
1388         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1389         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
1390         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1391         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1392         RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0x00000000);
1393         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1394             BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1395
1396         /* Set random backoff seed for TX */
1397         CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1398             sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1399             sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1400             sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] +
1401             BGE_TX_BACKOFF_SEED_MASK);
1402
1403         /* Set inter-packet gap */
1404         CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1405
1406         /*
1407          * Specify which ring to use for packets that don't match
1408          * any RX rules.
1409          */
1410         CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1411
1412         /*
1413          * Configure number of RX lists. One interrupt distribution
1414          * list, sixteen active lists, one bad frames class.
1415          */
1416         CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1417
1418         /* Inialize RX list placement stats mask. */
1419         CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1420         CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1421
1422         /* Disable host coalescing until we get it set up */
1423         CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1424
1425         /* Poll to make sure it's shut down. */
1426         for (i = 0; i < BGE_TIMEOUT; i++) {
1427                 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1428                         break;
1429                 DELAY(10);
1430         }
1431
1432         if (i == BGE_TIMEOUT) {
1433                 if_printf(&sc->arpcom.ac_if,
1434                           "host coalescing engine failed to idle\n");
1435                 return(ENXIO);
1436         }
1437
1438         /* Set up host coalescing defaults */
1439         CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1440         CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1441         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1442         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1443         if (!BGE_IS_5705_PLUS(sc)) {
1444                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1445                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1446         }
1447         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
1448         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
1449
1450         /* Set up address of statistics block */
1451         if (!BGE_IS_5705_PLUS(sc)) {
1452                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
1453                     BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
1454                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1455                     BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
1456
1457                 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1458                 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1459                 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1460         }
1461
1462         /* Set up address of status block */
1463         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
1464             BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
1465         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1466             BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
1467         sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx = 0;
1468         sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx = 0;
1469
1470         /* Turn on host coalescing state machine */
1471         CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1472
1473         /* Turn on RX BD completion state machine and enable attentions */
1474         CSR_WRITE_4(sc, BGE_RBDC_MODE,
1475             BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1476
1477         /* Turn on RX list placement state machine */
1478         CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1479
1480         /* Turn on RX list selector state machine. */
1481         if (!BGE_IS_5705_PLUS(sc))
1482                 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1483
1484         /* Turn on DMA, clear stats */
1485         CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1486             BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1487             BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1488             BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1489             ((sc->bge_flags & BGE_FLAG_TBI) ?
1490              BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1491
1492         /* Set misc. local control, enable interrupts on attentions */
1493         CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1494
1495 #ifdef notdef
1496         /* Assert GPIO pins for PHY reset */
1497         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1498             BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1499         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1500             BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1501 #endif
1502
1503         /* Turn on DMA completion state machine */
1504         if (!BGE_IS_5705_PLUS(sc))
1505                 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1506
1507         /* Turn on write DMA state machine */
1508         val = BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
1509         if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
1510             sc->bge_asicrev == BGE_ASICREV_BCM5787)
1511                 val |= (1 << 29);       /* Enable host coalescing bug fix. */
1512         CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
1513         
1514         /* Turn on read DMA state machine */
1515         CSR_WRITE_4(sc, BGE_RDMA_MODE,
1516             BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1517
1518         /* Turn on RX data completion state machine */
1519         CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1520
1521         /* Turn on RX BD initiator state machine */
1522         CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1523
1524         /* Turn on RX data and RX BD initiator state machine */
1525         CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1526
1527         /* Turn on Mbuf cluster free state machine */
1528         if (!BGE_IS_5705_PLUS(sc))
1529                 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1530
1531         /* Turn on send BD completion state machine */
1532         CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1533
1534         /* Turn on send data completion state machine */
1535         CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1536
1537         /* Turn on send data initiator state machine */
1538         CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1539
1540         /* Turn on send BD initiator state machine */
1541         CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1542
1543         /* Turn on send BD selector state machine */
1544         CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1545
1546         CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1547         CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1548             BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1549
1550         /* ack/clear link change events */
1551         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1552             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1553             BGE_MACSTAT_LINK_CHANGED);
1554         CSR_WRITE_4(sc, BGE_MI_STS, 0);
1555
1556         /* Enable PHY auto polling (for MII/GMII only) */
1557         if (sc->bge_flags & BGE_FLAG_TBI) {
1558                 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1559         } else {
1560                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1561                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1562                     sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
1563                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1564                             BGE_EVTENB_MI_INTERRUPT);
1565                 }
1566         }
1567
1568         /*
1569          * Clear any pending link state attention.
1570          * Otherwise some link state change events may be lost until attention
1571          * is cleared by bge_intr() -> bge_softc.bge_link_upd() sequence.
1572          * It's not necessary on newer BCM chips - perhaps enabling link
1573          * state change attentions implies clearing pending attention.
1574          */
1575         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1576             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1577             BGE_MACSTAT_LINK_CHANGED);
1578
1579         /* Enable link state change attentions. */
1580         BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1581
1582         return(0);
1583 }
1584
1585 /*
1586  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1587  * against our list and return its name if we find a match. Note
1588  * that since the Broadcom controller contains VPD support, we
1589  * can get the device name string from the controller itself instead
1590  * of the compiled-in string. This is a little slow, but it guarantees
1591  * we'll always announce the right product name.
1592  */
1593 static int
1594 bge_probe(device_t dev)
1595 {
1596         struct bge_softc *sc;
1597         struct bge_type *t;
1598         char *descbuf;
1599         uint16_t product, vendor;
1600
1601         product = pci_get_device(dev);
1602         vendor = pci_get_vendor(dev);
1603
1604         for (t = bge_devs; t->bge_name != NULL; t++) {
1605                 if (vendor == t->bge_vid && product == t->bge_did)
1606                         break;
1607         }
1608
1609         if (t->bge_name == NULL)
1610                 return(ENXIO);
1611
1612         sc = device_get_softc(dev);
1613         descbuf = kmalloc(BGE_DEVDESC_MAX, M_TEMP, M_WAITOK);
1614         ksnprintf(descbuf, BGE_DEVDESC_MAX, "%s, ASIC rev. %#04x", t->bge_name,
1615             pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >> 16);
1616         device_set_desc_copy(dev, descbuf);
1617         if (pci_get_subvendor(dev) == PCI_VENDOR_DELL)
1618                 sc->bge_flags |= BGE_FLAG_NO_3LED;
1619         kfree(descbuf, M_TEMP);
1620         return(0);
1621 }
1622
1623 static int
1624 bge_attach(device_t dev)
1625 {
1626         struct ifnet *ifp;
1627         struct bge_softc *sc;
1628         uint32_t hwcfg = 0;
1629         uint32_t mac_addr = 0;
1630         int error = 0, rid;
1631         uint8_t ether_addr[ETHER_ADDR_LEN];
1632
1633         sc = device_get_softc(dev);
1634         sc->bge_dev = dev;
1635         callout_init(&sc->bge_stat_timer);
1636         lwkt_serialize_init(&sc->bge_jslot_serializer);
1637
1638         /*
1639          * Map control/status registers.
1640          */
1641         pci_enable_busmaster(dev);
1642
1643         rid = BGE_PCI_BAR0;
1644         sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1645             RF_ACTIVE);
1646
1647         if (sc->bge_res == NULL) {
1648                 device_printf(dev, "couldn't map memory\n");
1649                 return ENXIO;
1650         }
1651
1652         sc->bge_btag = rman_get_bustag(sc->bge_res);
1653         sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
1654
1655         /* Save ASIC rev. */
1656         sc->bge_chipid =
1657             pci_read_config(dev, BGE_PCI_MISC_CTL, 4) &
1658             BGE_PCIMISCCTL_ASICREV;
1659         sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
1660         sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
1661
1662         /* Save chipset family. */
1663         switch (sc->bge_asicrev) {
1664         case BGE_ASICREV_BCM5700:
1665         case BGE_ASICREV_BCM5701:
1666         case BGE_ASICREV_BCM5703:
1667         case BGE_ASICREV_BCM5704:
1668                 sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
1669                 break;
1670
1671         case BGE_ASICREV_BCM5714_A0:
1672         case BGE_ASICREV_BCM5780:
1673         case BGE_ASICREV_BCM5714:
1674                 sc->bge_flags |= BGE_FLAG_5714_FAMILY;
1675                 /* Fall through */
1676
1677         case BGE_ASICREV_BCM5750:
1678         case BGE_ASICREV_BCM5752:
1679         case BGE_ASICREV_BCM5755:
1680         case BGE_ASICREV_BCM5787:
1681                 sc->bge_flags |= BGE_FLAG_575X_PLUS;
1682                 /* Fall through */
1683
1684         case BGE_ASICREV_BCM5705:
1685                 sc->bge_flags |= BGE_FLAG_5705_PLUS;
1686                 break;
1687         }
1688
1689         /*
1690          * Set various quirk flags.
1691          */
1692
1693         sc->bge_flags |= BGE_FLAG_ETH_WIRESPEED;
1694         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1695             (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
1696              (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
1697               sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
1698             sc->bge_asicrev == BGE_ASICREV_BCM5906)
1699                 sc->bge_flags &= ~BGE_FLAG_ETH_WIRESPEED;
1700
1701         if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
1702             sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
1703                 sc->bge_flags |= BGE_FLAG_CRC_BUG;
1704
1705         if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
1706             sc->bge_chiprev == BGE_CHIPREV_5704_AX)
1707                 sc->bge_flags |= BGE_FLAG_ADC_BUG;
1708
1709         if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
1710                 sc->bge_flags |= BGE_FLAG_5704_A0_BUG;
1711
1712         if (BGE_IS_5705_PLUS(sc)) {
1713                 if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
1714                     sc->bge_asicrev == BGE_ASICREV_BCM5787) {
1715                         uint32_t product = pci_get_device(dev);
1716
1717                         if (product != PCI_PRODUCT_BROADCOM_BCM5722 &&
1718                             product != PCI_PRODUCT_BROADCOM_BCM5756)
1719                                 sc->bge_flags |= BGE_FLAG_JITTER_BUG;
1720                         if (product == PCI_PRODUCT_BROADCOM_BCM5755M)
1721                                 sc->bge_flags |= BGE_FLAG_ADJUST_TRIM;
1722                 } else if (sc->bge_asicrev != BGE_ASICREV_BCM5906) {
1723                         sc->bge_flags |= BGE_FLAG_BER_BUG;
1724                 }
1725         }
1726
1727         /* Allocate interrupt */
1728         rid = 0;
1729
1730         sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1731             RF_SHAREABLE | RF_ACTIVE);
1732
1733         if (sc->bge_irq == NULL) {
1734                 device_printf(dev, "couldn't map interrupt\n");
1735                 error = ENXIO;
1736                 goto fail;
1737         }
1738
1739         /*
1740          * Check if this is a PCI-X or PCI Express device.
1741          */
1742         if (BGE_IS_5705_PLUS(sc)) {
1743                 uint32_t reg;
1744
1745                 reg = pci_read_config(dev, BGE_PCIE_CAPID_REG, 4);
1746                 if ((reg & 0xff) == BGE_PCIE_CAPID)
1747                         sc->bge_flags |= BGE_FLAG_PCIE;
1748         } else {
1749                 /*
1750                  * Check if the device is in PCI-X Mode.
1751                  * (This bit is not valid on PCI Express controllers.)
1752                  */
1753                 if ((pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
1754                     BGE_PCISTATE_PCI_BUSMODE) == 0)
1755                         sc->bge_flags |= BGE_FLAG_PCIX;
1756         }
1757
1758         ifp = &sc->arpcom.ac_if;
1759         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1760
1761         /* Try to reset the chip. */
1762         bge_reset(sc);
1763
1764         if (bge_chipinit(sc)) {
1765                 device_printf(dev, "chip initialization failed\n");
1766                 error = ENXIO;
1767                 goto fail;
1768         }
1769
1770         /*
1771          * Get station address from the EEPROM.
1772          */
1773         mac_addr = bge_readmem_ind(sc, 0x0c14);
1774         if ((mac_addr >> 16) == 0x484b) {
1775                 ether_addr[0] = (uint8_t)(mac_addr >> 8);
1776                 ether_addr[1] = (uint8_t)mac_addr;
1777                 mac_addr = bge_readmem_ind(sc, 0x0c18);
1778                 ether_addr[2] = (uint8_t)(mac_addr >> 24);
1779                 ether_addr[3] = (uint8_t)(mac_addr >> 16);
1780                 ether_addr[4] = (uint8_t)(mac_addr >> 8);
1781                 ether_addr[5] = (uint8_t)mac_addr;
1782         } else if (bge_read_eeprom(sc, ether_addr,
1783             BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1784                 device_printf(dev, "failed to read station address\n");
1785                 error = ENXIO;
1786                 goto fail;
1787         }
1788
1789         /* 5705/5750 limits RX return ring to 512 entries. */
1790         if (BGE_IS_5705_PLUS(sc))
1791                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1792         else
1793                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1794
1795         error = bge_dma_alloc(sc);
1796         if (error)
1797                 goto fail;
1798
1799         /* Set default tuneable values. */
1800         sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
1801         sc->bge_rx_coal_ticks = bge_rx_coal_ticks;
1802         sc->bge_tx_coal_ticks = bge_tx_coal_ticks;
1803         sc->bge_rx_max_coal_bds = bge_rx_max_coal_bds;
1804         sc->bge_tx_max_coal_bds = bge_tx_max_coal_bds;
1805
1806         /* Set up ifnet structure */
1807         ifp->if_softc = sc;
1808         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1809         ifp->if_ioctl = bge_ioctl;
1810         ifp->if_start = bge_start;
1811 #ifdef DEVICE_POLLING
1812         ifp->if_poll = bge_poll;
1813 #endif
1814         ifp->if_watchdog = bge_watchdog;
1815         ifp->if_init = bge_init;
1816         ifp->if_mtu = ETHERMTU;
1817         ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
1818         ifq_set_maxlen(&ifp->if_snd, BGE_TX_RING_CNT - 1);
1819         ifq_set_ready(&ifp->if_snd);
1820
1821         /*
1822          * 5700 B0 chips do not support checksumming correctly due
1823          * to hardware bugs.
1824          */
1825         if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0) {
1826                 ifp->if_capabilities |= IFCAP_HWCSUM;
1827                 ifp->if_hwassist = BGE_CSUM_FEATURES;
1828         }
1829         ifp->if_capenable = ifp->if_capabilities;
1830
1831         /*
1832          * Figure out what sort of media we have by checking the
1833          * hardware config word in the first 32k of NIC internal memory,
1834          * or fall back to examining the EEPROM if necessary.
1835          * Note: on some BCM5700 cards, this value appears to be unset.
1836          * If that's the case, we have to rely on identifying the NIC
1837          * by its PCI subsystem ID, as we do below for the SysKonnect
1838          * SK-9D41.
1839          */
1840         if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER)
1841                 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
1842         else {
1843                 if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
1844                                     sizeof(hwcfg))) {
1845                         device_printf(dev, "failed to read EEPROM\n");
1846                         error = ENXIO;
1847                         goto fail;
1848                 }
1849                 hwcfg = ntohl(hwcfg);
1850         }
1851
1852         if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
1853                 sc->bge_flags |= BGE_FLAG_TBI;
1854
1855         /* The SysKonnect SK-9D41 is a 1000baseSX card. */
1856         if (pci_get_subvendor(dev) == PCI_PRODUCT_SCHNEIDERKOCH_SK_9D41)
1857                 sc->bge_flags |= BGE_FLAG_TBI;
1858
1859         if (sc->bge_flags & BGE_FLAG_TBI) {
1860                 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
1861                     bge_ifmedia_upd, bge_ifmedia_sts);
1862                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1863                 ifmedia_add(&sc->bge_ifmedia,
1864                     IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1865                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1866                 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
1867                 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
1868         } else {
1869                 /*
1870                  * Do transceiver setup.
1871                  */
1872                 if (mii_phy_probe(dev, &sc->bge_miibus,
1873                     bge_ifmedia_upd, bge_ifmedia_sts)) {
1874                         device_printf(dev, "MII without any PHY!\n");
1875                         error = ENXIO;
1876                         goto fail;
1877                 }
1878         }
1879
1880         /*
1881          * When using the BCM5701 in PCI-X mode, data corruption has
1882          * been observed in the first few bytes of some received packets.
1883          * Aligning the packet buffer in memory eliminates the corruption.
1884          * Unfortunately, this misaligns the packet payloads.  On platforms
1885          * which do not support unaligned accesses, we will realign the
1886          * payloads by copying the received packets.
1887          */
1888         if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1889             (sc->bge_flags & BGE_FLAG_PCIX))
1890                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
1891
1892         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1893             sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
1894                 sc->bge_link_upd = bge_bcm5700_link_upd;
1895                 sc->bge_link_chg = BGE_MACSTAT_MI_INTERRUPT;
1896         } else if (sc->bge_flags & BGE_FLAG_TBI) {
1897                 sc->bge_link_upd = bge_tbi_link_upd;
1898                 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
1899         } else {
1900                 sc->bge_link_upd = bge_copper_link_upd;
1901                 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
1902         }
1903
1904         /*
1905          * Create sysctl nodes.
1906          */
1907         sysctl_ctx_init(&sc->bge_sysctl_ctx);
1908         sc->bge_sysctl_tree = SYSCTL_ADD_NODE(&sc->bge_sysctl_ctx,
1909                                               SYSCTL_STATIC_CHILDREN(_hw),
1910                                               OID_AUTO,
1911                                               device_get_nameunit(dev),
1912                                               CTLFLAG_RD, 0, "");
1913         if (sc->bge_sysctl_tree == NULL) {
1914                 device_printf(dev, "can't add sysctl node\n");
1915                 error = ENXIO;
1916                 goto fail;
1917         }
1918
1919         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
1920                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
1921                         OID_AUTO, "rx_coal_ticks",
1922                         CTLTYPE_INT | CTLFLAG_RW,
1923                         sc, 0, bge_sysctl_rx_coal_ticks, "I",
1924                         "Receive coalescing ticks (usec).");
1925         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
1926                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
1927                         OID_AUTO, "tx_coal_ticks",
1928                         CTLTYPE_INT | CTLFLAG_RW,
1929                         sc, 0, bge_sysctl_tx_coal_ticks, "I",
1930                         "Transmit coalescing ticks (usec).");
1931         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
1932                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
1933                         OID_AUTO, "rx_max_coal_bds",
1934                         CTLTYPE_INT | CTLFLAG_RW,
1935                         sc, 0, bge_sysctl_rx_max_coal_bds, "I",
1936                         "Receive max coalesced BD count.");
1937         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
1938                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
1939                         OID_AUTO, "tx_max_coal_bds",
1940                         CTLTYPE_INT | CTLFLAG_RW,
1941                         sc, 0, bge_sysctl_tx_max_coal_bds, "I",
1942                         "Transmit max coalesced BD count.");
1943
1944         /*
1945          * Call MI attach routine.
1946          */
1947         ether_ifattach(ifp, ether_addr, NULL);
1948
1949         error = bus_setup_intr(dev, sc->bge_irq, INTR_NETSAFE,
1950                                bge_intr, sc, &sc->bge_intrhand, 
1951                                ifp->if_serializer);
1952         if (error) {
1953                 ether_ifdetach(ifp);
1954                 device_printf(dev, "couldn't set up irq\n");
1955                 goto fail;
1956         }
1957         return(0);
1958 fail:
1959         bge_detach(dev);
1960         return(error);
1961 }
1962
1963 static int
1964 bge_detach(device_t dev)
1965 {
1966         struct bge_softc *sc = device_get_softc(dev);
1967
1968         if (device_is_attached(dev)) {
1969                 struct ifnet *ifp = &sc->arpcom.ac_if;
1970
1971                 lwkt_serialize_enter(ifp->if_serializer);
1972                 bge_stop(sc);
1973                 bge_reset(sc);
1974                 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
1975                 lwkt_serialize_exit(ifp->if_serializer);
1976
1977                 ether_ifdetach(ifp);
1978         }
1979
1980         if (sc->bge_flags & BGE_FLAG_TBI)
1981                 ifmedia_removeall(&sc->bge_ifmedia);
1982         if (sc->bge_miibus)
1983                 device_delete_child(dev, sc->bge_miibus);
1984         bus_generic_detach(dev);
1985
1986         if (sc->bge_irq != NULL)
1987                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->bge_irq);
1988
1989         if (sc->bge_res != NULL)
1990                 bus_release_resource(dev, SYS_RES_MEMORY,
1991                     BGE_PCI_BAR0, sc->bge_res);
1992
1993         if (sc->bge_sysctl_tree != NULL)
1994                 sysctl_ctx_free(&sc->bge_sysctl_ctx);
1995
1996         bge_dma_free(sc);
1997
1998         return 0;
1999 }
2000
2001 static void
2002 bge_reset(struct bge_softc *sc)
2003 {
2004         device_t dev;
2005         uint32_t cachesize, command, pcistate, reset;
2006         void (*write_op)(struct bge_softc *, uint32_t, uint32_t);
2007         int i, val = 0;
2008
2009         dev = sc->bge_dev;
2010
2011         if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc)) {
2012                 if (sc->bge_flags & BGE_FLAG_PCIE)
2013                         write_op = bge_writemem_direct;
2014                 else
2015                         write_op = bge_writemem_ind;
2016         } else {
2017                 write_op = bge_writereg_ind;
2018         }
2019
2020         /* Save some important PCI state. */
2021         cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
2022         command = pci_read_config(dev, BGE_PCI_CMD, 4);
2023         pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
2024
2025         pci_write_config(dev, BGE_PCI_MISC_CTL,
2026             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2027             BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW, 4);
2028
2029         /* Disable fastboot on controllers that support it. */
2030         if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
2031             sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2032             sc->bge_asicrev == BGE_ASICREV_BCM5787) {
2033                 if (bootverbose)
2034                         if_printf(&sc->arpcom.ac_if, "Disabling fastboot\n");
2035                 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
2036         }
2037
2038         /*
2039          * Write the magic number to SRAM at offset 0xB50.
2040          * When firmware finishes its initialization it will
2041          * write ~BGE_MAGIC_NUMBER to the same location.
2042          */
2043         bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2044
2045         reset = BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1);
2046
2047         /* XXX: Broadcom Linux driver. */
2048         if (sc->bge_flags & BGE_FLAG_PCIE) {
2049                 if (CSR_READ_4(sc, 0x7e2c) == 0x60)     /* PCIE 1.0 */
2050                         CSR_WRITE_4(sc, 0x7e2c, 0x20);
2051                 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2052                         /* Prevent PCIE link training during global reset */
2053                         CSR_WRITE_4(sc, BGE_MISC_CFG, (1<<29));
2054                         reset |= (1<<29);
2055                 }
2056         }
2057
2058         /* 
2059          * Set GPHY Power Down Override to leave GPHY
2060          * powered up in D0 uninitialized.
2061          */
2062         if (BGE_IS_5705_PLUS(sc))
2063                 reset |= 0x04000000;
2064
2065         /* Issue global reset */
2066         write_op(sc, BGE_MISC_CFG, reset);
2067
2068         DELAY(1000);
2069
2070         /* XXX: Broadcom Linux driver. */
2071         if (sc->bge_flags & BGE_FLAG_PCIE) {
2072                 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
2073                         uint32_t v;
2074
2075                         DELAY(500000); /* wait for link training to complete */
2076                         v = pci_read_config(dev, 0xc4, 4);
2077                         pci_write_config(dev, 0xc4, v | (1<<15), 4);
2078                 }
2079                 /*
2080                  * Set PCIE max payload size to 128 bytes and
2081                  * clear error status.
2082                  */
2083                 pci_write_config(dev, 0xd8, 0xf5000, 4);
2084         }
2085
2086         /* Reset some of the PCI state that got zapped by reset */
2087         pci_write_config(dev, BGE_PCI_MISC_CTL,
2088             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2089             BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW, 4);
2090         pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
2091         pci_write_config(dev, BGE_PCI_CMD, command, 4);
2092         write_op(sc, BGE_MISC_CFG, (65 << 1));
2093
2094         /* Enable memory arbiter. */
2095         if (BGE_IS_5714_FAMILY(sc)) {
2096                 uint32_t val;
2097
2098                 val = CSR_READ_4(sc, BGE_MARB_MODE);
2099                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
2100         } else {
2101                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2102         }
2103
2104         /*
2105          * Poll until we see the 1's complement of the magic number.
2106          * This indicates that the firmware initialization
2107          * is complete.
2108          */
2109         for (i = 0; i < BGE_TIMEOUT; i++) {
2110                 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2111                 if (val == ~BGE_MAGIC_NUMBER)
2112                         break;
2113                 DELAY(10);
2114         }
2115         
2116         if (i == BGE_TIMEOUT) {
2117                 if_printf(&sc->arpcom.ac_if, "firmware handshake timed out,"
2118                           "found 0x%08x\n", val);
2119                 return;
2120         }
2121
2122         /*
2123          * XXX Wait for the value of the PCISTATE register to
2124          * return to its original pre-reset state. This is a
2125          * fairly good indicator of reset completion. If we don't
2126          * wait for the reset to fully complete, trying to read
2127          * from the device's non-PCI registers may yield garbage
2128          * results.
2129          */
2130         for (i = 0; i < BGE_TIMEOUT; i++) {
2131                 if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
2132                         break;
2133                 DELAY(10);
2134         }
2135
2136         if (sc->bge_flags & BGE_FLAG_PCIE) {
2137                 reset = bge_readmem_ind(sc, 0x7c00);
2138                 bge_writemem_ind(sc, 0x7c00, reset | (1 << 25));
2139         }
2140
2141         /* Fix up byte swapping */
2142         CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
2143             BGE_MODECTL_BYTESWAP_DATA);
2144
2145         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2146
2147         /*
2148          * The 5704 in TBI mode apparently needs some special
2149          * adjustment to insure the SERDES drive level is set
2150          * to 1.2V.
2151          */
2152         if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
2153             (sc->bge_flags & BGE_FLAG_TBI)) {
2154                 uint32_t serdescfg;
2155
2156                 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
2157                 serdescfg = (serdescfg & ~0xFFF) | 0x880;
2158                 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
2159         }
2160
2161         /* XXX: Broadcom Linux driver. */
2162         if ((sc->bge_flags & BGE_FLAG_PCIE) &&
2163             sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2164                 uint32_t v;
2165
2166                 v = CSR_READ_4(sc, 0x7c00);
2167                 CSR_WRITE_4(sc, 0x7c00, v | (1<<25));
2168         }
2169
2170         DELAY(10000);
2171 }
2172
2173 /*
2174  * Frame reception handling. This is called if there's a frame
2175  * on the receive return list.
2176  *
2177  * Note: we have to be able to handle two possibilities here:
2178  * 1) the frame is from the jumbo recieve ring
2179  * 2) the frame is from the standard receive ring
2180  */
2181
2182 static void
2183 bge_rxeof(struct bge_softc *sc)
2184 {
2185         struct ifnet *ifp;
2186         int stdcnt = 0, jumbocnt = 0;
2187
2188         if (sc->bge_rx_saved_considx ==
2189             sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx)
2190                 return;
2191
2192         ifp = &sc->arpcom.ac_if;
2193
2194         bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
2195                         sc->bge_cdata.bge_rx_return_ring_map,
2196                         BUS_DMASYNC_POSTREAD);
2197         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
2198                         sc->bge_cdata.bge_rx_std_ring_map,
2199                         BUS_DMASYNC_POSTREAD);
2200         if (BGE_IS_JUMBO_CAPABLE(sc)) {
2201                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2202                                 sc->bge_cdata.bge_rx_jumbo_ring_map,
2203                                 BUS_DMASYNC_POSTREAD);
2204         }
2205
2206         while (sc->bge_rx_saved_considx !=
2207                sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx) {
2208                 struct bge_rx_bd        *cur_rx;
2209                 uint32_t                rxidx;
2210                 struct mbuf             *m = NULL;
2211                 uint16_t                vlan_tag = 0;
2212                 int                     have_tag = 0;
2213
2214                 cur_rx =
2215             &sc->bge_ldata.bge_rx_return_ring[sc->bge_rx_saved_considx];
2216
2217                 rxidx = cur_rx->bge_idx;
2218                 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
2219                 logif(rx_pkt);
2220
2221                 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2222                         have_tag = 1;
2223                         vlan_tag = cur_rx->bge_vlan_tag;
2224                 }
2225
2226                 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2227                         BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2228                         m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
2229                         sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
2230                         jumbocnt++;
2231                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2232                                 ifp->if_ierrors++;
2233                                 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2234                                 continue;
2235                         }
2236                         if (bge_newbuf_jumbo(sc,
2237                             sc->bge_jumbo, NULL) == ENOBUFS) {
2238                                 ifp->if_ierrors++;
2239                                 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2240                                 continue;
2241                         }
2242                 } else {
2243                         BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2244                         bus_dmamap_sync(sc->bge_cdata.bge_mtag,
2245                                         sc->bge_cdata.bge_rx_std_dmamap[rxidx],
2246                                         BUS_DMASYNC_POSTREAD);
2247                         bus_dmamap_unload(sc->bge_cdata.bge_mtag,
2248                                 sc->bge_cdata.bge_rx_std_dmamap[rxidx]);
2249                         m = sc->bge_cdata.bge_rx_std_chain[rxidx];
2250                         sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
2251                         stdcnt++;
2252                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2253                                 ifp->if_ierrors++;
2254                                 bge_newbuf_std(sc, sc->bge_std, m);
2255                                 continue;
2256                         }
2257                         if (bge_newbuf_std(sc, sc->bge_std,
2258                             NULL) == ENOBUFS) {
2259                                 ifp->if_ierrors++;
2260                                 bge_newbuf_std(sc, sc->bge_std, m);
2261                                 continue;
2262                         }
2263                 }
2264
2265                 ifp->if_ipackets++;
2266 #ifndef __i386__
2267                 /*
2268                  * The i386 allows unaligned accesses, but for other
2269                  * platforms we must make sure the payload is aligned.
2270                  */
2271                 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
2272                         bcopy(m->m_data, m->m_data + ETHER_ALIGN,
2273                             cur_rx->bge_len);
2274                         m->m_data += ETHER_ALIGN;
2275                 }
2276 #endif
2277                 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
2278                 m->m_pkthdr.rcvif = ifp;
2279
2280                 if (ifp->if_capenable & IFCAP_RXCSUM) {
2281                         if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
2282                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2283                                 if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
2284                                         m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2285                         }
2286                         if ((cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) &&
2287                             m->m_pkthdr.len >= BGE_MIN_FRAME) {
2288                                 m->m_pkthdr.csum_data =
2289                                         cur_rx->bge_tcp_udp_csum;
2290                                 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
2291                         }
2292                 }
2293
2294                 /*
2295                  * If we received a packet with a vlan tag, pass it
2296                  * to vlan_input() instead of ether_input().
2297                  */
2298                 if (have_tag) {
2299                         VLAN_INPUT_TAG(m, vlan_tag);
2300                         have_tag = vlan_tag = 0;
2301                 } else {
2302                         ifp->if_input(ifp, m);
2303                 }
2304         }
2305
2306         if (stdcnt > 0) {
2307                 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
2308                                 sc->bge_cdata.bge_rx_std_ring_map,
2309                                 BUS_DMASYNC_PREWRITE);
2310         }
2311
2312         if (BGE_IS_JUMBO_CAPABLE(sc) && jumbocnt > 0) {
2313                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2314                                 sc->bge_cdata.bge_rx_jumbo_ring_map,
2315                                 BUS_DMASYNC_PREWRITE);
2316         }
2317
2318         CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2319         if (stdcnt)
2320                 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2321         if (jumbocnt)
2322                 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2323 }
2324
2325 static void
2326 bge_txeof(struct bge_softc *sc)
2327 {
2328         struct bge_tx_bd *cur_tx = NULL;
2329         struct ifnet *ifp;
2330
2331         if (sc->bge_tx_saved_considx ==
2332             sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx)
2333                 return;
2334
2335         ifp = &sc->arpcom.ac_if;
2336
2337         bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
2338                         sc->bge_cdata.bge_tx_ring_map,
2339                         BUS_DMASYNC_POSTREAD);
2340
2341         /*
2342          * Go through our tx ring and free mbufs for those
2343          * frames that have been sent.
2344          */
2345         while (sc->bge_tx_saved_considx !=
2346                sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx) {
2347                 uint32_t idx = 0;
2348
2349                 idx = sc->bge_tx_saved_considx;
2350                 cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
2351                 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2352                         ifp->if_opackets++;
2353                 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
2354                         bus_dmamap_sync(sc->bge_cdata.bge_mtag,
2355                                         sc->bge_cdata.bge_tx_dmamap[idx],
2356                                         BUS_DMASYNC_POSTWRITE);
2357                         bus_dmamap_unload(sc->bge_cdata.bge_mtag,
2358                             sc->bge_cdata.bge_tx_dmamap[idx]);
2359                         m_freem(sc->bge_cdata.bge_tx_chain[idx]);
2360                         sc->bge_cdata.bge_tx_chain[idx] = NULL;
2361                 }
2362                 sc->bge_txcnt--;
2363                 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2364                 logif(tx_pkt);
2365         }
2366
2367         if (cur_tx != NULL &&
2368             (BGE_TX_RING_CNT - sc->bge_txcnt) >=
2369             (BGE_NSEG_RSVD + BGE_NSEG_SPARE))
2370                 ifp->if_flags &= ~IFF_OACTIVE;
2371
2372         if (sc->bge_txcnt == 0)
2373                 ifp->if_timer = 0;
2374
2375         if (!ifq_is_empty(&ifp->if_snd))
2376                 ifp->if_start(ifp);
2377 }
2378
2379 #ifdef DEVICE_POLLING
2380
2381 static void
2382 bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2383 {
2384         struct bge_softc *sc = ifp->if_softc;
2385         uint32_t status;
2386
2387         switch(cmd) {
2388         case POLL_REGISTER:
2389                 bge_disable_intr(sc);
2390                 break;
2391         case POLL_DEREGISTER:
2392                 bge_enable_intr(sc);
2393                 break;
2394         case POLL_AND_CHECK_STATUS:
2395                 bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
2396                                 sc->bge_cdata.bge_status_map,
2397                                 BUS_DMASYNC_POSTREAD);
2398
2399                 /*
2400                  * Process link state changes.
2401                  */
2402                 status = CSR_READ_4(sc, BGE_MAC_STS);
2403                 if ((status & sc->bge_link_chg) || sc->bge_link_evt) {
2404                         sc->bge_link_evt = 0;
2405                         sc->bge_link_upd(sc, status);
2406                 }
2407                 /* fall through */
2408         case POLL_ONLY:
2409                 if (ifp->if_flags & IFF_RUNNING) {
2410                         bge_rxeof(sc);
2411                         bge_txeof(sc);
2412                 }
2413                 break;
2414         }
2415 }
2416
2417 #endif
2418
2419 static void
2420 bge_intr(void *xsc)
2421 {
2422         struct bge_softc *sc = xsc;
2423         struct ifnet *ifp = &sc->arpcom.ac_if;
2424         uint32_t status;
2425
2426         logif(intr);
2427
2428         /*
2429          * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
2430          * disable interrupts by writing nonzero like we used to, since with
2431          * our current organization this just gives complications and
2432          * pessimizations for re-enabling interrupts.  We used to have races
2433          * instead of the necessary complications.  Disabling interrupts
2434          * would just reduce the chance of a status update while we are
2435          * running (by switching to the interrupt-mode coalescence
2436          * parameters), but this chance is already very low so it is more
2437          * efficient to get another interrupt than prevent it.
2438          *
2439          * We do the ack first to ensure another interrupt if there is a
2440          * status update after the ack.  We don't check for the status
2441          * changing later because it is more efficient to get another
2442          * interrupt than prevent it, not quite as above (not checking is
2443          * a smaller optimization than not toggling the interrupt enable,
2444          * since checking doesn't involve PCI accesses and toggling require
2445          * the status check).  So toggling would probably be a pessimization
2446          * even with MSI.  It would only be needed for using a task queue.
2447          */
2448         CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2449
2450         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
2451                         sc->bge_cdata.bge_status_map,
2452                         BUS_DMASYNC_POSTREAD);
2453
2454         /*
2455          * Process link state changes.
2456          */
2457         status = CSR_READ_4(sc, BGE_MAC_STS);
2458         if ((status & sc->bge_link_chg) || sc->bge_link_evt) {
2459                 sc->bge_link_evt = 0;
2460                 sc->bge_link_upd(sc, status);
2461         }
2462
2463         if (ifp->if_flags & IFF_RUNNING) {
2464                 /* Check RX return ring producer/consumer */
2465                 bge_rxeof(sc);
2466
2467                 /* Check TX ring producer/consumer */
2468                 bge_txeof(sc);
2469         }
2470
2471         if (sc->bge_coal_chg)
2472                 bge_coal_change(sc);
2473 }
2474
2475 static void
2476 bge_tick(void *xsc)
2477 {
2478         struct bge_softc *sc = xsc;
2479         struct ifnet *ifp = &sc->arpcom.ac_if;
2480
2481         lwkt_serialize_enter(ifp->if_serializer);
2482
2483         if (BGE_IS_5705_PLUS(sc))
2484                 bge_stats_update_regs(sc);
2485         else
2486                 bge_stats_update(sc);
2487
2488         if (sc->bge_flags & BGE_FLAG_TBI) {
2489                 /*
2490                  * Since in TBI mode auto-polling can't be used we should poll
2491                  * link status manually. Here we register pending link event
2492                  * and trigger interrupt.
2493                  */
2494                 sc->bge_link_evt++;
2495                 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
2496         } else if (!sc->bge_link) {
2497                 mii_tick(device_get_softc(sc->bge_miibus));
2498         }
2499
2500         callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
2501
2502         lwkt_serialize_exit(ifp->if_serializer);
2503 }
2504
2505 static void
2506 bge_stats_update_regs(struct bge_softc *sc)
2507 {
2508         struct ifnet *ifp = &sc->arpcom.ac_if;
2509         struct bge_mac_stats_regs stats;
2510         uint32_t *s;
2511         int i;
2512
2513         s = (uint32_t *)&stats;
2514         for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) {
2515                 *s = CSR_READ_4(sc, BGE_RX_STATS + i);
2516                 s++;
2517         }
2518
2519         ifp->if_collisions +=
2520            (stats.dot3StatsSingleCollisionFrames +
2521            stats.dot3StatsMultipleCollisionFrames +
2522            stats.dot3StatsExcessiveCollisions +
2523            stats.dot3StatsLateCollisions) -
2524            ifp->if_collisions;
2525 }
2526
2527 static void
2528 bge_stats_update(struct bge_softc *sc)
2529 {
2530         struct ifnet *ifp = &sc->arpcom.ac_if;
2531         bus_size_t stats;
2532
2533         stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
2534
2535 #define READ_STAT(sc, stats, stat)      \
2536         CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
2537
2538         ifp->if_collisions +=
2539            (READ_STAT(sc, stats,
2540                 txstats.dot3StatsSingleCollisionFrames.bge_addr_lo) +
2541             READ_STAT(sc, stats,
2542                 txstats.dot3StatsMultipleCollisionFrames.bge_addr_lo) +
2543             READ_STAT(sc, stats,
2544                 txstats.dot3StatsExcessiveCollisions.bge_addr_lo) +
2545             READ_STAT(sc, stats,
2546                 txstats.dot3StatsLateCollisions.bge_addr_lo)) -
2547            ifp->if_collisions;
2548
2549 #undef READ_STAT
2550
2551 #ifdef notdef
2552         ifp->if_collisions +=
2553            (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2554            sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2555            sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2556            sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2557            ifp->if_collisions;
2558 #endif
2559 }
2560
2561 /*
2562  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2563  * pointers to descriptors.
2564  */
2565 static int
2566 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
2567 {
2568         struct bge_tx_bd *d = NULL;
2569         uint16_t csum_flags = 0;
2570         struct ifvlan *ifv = NULL;
2571         struct bge_dmamap_arg ctx;
2572         bus_dma_segment_t segs[BGE_NSEG_NEW];
2573         bus_dmamap_t map;
2574         int error, maxsegs, idx, i;
2575
2576         if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
2577             m_head->m_pkthdr.rcvif != NULL &&
2578             m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
2579                 ifv = m_head->m_pkthdr.rcvif->if_softc;
2580
2581         if (m_head->m_pkthdr.csum_flags) {
2582                 if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2583                         csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2584                 if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2585                         csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2586                 if (m_head->m_flags & M_LASTFRAG)
2587                         csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
2588                 else if (m_head->m_flags & M_FRAG)
2589                         csum_flags |= BGE_TXBDFLAG_IP_FRAG;
2590         }
2591
2592         idx = *txidx;
2593         map = sc->bge_cdata.bge_tx_dmamap[idx];
2594
2595         maxsegs = (BGE_TX_RING_CNT - sc->bge_txcnt) - BGE_NSEG_RSVD;
2596         KASSERT(maxsegs >= BGE_NSEG_SPARE,
2597                 ("not enough segments %d\n", maxsegs));
2598
2599         if (maxsegs > BGE_NSEG_NEW)
2600                 maxsegs = BGE_NSEG_NEW;
2601
2602         /*
2603          * Pad outbound frame to BGE_MIN_FRAME for an unusual reason.
2604          * The bge hardware will pad out Tx runts to BGE_MIN_FRAME,
2605          * but when such padded frames employ the bge IP/TCP checksum
2606          * offload, the hardware checksum assist gives incorrect results
2607          * (possibly from incorporating its own padding into the UDP/TCP
2608          * checksum; who knows).  If we pad such runts with zeros, the
2609          * onboard checksum comes out correct.  We do this by pretending
2610          * the mbuf chain has too many fragments so the coalescing code
2611          * below can assemble the packet into a single buffer that's
2612          * padded out to the mininum frame size.
2613          */
2614         if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) &&
2615             m_head->m_pkthdr.len < BGE_MIN_FRAME) {
2616                 error = EFBIG;
2617         } else {
2618                 ctx.bge_segs = segs;
2619                 ctx.bge_maxsegs = maxsegs;
2620                 error = bus_dmamap_load_mbuf(sc->bge_cdata.bge_mtag, map,
2621                                              m_head, bge_dma_map_mbuf, &ctx,
2622                                              BUS_DMA_NOWAIT);
2623         }
2624         if (error == EFBIG || ctx.bge_maxsegs == 0) {
2625                 struct mbuf *m_new;
2626
2627                 m_new = m_defrag(m_head, MB_DONTWAIT);
2628                 if (m_new == NULL) {
2629                         if_printf(&sc->arpcom.ac_if,
2630                                   "could not defrag TX mbuf\n");
2631                         error = ENOBUFS;
2632                         goto back;
2633                 } else {
2634                         m_head = m_new;
2635                 }
2636
2637                 /*
2638                  * Manually pad short frames, and zero the pad space
2639                  * to avoid leaking data.
2640                  */
2641                 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) &&
2642                     m_head->m_pkthdr.len < BGE_MIN_FRAME) {
2643                         int pad_len = BGE_MIN_FRAME - m_head->m_pkthdr.len;
2644
2645                         bzero(mtod(m_head, char *) + m_head->m_pkthdr.len,
2646                               pad_len);
2647                         m_head->m_pkthdr.len += pad_len;
2648                         m_head->m_len = m_head->m_pkthdr.len;
2649                 }
2650
2651                 ctx.bge_segs = segs;
2652                 ctx.bge_maxsegs = maxsegs;
2653                 error = bus_dmamap_load_mbuf(sc->bge_cdata.bge_mtag, map,
2654                                              m_head, bge_dma_map_mbuf, &ctx,
2655                                              BUS_DMA_NOWAIT);
2656                 if (error || ctx.bge_maxsegs == 0) {
2657                         if_printf(&sc->arpcom.ac_if,
2658                                   "could not defrag TX mbuf\n");
2659                         if (error == 0)
2660                                 error = EFBIG;
2661                         goto back;
2662                 }
2663         } else if (error) {
2664                 if_printf(&sc->arpcom.ac_if, "could not map TX mbuf\n");
2665                 goto back;
2666         }
2667
2668         bus_dmamap_sync(sc->bge_cdata.bge_mtag, map, BUS_DMASYNC_PREWRITE);
2669
2670         for (i = 0; ; i++) {
2671                 d = &sc->bge_ldata.bge_tx_ring[idx];
2672
2673                 d->bge_addr.bge_addr_lo = BGE_ADDR_LO(ctx.bge_segs[i].ds_addr);
2674                 d->bge_addr.bge_addr_hi = BGE_ADDR_HI(ctx.bge_segs[i].ds_addr);
2675                 d->bge_len = segs[i].ds_len;
2676                 d->bge_flags = csum_flags;
2677
2678                 if (i == ctx.bge_maxsegs - 1)
2679                         break;
2680                 BGE_INC(idx, BGE_TX_RING_CNT);
2681         }
2682         /* Mark the last segment as end of packet... */
2683         d->bge_flags |= BGE_TXBDFLAG_END;
2684
2685         /* Set vlan tag to the first segment of the packet. */
2686         d = &sc->bge_ldata.bge_tx_ring[*txidx];
2687         if (ifv != NULL) {
2688                 d->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
2689                 d->bge_vlan_tag = ifv->ifv_tag;
2690         } else {
2691                 d->bge_vlan_tag = 0;
2692         }
2693
2694         /*
2695          * Insure that the map for this transmission is placed at
2696          * the array index of the last descriptor in this chain.
2697          */
2698         sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
2699         sc->bge_cdata.bge_tx_dmamap[idx] = map;
2700         sc->bge_cdata.bge_tx_chain[idx] = m_head;
2701         sc->bge_txcnt += ctx.bge_maxsegs;
2702
2703         BGE_INC(idx, BGE_TX_RING_CNT);
2704         *txidx = idx;
2705 back:
2706         if (error)
2707                 m_freem(m_head);
2708         return error;
2709 }
2710
2711 /*
2712  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2713  * to the mbuf data regions directly in the transmit descriptors.
2714  */
2715 static void
2716 bge_start(struct ifnet *ifp)
2717 {
2718         struct bge_softc *sc = ifp->if_softc;
2719         struct mbuf *m_head = NULL;
2720         uint32_t prodidx;
2721         int need_trans;
2722
2723         if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2724                 return;
2725
2726         prodidx = sc->bge_tx_prodidx;
2727
2728         need_trans = 0;
2729         while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
2730                 m_head = ifq_poll(&ifp->if_snd);
2731                 if (m_head == NULL)
2732                         break;
2733
2734                 /*
2735                  * XXX
2736                  * The code inside the if() block is never reached since we
2737                  * must mark CSUM_IP_FRAGS in our if_hwassist to start getting
2738                  * requests to checksum TCP/UDP in a fragmented packet.
2739                  * 
2740                  * XXX
2741                  * safety overkill.  If this is a fragmented packet chain
2742                  * with delayed TCP/UDP checksums, then only encapsulate
2743                  * it if we have enough descriptors to handle the entire
2744                  * chain at once.
2745                  * (paranoia -- may not actually be needed)
2746                  */
2747                 if (m_head->m_flags & M_FIRSTFRAG &&
2748                     m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2749                         if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2750                             m_head->m_pkthdr.csum_data + 16) {
2751                                 ifp->if_flags |= IFF_OACTIVE;
2752                                 break;
2753                         }
2754                 }
2755
2756                 /*
2757                  * Sanity check: avoid coming within BGE_NSEG_RSVD
2758                  * descriptors of the end of the ring.  Also make
2759                  * sure there are BGE_NSEG_SPARE descriptors for
2760                  * jumbo buffers' defragmentation.
2761                  */
2762                 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2763                     (BGE_NSEG_RSVD + BGE_NSEG_SPARE)) {
2764                         ifp->if_flags |= IFF_OACTIVE;
2765                         break;
2766                 }
2767
2768                 /*
2769                  * Dequeue the packet before encapsulation, since
2770                  * bge_encap() may free the packet if error happens.
2771                  */
2772                 ifq_dequeue(&ifp->if_snd, m_head);
2773
2774                 /*
2775                  * Pack the data into the transmit ring. If we
2776                  * don't have room, set the OACTIVE flag and wait
2777                  * for the NIC to drain the ring.
2778                  */
2779                 if (bge_encap(sc, m_head, &prodidx)) {
2780                         ifp->if_flags |= IFF_OACTIVE;
2781                         break;
2782                 }
2783                 need_trans = 1;
2784
2785                 BPF_MTAP(ifp, m_head);
2786         }
2787
2788         if (!need_trans)
2789                 return;
2790
2791         /* Transmit */
2792         CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2793         /* 5700 b2 errata */
2794         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
2795                 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2796
2797         sc->bge_tx_prodidx = prodidx;
2798
2799         /*
2800          * Set a timeout in case the chip goes out to lunch.
2801          */
2802         ifp->if_timer = 5;
2803 }
2804
2805 static void
2806 bge_init(void *xsc)
2807 {
2808         struct bge_softc *sc = xsc;
2809         struct ifnet *ifp = &sc->arpcom.ac_if;
2810         uint16_t *m;
2811
2812         ASSERT_SERIALIZED(ifp->if_serializer);
2813
2814         if (ifp->if_flags & IFF_RUNNING)
2815                 return;
2816
2817         /* Cancel pending I/O and flush buffers. */
2818         bge_stop(sc);
2819         bge_reset(sc);
2820         bge_chipinit(sc);
2821
2822         /*
2823          * Init the various state machines, ring
2824          * control blocks and firmware.
2825          */
2826         if (bge_blockinit(sc)) {
2827                 if_printf(ifp, "initialization failure\n");
2828                 return;
2829         }
2830
2831         /* Specify MTU. */
2832         CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
2833             ETHER_HDR_LEN + ETHER_CRC_LEN + EVL_ENCAPLEN);
2834
2835         /* Load our MAC address. */
2836         m = (uint16_t *)&sc->arpcom.ac_enaddr[0];
2837         CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
2838         CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
2839
2840         /* Enable or disable promiscuous mode as needed. */
2841         bge_setpromisc(sc);
2842
2843         /* Program multicast filter. */
2844         bge_setmulti(sc);
2845
2846         /* Init RX ring. */
2847         bge_init_rx_ring_std(sc);
2848
2849         /*
2850          * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
2851          * memory to insure that the chip has in fact read the first
2852          * entry of the ring.
2853          */
2854         if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
2855                 uint32_t                v, i;
2856                 for (i = 0; i < 10; i++) {
2857                         DELAY(20);
2858                         v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
2859                         if (v == (MCLBYTES - ETHER_ALIGN))
2860                                 break;
2861                 }
2862                 if (i == 10)
2863                         if_printf(ifp, "5705 A0 chip failed to load RX ring\n");
2864         }
2865
2866         /* Init jumbo RX ring. */
2867         if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2868                 bge_init_rx_ring_jumbo(sc);
2869
2870         /* Init our RX return ring index */
2871         sc->bge_rx_saved_considx = 0;
2872
2873         /* Init TX ring. */
2874         bge_init_tx_ring(sc);
2875
2876         /* Turn on transmitter */
2877         BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
2878
2879         /* Turn on receiver */
2880         BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2881
2882         /* Tell firmware we're alive. */
2883         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2884
2885         /* Enable host interrupts if polling(4) is not enabled. */
2886         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
2887 #ifdef DEVICE_POLLING
2888         if (ifp->if_flags & IFF_POLLING)
2889                 bge_disable_intr(sc);
2890         else
2891 #endif
2892         bge_enable_intr(sc);
2893
2894         bge_ifmedia_upd(ifp);
2895
2896         ifp->if_flags |= IFF_RUNNING;
2897         ifp->if_flags &= ~IFF_OACTIVE;
2898
2899         callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
2900 }
2901
2902 /*
2903  * Set media options.
2904  */
2905 static int
2906 bge_ifmedia_upd(struct ifnet *ifp)
2907 {
2908         struct bge_softc *sc = ifp->if_softc;
2909
2910         /* If this is a 1000baseX NIC, enable the TBI port. */
2911         if (sc->bge_flags & BGE_FLAG_TBI) {
2912                 struct ifmedia *ifm = &sc->bge_ifmedia;
2913
2914                 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2915                         return(EINVAL);
2916
2917                 switch(IFM_SUBTYPE(ifm->ifm_media)) {
2918                 case IFM_AUTO:
2919                         /*
2920                          * The BCM5704 ASIC appears to have a special
2921                          * mechanism for programming the autoneg
2922                          * advertisement registers in TBI mode.
2923                          */
2924                         if (!bge_fake_autoneg &&
2925                             sc->bge_asicrev == BGE_ASICREV_BCM5704) {
2926                                 uint32_t sgdig;
2927
2928                                 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
2929                                 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
2930                                 sgdig |= BGE_SGDIGCFG_AUTO |
2931                                          BGE_SGDIGCFG_PAUSE_CAP |
2932                                          BGE_SGDIGCFG_ASYM_PAUSE;
2933                                 CSR_WRITE_4(sc, BGE_SGDIG_CFG,
2934                                             sgdig | BGE_SGDIGCFG_SEND);
2935                                 DELAY(5);
2936                                 CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
2937                         }
2938                         break;
2939                 case IFM_1000_SX:
2940                         if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2941                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
2942                                     BGE_MACMODE_HALF_DUPLEX);
2943                         } else {
2944                                 BGE_SETBIT(sc, BGE_MAC_MODE,
2945                                     BGE_MACMODE_HALF_DUPLEX);
2946                         }
2947                         break;
2948                 default:
2949                         return(EINVAL);
2950                 }
2951         } else {
2952                 struct mii_data *mii = device_get_softc(sc->bge_miibus);
2953
2954                 sc->bge_link_evt++;
2955                 sc->bge_link = 0;
2956                 if (mii->mii_instance) {
2957                         struct mii_softc *miisc;
2958
2959                         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2960                                 mii_phy_reset(miisc);
2961                 }
2962                 mii_mediachg(mii);
2963         }
2964         return(0);
2965 }
2966
2967 /*
2968  * Report current media status.
2969  */
2970 static void
2971 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2972 {
2973         struct bge_softc *sc = ifp->if_softc;
2974
2975         if (sc->bge_flags & BGE_FLAG_TBI) {
2976                 ifmr->ifm_status = IFM_AVALID;
2977                 ifmr->ifm_active = IFM_ETHER;
2978                 if (CSR_READ_4(sc, BGE_MAC_STS) &
2979                     BGE_MACSTAT_TBI_PCS_SYNCHED) {
2980                         ifmr->ifm_status |= IFM_ACTIVE;
2981                 } else {
2982                         ifmr->ifm_active |= IFM_NONE;
2983                         return;
2984                 }
2985
2986                 ifmr->ifm_active |= IFM_1000_SX;
2987                 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
2988                         ifmr->ifm_active |= IFM_HDX;    
2989                 else
2990                         ifmr->ifm_active |= IFM_FDX;
2991         } else {
2992                 struct mii_data *mii = device_get_softc(sc->bge_miibus);
2993
2994                 mii_pollstat(mii);
2995                 ifmr->ifm_active = mii->mii_media_active;
2996                 ifmr->ifm_status = mii->mii_media_status;
2997         }
2998 }
2999
3000 static int
3001 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
3002 {
3003         struct bge_softc *sc = ifp->if_softc;
3004         struct ifreq *ifr = (struct ifreq *)data;
3005         int mask, error = 0;
3006
3007         ASSERT_SERIALIZED(ifp->if_serializer);
3008
3009         switch (command) {
3010         case SIOCSIFMTU:
3011                 if ((!BGE_IS_JUMBO_CAPABLE(sc) && ifr->ifr_mtu > ETHERMTU) ||
3012                     (BGE_IS_JUMBO_CAPABLE(sc) &&
3013                      ifr->ifr_mtu > BGE_JUMBO_MTU)) {
3014                         error = EINVAL;
3015                 } else if (ifp->if_mtu != ifr->ifr_mtu) {
3016                         ifp->if_mtu = ifr->ifr_mtu;
3017                         ifp->if_flags &= ~IFF_RUNNING;
3018                         bge_init(sc);
3019                 }
3020                 break;
3021         case SIOCSIFFLAGS:
3022                 if (ifp->if_flags & IFF_UP) {
3023                         if (ifp->if_flags & IFF_RUNNING) {
3024                                 mask = ifp->if_flags ^ sc->bge_if_flags;
3025
3026                                 /*
3027                                  * If only the state of the PROMISC flag
3028                                  * changed, then just use the 'set promisc
3029                                  * mode' command instead of reinitializing
3030                                  * the entire NIC. Doing a full re-init
3031                                  * means reloading the firmware and waiting
3032                                  * for it to start up, which may take a
3033                                  * second or two.  Similarly for ALLMULTI.
3034                                  */
3035                                 if (mask & IFF_PROMISC)
3036                                         bge_setpromisc(sc);
3037                                 if (mask & IFF_ALLMULTI)
3038                                         bge_setmulti(sc);
3039                         } else {
3040                                 bge_init(sc);
3041                         }
3042                 } else {
3043                         if (ifp->if_flags & IFF_RUNNING)
3044                                 bge_stop(sc);
3045                 }
3046                 sc->bge_if_flags = ifp->if_flags;
3047                 break;
3048         case SIOCADDMULTI:
3049         case SIOCDELMULTI:
3050                 if (ifp->if_flags & IFF_RUNNING)
3051                         bge_setmulti(sc);
3052                 break;
3053         case SIOCSIFMEDIA:
3054         case SIOCGIFMEDIA:
3055                 if (sc->bge_flags & BGE_FLAG_TBI) {
3056                         error = ifmedia_ioctl(ifp, ifr,
3057                             &sc->bge_ifmedia, command);
3058                 } else {
3059                         struct mii_data *mii;
3060
3061                         mii = device_get_softc(sc->bge_miibus);
3062                         error = ifmedia_ioctl(ifp, ifr,
3063                                               &mii->mii_media, command);
3064                 }
3065                 break;
3066         case SIOCSIFCAP:
3067                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3068                 if (mask & IFCAP_HWCSUM) {
3069                         ifp->if_capenable ^= IFCAP_HWCSUM;
3070                         if (IFCAP_HWCSUM & ifp->if_capenable)
3071                                 ifp->if_hwassist = BGE_CSUM_FEATURES;
3072                         else
3073                                 ifp->if_hwassist = 0;
3074                 }
3075                 break;
3076         default:
3077                 error = ether_ioctl(ifp, command, data);
3078                 break;
3079         }
3080         return error;
3081 }
3082
3083 static void
3084 bge_watchdog(struct ifnet *ifp)
3085 {
3086         struct bge_softc *sc = ifp->if_softc;
3087
3088         if_printf(ifp, "watchdog timeout -- resetting\n");
3089
3090         ifp->if_flags &= ~IFF_RUNNING;
3091         bge_init(sc);
3092
3093         ifp->if_oerrors++;
3094
3095         if (!ifq_is_empty(&ifp->if_snd))
3096                 ifp->if_start(ifp);
3097 }
3098
3099 /*
3100  * Stop the adapter and free any mbufs allocated to the
3101  * RX and TX lists.
3102  */
3103 static void
3104 bge_stop(struct bge_softc *sc)
3105 {
3106         struct ifnet *ifp = &sc->arpcom.ac_if;
3107         struct ifmedia_entry *ifm;
3108         struct mii_data *mii = NULL;
3109         int mtmp, itmp;
3110
3111         ASSERT_SERIALIZED(ifp->if_serializer);
3112
3113         if ((sc->bge_flags & BGE_FLAG_TBI) == 0)
3114                 mii = device_get_softc(sc->bge_miibus);
3115
3116         callout_stop(&sc->bge_stat_timer);
3117
3118         /*
3119          * Disable all of the receiver blocks
3120          */
3121         BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3122         BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3123         BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
3124         if (!BGE_IS_5705_PLUS(sc))
3125                 BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
3126         BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
3127         BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3128         BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
3129
3130         /*
3131          * Disable all of the transmit blocks
3132          */
3133         BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3134         BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3135         BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3136         BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
3137         BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
3138         if (!BGE_IS_5705_PLUS(sc))
3139                 BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3140         BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3141
3142         /*
3143          * Shut down all of the memory managers and related
3144          * state machines.
3145          */
3146         BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
3147         BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
3148         if (!BGE_IS_5705_PLUS(sc))
3149                 BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3150         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
3151         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
3152         if (!BGE_IS_5705_PLUS(sc)) {
3153                 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
3154                 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3155         }
3156
3157         /* Disable host interrupts. */
3158         bge_disable_intr(sc);
3159
3160         /*
3161          * Tell firmware we're shutting down.
3162          */
3163         BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3164
3165         /* Free the RX lists. */
3166         bge_free_rx_ring_std(sc);
3167
3168         /* Free jumbo RX list. */
3169         if (BGE_IS_JUMBO_CAPABLE(sc))
3170                 bge_free_rx_ring_jumbo(sc);
3171
3172         /* Free TX buffers. */
3173         bge_free_tx_ring(sc);
3174
3175         /*
3176          * Isolate/power down the PHY, but leave the media selection
3177          * unchanged so that things will be put back to normal when
3178          * we bring the interface back up.
3179          */
3180         if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
3181                 itmp = ifp->if_flags;
3182                 ifp->if_flags |= IFF_UP;
3183                 ifm = mii->mii_media.ifm_cur;
3184                 mtmp = ifm->ifm_media;
3185                 ifm->ifm_media = IFM_ETHER|IFM_NONE;
3186                 mii_mediachg(mii);
3187                 ifm->ifm_media = mtmp;
3188                 ifp->if_flags = itmp;
3189         }
3190
3191         sc->bge_link = 0;
3192         sc->bge_coal_chg = 0;
3193
3194         sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
3195
3196         ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3197         ifp->if_timer = 0;
3198 }
3199
3200 /*
3201  * Stop all chip I/O so that the kernel's probe routines don't
3202  * get confused by errant DMAs when rebooting.
3203  */
3204 static void
3205 bge_shutdown(device_t dev)
3206 {
3207         struct bge_softc *sc = device_get_softc(dev);
3208         struct ifnet *ifp = &sc->arpcom.ac_if;
3209
3210         lwkt_serialize_enter(ifp->if_serializer);
3211         bge_stop(sc);
3212         bge_reset(sc);
3213         lwkt_serialize_exit(ifp->if_serializer);
3214 }
3215
3216 static int
3217 bge_suspend(device_t dev)
3218 {
3219         struct bge_softc *sc = device_get_softc(dev);
3220         struct ifnet *ifp = &sc->arpcom.ac_if;
3221
3222         lwkt_serialize_enter(ifp->if_serializer);
3223         bge_stop(sc);
3224         lwkt_serialize_exit(ifp->if_serializer);
3225
3226         return 0;
3227 }
3228
3229 static int
3230 bge_resume(device_t dev)
3231 {
3232         struct bge_softc *sc = device_get_softc(dev);
3233         struct ifnet *ifp = &sc->arpcom.ac_if;
3234
3235         lwkt_serialize_enter(ifp->if_serializer);
3236
3237         if (ifp->if_flags & IFF_UP) {
3238                 bge_init(sc);
3239
3240                 if (!ifq_is_empty(&ifp->if_snd))
3241                         ifp->if_start(ifp);
3242         }
3243
3244         lwkt_serialize_exit(ifp->if_serializer);
3245
3246         return 0;
3247 }
3248
3249 static void
3250 bge_setpromisc(struct bge_softc *sc)
3251 {
3252         struct ifnet *ifp = &sc->arpcom.ac_if;
3253
3254         if (ifp->if_flags & IFF_PROMISC)
3255                 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3256         else
3257                 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3258 }
3259
3260 static void
3261 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3262 {
3263         struct bge_dmamap_arg *ctx = arg;
3264
3265         if (error)
3266                 return;
3267
3268         KASSERT(nsegs == 1 && ctx->bge_maxsegs == 1,
3269                 ("only one segment is allowed\n"));
3270
3271         ctx->bge_segs[0] = *segs;
3272 }
3273
3274 static void
3275 bge_dma_map_mbuf(void *arg, bus_dma_segment_t *segs, int nsegs,
3276                  bus_size_t mapsz __unused, int error)
3277 {
3278         struct bge_dmamap_arg *ctx = arg;
3279         int i;
3280
3281         if (error)
3282                 return;
3283
3284         if (nsegs > ctx->bge_maxsegs) {
3285                 ctx->bge_maxsegs = 0;
3286                 return;
3287         }
3288
3289         ctx->bge_maxsegs = nsegs;
3290         for (i = 0; i < nsegs; ++i)
3291                 ctx->bge_segs[i] = segs[i];
3292 }
3293
3294 static void
3295 bge_dma_free(struct bge_softc *sc)
3296 {
3297         int i;
3298
3299         /* Destroy RX/TX mbuf DMA stuffs. */
3300         if (sc->bge_cdata.bge_mtag != NULL) {
3301                 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3302                         if (sc->bge_cdata.bge_rx_std_dmamap[i]) {
3303                                 bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
3304                                     sc->bge_cdata.bge_rx_std_dmamap[i]);
3305                         }
3306                 }
3307
3308                 for (i = 0; i < BGE_TX_RING_CNT; i++) {
3309                         if (sc->bge_cdata.bge_tx_dmamap[i]) {
3310                                 bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
3311                                     sc->bge_cdata.bge_tx_dmamap[i]);
3312                         }
3313                 }
3314                 bus_dma_tag_destroy(sc->bge_cdata.bge_mtag);
3315         }
3316
3317         /* Destroy standard RX ring */
3318         bge_dma_block_free(sc->bge_cdata.bge_rx_std_ring_tag,
3319                            sc->bge_cdata.bge_rx_std_ring_map,
3320                            sc->bge_ldata.bge_rx_std_ring);
3321
3322         if (BGE_IS_JUMBO_CAPABLE(sc))
3323                 bge_free_jumbo_mem(sc);
3324
3325         /* Destroy RX return ring */
3326         bge_dma_block_free(sc->bge_cdata.bge_rx_return_ring_tag,
3327                            sc->bge_cdata.bge_rx_return_ring_map,
3328                            sc->bge_ldata.bge_rx_return_ring);
3329
3330         /* Destroy TX ring */
3331         bge_dma_block_free(sc->bge_cdata.bge_tx_ring_tag,
3332                            sc->bge_cdata.bge_tx_ring_map,
3333                            sc->bge_ldata.bge_tx_ring);
3334
3335         /* Destroy status block */
3336         bge_dma_block_free(sc->bge_cdata.bge_status_tag,
3337                            sc->bge_cdata.bge_status_map,
3338                            sc->bge_ldata.bge_status_block);
3339
3340         /* Destroy statistics block */
3341         bge_dma_block_free(sc->bge_cdata.bge_stats_tag,
3342                            sc->bge_cdata.bge_stats_map,
3343                            sc->bge_ldata.bge_stats);
3344
3345         /* Destroy the parent tag */
3346         if (sc->bge_cdata.bge_parent_tag != NULL)
3347                 bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
3348 }
3349
3350 static int
3351 bge_dma_alloc(struct bge_softc *sc)
3352 {
3353         struct ifnet *ifp = &sc->arpcom.ac_if;
3354         int nseg, i, error;
3355
3356         /*
3357          * Allocate the parent bus DMA tag appropriate for PCI.
3358          */
3359         error = bus_dma_tag_create(NULL, 1, 0,
3360                                    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3361                                    NULL, NULL,
3362                                    MAXBSIZE, BGE_NSEG_NEW,
3363                                    BUS_SPACE_MAXSIZE_32BIT,
3364                                    0, &sc->bge_cdata.bge_parent_tag);
3365         if (error) {
3366                 if_printf(ifp, "could not allocate parent dma tag\n");
3367                 return error;
3368         }
3369
3370         /*
3371          * Create DMA tag for mbufs.
3372          */
3373         nseg = BGE_NSEG_NEW;
3374         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
3375                                    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3376                                    NULL, NULL,
3377                                    MCLBYTES * nseg, nseg, MCLBYTES,
3378                                    BUS_DMA_ALLOCNOW, &sc->bge_cdata.bge_mtag);
3379         if (error) {
3380                 if_printf(ifp, "could not allocate mbuf dma tag\n");
3381                 return error;
3382         }
3383
3384         /*
3385          * Create DMA maps for TX/RX mbufs.
3386          */
3387         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3388                 error = bus_dmamap_create(sc->bge_cdata.bge_mtag, 0,
3389                                           &sc->bge_cdata.bge_rx_std_dmamap[i]);
3390                 if (error) {
3391                         int j;
3392
3393                         for (j = 0; j < i; ++j) {
3394                                 bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
3395                                         sc->bge_cdata.bge_rx_std_dmamap[j]);
3396                         }
3397                         bus_dma_tag_destroy(sc->bge_cdata.bge_mtag);
3398                         sc->bge_cdata.bge_mtag = NULL;
3399
3400                         if_printf(ifp, "could not create DMA map for RX\n");
3401                         return error;
3402                 }
3403         }
3404
3405         for (i = 0; i < BGE_TX_RING_CNT; i++) {
3406                 error = bus_dmamap_create(sc->bge_cdata.bge_mtag, 0,
3407                                           &sc->bge_cdata.bge_tx_dmamap[i]);
3408                 if (error) {
3409                         int j;
3410
3411                         for (j = 0; j < BGE_STD_RX_RING_CNT; ++j) {
3412                                 bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
3413                                         sc->bge_cdata.bge_rx_std_dmamap[j]);
3414                         }
3415                         for (j = 0; j < i; ++j) {
3416                                 bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
3417                                         sc->bge_cdata.bge_tx_dmamap[j]);
3418                         }
3419                         bus_dma_tag_destroy(sc->bge_cdata.bge_mtag);
3420                         sc->bge_cdata.bge_mtag = NULL;
3421
3422                         if_printf(ifp, "could not create DMA map for TX\n");
3423                         return error;
3424                 }
3425         }
3426
3427         /*
3428          * Create DMA stuffs for standard RX ring.
3429          */
3430         error = bge_dma_block_alloc(sc, BGE_STD_RX_RING_SZ,
3431                                     &sc->bge_cdata.bge_rx_std_ring_tag,
3432                                     &sc->bge_cdata.bge_rx_std_ring_map,
3433                                     (void **)&sc->bge_ldata.bge_rx_std_ring,
3434                                     &sc->bge_ldata.bge_rx_std_ring_paddr);
3435         if (error) {
3436                 if_printf(ifp, "could not create std RX ring\n");
3437                 return error;
3438         }
3439
3440         /*
3441          * Create jumbo buffer pool.
3442          */
3443         if (BGE_IS_JUMBO_CAPABLE(sc)) {
3444                 error = bge_alloc_jumbo_mem(sc);
3445                 if (error) {
3446                         if_printf(ifp, "could not create jumbo buffer pool\n");
3447                         return error;
3448                 }
3449         }
3450
3451         /*
3452          * Create DMA stuffs for RX return ring.
3453          */
3454         error = bge_dma_block_alloc(sc, BGE_RX_RTN_RING_SZ(sc),
3455                                     &sc->bge_cdata.bge_rx_return_ring_tag,
3456                                     &sc->bge_cdata.bge_rx_return_ring_map,
3457                                     (void **)&sc->bge_ldata.bge_rx_return_ring,
3458                                     &sc->bge_ldata.bge_rx_return_ring_paddr);
3459         if (error) {
3460                 if_printf(ifp, "could not create RX ret ring\n");
3461                 return error;
3462         }
3463
3464         /*
3465          * Create DMA stuffs for TX ring.
3466          */
3467         error = bge_dma_block_alloc(sc, BGE_TX_RING_SZ,
3468                                     &sc->bge_cdata.bge_tx_ring_tag,
3469                                     &sc->bge_cdata.bge_tx_ring_map,
3470                                     (void **)&sc->bge_ldata.bge_tx_ring,
3471                                     &sc->bge_ldata.bge_tx_ring_paddr);
3472         if (error) {
3473                 if_printf(ifp, "could not create TX ring\n");
3474                 return error;
3475         }
3476
3477         /*
3478          * Create DMA stuffs for status block.
3479          */
3480         error = bge_dma_block_alloc(sc, BGE_STATUS_BLK_SZ,
3481                                     &sc->bge_cdata.bge_status_tag,
3482                                     &sc->bge_cdata.bge_status_map,
3483                                     (void **)&sc->bge_ldata.bge_status_block,
3484                                     &sc->bge_ldata.bge_status_block_paddr);
3485         if (error) {
3486                 if_printf(ifp, "could not create status block\n");
3487                 return error;
3488         }
3489
3490         /*
3491          * Create DMA stuffs for statistics block.
3492          */
3493         error = bge_dma_block_alloc(sc, BGE_STATS_SZ,
3494                                     &sc->bge_cdata.bge_stats_tag,
3495                                     &sc->bge_cdata.bge_stats_map,
3496                                     (void **)&sc->bge_ldata.bge_stats,
3497                                     &sc->bge_ldata.bge_stats_paddr);
3498         if (error) {
3499                 if_printf(ifp, "could not create stats block\n");
3500                 return error;
3501         }
3502         return 0;
3503 }
3504
3505 static int
3506 bge_dma_block_alloc(struct bge_softc *sc, bus_size_t size, bus_dma_tag_t *tag,
3507                     bus_dmamap_t *map, void **addr, bus_addr_t *paddr)
3508 {
3509         struct ifnet *ifp = &sc->arpcom.ac_if;
3510         struct bge_dmamap_arg ctx;
3511         bus_dma_segment_t seg;
3512         int error;
3513
3514         /*
3515          * Create DMA tag
3516          */
3517         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, PAGE_SIZE, 0,
3518                                    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3519                                    NULL, NULL, size, 1, size, 0, tag);
3520         if (error) {
3521                 if_printf(ifp, "could not allocate dma tag\n");
3522                 return error;
3523         }
3524
3525         /*
3526          * Allocate DMA'able memory
3527          */
3528         error = bus_dmamem_alloc(*tag, addr, BUS_DMA_WAITOK | BUS_DMA_ZERO,
3529                                  map);
3530         if (error) {
3531                 if_printf(ifp, "could not allocate dma memory\n");
3532                 bus_dma_tag_destroy(*tag);
3533                 *tag = NULL;
3534                 return error;
3535         }
3536
3537         /*
3538          * Load the DMA'able memory
3539          */
3540         ctx.bge_maxsegs = 1;
3541         ctx.bge_segs = &seg;
3542         error = bus_dmamap_load(*tag, *map, *addr, size, bge_dma_map_addr, &ctx,
3543                                 BUS_DMA_WAITOK);
3544         if (error) {
3545                 if_printf(ifp, "could not load dma memory\n");
3546                 bus_dmamem_free(*tag, *addr, *map);
3547                 bus_dma_tag_destroy(*tag);
3548                 *tag = NULL;
3549                 return error;
3550         }
3551         *paddr = ctx.bge_segs[0].ds_addr;
3552
3553         return 0;
3554 }
3555
3556 static void
3557 bge_dma_block_free(bus_dma_tag_t tag, bus_dmamap_t map, void *addr)
3558 {
3559         if (tag != NULL) {
3560                 bus_dmamap_unload(tag, map);
3561                 bus_dmamem_free(tag, addr, map);
3562                 bus_dma_tag_destroy(tag);
3563         }
3564 }
3565
3566 /*
3567  * Grrr. The link status word in the status block does
3568  * not work correctly on the BCM5700 rev AX and BX chips,
3569  * according to all available information. Hence, we have
3570  * to enable MII interrupts in order to properly obtain
3571  * async link changes. Unfortunately, this also means that
3572  * we have to read the MAC status register to detect link
3573  * changes, thereby adding an additional register access to
3574  * the interrupt handler.
3575  *
3576  * XXX: perhaps link state detection procedure used for
3577  * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
3578  */
3579 static void
3580 bge_bcm5700_link_upd(struct bge_softc *sc, uint32_t status __unused)
3581 {
3582         struct ifnet *ifp = &sc->arpcom.ac_if;
3583         struct mii_data *mii = device_get_softc(sc->bge_miibus);
3584
3585         mii_pollstat(mii);
3586
3587         if (!sc->bge_link &&
3588             (mii->mii_media_status & IFM_ACTIVE) &&
3589             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
3590                 sc->bge_link++;
3591                 if (bootverbose)
3592                         if_printf(ifp, "link UP\n");
3593         } else if (sc->bge_link &&
3594             (!(mii->mii_media_status & IFM_ACTIVE) ||
3595             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
3596                 sc->bge_link = 0;
3597                 if (bootverbose)
3598                         if_printf(ifp, "link DOWN\n");
3599         }
3600
3601         /* Clear the interrupt. */
3602         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_MI_INTERRUPT);
3603         bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
3604         bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR, BRGPHY_INTRS);
3605 }
3606
3607 static void
3608 bge_tbi_link_upd(struct bge_softc *sc, uint32_t status)
3609 {
3610         struct ifnet *ifp = &sc->arpcom.ac_if;
3611
3612 #define PCS_ENCODE_ERR  (BGE_MACSTAT_PORT_DECODE_ERROR|BGE_MACSTAT_MI_COMPLETE)
3613
3614         /*
3615          * Sometimes PCS encoding errors are detected in
3616          * TBI mode (on fiber NICs), and for some reason
3617          * the chip will signal them as link changes.
3618          * If we get a link change event, but the 'PCS
3619          * encoding error' bit in the MAC status register
3620          * is set, don't bother doing a link check.
3621          * This avoids spurious "gigabit link up" messages
3622          * that sometimes appear on fiber NICs during
3623          * periods of heavy traffic.
3624          */
3625         if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
3626                 if (!sc->bge_link) {
3627                         sc->bge_link++;
3628                         if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
3629                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
3630                                     BGE_MACMODE_TBI_SEND_CFGS);
3631                         }
3632                         CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
3633
3634                         if (bootverbose)
3635                                 if_printf(ifp, "link UP\n");
3636
3637                         ifp->if_link_state = LINK_STATE_UP;
3638                         if_link_state_change(ifp);
3639                 }
3640         } else if ((status & PCS_ENCODE_ERR) != PCS_ENCODE_ERR) {
3641                 if (sc->bge_link) {
3642                         sc->bge_link = 0;
3643
3644                         if (bootverbose)
3645                                 if_printf(ifp, "link DOWN\n");
3646
3647                         ifp->if_link_state = LINK_STATE_DOWN;
3648                         if_link_state_change(ifp);
3649                 }
3650         }
3651
3652 #undef PCS_ENCODE_ERR
3653
3654         /* Clear the attention. */
3655         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3656             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3657             BGE_MACSTAT_LINK_CHANGED);
3658 }
3659
3660 static void
3661 bge_copper_link_upd(struct bge_softc *sc, uint32_t status __unused)
3662 {
3663         /*
3664          * Check that the AUTOPOLL bit is set before
3665          * processing the event as a real link change.
3666          * Turning AUTOPOLL on and off in the MII read/write
3667          * functions will often trigger a link status
3668          * interrupt for no reason.
3669          */
3670         if (CSR_READ_4(sc, BGE_MI_MODE) & BGE_MIMODE_AUTOPOLL) {
3671                 struct ifnet *ifp = &sc->arpcom.ac_if;
3672                 struct mii_data *mii = device_get_softc(sc->bge_miibus);
3673
3674                 mii_pollstat(mii);
3675
3676                 if (!sc->bge_link &&
3677                     (mii->mii_media_status & IFM_ACTIVE) &&
3678                     IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
3679                         sc->bge_link++;
3680                         if (bootverbose)
3681                                 if_printf(ifp, "link UP\n");
3682                 } else if (sc->bge_link &&
3683                     (!(mii->mii_media_status & IFM_ACTIVE) ||
3684                     IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
3685                         sc->bge_link = 0;
3686                         if (bootverbose)
3687                                 if_printf(ifp, "link DOWN\n");
3688                 }
3689         }
3690
3691         /* Clear the attention. */
3692         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3693             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3694             BGE_MACSTAT_LINK_CHANGED);
3695 }
3696
3697 static int
3698 bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS)
3699 {
3700         struct bge_softc *sc = arg1;
3701
3702         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
3703                                    &sc->bge_rx_coal_ticks,
3704                                    BGE_RX_COAL_TICKS_CHG);
3705 }
3706
3707 static int
3708 bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS)
3709 {
3710         struct bge_softc *sc = arg1;
3711
3712         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
3713                                    &sc->bge_tx_coal_ticks,
3714                                    BGE_TX_COAL_TICKS_CHG);
3715 }
3716
3717 static int
3718 bge_sysctl_rx_max_coal_bds(SYSCTL_HANDLER_ARGS)
3719 {
3720         struct bge_softc *sc = arg1;
3721
3722         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
3723                                    &sc->bge_rx_max_coal_bds,
3724                                    BGE_RX_MAX_COAL_BDS_CHG);
3725 }
3726
3727 static int
3728 bge_sysctl_tx_max_coal_bds(SYSCTL_HANDLER_ARGS)
3729 {
3730         struct bge_softc *sc = arg1;
3731
3732         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
3733                                    &sc->bge_tx_max_coal_bds,
3734                                    BGE_TX_MAX_COAL_BDS_CHG);
3735 }
3736
3737 static int
3738 bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *coal,
3739                     uint32_t coal_chg_mask)
3740 {
3741         struct bge_softc *sc = arg1;
3742         struct ifnet *ifp = &sc->arpcom.ac_if;
3743         int error = 0, v;
3744
3745         lwkt_serialize_enter(ifp->if_serializer);
3746
3747         v = *coal;
3748         error = sysctl_handle_int(oidp, &v, 0, req);
3749         if (!error && req->newptr != NULL) {
3750                 if (v < 0) {
3751                         error = EINVAL;
3752                 } else {
3753                         *coal = v;
3754                         sc->bge_coal_chg |= coal_chg_mask;
3755                 }
3756         }
3757
3758         lwkt_serialize_exit(ifp->if_serializer);
3759         return error;
3760 }
3761
3762 static void
3763 bge_coal_change(struct bge_softc *sc)
3764 {
3765         struct ifnet *ifp = &sc->arpcom.ac_if;
3766         uint32_t val;
3767
3768         ASSERT_SERIALIZED(ifp->if_serializer);
3769
3770         if (sc->bge_coal_chg & BGE_RX_COAL_TICKS_CHG) {
3771                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS,
3772                             sc->bge_rx_coal_ticks);
3773                 DELAY(10);
3774                 val = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
3775
3776                 if (bootverbose) {
3777                         if_printf(ifp, "rx_coal_ticks -> %u\n",
3778                                   sc->bge_rx_coal_ticks);
3779                 }
3780         }
3781
3782         if (sc->bge_coal_chg & BGE_TX_COAL_TICKS_CHG) {
3783                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS,
3784                             sc->bge_tx_coal_ticks);
3785                 DELAY(10);
3786                 val = CSR_READ_4(sc, BGE_HCC_TX_COAL_TICKS);
3787
3788                 if (bootverbose) {
3789                         if_printf(ifp, "tx_coal_ticks -> %u\n",
3790                                   sc->bge_tx_coal_ticks);
3791                 }
3792         }
3793
3794         if (sc->bge_coal_chg & BGE_RX_MAX_COAL_BDS_CHG) {
3795                 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS,
3796                             sc->bge_rx_max_coal_bds);
3797                 DELAY(10);
3798                 val = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
3799
3800                 if (bootverbose) {
3801                         if_printf(ifp, "rx_max_coal_bds -> %u\n",
3802                                   sc->bge_rx_max_coal_bds);
3803                 }
3804         }
3805
3806         if (sc->bge_coal_chg & BGE_TX_MAX_COAL_BDS_CHG) {
3807                 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS,
3808                             sc->bge_tx_max_coal_bds);
3809                 DELAY(10);
3810                 val = CSR_READ_4(sc, BGE_HCC_TX_MAX_COAL_BDS);
3811
3812                 if (bootverbose) {
3813                         if_printf(ifp, "tx_max_coal_bds -> %u\n",
3814                                   sc->bge_tx_max_coal_bds);
3815                 }
3816         }
3817
3818         sc->bge_coal_chg = 0;
3819 }
3820
3821 static void
3822 bge_enable_intr(struct bge_softc *sc)
3823 {
3824         struct ifnet *ifp = &sc->arpcom.ac_if;
3825
3826         lwkt_serialize_handler_enable(ifp->if_serializer);
3827
3828         /*
3829          * Enable interrupt.
3830          */
3831         CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
3832
3833         /*
3834          * Unmask the interrupt when we stop polling.
3835          */
3836         BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3837
3838         /*
3839          * Trigger another interrupt, since above writing
3840          * to interrupt mailbox0 may acknowledge pending
3841          * interrupt.
3842          */
3843         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3844 }
3845
3846 static void
3847 bge_disable_intr(struct bge_softc *sc)
3848 {
3849         struct ifnet *ifp = &sc->arpcom.ac_if;
3850
3851         /*
3852          * Mask the interrupt when we start polling.
3853          */
3854         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3855
3856         /*
3857          * Acknowledge possible asserted interrupt.
3858          */
3859         CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
3860
3861         lwkt_serialize_handler_disable(ifp->if_serializer);
3862 }