Atomically load and clear the status block. This makes the bge
[dragonfly.git] / sys / dev / netif / bge / if_bge.c
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *      This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/bge/if_bge.c,v 1.3.2.29 2003/12/01 21:06:59 ambrisko Exp $
34  * $DragonFly: src/sys/dev/netif/bge/if_bge.c,v 1.43 2005/08/19 14:41:07 joerg Exp $
35  *
36  */
37
38 /*
39  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
40  * 
41  * Written by Bill Paul <wpaul@windriver.com>
42  * Senior Engineer, Wind River Systems
43  */
44
45 /*
46  * The Broadcom BCM5700 is based on technology originally developed by
47  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
48  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
49  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
50  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
51  * frames, highly configurable RX filtering, and 16 RX and TX queues
52  * (which, along with RX filter rules, can be used for QOS applications).
53  * Other features, such as TCP segmentation, may be available as part
54  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
55  * firmware images can be stored in hardware and need not be compiled
56  * into the driver.
57  *
58  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
59  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
60  * 
61  * The BCM5701 is a single-chip solution incorporating both the BCM5700
62  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
63  * does not support external SSRAM.
64  *
65  * Broadcom also produces a variation of the BCM5700 under the "Altima"
66  * brand name, which is functionally similar but lacks PCI-X support.
67  *
68  * Without external SSRAM, you can only have at most 4 TX rings,
69  * and the use of the mini RX ring is disabled. This seems to imply
70  * that these features are simply not available on the BCM5701. As a
71  * result, this driver does not implement any support for the mini RX
72  * ring.
73  */
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/sockio.h>
78 #include <sys/mbuf.h>
79 #include <sys/malloc.h>
80 #include <sys/kernel.h>
81 #include <sys/socket.h>
82 #include <sys/queue.h>
83 #include <sys/thread2.h>
84
85 #include <net/if.h>
86 #include <net/ifq_var.h>
87 #include <net/if_arp.h>
88 #include <net/ethernet.h>
89 #include <net/if_dl.h>
90 #include <net/if_media.h>
91
92 #include <net/bpf.h>
93
94 #include <net/if_types.h>
95 #include <net/vlan/if_vlan_var.h>
96
97 #include <netinet/in_systm.h>
98 #include <netinet/in.h>
99 #include <netinet/ip.h>
100
101 #include <vm/vm.h>              /* for vtophys */
102 #include <vm/pmap.h>            /* for vtophys */
103 #include <machine/resource.h>
104 #include <sys/bus.h>
105 #include <sys/rman.h>
106
107 #include <dev/netif/mii_layer/mii.h>
108 #include <dev/netif/mii_layer/miivar.h>
109 #include <dev/netif/mii_layer/miidevs.h>
110 #include <dev/netif/mii_layer/brgphyreg.h>
111
112 #include <bus/pci/pcidevs.h>
113 #include <bus/pci/pcireg.h>
114 #include <bus/pci/pcivar.h>
115
116 #include "if_bgereg.h"
117
118 #define BGE_CSUM_FEATURES       (CSUM_IP | CSUM_TCP | CSUM_UDP)
119
120 /* "controller miibus0" required.  See GENERIC if you get errors here. */
121 #include "miibus_if.h"
122
123 /*
124  * Various supported device vendors/types and their names. Note: the
125  * spec seems to indicate that the hardware still has Alteon's vendor
126  * ID burned into it, though it will always be overriden by the vendor
127  * ID in the EEPROM. Just to be safe, we cover all possibilities.
128  */
129 #define BGE_DEVDESC_MAX         64      /* Maximum device description length */
130
131 static struct bge_type bge_devs[] = {
132         { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700,
133                 "Alteon BCM5700 Gigabit Ethernet" },
134         { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5701,
135                 "Alteon BCM5701 Gigabit Ethernet" },
136         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5700,
137                 "Broadcom BCM5700 Gigabit Ethernet" },
138         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5701,
139                 "Broadcom BCM5701 Gigabit Ethernet" },
140         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702X,
141                 "Broadcom BCM5702X Gigabit Ethernet" },
142         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702_ALT,
143                 "Broadcom BCM5702 Gigabit Ethernet" },
144         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703X,
145                 "Broadcom BCM5703X Gigabit Ethernet" },
146         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703A3,
147                 "Broadcom BCM5703 Gigabit Ethernet" },
148         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704C,
149                 "Broadcom BCM5704C Dual Gigabit Ethernet" },
150         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S,
151                 "Broadcom BCM5704S Dual Gigabit Ethernet" },
152         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705,
153                 "Broadcom BCM5705 Gigabit Ethernet" },
154         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705K,
155                 "Broadcom BCM5705K Gigabit Ethernet" },
156         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M,
157                 "Broadcom BCM5705M Gigabit Ethernet" },
158         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
159                 "Broadcom BCM5705M Gigabit Ethernet" },
160         { PCI_VENDOR_BROADCOM, BCOM_DEVICEID_BCM5714C,
161                 "Broadcom BCM5714C Gigabit Ethernet" },
162         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5721,
163                 "Broadcom BCM5721 Gigabit Ethernet" },
164         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750,
165                 "Broadcom BCM5750 Gigabit Ethernet" },
166         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750M,
167                 "Broadcom BCM5750M Gigabit Ethernet" },
168         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751,
169                 "Broadcom BCM5751 Gigabit Ethernet" },
170         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751M,
171                 "Broadcom BCM5751M Gigabit Ethernet" },
172         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5782,
173                 "Broadcom BCM5782 Gigabit Ethernet" },
174         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5788,
175                 "Broadcom BCM5788 Gigabit Ethernet" },
176         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5789,
177                 "Broadcom BCM5789 Gigabit Ethernet" },
178         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901,
179                 "Broadcom BCM5901 Fast Ethernet" },
180         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901A2,
181                 "Broadcom BCM5901A2 Fast Ethernet" },
182         { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
183                 "SysKonnect Gigabit Ethernet" },
184         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1000,
185                 "Altima AC1000 Gigabit Ethernet" },
186         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1001,
187                 "Altima AC1002 Gigabit Ethernet" },
188         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC9100,
189                 "Altima AC9100 Gigabit Ethernet" },
190         { 0, 0, NULL }
191 };
192
193 static int      bge_probe(device_t);
194 static int      bge_attach(device_t);
195 static int      bge_detach(device_t);
196 static void     bge_release_resources(struct bge_softc *);
197 static void     bge_txeof(struct bge_softc *);
198 static void     bge_rxeof(struct bge_softc *);
199
200 static void     bge_tick(void *);
201 static void     bge_stats_update(struct bge_softc *);
202 static void     bge_stats_update_regs(struct bge_softc *);
203 static int      bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
204
205 static void     bge_intr(void *);
206 static void     bge_start(struct ifnet *);
207 static int      bge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
208 static void     bge_init(void *);
209 static void     bge_stop(struct bge_softc *);
210 static void     bge_watchdog(struct ifnet *);
211 static void     bge_shutdown(device_t);
212 static int      bge_ifmedia_upd(struct ifnet *);
213 static void     bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
214
215 static uint8_t  bge_eeprom_getbyte(struct bge_softc *, uint32_t, uint8_t *);
216 static int      bge_read_eeprom(struct bge_softc *, caddr_t, uint32_t, size_t);
217
218 static void     bge_setmulti(struct bge_softc *);
219
220 static void     bge_handle_events(struct bge_softc *);
221 static int      bge_alloc_jumbo_mem(struct bge_softc *);
222 static void     bge_free_jumbo_mem(struct bge_softc *);
223 static struct bge_jslot
224                 *bge_jalloc(struct bge_softc *);
225 static void     bge_jfree(void *);
226 static void     bge_jref(void *);
227 static int      bge_newbuf_std(struct bge_softc *, int, struct mbuf *);
228 static int      bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
229 static int      bge_init_rx_ring_std(struct bge_softc *);
230 static void     bge_free_rx_ring_std(struct bge_softc *);
231 static int      bge_init_rx_ring_jumbo(struct bge_softc *);
232 static void     bge_free_rx_ring_jumbo(struct bge_softc *);
233 static void     bge_free_tx_ring(struct bge_softc *);
234 static int      bge_init_tx_ring(struct bge_softc *);
235
236 static int      bge_chipinit(struct bge_softc *);
237 static int      bge_blockinit(struct bge_softc *);
238
239 #ifdef notdef
240 static uint8_t  bge_vpd_readbyte(struct bge_softc *, uint32_t);
241 static void     bge_vpd_read_res(struct bge_softc *, struct vpd_res *, uint32_t);
242 static void     bge_vpd_read(struct bge_softc *);
243 #endif
244
245 static uint32_t bge_readmem_ind(struct bge_softc *, uint32_t);
246 static void     bge_writemem_ind(struct bge_softc *, uint32_t, uint32_t);
247 #ifdef notdef
248 static uint32_t bge_readreg_ind(struct bge_softc *, uint32_t);
249 #endif
250 static void     bge_writereg_ind(struct bge_softc *, uint32_t, uint32_t);
251
252 static int      bge_miibus_readreg(device_t, int, int);
253 static int      bge_miibus_writereg(device_t, int, int, int);
254 static void     bge_miibus_statchg(device_t);
255
256 static void     bge_reset(struct bge_softc *);
257
258 static device_method_t bge_methods[] = {
259         /* Device interface */
260         DEVMETHOD(device_probe,         bge_probe),
261         DEVMETHOD(device_attach,        bge_attach),
262         DEVMETHOD(device_detach,        bge_detach),
263         DEVMETHOD(device_shutdown,      bge_shutdown),
264
265         /* bus interface */
266         DEVMETHOD(bus_print_child,      bus_generic_print_child),
267         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
268
269         /* MII interface */
270         DEVMETHOD(miibus_readreg,       bge_miibus_readreg),
271         DEVMETHOD(miibus_writereg,      bge_miibus_writereg),
272         DEVMETHOD(miibus_statchg,       bge_miibus_statchg),
273
274         { 0, 0 }
275 };
276
277 static DEFINE_CLASS_0(bge, bge_driver, bge_methods, sizeof(struct bge_softc));
278 static devclass_t bge_devclass;
279
280 DECLARE_DUMMY_MODULE(if_bge);
281 DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, 0, 0);
282 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
283
284 static uint32_t
285 bge_readmem_ind(struct bge_softc *sc, uint32_t off)
286 {
287         device_t dev = sc->bge_dev;
288
289         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
290         return(pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4));
291 }
292
293 static void
294 bge_writemem_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
295 {
296         device_t dev = sc->bge_dev;
297
298         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
299         pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
300 }
301
302 #ifdef notdef
303 static uint32_t
304 bge_readreg_ind(struct bge_softc *sc, uin32_t off)
305 {
306         device_t dev = sc->bge_dev;
307
308         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
309         return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
310 }
311 #endif
312
313 static void
314 bge_writereg_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
315 {
316         device_t dev = sc->bge_dev;
317
318         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
319         pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
320 }
321
322 #ifdef notdef
323 static uint8_t
324 bge_vpd_readbyte(struct bge_softc *sc, uint32_t addr)
325 {
326         device_t dev = sc->bge_dev;
327         uint32_t val;
328         int i;
329
330         pci_write_config(dev, BGE_PCI_VPD_ADDR, addr, 2);
331         for (i = 0; i < BGE_TIMEOUT * 10; i++) {
332                 DELAY(10);
333                 if (pci_read_config(dev, BGE_PCI_VPD_ADDR, 2) & BGE_VPD_FLAG)
334                         break;
335         }
336
337         if (i == BGE_TIMEOUT) {
338                 device_printf(sc->bge_dev, "VPD read timed out\n");
339                 return(0);
340         }
341
342         val = pci_read_config(dev, BGE_PCI_VPD_DATA, 4);
343
344         return((val >> ((addr % 4) * 8)) & 0xFF);
345 }
346
347 static void
348 bge_vpd_read_res(struct bge_softc *sc, struct vpd_res *res, uint32_t addr)
349 {
350         size_t i;
351         uint8_t *ptr;
352
353         ptr = (uint8_t *)res;
354         for (i = 0; i < sizeof(struct vpd_res); i++)
355                 ptr[i] = bge_vpd_readbyte(sc, i + addr);
356
357         return;
358 }
359
360 static void
361 bge_vpd_read(struct bge_softc *sc)
362 {
363         int pos = 0, i;
364         struct vpd_res res;
365
366         if (sc->bge_vpd_prodname != NULL)
367                 free(sc->bge_vpd_prodname, M_DEVBUF);
368         if (sc->bge_vpd_readonly != NULL)
369                 free(sc->bge_vpd_readonly, M_DEVBUF);
370         sc->bge_vpd_prodname = NULL;
371         sc->bge_vpd_readonly = NULL;
372
373         bge_vpd_read_res(sc, &res, pos);
374
375         if (res.vr_id != VPD_RES_ID) {
376                 device_printf(sc->bge_dev,
377                               "bad VPD resource id: expected %x got %x\n",
378                               VPD_RES_ID, res.vr_id);
379                 return;
380         }
381
382         pos += sizeof(res);
383         sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_INTWAIT);
384         for (i = 0; i < res.vr_len; i++)
385                 sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
386         sc->bge_vpd_prodname[i] = '\0';
387         pos += i;
388
389         bge_vpd_read_res(sc, &res, pos);
390
391         if (res.vr_id != VPD_RES_READ) {
392                 device_printf(sc->bge_dev,
393                               "bad VPD resource id: expected %x got %x\n",
394                               VPD_RES_READ, res.vr_id);
395                 return;
396         }
397
398         pos += sizeof(res);
399         sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_INTWAIT);
400         for (i = 0; i < res.vr_len + 1; i++)
401                 sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
402 }
403 #endif
404
405 /*
406  * Read a byte of data stored in the EEPROM at address 'addr.' The
407  * BCM570x supports both the traditional bitbang interface and an
408  * auto access interface for reading the EEPROM. We use the auto
409  * access method.
410  */
411 static uint8_t
412 bge_eeprom_getbyte(struct bge_softc *sc, uint32_t addr, uint8_t *dest)
413 {
414         int i;
415         uint32_t byte = 0;
416
417         /*
418          * Enable use of auto EEPROM access so we can avoid
419          * having to use the bitbang method.
420          */
421         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
422
423         /* Reset the EEPROM, load the clock period. */
424         CSR_WRITE_4(sc, BGE_EE_ADDR,
425             BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
426         DELAY(20);
427
428         /* Issue the read EEPROM command. */
429         CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
430
431         /* Wait for completion */
432         for(i = 0; i < BGE_TIMEOUT * 10; i++) {
433                 DELAY(10);
434                 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
435                         break;
436         }
437
438         if (i == BGE_TIMEOUT) {
439                 if_printf(&sc->arpcom.ac_if, "eeprom read timed out\n");
440                 return(0);
441         }
442
443         /* Get result. */
444         byte = CSR_READ_4(sc, BGE_EE_DATA);
445
446         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
447
448         return(0);
449 }
450
451 /*
452  * Read a sequence of bytes from the EEPROM.
453  */
454 static int
455 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, uint32_t off, size_t len)
456 {
457         size_t i;
458         int err;
459         uint8_t byte;
460
461         for (byte = 0, err = 0, i = 0; i < len; i++) {
462                 err = bge_eeprom_getbyte(sc, off + i, &byte);
463                 if (err)
464                         break;
465                 *(dest + i) = byte;
466         }
467
468         return(err ? 1 : 0);
469 }
470
471 static int
472 bge_miibus_readreg(device_t dev, int phy, int reg)
473 {
474         struct bge_softc *sc;
475         struct ifnet *ifp;
476         uint32_t val, autopoll;
477         int i;
478
479         sc = device_get_softc(dev);
480         ifp = &sc->arpcom.ac_if;
481
482         /*
483          * Broadcom's own driver always assumes the internal
484          * PHY is at GMII address 1. On some chips, the PHY responds
485          * to accesses at all addresses, which could cause us to
486          * bogusly attach the PHY 32 times at probe type. Always
487          * restricting the lookup to address 1 is simpler than
488          * trying to figure out which chips revisions should be
489          * special-cased.
490          */
491         if (phy != 1)
492                 return(0);
493
494         /* Reading with autopolling on may trigger PCI errors */
495         autopoll = CSR_READ_4(sc, BGE_MI_MODE);
496         if (autopoll & BGE_MIMODE_AUTOPOLL) {
497                 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
498                 DELAY(40);
499         }
500
501         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
502             BGE_MIPHY(phy)|BGE_MIREG(reg));
503
504         for (i = 0; i < BGE_TIMEOUT; i++) {
505                 val = CSR_READ_4(sc, BGE_MI_COMM);
506                 if (!(val & BGE_MICOMM_BUSY))
507                         break;
508         }
509
510         if (i == BGE_TIMEOUT) {
511                 if_printf(ifp, "PHY read timed out\n");
512                 val = 0;
513                 goto done;
514         }
515
516         val = CSR_READ_4(sc, BGE_MI_COMM);
517
518 done:
519         if (autopoll & BGE_MIMODE_AUTOPOLL) {
520                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
521                 DELAY(40);
522         }
523
524         if (val & BGE_MICOMM_READFAIL)
525                 return(0);
526
527         return(val & 0xFFFF);
528 }
529
530 static int
531 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
532 {
533         struct bge_softc *sc;
534         uint32_t autopoll;
535         int i;
536
537         sc = device_get_softc(dev);
538
539         /* Reading with autopolling on may trigger PCI errors */
540         autopoll = CSR_READ_4(sc, BGE_MI_MODE);
541         if (autopoll & BGE_MIMODE_AUTOPOLL) {
542                 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
543                 DELAY(40);
544         }
545
546         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
547             BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
548
549         for (i = 0; i < BGE_TIMEOUT; i++) {
550                 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
551                         break;
552         }
553
554         if (autopoll & BGE_MIMODE_AUTOPOLL) {
555                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
556                 DELAY(40);
557         }
558
559         if (i == BGE_TIMEOUT) {
560                 if_printf(&sc->arpcom.ac_if, "PHY read timed out\n");
561                 return(0);
562         }
563
564         return(0);
565 }
566
567 static void
568 bge_miibus_statchg(device_t dev)
569 {
570         struct bge_softc *sc;
571         struct mii_data *mii;
572
573         sc = device_get_softc(dev);
574         mii = device_get_softc(sc->bge_miibus);
575
576         BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
577         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
578                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
579         } else {
580                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
581         }
582
583         if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
584                 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
585         } else {
586                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
587         }
588 }
589
590 /*
591  * Handle events that have triggered interrupts.
592  */
593 static void
594 bge_handle_events(struct bge_softc *sc)
595 {
596 }
597
598 /*
599  * Memory management for jumbo frames.
600  */
601 static int
602 bge_alloc_jumbo_mem(struct bge_softc *sc)
603 {
604         struct bge_jslot *entry;
605         caddr_t ptr;
606         int i;
607
608         /* Grab a big chunk o' storage. */
609         sc->bge_cdata.bge_jumbo_buf = contigmalloc(BGE_JMEM, M_DEVBUF,
610                 M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
611
612         if (sc->bge_cdata.bge_jumbo_buf == NULL) {
613                 if_printf(&sc->arpcom.ac_if, "no memory for jumbo buffers!\n");
614                 return(ENOBUFS);
615         }
616
617         SLIST_INIT(&sc->bge_jfree_listhead);
618
619         /*
620          * Now divide it up into 9K pieces and save the addresses
621          * in an array. Note that we play an evil trick here by using
622          * the first few bytes in the buffer to hold the the address
623          * of the softc structure for this interface. This is because
624          * bge_jfree() needs it, but it is called by the mbuf management
625          * code which will not pass it to us explicitly.
626          */
627         ptr = sc->bge_cdata.bge_jumbo_buf;
628         for (i = 0; i < BGE_JSLOTS; i++) {
629                 entry = &sc->bge_cdata.bge_jslots[i];
630                 entry->bge_sc = sc;
631                 entry->bge_buf = ptr;
632                 entry->bge_inuse = 0;
633                 entry->bge_slot = i;
634                 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jslot_link);
635                 ptr += BGE_JLEN;
636         }
637
638         return(0);
639 }
640
641 static void
642 bge_free_jumbo_mem(struct bge_softc *sc)
643 {
644         if (sc->bge_cdata.bge_jumbo_buf)
645                 contigfree(sc->bge_cdata.bge_jumbo_buf, BGE_JMEM, M_DEVBUF);
646 }
647
648 /*
649  * Allocate a jumbo buffer.
650  */
651 static struct bge_jslot *
652 bge_jalloc(struct bge_softc *sc)
653 {
654         struct bge_jslot *entry;
655
656         entry = SLIST_FIRST(&sc->bge_jfree_listhead);
657
658         if (entry == NULL) {
659                 if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n");
660                 return(NULL);
661         }
662
663         SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jslot_link);
664         entry->bge_inuse = 1;
665         return(entry);
666 }
667
668 /*
669  * Adjust usage count on a jumbo buffer.
670  */
671 static void
672 bge_jref(void *arg)
673 {
674         struct bge_jslot *entry = (struct bge_jslot *)arg;
675         struct bge_softc *sc = entry->bge_sc;
676
677         if (sc == NULL)
678                 panic("bge_jref: can't find softc pointer!");
679
680         if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry)
681                 panic("bge_jref: asked to reference buffer "
682                     "that we don't manage!");
683         else if (entry->bge_inuse == 0)
684                 panic("bge_jref: buffer already free!");
685         else
686                 entry->bge_inuse++;
687 }
688
689 /*
690  * Release a jumbo buffer.
691  */
692 static void
693 bge_jfree(void *arg)
694 {
695         struct bge_jslot *entry = (struct bge_jslot *)arg;
696         struct bge_softc *sc = entry->bge_sc;
697
698         if (sc == NULL)
699                 panic("bge_jfree: can't find softc pointer!");
700
701         if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry)
702                 panic("bge_jfree: asked to free buffer that we don't manage!");
703         else if (entry->bge_inuse == 0)
704                 panic("bge_jfree: buffer already free!");
705         else if (--entry->bge_inuse == 0)
706                 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jslot_link);
707 }
708
709
710 /*
711  * Intialize a standard receive ring descriptor.
712  */
713 static int
714 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m)
715 {
716         struct mbuf *m_new = NULL;
717         struct bge_rx_bd *r;
718
719         if (m == NULL) {
720                 m_new = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
721                 if (m_new == NULL)
722                         return (ENOBUFS);
723                 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
724         } else {
725                 m_new = m;
726                 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
727                 m_new->m_data = m_new->m_ext.ext_buf;
728         }
729
730         if (!sc->bge_rx_alignment_bug)
731                 m_adj(m_new, ETHER_ALIGN);
732         sc->bge_cdata.bge_rx_std_chain[i] = m_new;
733         r = &sc->bge_rdata->bge_rx_std_ring[i];
734         BGE_HOSTADDR(r->bge_addr, vtophys(mtod(m_new, caddr_t)));
735         r->bge_flags = BGE_RXBDFLAG_END;
736         r->bge_len = m_new->m_len;
737         r->bge_idx = i;
738
739         return(0);
740 }
741
742 /*
743  * Initialize a jumbo receive ring descriptor. This allocates
744  * a jumbo buffer from the pool managed internally by the driver.
745  */
746 static int
747 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
748 {
749         struct mbuf *m_new = NULL;
750         struct bge_rx_bd *r;
751
752         if (m == NULL) {
753                 struct bge_jslot *buf;
754
755                 /* Allocate the mbuf. */
756                 MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
757                 if (m_new == NULL)
758                         return(ENOBUFS);
759
760                 /* Allocate the jumbo buffer */
761                 buf = bge_jalloc(sc);
762                 if (buf == NULL) {
763                         m_freem(m_new);
764                         if_printf(&sc->arpcom.ac_if, "jumbo allocation failed "
765                             "-- packet dropped!\n");
766                         return(ENOBUFS);
767                 }
768
769                 /* Attach the buffer to the mbuf. */
770                 m_new->m_ext.ext_arg = buf;
771                 m_new->m_ext.ext_buf = buf->bge_buf;
772                 m_new->m_ext.ext_free = bge_jfree;
773                 m_new->m_ext.ext_ref = bge_jref;
774                 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
775
776                 m_new->m_data = m_new->m_ext.ext_buf;
777                 m_new->m_flags |= M_EXT;
778                 m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
779         } else {
780                 m_new = m;
781                 m_new->m_data = m_new->m_ext.ext_buf;
782                 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
783         }
784
785         if (!sc->bge_rx_alignment_bug)
786                 m_adj(m_new, ETHER_ALIGN);
787         /* Set up the descriptor. */
788         r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
789         sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
790         BGE_HOSTADDR(r->bge_addr, vtophys(mtod(m_new, caddr_t)));
791         r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
792         r->bge_len = m_new->m_len;
793         r->bge_idx = i;
794
795         return(0);
796 }
797
798 /*
799  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
800  * that's 1MB or memory, which is a lot. For now, we fill only the first
801  * 256 ring entries and hope that our CPU is fast enough to keep up with
802  * the NIC.
803  */
804 static int
805 bge_init_rx_ring_std(struct bge_softc *sc)
806 {
807         int i;
808
809         for (i = 0; i < BGE_SSLOTS; i++) {
810                 if (bge_newbuf_std(sc, i, NULL) == ENOBUFS)
811                         return(ENOBUFS);
812         };
813
814         sc->bge_std = i - 1;
815         CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
816
817         return(0);
818 }
819
820 static void
821 bge_free_rx_ring_std(struct bge_softc *sc)
822 {
823         int i;
824
825         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
826                 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
827                         m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
828                         sc->bge_cdata.bge_rx_std_chain[i] = NULL;
829                 }
830                 bzero(&sc->bge_rdata->bge_rx_std_ring[i],
831                     sizeof(struct bge_rx_bd));
832         }
833 }
834
835 static int
836 bge_init_rx_ring_jumbo(struct bge_softc *sc)
837 {
838         int i;
839         struct bge_rcb *rcb;
840
841         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
842                 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
843                         return(ENOBUFS);
844         };
845
846         sc->bge_jumbo = i - 1;
847
848         rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
849         rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
850         CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
851
852         CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
853
854         return(0);
855 }
856
857 static void
858 bge_free_rx_ring_jumbo(struct bge_softc *sc)
859 {
860         int i;
861
862         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
863                 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
864                         m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
865                         sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
866                 }
867                 bzero(&sc->bge_rdata->bge_rx_jumbo_ring[i],
868                     sizeof(struct bge_rx_bd));
869         }
870 }
871
872 static void
873 bge_free_tx_ring(struct bge_softc *sc)
874 {
875         int i;
876
877         if (sc->bge_rdata->bge_tx_ring == NULL)
878                 return;
879
880         for (i = 0; i < BGE_TX_RING_CNT; i++) {
881                 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
882                         m_freem(sc->bge_cdata.bge_tx_chain[i]);
883                         sc->bge_cdata.bge_tx_chain[i] = NULL;
884                 }
885                 bzero(&sc->bge_rdata->bge_tx_ring[i],
886                     sizeof(struct bge_tx_bd));
887         }
888 }
889
890 static int
891 bge_init_tx_ring(struct bge_softc *sc)
892 {
893         sc->bge_txcnt = 0;
894         sc->bge_tx_saved_considx = 0;
895
896         CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
897         /* 5700 b2 errata */
898         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
899                 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
900
901         CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
902         /* 5700 b2 errata */
903         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
904                 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
905
906         return(0);
907 }
908
909 static void
910 bge_setmulti(struct bge_softc *sc)
911 {
912         struct ifnet *ifp;
913         struct ifmultiaddr *ifma;
914         uint32_t hashes[4] = { 0, 0, 0, 0 };
915         int h, i;
916
917         ifp = &sc->arpcom.ac_if;
918
919         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
920                 for (i = 0; i < 4; i++)
921                         CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
922                 return;
923         }
924
925         /* First, zot all the existing filters. */
926         for (i = 0; i < 4; i++)
927                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
928
929         /* Now program new ones. */
930         LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
931                 if (ifma->ifma_addr->sa_family != AF_LINK)
932                         continue;
933                 h = ether_crc32_le(
934                     LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
935                     ETHER_ADDR_LEN) & 0x7f;
936                 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
937         }
938
939         for (i = 0; i < 4; i++)
940                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
941 }
942
943 /*
944  * Do endian, PCI and DMA initialization. Also check the on-board ROM
945  * self-test results.
946  */
947 static int
948 bge_chipinit(struct bge_softc *sc)
949 {
950         int i;
951         uint32_t dma_rw_ctl;
952
953         /* Set endianness before we access any non-PCI registers. */
954 #if BYTE_ORDER == BIG_ENDIAN
955         pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
956             BGE_BIGENDIAN_INIT, 4);
957 #else
958         pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
959             BGE_LITTLEENDIAN_INIT, 4);
960 #endif
961
962         /*
963          * Check the 'ROM failed' bit on the RX CPU to see if
964          * self-tests passed.
965          */
966         if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
967                 if_printf(&sc->arpcom.ac_if,
968                           "RX CPU self-diagnostics failed!\n");
969                 return(ENODEV);
970         }
971
972         /* Clear the MAC control register */
973         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
974
975         /*
976          * Clear the MAC statistics block in the NIC's
977          * internal memory.
978          */
979         for (i = BGE_STATS_BLOCK;
980             i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
981                 BGE_MEMWIN_WRITE(sc, i, 0);
982
983         for (i = BGE_STATUS_BLOCK;
984             i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
985                 BGE_MEMWIN_WRITE(sc, i, 0);
986
987         /* Set up the PCI DMA control register. */
988         if (sc->bge_pcie) {
989                 /* PCI Express */
990                 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
991                     (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
992                     (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
993         } else if (pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
994                    BGE_PCISTATE_PCI_BUSMODE) {
995                 /* Conventional PCI bus */
996                 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
997                     (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
998                     (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
999                     (0x0F);
1000         } else {
1001                 /* PCI-X bus */
1002                 /*
1003                  * The 5704 uses a different encoding of read/write
1004                  * watermarks.
1005                  */
1006                 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1007                         dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1008                             (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1009                             (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1010                 else
1011                         dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1012                             (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1013                             (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1014                             (0x0F);
1015
1016                 /*
1017                  * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1018                  * for hardware bugs.
1019                  */
1020                 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1021                     sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1022                         uint32_t tmp;
1023
1024                         tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1025                         if (tmp == 0x6 || tmp == 0x7)
1026                                 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1027                 }
1028         }
1029
1030         if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1031             sc->bge_asicrev == BGE_ASICREV_BCM5704 ||
1032             sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
1033             sc->bge_asicrev == BGE_ASICREV_BCM5750)
1034                 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1035         pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1036
1037         /*
1038          * Set up general mode register.
1039          */
1040         CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_WORDSWAP_NONFRAME|
1041             BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1042             BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1043             BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
1044
1045         /*
1046          * Disable memory write invalidate.  Apparently it is not supported
1047          * properly by these devices.
1048          */
1049         PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
1050
1051         /* Set the timer prescaler (always 66Mhz) */
1052         CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1053
1054         return(0);
1055 }
1056
1057 static int
1058 bge_blockinit(struct bge_softc *sc)
1059 {
1060         struct bge_rcb *rcb;
1061         volatile struct bge_rcb *vrcb;
1062         int i;
1063
1064         /*
1065          * Initialize the memory window pointer register so that
1066          * we can access the first 32K of internal NIC RAM. This will
1067          * allow us to set up the TX send ring RCBs and the RX return
1068          * ring RCBs, plus other things which live in NIC memory.
1069          */
1070         CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1071
1072         /* Note: the BCM5704 has a smaller mbuf space than other chips. */
1073
1074         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1075             sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1076                 /* Configure mbuf memory pool */
1077                 if (sc->bge_extram) {
1078                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1079                             BGE_EXT_SSRAM);
1080                         if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1081                                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1082                         else
1083                                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1084                 } else {
1085                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1086                             BGE_BUFFPOOL_1);
1087                         if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1088                                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1089                         else
1090                                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1091                 }
1092
1093                 /* Configure DMA resource pool */
1094                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1095                     BGE_DMA_DESCRIPTORS);
1096                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1097         }
1098
1099         /* Configure mbuf pool watermarks */
1100         if (sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
1101             sc->bge_asicrev == BGE_ASICREV_BCM5750) {
1102                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1103                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1104         } else {
1105                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1106                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1107         }
1108         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1109
1110         /* Configure DMA resource watermarks */
1111         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1112         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1113
1114         /* Enable buffer manager */
1115         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1116             sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1117                 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1118                     BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1119
1120                 /* Poll for buffer manager start indication */
1121                 for (i = 0; i < BGE_TIMEOUT; i++) {
1122                         if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1123                                 break;
1124                         DELAY(10);
1125                 }
1126
1127                 if (i == BGE_TIMEOUT) {
1128                         if_printf(&sc->arpcom.ac_if,
1129                                   "buffer manager failed to start\n");
1130                         return(ENXIO);
1131                 }
1132         }
1133
1134         /* Enable flow-through queues */
1135         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1136         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1137
1138         /* Wait until queue initialization is complete */
1139         for (i = 0; i < BGE_TIMEOUT; i++) {
1140                 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1141                         break;
1142                 DELAY(10);
1143         }
1144
1145         if (i == BGE_TIMEOUT) {
1146                 if_printf(&sc->arpcom.ac_if,
1147                           "flow-through queue init failed\n");
1148                 return(ENXIO);
1149         }
1150
1151         /* Initialize the standard RX ring control block */
1152         rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1153         BGE_HOSTADDR(rcb->bge_hostaddr,
1154             vtophys(&sc->bge_rdata->bge_rx_std_ring));
1155         if (sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
1156             sc->bge_asicrev == BGE_ASICREV_BCM5750)
1157                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1158         else
1159                 rcb->bge_maxlen_flags =
1160                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1161         if (sc->bge_extram)
1162                 rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1163         else
1164                 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1165         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1166         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1167         CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1168         CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1169
1170         /*
1171          * Initialize the jumbo RX ring control block
1172          * We set the 'ring disabled' bit in the flags
1173          * field until we're actually ready to start
1174          * using this ring (i.e. once we set the MTU
1175          * high enough to require it).
1176          */
1177         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1178             sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1179                 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1180                 BGE_HOSTADDR(rcb->bge_hostaddr,
1181                     vtophys(&sc->bge_rdata->bge_rx_jumbo_ring));
1182                 rcb->bge_maxlen_flags =
1183                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1184                     BGE_RCB_FLAG_RING_DISABLED);
1185                 if (sc->bge_extram)
1186                         rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1187                 else
1188                         rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1189                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1190                     rcb->bge_hostaddr.bge_addr_hi);
1191                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1192                     rcb->bge_hostaddr.bge_addr_lo);
1193                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1194                     rcb->bge_maxlen_flags);
1195                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1196
1197                 /* Set up dummy disabled mini ring RCB */
1198                 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1199                 rcb->bge_maxlen_flags =
1200                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1201                 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1202                     rcb->bge_maxlen_flags);
1203         }
1204
1205         /*
1206          * Set the BD ring replentish thresholds. The recommended
1207          * values are 1/8th the number of descriptors allocated to
1208          * each ring.
1209          */
1210         CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1211         CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1212
1213         /*
1214          * Disable all unused send rings by setting the 'ring disabled'
1215          * bit in the flags field of all the TX send ring control blocks.
1216          * These are located in NIC memory.
1217          */
1218         vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1219             BGE_SEND_RING_RCB);
1220         for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1221                 vrcb->bge_maxlen_flags =
1222                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1223                 vrcb->bge_nicaddr = 0;
1224                 vrcb++;
1225         }
1226
1227         /* Configure TX RCB 0 (we use only the first ring) */
1228         vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1229             BGE_SEND_RING_RCB);
1230         vrcb->bge_hostaddr.bge_addr_hi = 0;
1231         BGE_HOSTADDR(vrcb->bge_hostaddr, vtophys(&sc->bge_rdata->bge_tx_ring));
1232         vrcb->bge_nicaddr = BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT);
1233         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1234             sc->bge_asicrev != BGE_ASICREV_BCM5750)
1235                 vrcb->bge_maxlen_flags =
1236                     BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0);
1237
1238         /* Disable all unused RX return rings */
1239         vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1240             BGE_RX_RETURN_RING_RCB);
1241         for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1242                 vrcb->bge_hostaddr.bge_addr_hi = 0;
1243                 vrcb->bge_hostaddr.bge_addr_lo = 0;
1244                 vrcb->bge_maxlen_flags =
1245                     BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1246                     BGE_RCB_FLAG_RING_DISABLED);
1247                 vrcb->bge_nicaddr = 0;
1248                 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1249                     (i * (sizeof(uint64_t))), 0);
1250                 vrcb++;
1251         }
1252
1253         /* Initialize RX ring indexes */
1254         CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1255         CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1256         CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1257
1258         /*
1259          * Set up RX return ring 0
1260          * Note that the NIC address for RX return rings is 0x00000000.
1261          * The return rings live entirely within the host, so the
1262          * nicaddr field in the RCB isn't used.
1263          */
1264         vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1265             BGE_RX_RETURN_RING_RCB);
1266         vrcb->bge_hostaddr.bge_addr_hi = 0;
1267         BGE_HOSTADDR(vrcb->bge_hostaddr,
1268             vtophys(&sc->bge_rdata->bge_rx_return_ring));
1269         vrcb->bge_nicaddr = 0x00000000;
1270         vrcb->bge_maxlen_flags =
1271             BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0);
1272
1273         /* Set random backoff seed for TX */
1274         CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1275             sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1276             sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1277             sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] +
1278             BGE_TX_BACKOFF_SEED_MASK);
1279
1280         /* Set inter-packet gap */
1281         CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1282
1283         /*
1284          * Specify which ring to use for packets that don't match
1285          * any RX rules.
1286          */
1287         CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1288
1289         /*
1290          * Configure number of RX lists. One interrupt distribution
1291          * list, sixteen active lists, one bad frames class.
1292          */
1293         CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1294
1295         /* Inialize RX list placement stats mask. */
1296         CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1297         CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1298
1299         /* Disable host coalescing until we get it set up */
1300         CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1301
1302         /* Poll to make sure it's shut down. */
1303         for (i = 0; i < BGE_TIMEOUT; i++) {
1304                 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1305                         break;
1306                 DELAY(10);
1307         }
1308
1309         if (i == BGE_TIMEOUT) {
1310                 if_printf(&sc->arpcom.ac_if,
1311                           "host coalescing engine failed to idle\n");
1312                 return(ENXIO);
1313         }
1314
1315         /* Set up host coalescing defaults */
1316         CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1317         CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1318         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1319         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1320         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1321             sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1322                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1323                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1324         }
1325         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1326         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1327
1328         /* Set up address of statistics block */
1329         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1330             sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1331                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, 0);
1332                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1333                     vtophys(&sc->bge_rdata->bge_info.bge_stats));
1334
1335                 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1336                 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1337                 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1338         }
1339
1340         /* Set up address of status block */
1341         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, 0);
1342         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1343             vtophys(&sc->bge_rdata->bge_status_block));
1344
1345         sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1346         sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1347
1348         /* Turn on host coalescing state machine */
1349         CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1350
1351         /* Turn on RX BD completion state machine and enable attentions */
1352         CSR_WRITE_4(sc, BGE_RBDC_MODE,
1353             BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1354
1355         /* Turn on RX list placement state machine */
1356         CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1357
1358         /* Turn on RX list selector state machine. */
1359         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1360             sc->bge_asicrev != BGE_ASICREV_BCM5750)
1361                 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1362
1363         /* Turn on DMA, clear stats */
1364         CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1365             BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1366             BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1367             BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1368             (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1369
1370         /* Set misc. local control, enable interrupts on attentions */
1371         CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1372
1373 #ifdef notdef
1374         /* Assert GPIO pins for PHY reset */
1375         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1376             BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1377         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1378             BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1379 #endif
1380
1381         /* Turn on DMA completion state machine */
1382         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1383             sc->bge_asicrev != BGE_ASICREV_BCM5750)
1384                 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1385
1386         /* Turn on write DMA state machine */
1387         CSR_WRITE_4(sc, BGE_WDMA_MODE,
1388             BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1389         
1390         /* Turn on read DMA state machine */
1391         CSR_WRITE_4(sc, BGE_RDMA_MODE,
1392             BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1393
1394         /* Turn on RX data completion state machine */
1395         CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1396
1397         /* Turn on RX BD initiator state machine */
1398         CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1399
1400         /* Turn on RX data and RX BD initiator state machine */
1401         CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1402
1403         /* Turn on Mbuf cluster free state machine */
1404         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1405             sc->bge_asicrev != BGE_ASICREV_BCM5750)
1406                 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1407
1408         /* Turn on send BD completion state machine */
1409         CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1410
1411         /* Turn on send data completion state machine */
1412         CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1413
1414         /* Turn on send data initiator state machine */
1415         CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1416
1417         /* Turn on send BD initiator state machine */
1418         CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1419
1420         /* Turn on send BD selector state machine */
1421         CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1422
1423         CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1424         CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1425             BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1426
1427         /* ack/clear link change events */
1428         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1429             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1430             BGE_MACSTAT_LINK_CHANGED);
1431
1432         /* Enable PHY auto polling (for MII/GMII only) */
1433         if (sc->bge_tbi) {
1434                 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1435         } else {
1436                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1437                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700)
1438                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1439                             BGE_EVTENB_MI_INTERRUPT);
1440         }
1441
1442         /* Enable link state change attentions. */
1443         BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1444
1445         return(0);
1446 }
1447
1448 /*
1449  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1450  * against our list and return its name if we find a match. Note
1451  * that since the Broadcom controller contains VPD support, we
1452  * can get the device name string from the controller itself instead
1453  * of the compiled-in string. This is a little slow, but it guarantees
1454  * we'll always announce the right product name.
1455  */
1456 static int
1457 bge_probe(device_t dev)
1458 {
1459         struct bge_softc *sc;
1460         struct bge_type *t;
1461         char *descbuf;
1462         uint16_t product, vendor;
1463
1464         product = pci_get_device(dev);
1465         vendor = pci_get_vendor(dev);
1466
1467         for (t = bge_devs; t->bge_name != NULL; t++) {
1468                 if (vendor == t->bge_vid && product == t->bge_did)
1469                         break;
1470         }
1471
1472         if (t->bge_name == NULL)
1473                 return(ENXIO);
1474
1475         sc = device_get_softc(dev);
1476 #ifdef notdef
1477         sc->bge_dev = dev;
1478
1479         bge_vpd_read(sc);
1480         device_set_desc(dev, sc->bge_vpd_prodname);
1481 #endif
1482         descbuf = malloc(BGE_DEVDESC_MAX, M_TEMP, M_WAITOK);
1483         snprintf(descbuf, BGE_DEVDESC_MAX, "%s, ASIC rev. %#04x", t->bge_name,
1484             pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >> 16);
1485         device_set_desc_copy(dev, descbuf);
1486         if (pci_get_subvendor(dev) == PCI_VENDOR_DELL)
1487                 sc->bge_no_3_led = 1;
1488         free(descbuf, M_TEMP);
1489         return(0);
1490 }
1491
1492 static int
1493 bge_attach(device_t dev)
1494 {
1495         struct ifnet *ifp;
1496         struct bge_softc *sc;
1497         uint32_t hwcfg = 0;
1498         uint32_t mac_addr = 0;
1499         int error = 0, rid;
1500         uint8_t ether_addr[ETHER_ADDR_LEN];
1501
1502         sc = device_get_softc(dev);
1503         sc->bge_dev = dev;
1504         callout_init(&sc->bge_stat_timer);
1505
1506         /*
1507          * Map control/status registers.
1508          */
1509         pci_enable_busmaster(dev);
1510
1511         rid = BGE_PCI_BAR0;
1512         sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1513             RF_ACTIVE);
1514
1515         if (sc->bge_res == NULL) {
1516                 device_printf(dev, "couldn't map memory\n");
1517                 error = ENXIO;
1518                 return(error);
1519         }
1520
1521         sc->bge_btag = rman_get_bustag(sc->bge_res);
1522         sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
1523         sc->bge_vhandle = (vm_offset_t)rman_get_virtual(sc->bge_res);
1524
1525         /* Allocate interrupt */
1526         rid = 0;
1527
1528         sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1529             RF_SHAREABLE | RF_ACTIVE);
1530
1531         if (sc->bge_irq == NULL) {
1532                 device_printf(dev, "couldn't map interrupt\n");
1533                 error = ENXIO;
1534                 goto fail;
1535         }
1536
1537         /* Save ASIC rev. */
1538         sc->bge_chipid =
1539             pci_read_config(dev, BGE_PCI_MISC_CTL, 4) &
1540             BGE_PCIMISCCTL_ASICREV;
1541         sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
1542         sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
1543
1544         /*
1545          * Treat the 5714 like the 5750 until we have more info
1546          * on this chip.
1547          */
1548         if (sc->bge_asicrev == BGE_ASICREV_BCM5714)
1549                 sc->bge_asicrev = BGE_ASICREV_BCM5750;
1550
1551         /*
1552          * XXX: Broadcom Linux driver.  Not in specs or eratta.
1553          * PCI-Express?
1554          */
1555         if (sc->bge_asicrev == BGE_ASICREV_BCM5750) {
1556                 uint32_t v;
1557
1558                 v = pci_read_config(dev, BGE_PCI_MSI_CAPID, 4);
1559                 if (((v >> 8) & 0xff) == BGE_PCIE_MSI_CAPID) {
1560                         v = pci_read_config(dev, BGE_PCIE_MSI_CAPID, 4);
1561                         if ((v & 0xff) == BGE_PCIE_MSI_CAPID_VAL)
1562                                 sc->bge_pcie = 1;
1563                 }
1564         }
1565
1566         ifp = &sc->arpcom.ac_if;
1567         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1568
1569         /* Try to reset the chip. */
1570         bge_reset(sc);
1571
1572         if (bge_chipinit(sc)) {
1573                 device_printf(dev, "chip initialization failed\n");
1574                 error = ENXIO;
1575                 goto fail;
1576         }
1577
1578         /*
1579          * Get station address from the EEPROM.
1580          */
1581         mac_addr = bge_readmem_ind(sc, 0x0c14);
1582         if ((mac_addr >> 16) == 0x484b) {
1583                 ether_addr[0] = (uint8_t)(mac_addr >> 8);
1584                 ether_addr[1] = (uint8_t)mac_addr;
1585                 mac_addr = bge_readmem_ind(sc, 0x0c18);
1586                 ether_addr[2] = (uint8_t)(mac_addr >> 24);
1587                 ether_addr[3] = (uint8_t)(mac_addr >> 16);
1588                 ether_addr[4] = (uint8_t)(mac_addr >> 8);
1589                 ether_addr[5] = (uint8_t)mac_addr;
1590         } else if (bge_read_eeprom(sc, ether_addr,
1591             BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1592                 device_printf(dev, "failed to read station address\n");
1593                 error = ENXIO;
1594                 goto fail;
1595         }
1596
1597         /* Allocate the general information block and ring buffers. */
1598         sc->bge_rdata = contigmalloc(sizeof(struct bge_ring_data), M_DEVBUF,
1599             M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
1600
1601         if (sc->bge_rdata == NULL) {
1602                 error = ENXIO;
1603                 device_printf(dev, "no memory for list buffers!\n");
1604                 goto fail;
1605         }
1606
1607         bzero(sc->bge_rdata, sizeof(struct bge_ring_data));
1608
1609         /*
1610          * Try to allocate memory for jumbo buffers.
1611          * The 5705/5750 does not appear to support jumbo frames.
1612          */
1613         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1614             sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1615                 if (bge_alloc_jumbo_mem(sc)) {
1616                         device_printf(dev, "jumbo buffer allocation failed\n");
1617                         error = ENXIO;
1618                         goto fail;
1619                 }
1620         }
1621
1622         /* Set default tuneable values. */
1623         sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
1624         sc->bge_rx_coal_ticks = 150;
1625         sc->bge_tx_coal_ticks = 150;
1626         sc->bge_rx_max_coal_bds = 64;
1627         sc->bge_tx_max_coal_bds = 128;
1628
1629         /* 5705/5750 limits RX return ring to 512 entries. */
1630         if (sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
1631             sc->bge_asicrev == BGE_ASICREV_BCM5750)
1632                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1633         else
1634                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1635
1636         /* Set up ifnet structure */
1637         ifp->if_softc = sc;
1638         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1639         ifp->if_ioctl = bge_ioctl;
1640         ifp->if_start = bge_start;
1641         ifp->if_watchdog = bge_watchdog;
1642         ifp->if_init = bge_init;
1643         ifp->if_mtu = ETHERMTU;
1644         ifq_set_maxlen(&ifp->if_snd, BGE_TX_RING_CNT - 1);
1645         ifq_set_ready(&ifp->if_snd);
1646         ifp->if_hwassist = BGE_CSUM_FEATURES;
1647         ifp->if_capabilities = IFCAP_HWCSUM;
1648         ifp->if_capenable = ifp->if_capabilities;
1649
1650         /*
1651          * Figure out what sort of media we have by checking the
1652          * hardware config word in the first 32k of NIC internal memory,
1653          * or fall back to examining the EEPROM if necessary.
1654          * Note: on some BCM5700 cards, this value appears to be unset.
1655          * If that's the case, we have to rely on identifying the NIC
1656          * by its PCI subsystem ID, as we do below for the SysKonnect
1657          * SK-9D41.
1658          */
1659         if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER)
1660                 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
1661         else {
1662                 bge_read_eeprom(sc, (caddr_t)&hwcfg,
1663                                 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
1664                 hwcfg = ntohl(hwcfg);
1665         }
1666
1667         if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
1668                 sc->bge_tbi = 1;
1669
1670         /* The SysKonnect SK-9D41 is a 1000baseSX card. */
1671         if (pci_get_subvendor(dev) == PCI_PRODUCT_SCHNEIDERKOCH_SK_9D41)
1672                 sc->bge_tbi = 1;
1673
1674         if (sc->bge_tbi) {
1675                 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
1676                     bge_ifmedia_upd, bge_ifmedia_sts);
1677                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1678                 ifmedia_add(&sc->bge_ifmedia,
1679                     IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1680                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1681                 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
1682         } else {
1683                 /*
1684                  * Do transceiver setup.
1685                  */
1686                 if (mii_phy_probe(dev, &sc->bge_miibus,
1687                     bge_ifmedia_upd, bge_ifmedia_sts)) {
1688                         device_printf(dev, "MII without any PHY!\n");
1689                         error = ENXIO;
1690                         goto fail;
1691                 }
1692         }
1693
1694         /*
1695          * When using the BCM5701 in PCI-X mode, data corruption has
1696          * been observed in the first few bytes of some received packets.
1697          * Aligning the packet buffer in memory eliminates the corruption.
1698          * Unfortunately, this misaligns the packet payloads.  On platforms
1699          * which do not support unaligned accesses, we will realign the
1700          * payloads by copying the received packets.
1701          */
1702         switch (sc->bge_chipid) {
1703         case BGE_CHIPID_BCM5701_A0:
1704         case BGE_CHIPID_BCM5701_B0:
1705         case BGE_CHIPID_BCM5701_B2:
1706         case BGE_CHIPID_BCM5701_B5:
1707                 /* If in PCI-X mode, work around the alignment bug. */
1708                 if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
1709                     (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
1710                     BGE_PCISTATE_PCI_BUSSPEED)
1711                         sc->bge_rx_alignment_bug = 1;
1712                 break;
1713         }
1714
1715         /*
1716          * Call MI attach routine.
1717          */
1718         ether_ifattach(ifp, ether_addr);
1719
1720         error = bus_setup_intr(dev, sc->bge_irq, INTR_TYPE_NET,
1721                                bge_intr, sc, &sc->bge_intrhand, NULL);
1722         if (error) {
1723                 ether_ifdetach(ifp);
1724                 device_printf(dev, "couldn't set up irq\n");
1725                 goto fail;
1726         }
1727
1728         return(0);
1729
1730 fail:
1731         bge_detach(dev);
1732
1733         return(error);
1734 }
1735
1736 static int
1737 bge_detach(device_t dev)
1738 {
1739         struct bge_softc *sc = device_get_softc(dev);
1740         struct ifnet *ifp = &sc->arpcom.ac_if;
1741
1742         crit_enter();
1743
1744         if (device_is_attached(dev)) {
1745                 ether_ifdetach(ifp);
1746                 bge_stop(sc);
1747                 bge_reset(sc);
1748         }
1749
1750         if (sc->bge_tbi)
1751                 ifmedia_removeall(&sc->bge_ifmedia);
1752         if (sc->bge_miibus);
1753                 device_delete_child(dev, sc->bge_miibus);
1754         bus_generic_detach(dev);
1755
1756         bge_release_resources(sc);
1757
1758         crit_exit();
1759
1760         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1761             sc->bge_asicrev != BGE_ASICREV_BCM5750)
1762                 bge_free_jumbo_mem(sc);
1763
1764         return(0);
1765 }
1766
1767 static void
1768 bge_release_resources(struct bge_softc *sc)
1769 {
1770         device_t dev;
1771
1772         dev = sc->bge_dev;
1773
1774         if (sc->bge_vpd_prodname != NULL)
1775                 free(sc->bge_vpd_prodname, M_DEVBUF);
1776
1777         if (sc->bge_vpd_readonly != NULL)
1778                 free(sc->bge_vpd_readonly, M_DEVBUF);
1779
1780         if (sc->bge_intrhand != NULL)
1781                 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
1782
1783         if (sc->bge_irq != NULL)
1784                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->bge_irq);
1785
1786         if (sc->bge_res != NULL)
1787                 bus_release_resource(dev, SYS_RES_MEMORY,
1788                     BGE_PCI_BAR0, sc->bge_res);
1789
1790         if (sc->bge_rdata != NULL)
1791                 contigfree(sc->bge_rdata, sizeof(struct bge_ring_data),
1792                            M_DEVBUF);
1793
1794         return;
1795 }
1796
1797 static void
1798 bge_reset(struct bge_softc *sc)
1799 {
1800         device_t dev;
1801         uint32_t cachesize, command, pcistate, reset;
1802         int i, val = 0;
1803
1804         dev = sc->bge_dev;
1805
1806         /* Save some important PCI state. */
1807         cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
1808         command = pci_read_config(dev, BGE_PCI_CMD, 4);
1809         pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
1810
1811         pci_write_config(dev, BGE_PCI_MISC_CTL,
1812             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1813             BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4);
1814
1815         reset = BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1);
1816
1817         /* XXX: Broadcom Linux driver. */
1818         if (sc->bge_pcie) {
1819                 if (CSR_READ_4(sc, 0x7e2c) == 0x60)     /* PCIE 1.0 */
1820                         CSR_WRITE_4(sc, 0x7e2c, 0x20);
1821                 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
1822                         /* Prevent PCIE link training during global reset */
1823                         CSR_WRITE_4(sc, BGE_MISC_CFG, (1<<29));
1824                         reset |= (1<<29);
1825                 }
1826         }
1827
1828         /* Issue global reset */
1829         bge_writereg_ind(sc, BGE_MISC_CFG, reset);
1830
1831         DELAY(1000);
1832
1833         /* XXX: Broadcom Linux driver. */
1834         if (sc->bge_pcie) {
1835                 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
1836                         uint32_t v;
1837
1838                         DELAY(500000); /* wait for link training to complete */
1839                         v = pci_read_config(dev, 0xc4, 4);
1840                         pci_write_config(dev, 0xc4, v | (1<<15), 4);
1841                 }
1842                 /* Set PCIE max payload size and clear error status. */
1843                 pci_write_config(dev, 0xd8, 0xf5000, 4);
1844         }
1845
1846         /* Reset some of the PCI state that got zapped by reset */
1847         pci_write_config(dev, BGE_PCI_MISC_CTL,
1848             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1849             BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4);
1850         pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
1851         pci_write_config(dev, BGE_PCI_CMD, command, 4);
1852         bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
1853
1854         /*
1855          * Prevent PXE restart: write a magic number to the
1856          * general communications memory at 0xB50.
1857          */
1858         bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
1859         /*
1860          * Poll the value location we just wrote until
1861          * we see the 1's complement of the magic number.
1862          * This indicates that the firmware initialization
1863          * is complete.
1864          */
1865         for (i = 0; i < BGE_TIMEOUT; i++) {
1866                 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
1867                 if (val == ~BGE_MAGIC_NUMBER)
1868                         break;
1869                 DELAY(10);
1870         }
1871         
1872         if (i == BGE_TIMEOUT) {
1873                 if_printf(&sc->arpcom.ac_if, "firmware handshake timed out\n");
1874                 return;
1875         }
1876
1877         /*
1878          * XXX Wait for the value of the PCISTATE register to
1879          * return to its original pre-reset state. This is a
1880          * fairly good indicator of reset completion. If we don't
1881          * wait for the reset to fully complete, trying to read
1882          * from the device's non-PCI registers may yield garbage
1883          * results.
1884          */
1885         for (i = 0; i < BGE_TIMEOUT; i++) {
1886                 if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
1887                         break;
1888                 DELAY(10);
1889         }
1890
1891         /* Enable memory arbiter. */
1892         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1893             sc->bge_asicrev != BGE_ASICREV_BCM5750)
1894                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
1895
1896         /* Fix up byte swapping */
1897         CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_BYTESWAP_NONFRAME|
1898             BGE_MODECTL_BYTESWAP_DATA);
1899
1900         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1901
1902         /* XXX: Broadcom Linux driver. */
1903         if (sc->bge_pcie && sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
1904                 uint32_t v;
1905
1906                 v = CSR_READ_4(sc, 0x7c00);
1907                 CSR_WRITE_4(sc, 0x7c00, v | (1<<25));
1908         }
1909
1910         DELAY(10000);
1911 }
1912
1913 /*
1914  * Frame reception handling. This is called if there's a frame
1915  * on the receive return list.
1916  *
1917  * Note: we have to be able to handle two possibilities here:
1918  * 1) the frame is from the jumbo recieve ring
1919  * 2) the frame is from the standard receive ring
1920  */
1921
1922 static void
1923 bge_rxeof(struct bge_softc *sc)
1924 {
1925         struct ifnet *ifp;
1926         int stdcnt = 0, jumbocnt = 0;
1927
1928         ifp = &sc->arpcom.ac_if;
1929
1930         while(sc->bge_rx_saved_considx !=
1931             sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
1932                 struct bge_rx_bd        *cur_rx;
1933                 uint32_t                rxidx;
1934                 struct mbuf             *m = NULL;
1935                 uint16_t                vlan_tag = 0;
1936                 int                     have_tag = 0;
1937
1938                 cur_rx =
1939             &sc->bge_rdata->bge_rx_return_ring[sc->bge_rx_saved_considx];
1940
1941                 rxidx = cur_rx->bge_idx;
1942                 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
1943
1944                 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
1945                         have_tag = 1;
1946                         vlan_tag = cur_rx->bge_vlan_tag;
1947                 }
1948
1949                 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
1950                         BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1951                         m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
1952                         sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
1953                         jumbocnt++;
1954                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
1955                                 ifp->if_ierrors++;
1956                                 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
1957                                 continue;
1958                         }
1959                         if (bge_newbuf_jumbo(sc,
1960                             sc->bge_jumbo, NULL) == ENOBUFS) {
1961                                 ifp->if_ierrors++;
1962                                 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
1963                                 continue;
1964                         }
1965                 } else {
1966                         BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1967                         m = sc->bge_cdata.bge_rx_std_chain[rxidx];
1968                         sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
1969                         stdcnt++;
1970                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
1971                                 ifp->if_ierrors++;
1972                                 bge_newbuf_std(sc, sc->bge_std, m);
1973                                 continue;
1974                         }
1975                         if (bge_newbuf_std(sc, sc->bge_std,
1976                             NULL) == ENOBUFS) {
1977                                 ifp->if_ierrors++;
1978                                 bge_newbuf_std(sc, sc->bge_std, m);
1979                                 continue;
1980                         }
1981                 }
1982
1983                 ifp->if_ipackets++;
1984 #ifndef __i386__
1985                 /*
1986                  * The i386 allows unaligned accesses, but for other
1987                  * platforms we must make sure the payload is aligned.
1988                  */
1989                 if (sc->bge_rx_alignment_bug) {
1990                         bcopy(m->m_data, m->m_data + ETHER_ALIGN,
1991                             cur_rx->bge_len);
1992                         m->m_data += ETHER_ALIGN;
1993                 }
1994 #endif
1995                 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
1996                 m->m_pkthdr.rcvif = ifp;
1997
1998 #if 0 /* currently broken for some packets, possibly related to TCP options */
1999                 if (ifp->if_hwassist) {
2000                         m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2001                         if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
2002                                 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2003                         if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
2004                                 m->m_pkthdr.csum_data =
2005                                     cur_rx->bge_tcp_udp_csum;
2006                                 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
2007                         }
2008                 }
2009 #endif
2010
2011                 /*
2012                  * If we received a packet with a vlan tag, pass it
2013                  * to vlan_input() instead of ether_input().
2014                  */
2015                 if (have_tag) {
2016                         VLAN_INPUT_TAG(m, vlan_tag);
2017                         have_tag = vlan_tag = 0;
2018                         continue;
2019                 }
2020
2021                 (*ifp->if_input)(ifp, m);
2022         }
2023
2024         CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2025         if (stdcnt)
2026                 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2027         if (jumbocnt)
2028                 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2029 }
2030
2031 static void
2032 bge_txeof(struct bge_softc *sc)
2033 {
2034         struct bge_tx_bd *cur_tx = NULL;
2035         struct ifnet *ifp;
2036
2037         ifp = &sc->arpcom.ac_if;
2038
2039         /*
2040          * Go through our tx ring and free mbufs for those
2041          * frames that have been sent.
2042          */
2043         while (sc->bge_tx_saved_considx !=
2044             sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
2045                 uint32_t                idx = 0;
2046
2047                 idx = sc->bge_tx_saved_considx;
2048                 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
2049                 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2050                         ifp->if_opackets++;
2051                 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
2052                         m_freem(sc->bge_cdata.bge_tx_chain[idx]);
2053                         sc->bge_cdata.bge_tx_chain[idx] = NULL;
2054                 }
2055                 sc->bge_txcnt--;
2056                 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2057                 ifp->if_timer = 0;
2058         }
2059
2060         if (cur_tx != NULL)
2061                 ifp->if_flags &= ~IFF_OACTIVE;
2062 }
2063
2064 static void
2065 bge_intr(void *xsc)
2066 {
2067         struct bge_softc *sc = xsc;
2068         struct ifnet *ifp = &sc->arpcom.ac_if;
2069         uint32_t status, statusword;
2070
2071         /* XXX */
2072         statusword = loadandclear(&sc->bge_rdata->bge_status_block.bge_status);
2073
2074 #ifdef notdef
2075         /* Avoid this for now -- checking this register is expensive. */
2076         /* Make sure this is really our interrupt. */
2077         if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
2078                 return;
2079 #endif
2080         /* Ack interrupt and stop others from occuring. */
2081         CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2082
2083         /*
2084          * Process link state changes.
2085          * Grrr. The link status word in the status block does
2086          * not work correctly on the BCM5700 rev AX and BX chips,
2087          * according to all available information. Hence, we have
2088          * to enable MII interrupts in order to properly obtain
2089          * async link changes. Unfortunately, this also means that
2090          * we have to read the MAC status register to detect link
2091          * changes, thereby adding an additional register access to
2092          * the interrupt handler.
2093          */
2094
2095         if (sc->bge_asicrev == BGE_ASICREV_BCM5700) {
2096                 status = CSR_READ_4(sc, BGE_MAC_STS);
2097                 if (status & BGE_MACSTAT_MI_INTERRUPT) {
2098                         sc->bge_link = 0;
2099                         callout_stop(&sc->bge_stat_timer);
2100                         bge_tick(sc);
2101                         /* Clear the interrupt */
2102                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2103                             BGE_EVTENB_MI_INTERRUPT);
2104                         bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
2105                         bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
2106                             BRGPHY_INTRS);
2107                 }
2108         } else {
2109                 if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED) {
2110                         /*
2111                          * Sometimes PCS encoding errors are detected in
2112                          * TBI mode (on fiber NICs), and for some reason
2113                          * the chip will signal them as link changes.
2114                          * If we get a link change event, but the 'PCS
2115                          * encoding error' bit in the MAC status register
2116                          * is set, don't bother doing a link check.
2117                          * This avoids spurious "gigabit link up" messages
2118                          * that sometimes appear on fiber NICs during
2119                          * periods of heavy traffic. (There should be no
2120                          * effect on copper NICs.)
2121                          */
2122                         status = CSR_READ_4(sc, BGE_MAC_STS);
2123                         if (!(status & (BGE_MACSTAT_PORT_DECODE_ERROR|
2124                             BGE_MACSTAT_MI_COMPLETE))) {
2125                                 sc->bge_link = 0;
2126                                 callout_stop(&sc->bge_stat_timer);
2127                                 bge_tick(sc);
2128                         }
2129                         sc->bge_link = 0;
2130                         callout_stop(&sc->bge_stat_timer);
2131                         bge_tick(sc);
2132                         /* Clear the interrupt */
2133                         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
2134                             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
2135                             BGE_MACSTAT_LINK_CHANGED);
2136
2137                         /* Force flush the status block cached by PCI bridge */
2138                         CSR_READ_4(sc, BGE_MBX_IRQ0_LO);
2139                 }
2140         }
2141
2142         if (ifp->if_flags & IFF_RUNNING) {
2143                 /* Check RX return ring producer/consumer */
2144                 bge_rxeof(sc);
2145
2146                 /* Check TX ring producer/consumer */
2147                 bge_txeof(sc);
2148         }
2149
2150         bge_handle_events(sc);
2151
2152         /* Re-enable interrupts. */
2153         CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2154
2155         if ((ifp->if_flags & IFF_RUNNING) && !ifq_is_empty(&ifp->if_snd))
2156                 (*ifp->if_start)(ifp);
2157 }
2158
2159 static void
2160 bge_tick(void *xsc)
2161 {
2162         struct bge_softc *sc = xsc;
2163         struct ifnet *ifp = &sc->arpcom.ac_if;
2164         struct mii_data *mii = NULL;
2165         struct ifmedia *ifm = NULL;
2166
2167         crit_enter();
2168
2169         if (sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
2170             sc->bge_asicrev == BGE_ASICREV_BCM5750)
2171                 bge_stats_update_regs(sc);
2172         else
2173                 bge_stats_update(sc);
2174
2175         callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
2176
2177         if (sc->bge_link) {
2178                 crit_exit();
2179                 return;
2180         }
2181
2182         if (sc->bge_tbi) {
2183                 ifm = &sc->bge_ifmedia;
2184                 if (CSR_READ_4(sc, BGE_MAC_STS) &
2185                     BGE_MACSTAT_TBI_PCS_SYNCHED) {
2186                         sc->bge_link++;
2187                         CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
2188                         if_printf(ifp, "gigabit link up\n");
2189                         if (!ifq_is_empty(&ifp->if_snd))
2190                                 (*ifp->if_start)(ifp);
2191                 }
2192                 crit_exit();
2193                 return;
2194         }
2195
2196         mii = device_get_softc(sc->bge_miibus);
2197         mii_tick(mii);
2198  
2199         if (!sc->bge_link) {
2200                 mii_pollstat(mii);
2201                 if (mii->mii_media_status & IFM_ACTIVE &&
2202                     IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2203                         sc->bge_link++;
2204                         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
2205                             IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
2206                                 if_printf(ifp, "gigabit link up\n");
2207                         if (!ifq_is_empty(&ifp->if_snd))
2208                                 (*ifp->if_start)(ifp);
2209                 }
2210         }
2211
2212         crit_exit();
2213 }
2214
2215 static void
2216 bge_stats_update_regs(struct bge_softc *sc)
2217 {
2218         struct ifnet *ifp = &sc->arpcom.ac_if;
2219         struct bge_mac_stats_regs stats;
2220         uint32_t *s;
2221         int i;
2222
2223         s = (uint32_t *)&stats;
2224         for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) {
2225                 *s = CSR_READ_4(sc, BGE_RX_STATS + i);
2226                 s++;
2227         }
2228
2229         ifp->if_collisions +=
2230            (stats.dot3StatsSingleCollisionFrames +
2231            stats.dot3StatsMultipleCollisionFrames +
2232            stats.dot3StatsExcessiveCollisions +
2233            stats.dot3StatsLateCollisions) -
2234            ifp->if_collisions;
2235 }
2236
2237 static void
2238 bge_stats_update(struct bge_softc *sc)
2239 {
2240         struct ifnet *ifp = &sc->arpcom.ac_if;
2241         struct bge_stats *stats;
2242
2243         stats = (struct bge_stats *)(sc->bge_vhandle +
2244             BGE_MEMWIN_START + BGE_STATS_BLOCK);
2245
2246         ifp->if_collisions +=
2247            (stats->txstats.dot3StatsSingleCollisionFrames.bge_addr_lo +
2248            stats->txstats.dot3StatsMultipleCollisionFrames.bge_addr_lo +
2249            stats->txstats.dot3StatsExcessiveCollisions.bge_addr_lo +
2250            stats->txstats.dot3StatsLateCollisions.bge_addr_lo) -
2251            ifp->if_collisions;
2252
2253 #ifdef notdef
2254         ifp->if_collisions +=
2255            (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2256            sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2257            sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2258            sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2259            ifp->if_collisions;
2260 #endif
2261 }
2262
2263 /*
2264  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2265  * pointers to descriptors.
2266  */
2267 static int
2268 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
2269 {
2270         struct bge_tx_bd *f = NULL;
2271         struct mbuf *m;
2272         uint32_t frag, cur, cnt = 0;
2273         uint16_t csum_flags = 0;
2274         struct ifvlan *ifv = NULL;
2275
2276         if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
2277             m_head->m_pkthdr.rcvif != NULL &&
2278             m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
2279                 ifv = m_head->m_pkthdr.rcvif->if_softc;
2280
2281         m = m_head;
2282         cur = frag = *txidx;
2283
2284         if (m_head->m_pkthdr.csum_flags) {
2285                 if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2286                         csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2287                 if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2288                         csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2289                 if (m_head->m_flags & M_LASTFRAG)
2290                         csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
2291                 else if (m_head->m_flags & M_FRAG)
2292                         csum_flags |= BGE_TXBDFLAG_IP_FRAG;
2293         }
2294         /*
2295          * Start packing the mbufs in this chain into
2296          * the fragment pointers. Stop when we run out
2297          * of fragments or hit the end of the mbuf chain.
2298          */
2299         for (m = m_head; m != NULL; m = m->m_next) {
2300                 if (m->m_len != 0) {
2301                         f = &sc->bge_rdata->bge_tx_ring[frag];
2302                         if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
2303                                 break;
2304                         BGE_HOSTADDR(f->bge_addr,
2305                             vtophys(mtod(m, vm_offset_t)));
2306                         f->bge_len = m->m_len;
2307                         f->bge_flags = csum_flags;
2308                         if (ifv != NULL) {
2309                                 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
2310                                 f->bge_vlan_tag = ifv->ifv_tag;
2311                         } else {
2312                                 f->bge_vlan_tag = 0;
2313                         }
2314                         /*
2315                          * Sanity check: avoid coming within 16 descriptors
2316                          * of the end of the ring.
2317                          */
2318                         if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
2319                                 return(ENOBUFS);
2320                         cur = frag;
2321                         BGE_INC(frag, BGE_TX_RING_CNT);
2322                         cnt++;
2323                 }
2324         }
2325
2326         if (m != NULL)
2327                 return(ENOBUFS);
2328
2329         if (frag == sc->bge_tx_saved_considx)
2330                 return(ENOBUFS);
2331
2332         sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
2333         sc->bge_cdata.bge_tx_chain[cur] = m_head;
2334         sc->bge_txcnt += cnt;
2335
2336         *txidx = frag;
2337
2338         return(0);
2339 }
2340
2341 /*
2342  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2343  * to the mbuf data regions directly in the transmit descriptors.
2344  */
2345 static void
2346 bge_start(struct ifnet *ifp)
2347 {
2348         struct bge_softc *sc;
2349         struct mbuf *m_head = NULL;
2350         uint32_t prodidx = 0;
2351
2352         sc = ifp->if_softc;
2353
2354         if (!sc->bge_link)
2355                 return;
2356
2357         prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
2358
2359         while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
2360                 m_head = ifq_poll(&ifp->if_snd);
2361                 if (m_head == NULL)
2362                         break;
2363
2364                 /*
2365                  * XXX
2366                  * safety overkill.  If this is a fragmented packet chain
2367                  * with delayed TCP/UDP checksums, then only encapsulate
2368                  * it if we have enough descriptors to handle the entire
2369                  * chain at once.
2370                  * (paranoia -- may not actually be needed)
2371                  */
2372                 if (m_head->m_flags & M_FIRSTFRAG &&
2373                     m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2374                         if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2375                             m_head->m_pkthdr.csum_data + 16) {
2376                                 ifp->if_flags |= IFF_OACTIVE;
2377                                 break;
2378                         }
2379                 }
2380
2381                 /*
2382                  * Pack the data into the transmit ring. If we
2383                  * don't have room, set the OACTIVE flag and wait
2384                  * for the NIC to drain the ring.
2385                  */
2386                 if (bge_encap(sc, m_head, &prodidx)) {
2387                         ifp->if_flags |= IFF_OACTIVE;
2388                         break;
2389                 }
2390                 m_head = ifq_dequeue(&ifp->if_snd);
2391
2392                 BPF_MTAP(ifp, m_head);
2393         }
2394
2395         /* Transmit */
2396         CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2397         /* 5700 b2 errata */
2398         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
2399                 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2400
2401         /*
2402          * Set a timeout in case the chip goes out to lunch.
2403          */
2404         ifp->if_timer = 5;
2405 }
2406
2407 static void
2408 bge_init(void *xsc)
2409 {
2410         struct bge_softc *sc = xsc;
2411         struct ifnet *ifp = &sc->arpcom.ac_if;
2412         uint16_t *m;
2413
2414         crit_enter();
2415
2416         if (ifp->if_flags & IFF_RUNNING) {
2417                 crit_exit();
2418                 return;
2419         }
2420
2421         /* Cancel pending I/O and flush buffers. */
2422         bge_stop(sc);
2423         bge_reset(sc);
2424         bge_chipinit(sc);
2425
2426         /*
2427          * Init the various state machines, ring
2428          * control blocks and firmware.
2429          */
2430         if (bge_blockinit(sc)) {
2431                 if_printf(ifp, "initialization failure\n");
2432                 crit_exit();
2433                 return;
2434         }
2435
2436         /* Specify MTU. */
2437         CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
2438             ETHER_HDR_LEN + ETHER_CRC_LEN);
2439
2440         /* Load our MAC address. */
2441         m = (uint16_t *)&sc->arpcom.ac_enaddr[0];
2442         CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
2443         CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
2444
2445         /* Enable or disable promiscuous mode as needed. */
2446         if (ifp->if_flags & IFF_PROMISC) {
2447                 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2448         } else {
2449                 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2450         }
2451
2452         /* Program multicast filter. */
2453         bge_setmulti(sc);
2454
2455         /* Init RX ring. */
2456         bge_init_rx_ring_std(sc);
2457
2458         /*
2459          * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
2460          * memory to insure that the chip has in fact read the first
2461          * entry of the ring.
2462          */
2463         if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
2464                 uint32_t                v, i;
2465                 for (i = 0; i < 10; i++) {
2466                         DELAY(20);
2467                         v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
2468                         if (v == (MCLBYTES - ETHER_ALIGN))
2469                                 break;
2470                 }
2471                 if (i == 10)
2472                         if_printf(ifp, "5705 A0 chip failed to load RX ring\n");
2473         }
2474
2475         /* Init jumbo RX ring. */
2476         if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2477                 bge_init_rx_ring_jumbo(sc);
2478
2479         /* Init our RX return ring index */
2480         sc->bge_rx_saved_considx = 0;
2481
2482         /* Init TX ring. */
2483         bge_init_tx_ring(sc);
2484
2485         /* Turn on transmitter */
2486         BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
2487
2488         /* Turn on receiver */
2489         BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2490
2491         /* Tell firmware we're alive. */
2492         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2493
2494         /* Enable host interrupts. */
2495         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
2496         BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2497         CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2498
2499         bge_ifmedia_upd(ifp);
2500
2501         ifp->if_flags |= IFF_RUNNING;
2502         ifp->if_flags &= ~IFF_OACTIVE;
2503
2504         callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
2505
2506         crit_exit();
2507 }
2508
2509 /*
2510  * Set media options.
2511  */
2512 static int
2513 bge_ifmedia_upd(struct ifnet *ifp)
2514 {
2515         struct bge_softc *sc = ifp->if_softc;
2516         struct ifmedia *ifm = &sc->bge_ifmedia;
2517         struct mii_data *mii;
2518
2519         /* If this is a 1000baseX NIC, enable the TBI port. */
2520         if (sc->bge_tbi) {
2521                 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2522                         return(EINVAL);
2523                 switch(IFM_SUBTYPE(ifm->ifm_media)) {
2524                 case IFM_AUTO:
2525                         break;
2526                 case IFM_1000_SX:
2527                         if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2528                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
2529                                     BGE_MACMODE_HALF_DUPLEX);
2530                         } else {
2531                                 BGE_SETBIT(sc, BGE_MAC_MODE,
2532                                     BGE_MACMODE_HALF_DUPLEX);
2533                         }
2534                         break;
2535                 default:
2536                         return(EINVAL);
2537                 }
2538                 return(0);
2539         }
2540
2541         mii = device_get_softc(sc->bge_miibus);
2542         sc->bge_link = 0;
2543         if (mii->mii_instance) {
2544                 struct mii_softc *miisc;
2545                 for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
2546                     miisc = LIST_NEXT(miisc, mii_list))
2547                         mii_phy_reset(miisc);
2548         }
2549         mii_mediachg(mii);
2550
2551         return(0);
2552 }
2553
2554 /*
2555  * Report current media status.
2556  */
2557 static void
2558 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2559 {
2560         struct bge_softc *sc = ifp->if_softc;
2561         struct mii_data *mii;
2562
2563         if (sc->bge_tbi) {
2564                 ifmr->ifm_status = IFM_AVALID;
2565                 ifmr->ifm_active = IFM_ETHER;
2566                 if (CSR_READ_4(sc, BGE_MAC_STS) &
2567                     BGE_MACSTAT_TBI_PCS_SYNCHED)
2568                         ifmr->ifm_status |= IFM_ACTIVE;
2569                 ifmr->ifm_active |= IFM_1000_SX;
2570                 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
2571                         ifmr->ifm_active |= IFM_HDX;    
2572                 else
2573                         ifmr->ifm_active |= IFM_FDX;
2574                 return;
2575         }
2576
2577         mii = device_get_softc(sc->bge_miibus);
2578         mii_pollstat(mii);
2579         ifmr->ifm_active = mii->mii_media_active;
2580         ifmr->ifm_status = mii->mii_media_status;
2581 }
2582
2583 static int
2584 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2585 {
2586         struct bge_softc *sc = ifp->if_softc;
2587         struct ifreq *ifr = (struct ifreq *) data;
2588         int mask, error = 0;
2589         struct mii_data *mii;
2590
2591         crit_enter();
2592
2593         switch(command) {
2594         case SIOCSIFMTU:
2595                 /* Disallow jumbo frames on 5705/5750. */
2596                 if (((sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
2597                       sc->bge_asicrev == BGE_ASICREV_BCM5750) &&
2598                      ifr->ifr_mtu > ETHERMTU) || ifr->ifr_mtu > BGE_JUMBO_MTU)
2599                         error = EINVAL;
2600                 else {
2601                         ifp->if_mtu = ifr->ifr_mtu;
2602                         ifp->if_flags &= ~IFF_RUNNING;
2603                         bge_init(sc);
2604                 }
2605                 break;
2606         case SIOCSIFFLAGS:
2607                 if (ifp->if_flags & IFF_UP) {
2608                         /*
2609                          * If only the state of the PROMISC flag changed,
2610                          * then just use the 'set promisc mode' command
2611                          * instead of reinitializing the entire NIC. Doing
2612                          * a full re-init means reloading the firmware and
2613                          * waiting for it to start up, which may take a
2614                          * second or two.
2615                          */
2616                         if (ifp->if_flags & IFF_RUNNING &&
2617                             ifp->if_flags & IFF_PROMISC &&
2618                             !(sc->bge_if_flags & IFF_PROMISC)) {
2619                                 BGE_SETBIT(sc, BGE_RX_MODE,
2620                                     BGE_RXMODE_RX_PROMISC);
2621                         } else if (ifp->if_flags & IFF_RUNNING &&
2622                             !(ifp->if_flags & IFF_PROMISC) &&
2623                             sc->bge_if_flags & IFF_PROMISC) {
2624                                 BGE_CLRBIT(sc, BGE_RX_MODE,
2625                                     BGE_RXMODE_RX_PROMISC);
2626                         } else
2627                                 bge_init(sc);
2628                 } else {
2629                         if (ifp->if_flags & IFF_RUNNING) {
2630                                 bge_stop(sc);
2631                         }
2632                 }
2633                 sc->bge_if_flags = ifp->if_flags;
2634                 error = 0;
2635                 break;
2636         case SIOCADDMULTI:
2637         case SIOCDELMULTI:
2638                 if (ifp->if_flags & IFF_RUNNING) {
2639                         bge_setmulti(sc);
2640                         error = 0;
2641                 }
2642                 break;
2643         case SIOCSIFMEDIA:
2644         case SIOCGIFMEDIA:
2645                 if (sc->bge_tbi) {
2646                         error = ifmedia_ioctl(ifp, ifr,
2647                             &sc->bge_ifmedia, command);
2648                 } else {
2649                         mii = device_get_softc(sc->bge_miibus);
2650                         error = ifmedia_ioctl(ifp, ifr,
2651                             &mii->mii_media, command);
2652                 }
2653                 break;
2654         case SIOCSIFCAP:
2655                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2656                 if (mask & IFCAP_HWCSUM) {
2657                         if (IFCAP_HWCSUM & ifp->if_capenable)
2658                                 ifp->if_capenable &= ~IFCAP_HWCSUM;
2659                         else
2660                                 ifp->if_capenable |= IFCAP_HWCSUM;
2661                 }
2662                 error = 0;
2663                 break;
2664         default:
2665                 error = ether_ioctl(ifp, command, data);
2666                 break;
2667         }
2668
2669         crit_exit();
2670
2671         return(error);
2672 }
2673
2674 static void
2675 bge_watchdog(struct ifnet *ifp)
2676 {
2677         struct bge_softc *sc = ifp->if_softc;
2678
2679         if_printf(ifp, "watchdog timeout -- resetting\n");
2680
2681         ifp->if_flags &= ~IFF_RUNNING;
2682         bge_init(sc);
2683
2684         ifp->if_oerrors++;
2685 }
2686
2687 /*
2688  * Stop the adapter and free any mbufs allocated to the
2689  * RX and TX lists.
2690  */
2691 static void
2692 bge_stop(struct bge_softc *sc)
2693 {
2694         struct ifnet *ifp = &sc->arpcom.ac_if;
2695         struct ifmedia_entry *ifm;
2696         struct mii_data *mii = NULL;
2697         int mtmp, itmp;
2698
2699         if (!sc->bge_tbi)
2700                 mii = device_get_softc(sc->bge_miibus);
2701
2702         callout_stop(&sc->bge_stat_timer);
2703
2704         /*
2705          * Disable all of the receiver blocks
2706          */
2707         BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2708         BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2709         BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2710         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
2711             sc->bge_asicrev != BGE_ASICREV_BCM5750)
2712                 BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2713         BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
2714         BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2715         BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
2716
2717         /*
2718          * Disable all of the transmit blocks
2719          */
2720         BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2721         BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2722         BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2723         BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
2724         BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
2725         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
2726             sc->bge_asicrev != BGE_ASICREV_BCM5750)
2727                 BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2728         BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2729
2730         /*
2731          * Shut down all of the memory managers and related
2732          * state machines.
2733          */
2734         BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
2735         BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
2736         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
2737             sc->bge_asicrev != BGE_ASICREV_BCM5750)
2738                 BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2739         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2740         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2741         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
2742             sc->bge_asicrev != BGE_ASICREV_BCM5750) {
2743                 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
2744                 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2745         }
2746
2747         /* Disable host interrupts. */
2748         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2749         CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2750
2751         /*
2752          * Tell firmware we're shutting down.
2753          */
2754         BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2755
2756         /* Free the RX lists. */
2757         bge_free_rx_ring_std(sc);
2758
2759         /* Free jumbo RX list. */
2760         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
2761             sc->bge_asicrev != BGE_ASICREV_BCM5750)
2762                 bge_free_rx_ring_jumbo(sc);
2763
2764         /* Free TX buffers. */
2765         bge_free_tx_ring(sc);
2766
2767         /*
2768          * Isolate/power down the PHY, but leave the media selection
2769          * unchanged so that things will be put back to normal when
2770          * we bring the interface back up.
2771          */
2772         if (!sc->bge_tbi) {
2773                 itmp = ifp->if_flags;
2774                 ifp->if_flags |= IFF_UP;
2775                 ifm = mii->mii_media.ifm_cur;
2776                 mtmp = ifm->ifm_media;
2777                 ifm->ifm_media = IFM_ETHER|IFM_NONE;
2778                 mii_mediachg(mii);
2779                 ifm->ifm_media = mtmp;
2780                 ifp->if_flags = itmp;
2781         }
2782
2783         sc->bge_link = 0;
2784
2785         sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
2786
2787         ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2788 }
2789
2790 /*
2791  * Stop all chip I/O so that the kernel's probe routines don't
2792  * get confused by errant DMAs when rebooting.
2793  */
2794 static void
2795 bge_shutdown(device_t dev)
2796 {
2797         struct bge_softc *sc = device_get_softc(dev);
2798
2799         bge_stop(sc); 
2800         bge_reset(sc);
2801 }