028e5d607d03fd1a26677a6b5b9bbc58173109dd
[dragonfly.git] / sys / kern / lwkt_thread.c
1 /*
2  * Copyright (c) 2003,2004 The DragonFly Project.  All rights reserved.
3  * 
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  * 
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  * 
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  * 
34  * $DragonFly: src/sys/kern/lwkt_thread.c,v 1.85 2005/11/08 22:38:43 dillon Exp $
35  */
36
37 /*
38  * Each cpu in a system has its own self-contained light weight kernel
39  * thread scheduler, which means that generally speaking we only need
40  * to use a critical section to avoid problems.  Foreign thread 
41  * scheduling is queued via (async) IPIs.
42  */
43
44 #ifdef _KERNEL
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/rtprio.h>
51 #include <sys/queue.h>
52 #include <sys/thread2.h>
53 #include <sys/sysctl.h>
54 #include <sys/kthread.h>
55 #include <machine/cpu.h>
56 #include <sys/lock.h>
57 #include <sys/caps.h>
58
59 #include <vm/vm.h>
60 #include <vm/vm_param.h>
61 #include <vm/vm_kern.h>
62 #include <vm/vm_object.h>
63 #include <vm/vm_page.h>
64 #include <vm/vm_map.h>
65 #include <vm/vm_pager.h>
66 #include <vm/vm_extern.h>
67 #include <vm/vm_zone.h>
68
69 #include <machine/stdarg.h>
70 #include <machine/ipl.h>
71 #include <machine/smp.h>
72
73 #else
74
75 #include <sys/stdint.h>
76 #include <libcaps/thread.h>
77 #include <sys/thread.h>
78 #include <sys/msgport.h>
79 #include <sys/errno.h>
80 #include <libcaps/globaldata.h>
81 #include <machine/cpufunc.h>
82 #include <sys/thread2.h>
83 #include <sys/msgport2.h>
84 #include <stdio.h>
85 #include <stdlib.h>
86 #include <string.h>
87 #include <machine/lock.h>
88 #include <machine/atomic.h>
89 #include <machine/cpu.h>
90
91 #endif
92
93 static int untimely_switch = 0;
94 #ifdef  INVARIANTS
95 static int panic_on_cscount = 0;
96 #endif
97 static __int64_t switch_count = 0;
98 static __int64_t preempt_hit = 0;
99 static __int64_t preempt_miss = 0;
100 static __int64_t preempt_weird = 0;
101 static __int64_t token_contention_count = 0;
102 static __int64_t mplock_contention_count = 0;
103
104 #ifdef _KERNEL
105
106 SYSCTL_INT(_lwkt, OID_AUTO, untimely_switch, CTLFLAG_RW, &untimely_switch, 0, "");
107 #ifdef  INVARIANTS
108 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0, "");
109 #endif
110 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0, "");
111 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0, "");
112 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0, "");
113 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0, "");
114 #ifdef  INVARIANTS
115 SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count, CTLFLAG_RW,
116         &token_contention_count, 0, "spinning due to token contention");
117 SYSCTL_QUAD(_lwkt, OID_AUTO, mplock_contention_count, CTLFLAG_RW,
118         &mplock_contention_count, 0, "spinning due to MPLOCK contention");
119 #endif
120 #endif
121
122 /*
123  * These helper procedures handle the runq, they can only be called from
124  * within a critical section.
125  *
126  * WARNING!  Prior to SMP being brought up it is possible to enqueue and
127  * dequeue threads belonging to other cpus, so be sure to use td->td_gd
128  * instead of 'mycpu' when referencing the globaldata structure.   Once
129  * SMP live enqueuing and dequeueing only occurs on the current cpu.
130  */
131 static __inline
132 void
133 _lwkt_dequeue(thread_t td)
134 {
135     if (td->td_flags & TDF_RUNQ) {
136         int nq = td->td_pri & TDPRI_MASK;
137         struct globaldata *gd = td->td_gd;
138
139         td->td_flags &= ~TDF_RUNQ;
140         TAILQ_REMOVE(&gd->gd_tdrunq[nq], td, td_threadq);
141         /* runqmask is passively cleaned up by the switcher */
142     }
143 }
144
145 static __inline
146 void
147 _lwkt_enqueue(thread_t td)
148 {
149     if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING)) == 0) {
150         int nq = td->td_pri & TDPRI_MASK;
151         struct globaldata *gd = td->td_gd;
152
153         td->td_flags |= TDF_RUNQ;
154         TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], td, td_threadq);
155         gd->gd_runqmask |= 1 << nq;
156     }
157 }
158
159 /*
160  * Schedule a thread to run.  As the current thread we can always safely
161  * schedule ourselves, and a shortcut procedure is provided for that
162  * function.
163  *
164  * (non-blocking, self contained on a per cpu basis)
165  */
166 void
167 lwkt_schedule_self(thread_t td)
168 {
169     crit_enter_quick(td);
170     KASSERT(td->td_wait == NULL, ("lwkt_schedule_self(): td_wait not NULL!"));
171     KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
172     _lwkt_enqueue(td);
173 #ifdef _KERNEL
174     if (td->td_proc && td->td_proc->p_stat == SSLEEP)
175         panic("SCHED SELF PANIC");
176 #endif
177     crit_exit_quick(td);
178 }
179
180 /*
181  * Deschedule a thread.
182  *
183  * (non-blocking, self contained on a per cpu basis)
184  */
185 void
186 lwkt_deschedule_self(thread_t td)
187 {
188     crit_enter_quick(td);
189     KASSERT(td->td_wait == NULL, ("lwkt_schedule_self(): td_wait not NULL!"));
190     _lwkt_dequeue(td);
191     crit_exit_quick(td);
192 }
193
194 #ifdef _KERNEL
195
196 /*
197  * LWKTs operate on a per-cpu basis
198  *
199  * WARNING!  Called from early boot, 'mycpu' may not work yet.
200  */
201 void
202 lwkt_gdinit(struct globaldata *gd)
203 {
204     int i;
205
206     for (i = 0; i < sizeof(gd->gd_tdrunq)/sizeof(gd->gd_tdrunq[0]); ++i)
207         TAILQ_INIT(&gd->gd_tdrunq[i]);
208     gd->gd_runqmask = 0;
209     TAILQ_INIT(&gd->gd_tdallq);
210 }
211
212 #endif /* _KERNEL */
213
214 /*
215  * Initialize a thread wait structure prior to first use.
216  *
217  * NOTE!  called from low level boot code, we cannot do anything fancy!
218  */
219 void
220 lwkt_wait_init(lwkt_wait_t w)
221 {
222     lwkt_token_init(&w->wa_token);
223     TAILQ_INIT(&w->wa_waitq);
224     w->wa_gen = 0;
225     w->wa_count = 0;
226 }
227
228 /*
229  * Create a new thread.  The thread must be associated with a process context
230  * or LWKT start address before it can be scheduled.  If the target cpu is
231  * -1 the thread will be created on the current cpu.
232  *
233  * If you intend to create a thread without a process context this function
234  * does everything except load the startup and switcher function.
235  */
236 thread_t
237 lwkt_alloc_thread(struct thread *td, int stksize, int cpu)
238 {
239     void *stack;
240     int flags = 0;
241     globaldata_t gd = mycpu;
242
243     if (td == NULL) {
244         crit_enter_gd(gd);
245         if (gd->gd_tdfreecount > 0) {
246             --gd->gd_tdfreecount;
247             td = TAILQ_FIRST(&gd->gd_tdfreeq);
248             KASSERT(td != NULL && (td->td_flags & TDF_RUNNING) == 0,
249                 ("lwkt_alloc_thread: unexpected NULL or corrupted td"));
250             TAILQ_REMOVE(&gd->gd_tdfreeq, td, td_threadq);
251             crit_exit_gd(gd);
252             flags = td->td_flags & (TDF_ALLOCATED_STACK|TDF_ALLOCATED_THREAD);
253         } else {
254             crit_exit_gd(gd);
255 #ifdef _KERNEL
256             td = zalloc(thread_zone);
257 #else
258             td = malloc(sizeof(struct thread));
259 #endif
260             td->td_kstack = NULL;
261             td->td_kstack_size = 0;
262             flags |= TDF_ALLOCATED_THREAD;
263         }
264     }
265     if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
266         if (flags & TDF_ALLOCATED_STACK) {
267 #ifdef _KERNEL
268             kmem_free(kernel_map, (vm_offset_t)stack, td->td_kstack_size);
269 #else
270             libcaps_free_stack(stack, td->td_kstack_size);
271 #endif
272             stack = NULL;
273         }
274     }
275     if (stack == NULL) {
276 #ifdef _KERNEL
277         stack = (void *)kmem_alloc(kernel_map, stksize);
278 #else
279         stack = libcaps_alloc_stack(stksize);
280 #endif
281         flags |= TDF_ALLOCATED_STACK;
282     }
283     if (cpu < 0)
284         lwkt_init_thread(td, stack, stksize, flags, mycpu);
285     else
286         lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
287     return(td);
288 }
289
290 #ifdef _KERNEL
291
292 /*
293  * Initialize a preexisting thread structure.  This function is used by
294  * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
295  *
296  * All threads start out in a critical section at a priority of
297  * TDPRI_KERN_DAEMON.  Higher level code will modify the priority as
298  * appropriate.  This function may send an IPI message when the 
299  * requested cpu is not the current cpu and consequently gd_tdallq may
300  * not be initialized synchronously from the point of view of the originating
301  * cpu.
302  *
303  * NOTE! we have to be careful in regards to creating threads for other cpus
304  * if SMP has not yet been activated.
305  */
306 #ifdef SMP
307
308 static void
309 lwkt_init_thread_remote(void *arg)
310 {
311     thread_t td = arg;
312
313     TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
314 }
315
316 #endif
317
318 void
319 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
320                 struct globaldata *gd)
321 {
322     globaldata_t mygd = mycpu;
323
324     bzero(td, sizeof(struct thread));
325     td->td_kstack = stack;
326     td->td_kstack_size = stksize;
327     td->td_flags |= flags;
328     td->td_gd = gd;
329     td->td_pri = TDPRI_KERN_DAEMON + TDPRI_CRIT;
330     lwkt_initport(&td->td_msgport, td);
331     pmap_init_thread(td);
332 #ifdef SMP
333     /*
334      * Normally initializing a thread for a remote cpu requires sending an
335      * IPI.  However, the idlethread is setup before the other cpus are
336      * activated so we have to treat it as a special case.  XXX manipulation
337      * of gd_tdallq requires the BGL.
338      */
339     if (gd == mygd || td == &gd->gd_idlethread) {
340         crit_enter_gd(mygd);
341         TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
342         crit_exit_gd(mygd);
343     } else {
344         lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
345     }
346 #else
347     crit_enter_gd(mygd);
348     TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
349     crit_exit_gd(mygd);
350 #endif
351 }
352
353 #endif /* _KERNEL */
354
355 void
356 lwkt_set_comm(thread_t td, const char *ctl, ...)
357 {
358     __va_list va;
359
360     __va_start(va, ctl);
361     vsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
362     __va_end(va);
363 }
364
365 void
366 lwkt_hold(thread_t td)
367 {
368     ++td->td_refs;
369 }
370
371 void
372 lwkt_rele(thread_t td)
373 {
374     KKASSERT(td->td_refs > 0);
375     --td->td_refs;
376 }
377
378 #ifdef _KERNEL
379
380 void
381 lwkt_wait_free(thread_t td)
382 {
383     while (td->td_refs)
384         tsleep(td, 0, "tdreap", hz);
385 }
386
387 #endif
388
389 void
390 lwkt_free_thread(thread_t td)
391 {
392     struct globaldata *gd = mycpu;
393
394     KASSERT((td->td_flags & TDF_RUNNING) == 0,
395         ("lwkt_free_thread: did not exit! %p", td));
396
397     crit_enter_gd(gd);
398     TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
399     if (gd->gd_tdfreecount < CACHE_NTHREADS &&
400         (td->td_flags & TDF_ALLOCATED_THREAD)
401     ) {
402         ++gd->gd_tdfreecount;
403         TAILQ_INSERT_HEAD(&gd->gd_tdfreeq, td, td_threadq);
404         crit_exit_gd(gd);
405     } else {
406         crit_exit_gd(gd);
407         if (td->td_kstack && (td->td_flags & TDF_ALLOCATED_STACK)) {
408 #ifdef _KERNEL
409             kmem_free(kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
410 #else
411             libcaps_free_stack(td->td_kstack, td->td_kstack_size);
412 #endif
413             /* gd invalid */
414             td->td_kstack = NULL;
415             td->td_kstack_size = 0;
416         }
417         if (td->td_flags & TDF_ALLOCATED_THREAD) {
418 #ifdef _KERNEL
419             zfree(thread_zone, td);
420 #else
421             free(td);
422 #endif
423         }
424     }
425 }
426
427
428 /*
429  * Switch to the next runnable lwkt.  If no LWKTs are runnable then 
430  * switch to the idlethread.  Switching must occur within a critical
431  * section to avoid races with the scheduling queue.
432  *
433  * We always have full control over our cpu's run queue.  Other cpus
434  * that wish to manipulate our queue must use the cpu_*msg() calls to
435  * talk to our cpu, so a critical section is all that is needed and
436  * the result is very, very fast thread switching.
437  *
438  * The LWKT scheduler uses a fixed priority model and round-robins at
439  * each priority level.  User process scheduling is a totally
440  * different beast and LWKT priorities should not be confused with
441  * user process priorities.
442  *
443  * The MP lock may be out of sync with the thread's td_mpcount.  lwkt_switch()
444  * cleans it up.  Note that the td_switch() function cannot do anything that
445  * requires the MP lock since the MP lock will have already been setup for
446  * the target thread (not the current thread).  It's nice to have a scheduler
447  * that does not need the MP lock to work because it allows us to do some
448  * really cool high-performance MP lock optimizations.
449  *
450  * PREEMPTION NOTE: Preemption occurs via lwkt_preempt().  lwkt_switch()
451  * is not called by the current thread in the preemption case, only when
452  * the preempting thread blocks (in order to return to the original thread).
453  */
454 void
455 lwkt_switch(void)
456 {
457     globaldata_t gd = mycpu;
458     thread_t td = gd->gd_curthread;
459     thread_t ntd;
460 #ifdef SMP
461     int mpheld;
462 #endif
463
464     /*
465      * We had better not be holding any spin locks.
466      */
467     KKASSERT(td->td_spinlocks == 0);
468
469     /*
470      * Switching from within a 'fast' (non thread switched) interrupt or IPI
471      * is illegal.  However, we may have to do it anyway if we hit a fatal
472      * kernel trap or we have paniced.
473      *
474      * If this case occurs save and restore the interrupt nesting level.
475      */
476     if (gd->gd_intr_nesting_level) {
477         int savegdnest;
478         int savegdtrap;
479
480         if (gd->gd_trap_nesting_level == 0 && panicstr == NULL) {
481             panic("lwkt_switch: cannot switch from within "
482                   "a fast interrupt, yet, td %p\n", td);
483         } else {
484             savegdnest = gd->gd_intr_nesting_level;
485             savegdtrap = gd->gd_trap_nesting_level;
486             gd->gd_intr_nesting_level = 0;
487             gd->gd_trap_nesting_level = 0;
488             if ((td->td_flags & TDF_PANICWARN) == 0) {
489                 td->td_flags |= TDF_PANICWARN;
490                 printf("Warning: thread switch from interrupt or IPI, "
491                         "thread %p (%s)\n", td, td->td_comm);
492 #ifdef DDB
493                 db_print_backtrace();
494 #endif
495             }
496             lwkt_switch();
497             gd->gd_intr_nesting_level = savegdnest;
498             gd->gd_trap_nesting_level = savegdtrap;
499             return;
500         }
501     }
502
503     /*
504      * Passive release (used to transition from user to kernel mode
505      * when we block or switch rather then when we enter the kernel).
506      * This function is NOT called if we are switching into a preemption
507      * or returning from a preemption.  Typically this causes us to lose
508      * our current process designation (if we have one) and become a true
509      * LWKT thread, and may also hand the current process designation to
510      * another process and schedule thread.
511      */
512     if (td->td_release)
513             td->td_release(td);
514
515     crit_enter_gd(gd);
516
517 #ifdef SMP
518     /*
519      * td_mpcount cannot be used to determine if we currently hold the
520      * MP lock because get_mplock() will increment it prior to attempting
521      * to get the lock, and switch out if it can't.  Our ownership of 
522      * the actual lock will remain stable while we are in a critical section
523      * (but, of course, another cpu may own or release the lock so the
524      * actual value of mp_lock is not stable).
525      */
526     mpheld = MP_LOCK_HELD();
527 #ifdef  INVARIANTS
528     if (td->td_cscount) {
529         printf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
530                 td);
531         if (panic_on_cscount)
532             panic("switching while mastering cpusync");
533     }
534 #endif
535 #endif
536     if ((ntd = td->td_preempted) != NULL) {
537         /*
538          * We had preempted another thread on this cpu, resume the preempted
539          * thread.  This occurs transparently, whether the preempted thread
540          * was scheduled or not (it may have been preempted after descheduling
541          * itself). 
542          *
543          * We have to setup the MP lock for the original thread after backing
544          * out the adjustment that was made to curthread when the original
545          * was preempted.
546          */
547         KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
548 #ifdef SMP
549         if (ntd->td_mpcount && mpheld == 0) {
550             panic("MPLOCK NOT HELD ON RETURN: %p %p %d %d",
551                td, ntd, td->td_mpcount, ntd->td_mpcount);
552         }
553         if (ntd->td_mpcount) {
554             td->td_mpcount -= ntd->td_mpcount;
555             KKASSERT(td->td_mpcount >= 0);
556         }
557 #endif
558         ntd->td_flags |= TDF_PREEMPT_DONE;
559
560         /*
561          * XXX.  The interrupt may have woken a thread up, we need to properly
562          * set the reschedule flag if the originally interrupted thread is at
563          * a lower priority.
564          */
565         if (gd->gd_runqmask > (2 << (ntd->td_pri & TDPRI_MASK)) - 1)
566             need_lwkt_resched();
567         /* YYY release mp lock on switchback if original doesn't need it */
568     } else {
569         /*
570          * Priority queue / round-robin at each priority.  Note that user
571          * processes run at a fixed, low priority and the user process
572          * scheduler deals with interactions between user processes
573          * by scheduling and descheduling them from the LWKT queue as
574          * necessary.
575          *
576          * We have to adjust the MP lock for the target thread.  If we 
577          * need the MP lock and cannot obtain it we try to locate a
578          * thread that does not need the MP lock.  If we cannot, we spin
579          * instead of HLT.
580          *
581          * A similar issue exists for the tokens held by the target thread.
582          * If we cannot obtain ownership of the tokens we cannot immediately
583          * schedule the thread.
584          */
585
586         /*
587          * We are switching threads.  If there are any pending requests for
588          * tokens we can satisfy all of them here.
589          */
590 #ifdef SMP
591         if (gd->gd_tokreqbase)
592                 lwkt_drain_token_requests();
593 #endif
594
595         /*
596          * If an LWKT reschedule was requested, well that is what we are
597          * doing now so clear it.
598          */
599         clear_lwkt_resched();
600 again:
601         if (gd->gd_runqmask) {
602             int nq = bsrl(gd->gd_runqmask);
603             if ((ntd = TAILQ_FIRST(&gd->gd_tdrunq[nq])) == NULL) {
604                 gd->gd_runqmask &= ~(1 << nq);
605                 goto again;
606             }
607 #ifdef SMP
608             /*
609              * THREAD SELECTION FOR AN SMP MACHINE BUILD
610              *
611              * If the target needs the MP lock and we couldn't get it,
612              * or if the target is holding tokens and we could not 
613              * gain ownership of the tokens, continue looking for a
614              * thread to schedule and spin instead of HLT if we can't.
615              *
616              * NOTE: the mpheld variable invalid after this conditional, it
617              * can change due to both cpu_try_mplock() returning success
618              * AND interactions in lwkt_chktokens() due to the fact that
619              * we are trying to check the mpcount of a thread other then
620              * the current thread.  Because of this, if the current thread
621              * is not holding td_mpcount, an IPI indirectly run via
622              * lwkt_chktokens() can obtain and release the MP lock and
623              * cause the core MP lock to be released. 
624              */
625             if ((ntd->td_mpcount && mpheld == 0 && !cpu_try_mplock()) ||
626                 (ntd->td_toks && lwkt_chktokens(ntd) == 0)
627             ) {
628                 u_int32_t rqmask = gd->gd_runqmask;
629
630                 mpheld = MP_LOCK_HELD();
631                 ntd = NULL;
632                 while (rqmask) {
633                     TAILQ_FOREACH(ntd, &gd->gd_tdrunq[nq], td_threadq) {
634                         if (ntd->td_mpcount && !mpheld && !cpu_try_mplock()) {
635                             /* spinning due to MP lock being held */
636 #ifdef  INVARIANTS
637                             ++mplock_contention_count;
638 #endif
639                             /* mplock still not held, 'mpheld' still valid */
640                             continue;
641                         }
642
643                         /*
644                          * mpheld state invalid after chktokens call returns
645                          * failure, but the variable is only needed for
646                          * the loop.
647                          */
648                         if (ntd->td_toks && !lwkt_chktokens(ntd)) {
649                             /* spinning due to token contention */
650 #ifdef  INVARIANTS
651                             ++token_contention_count;
652 #endif
653                             mpheld = MP_LOCK_HELD();
654                             continue;
655                         }
656                         break;
657                     }
658                     if (ntd)
659                         break;
660                     rqmask &= ~(1 << nq);
661                     nq = bsrl(rqmask);
662                 }
663                 if (ntd == NULL) {
664                     ntd = &gd->gd_idlethread;
665                     ntd->td_flags |= TDF_IDLE_NOHLT;
666                     goto using_idle_thread;
667                 } else {
668                     TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
669                     TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
670                 }
671             } else {
672                 TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
673                 TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
674             }
675 #else
676             /*
677              * THREAD SELECTION FOR A UP MACHINE BUILD.  We don't have to
678              * worry about tokens or the BGL.
679              */
680             TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
681             TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
682 #endif
683         } else {
684             /*
685              * We have nothing to run but only let the idle loop halt
686              * the cpu if there are no pending interrupts.
687              */
688             ntd = &gd->gd_idlethread;
689             if (gd->gd_reqflags & RQF_IDLECHECK_MASK)
690                 ntd->td_flags |= TDF_IDLE_NOHLT;
691 #ifdef SMP
692 using_idle_thread:
693             /*
694              * The idle thread should not be holding the MP lock unless we
695              * are trapping in the kernel or in a panic.  Since we select the
696              * idle thread unconditionally when no other thread is available,
697              * if the MP lock is desired during a panic or kernel trap, we
698              * have to loop in the scheduler until we get it.
699              */
700             if (ntd->td_mpcount) {
701                 mpheld = MP_LOCK_HELD();
702                 if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
703                     panic("Idle thread %p was holding the BGL!", ntd);
704                 else if (mpheld == 0)
705                     goto again;
706             }
707 #endif
708         }
709     }
710     KASSERT(ntd->td_pri >= TDPRI_CRIT,
711         ("priority problem in lwkt_switch %d %d", td->td_pri, ntd->td_pri));
712
713     /*
714      * Do the actual switch.  If the new target does not need the MP lock
715      * and we are holding it, release the MP lock.  If the new target requires
716      * the MP lock we have already acquired it for the target.
717      */
718 #ifdef SMP
719     if (ntd->td_mpcount == 0 ) {
720         if (MP_LOCK_HELD())
721             cpu_rel_mplock();
722     } else {
723         ASSERT_MP_LOCK_HELD(ntd);
724     }
725 #endif
726     if (td != ntd) {
727         ++switch_count;
728         td->td_switch(ntd);
729     }
730     /* NOTE: current cpu may have changed after switch */
731     crit_exit_quick(td);
732 }
733
734 /*
735  * Request that the target thread preempt the current thread.  Preemption
736  * only works under a specific set of conditions:
737  *
738  *      - We are not preempting ourselves
739  *      - The target thread is owned by the current cpu
740  *      - We are not currently being preempted
741  *      - The target is not currently being preempted
742  *      - We are able to satisfy the target's MP lock requirements (if any).
743  *
744  * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION.  Typically
745  * this is called via lwkt_schedule() through the td_preemptable callback.
746  * critpri is the managed critical priority that we should ignore in order
747  * to determine whether preemption is possible (aka usually just the crit
748  * priority of lwkt_schedule() itself).
749  *
750  * XXX at the moment we run the target thread in a critical section during
751  * the preemption in order to prevent the target from taking interrupts
752  * that *WE* can't.  Preemption is strictly limited to interrupt threads
753  * and interrupt-like threads, outside of a critical section, and the
754  * preempted source thread will be resumed the instant the target blocks
755  * whether or not the source is scheduled (i.e. preemption is supposed to
756  * be as transparent as possible).
757  *
758  * The target thread inherits our MP count (added to its own) for the
759  * duration of the preemption in order to preserve the atomicy of the
760  * MP lock during the preemption.  Therefore, any preempting targets must be
761  * careful in regards to MP assertions.  Note that the MP count may be
762  * out of sync with the physical mp_lock, but we do not have to preserve
763  * the original ownership of the lock if it was out of synch (that is, we
764  * can leave it synchronized on return).
765  */
766 void
767 lwkt_preempt(thread_t ntd, int critpri)
768 {
769     struct globaldata *gd = mycpu;
770     thread_t td;
771 #ifdef SMP
772     int mpheld;
773     int savecnt;
774 #endif
775
776     /*
777      * The caller has put us in a critical section.  We can only preempt
778      * if the caller of the caller was not in a critical section (basically
779      * a local interrupt), as determined by the 'critpri' parameter. 
780      *
781      * YYY The target thread must be in a critical section (else it must
782      * inherit our critical section?  I dunno yet).
783      *
784      * Any tokens held by the target may not be held by thread(s) being
785      * preempted.  We take the easy way out and do not preempt if
786      * the target is holding tokens.
787      *
788      * Set need_lwkt_resched() unconditionally for now YYY.
789      */
790     KASSERT(ntd->td_pri >= TDPRI_CRIT, ("BADCRIT0 %d", ntd->td_pri));
791
792     td = gd->gd_curthread;
793     if ((ntd->td_pri & TDPRI_MASK) <= (td->td_pri & TDPRI_MASK)) {
794         ++preempt_miss;
795         return;
796     }
797     if ((td->td_pri & ~TDPRI_MASK) > critpri) {
798         ++preempt_miss;
799         need_lwkt_resched();
800         return;
801     }
802 #ifdef SMP
803     if (ntd->td_gd != gd) {
804         ++preempt_miss;
805         need_lwkt_resched();
806         return;
807     }
808 #endif
809     /*
810      * Take the easy way out and do not preempt if the target is holding
811      * one or more tokens.  We could test whether the thread(s) being
812      * preempted interlock against the target thread's tokens and whether
813      * we can get all the target thread's tokens, but this situation 
814      * should not occur very often so its easier to simply not preempt.
815      */
816     if (ntd->td_toks != NULL) {
817         ++preempt_miss;
818         need_lwkt_resched();
819         return;
820     }
821     if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
822         ++preempt_weird;
823         need_lwkt_resched();
824         return;
825     }
826     if (ntd->td_preempted) {
827         ++preempt_hit;
828         need_lwkt_resched();
829         return;
830     }
831 #ifdef SMP
832     /*
833      * note: an interrupt might have occured just as we were transitioning
834      * to or from the MP lock.  In this case td_mpcount will be pre-disposed
835      * (non-zero) but not actually synchronized with the actual state of the
836      * lock.  We can use it to imply an MP lock requirement for the
837      * preemption but we cannot use it to test whether we hold the MP lock
838      * or not.
839      */
840     savecnt = td->td_mpcount;
841     mpheld = MP_LOCK_HELD();
842     ntd->td_mpcount += td->td_mpcount;
843     if (mpheld == 0 && ntd->td_mpcount && !cpu_try_mplock()) {
844         ntd->td_mpcount -= td->td_mpcount;
845         ++preempt_miss;
846         need_lwkt_resched();
847         return;
848     }
849 #endif
850
851     /*
852      * Since we are able to preempt the current thread, there is no need to
853      * call need_lwkt_resched().
854      */
855     ++preempt_hit;
856     ntd->td_preempted = td;
857     td->td_flags |= TDF_PREEMPT_LOCK;
858     td->td_switch(ntd);
859     KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
860 #ifdef SMP
861     KKASSERT(savecnt == td->td_mpcount);
862     mpheld = MP_LOCK_HELD();
863     if (mpheld && td->td_mpcount == 0)
864         cpu_rel_mplock();
865     else if (mpheld == 0 && td->td_mpcount)
866         panic("lwkt_preempt(): MP lock was not held through");
867 #endif
868     ntd->td_preempted = NULL;
869     td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
870 }
871
872 /*
873  * Yield our thread while higher priority threads are pending.  This is
874  * typically called when we leave a critical section but it can be safely
875  * called while we are in a critical section.
876  *
877  * This function will not generally yield to equal priority threads but it
878  * can occur as a side effect.  Note that lwkt_switch() is called from
879  * inside the critical section to prevent its own crit_exit() from reentering
880  * lwkt_yield_quick().
881  *
882  * gd_reqflags indicates that *something* changed, e.g. an interrupt or softint
883  * came along but was blocked and made pending.
884  *
885  * (self contained on a per cpu basis)
886  */
887 void
888 lwkt_yield_quick(void)
889 {
890     globaldata_t gd = mycpu;
891     thread_t td = gd->gd_curthread;
892
893     /*
894      * gd_reqflags is cleared in splz if the cpl is 0.  If we were to clear
895      * it with a non-zero cpl then we might not wind up calling splz after
896      * a task switch when the critical section is exited even though the
897      * new task could accept the interrupt.
898      *
899      * XXX from crit_exit() only called after last crit section is released.
900      * If called directly will run splz() even if in a critical section.
901      *
902      * td_nest_count prevent deep nesting via splz() or doreti().  Note that
903      * except for this special case, we MUST call splz() here to handle any
904      * pending ints, particularly after we switch, or we might accidently
905      * halt the cpu with interrupts pending.
906      */
907     if (gd->gd_reqflags && td->td_nest_count < 2)
908         splz();
909
910     /*
911      * YYY enabling will cause wakeup() to task-switch, which really
912      * confused the old 4.x code.  This is a good way to simulate
913      * preemption and MP without actually doing preemption or MP, because a
914      * lot of code assumes that wakeup() does not block.
915      */
916     if (untimely_switch && td->td_nest_count == 0 &&
917         gd->gd_intr_nesting_level == 0
918     ) {
919         crit_enter_quick(td);
920         /*
921          * YYY temporary hacks until we disassociate the userland scheduler
922          * from the LWKT scheduler.
923          */
924         if (td->td_flags & TDF_RUNQ) {
925             lwkt_switch();              /* will not reenter yield function */
926         } else {
927             lwkt_schedule_self(td);     /* make sure we are scheduled */
928             lwkt_switch();              /* will not reenter yield function */
929             lwkt_deschedule_self(td);   /* make sure we are descheduled */
930         }
931         crit_exit_noyield(td);
932     }
933 }
934
935 /*
936  * This implements a normal yield which, unlike _quick, will yield to equal
937  * priority threads as well.  Note that gd_reqflags tests will be handled by
938  * the crit_exit() call in lwkt_switch().
939  *
940  * (self contained on a per cpu basis)
941  */
942 void
943 lwkt_yield(void)
944 {
945     lwkt_schedule_self(curthread);
946     lwkt_switch();
947 }
948
949 /*
950  * Generic schedule.  Possibly schedule threads belonging to other cpus and
951  * deal with threads that might be blocked on a wait queue.
952  *
953  * We have a little helper inline function which does additional work after
954  * the thread has been enqueued, including dealing with preemption and
955  * setting need_lwkt_resched() (which prevents the kernel from returning
956  * to userland until it has processed higher priority threads).
957  */
958 static __inline
959 void
960 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int cpri)
961 {
962     if (ntd->td_preemptable) {
963         ntd->td_preemptable(ntd, cpri); /* YYY +token */
964     } else if ((ntd->td_flags & TDF_NORESCHED) == 0 &&
965         (ntd->td_pri & TDPRI_MASK) > (gd->gd_curthread->td_pri & TDPRI_MASK)
966     ) {
967         need_lwkt_resched();
968     }
969 }
970
971 void
972 lwkt_schedule(thread_t td)
973 {
974     globaldata_t mygd = mycpu;
975
976 #ifdef  INVARIANTS
977     KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
978     if ((td->td_flags & TDF_PREEMPT_LOCK) == 0 && td->td_proc 
979         && td->td_proc->p_stat == SSLEEP
980     ) {
981         printf("PANIC schedule curtd = %p (%d %d) target %p (%d %d)\n",
982             curthread,
983             curthread->td_proc ? curthread->td_proc->p_pid : -1,
984             curthread->td_proc ? curthread->td_proc->p_stat : -1,
985             td,
986             td->td_proc ? td->td_proc->p_pid : -1,
987             td->td_proc ? td->td_proc->p_stat : -1
988         );
989         panic("SCHED PANIC");
990     }
991 #endif
992     crit_enter_gd(mygd);
993     if (td == mygd->gd_curthread) {
994         _lwkt_enqueue(td);
995     } else {
996         lwkt_wait_t w;
997
998         /*
999          * If the thread is on a wait list we have to send our scheduling
1000          * request to the owner of the wait structure.  Otherwise we send
1001          * the scheduling request to the cpu owning the thread.  Races
1002          * are ok, the target will forward the message as necessary (the
1003          * message may chase the thread around before it finally gets
1004          * acted upon).
1005          *
1006          * (remember, wait structures use stable storage)
1007          *
1008          * NOTE: we have to account for the number of critical sections
1009          * under our control when calling _lwkt_schedule_post() so it
1010          * can figure out whether preemption is allowed.
1011          *
1012          * NOTE: The wait structure algorithms are a mess and need to be
1013          * rewritten.
1014          *
1015          * NOTE: We cannot safely acquire or release a token, even 
1016          * non-blocking, because this routine may be called in the context
1017          * of a thread already holding the token and thus not provide any
1018          * interlock protection.  We cannot safely manipulate the td_toks
1019          * list for the same reason.  Instead we depend on our critical
1020          * section if the token is owned by our cpu.
1021          */
1022         if ((w = td->td_wait) != NULL) {
1023             if (w->wa_token.t_cpu == mygd) {
1024                 TAILQ_REMOVE(&w->wa_waitq, td, td_threadq);
1025                 --w->wa_count;
1026                 td->td_wait = NULL;
1027 #ifdef SMP
1028                 if (td->td_gd == mygd) {
1029                     _lwkt_enqueue(td);
1030                     _lwkt_schedule_post(mygd, td, TDPRI_CRIT);
1031                 } else {
1032                     lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_schedule, td);
1033                 }
1034 #else
1035                 _lwkt_enqueue(td);
1036                 _lwkt_schedule_post(mygd, td, TDPRI_CRIT);
1037 #endif
1038             } else {
1039 #ifdef SMP
1040                 lwkt_send_ipiq(w->wa_token.t_cpu, (ipifunc1_t)lwkt_schedule, td);
1041 #else
1042                 panic("bad token %p", &w->wa_token);
1043 #endif
1044             }
1045         } else {
1046             /*
1047              * If the wait structure is NULL and we own the thread, there
1048              * is no race (since we are in a critical section).  If we
1049              * do not own the thread there might be a race but the
1050              * target cpu will deal with it.
1051              */
1052 #ifdef SMP
1053             if (td->td_gd == mygd) {
1054                 _lwkt_enqueue(td);
1055                 _lwkt_schedule_post(mygd, td, TDPRI_CRIT);
1056             } else {
1057                 lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_schedule, td);
1058             }
1059 #else
1060             _lwkt_enqueue(td);
1061             _lwkt_schedule_post(mygd, td, TDPRI_CRIT);
1062 #endif
1063         }
1064     }
1065     crit_exit_gd(mygd);
1066 }
1067
1068 /*
1069  * Managed acquisition.  This code assumes that the MP lock is held for
1070  * the tdallq operation and that the thread has been descheduled from its
1071  * original cpu.  We also have to wait for the thread to be entirely switched
1072  * out on its original cpu (this is usually fast enough that we never loop)
1073  * since the LWKT system does not have to hold the MP lock while switching
1074  * and the target may have released it before switching.
1075  */
1076 void
1077 lwkt_acquire(thread_t td)
1078 {
1079     globaldata_t gd;
1080     globaldata_t mygd;
1081
1082     gd = td->td_gd;
1083     mygd = mycpu;
1084     cpu_lfence();
1085     KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1086     while (td->td_flags & TDF_RUNNING)  /* XXX spin */
1087         cpu_lfence();
1088     if (gd != mygd) {
1089         crit_enter_gd(mygd);
1090         TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);      /* protected by BGL */
1091         td->td_gd = mygd;
1092         TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq); /* protected by BGL */
1093         crit_exit_gd(mygd);
1094     }
1095 }
1096
1097 /*
1098  * Generic deschedule.  Descheduling threads other then your own should be
1099  * done only in carefully controlled circumstances.  Descheduling is 
1100  * asynchronous.  
1101  *
1102  * This function may block if the cpu has run out of messages.
1103  */
1104 void
1105 lwkt_deschedule(thread_t td)
1106 {
1107     crit_enter();
1108 #ifdef SMP
1109     if (td == curthread) {
1110         _lwkt_dequeue(td);
1111     } else {
1112         if (td->td_gd == mycpu) {
1113             _lwkt_dequeue(td);
1114         } else {
1115             lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td);
1116         }
1117     }
1118 #else
1119     _lwkt_dequeue(td);
1120 #endif
1121     crit_exit();
1122 }
1123
1124 /*
1125  * Set the target thread's priority.  This routine does not automatically
1126  * switch to a higher priority thread, LWKT threads are not designed for
1127  * continuous priority changes.  Yield if you want to switch.
1128  *
1129  * We have to retain the critical section count which uses the high bits
1130  * of the td_pri field.  The specified priority may also indicate zero or
1131  * more critical sections by adding TDPRI_CRIT*N.
1132  *
1133  * Note that we requeue the thread whether it winds up on a different runq
1134  * or not.  uio_yield() depends on this and the routine is not normally
1135  * called with the same priority otherwise.
1136  */
1137 void
1138 lwkt_setpri(thread_t td, int pri)
1139 {
1140     KKASSERT(pri >= 0);
1141     KKASSERT(td->td_gd == mycpu);
1142     crit_enter();
1143     if (td->td_flags & TDF_RUNQ) {
1144         _lwkt_dequeue(td);
1145         td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1146         _lwkt_enqueue(td);
1147     } else {
1148         td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1149     }
1150     crit_exit();
1151 }
1152
1153 void
1154 lwkt_setpri_self(int pri)
1155 {
1156     thread_t td = curthread;
1157
1158     KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1159     crit_enter();
1160     if (td->td_flags & TDF_RUNQ) {
1161         _lwkt_dequeue(td);
1162         td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1163         _lwkt_enqueue(td);
1164     } else {
1165         td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1166     }
1167     crit_exit();
1168 }
1169
1170 /*
1171  * Determine if there is a runnable thread at a higher priority then
1172  * the current thread.  lwkt_setpri() does not check this automatically.
1173  * Return 1 if there is, 0 if there isn't.
1174  *
1175  * Example: if bit 31 of runqmask is set and the current thread is priority
1176  * 30, then we wind up checking the mask: 0x80000000 against 0x7fffffff.  
1177  *
1178  * If nq reaches 31 the shift operation will overflow to 0 and we will wind
1179  * up comparing against 0xffffffff, a comparison that will always be false.
1180  */
1181 int
1182 lwkt_checkpri_self(void)
1183 {
1184     globaldata_t gd = mycpu;
1185     thread_t td = gd->gd_curthread;
1186     int nq = td->td_pri & TDPRI_MASK;
1187
1188     while (gd->gd_runqmask > (__uint32_t)(2 << nq) - 1) {
1189         if (TAILQ_FIRST(&gd->gd_tdrunq[nq + 1]))
1190             return(1);
1191         ++nq;
1192     }
1193     return(0);
1194 }
1195
1196 /*
1197  * Migrate the current thread to the specified cpu.  The BGL must be held
1198  * (for the gd_tdallq manipulation XXX).  This is accomplished by 
1199  * descheduling ourselves from the current cpu, moving our thread to the
1200  * tdallq of the target cpu, IPI messaging the target cpu, and switching out.
1201  * TDF_MIGRATING prevents scheduling races while the thread is being migrated.
1202  */
1203 #ifdef SMP
1204 static void lwkt_setcpu_remote(void *arg);
1205 #endif
1206
1207 void
1208 lwkt_setcpu_self(globaldata_t rgd)
1209 {
1210 #ifdef SMP
1211     thread_t td = curthread;
1212
1213     if (td->td_gd != rgd) {
1214         crit_enter_quick(td);
1215         td->td_flags |= TDF_MIGRATING;
1216         lwkt_deschedule_self(td);
1217         TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq); /* protected by BGL */
1218         TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq); /* protected by BGL */
1219         lwkt_send_ipiq(rgd, (ipifunc1_t)lwkt_setcpu_remote, td);
1220         lwkt_switch();
1221         /* we are now on the target cpu */
1222         crit_exit_quick(td);
1223     }
1224 #endif
1225 }
1226
1227 /*
1228  * Remote IPI for cpu migration (called while in a critical section so we
1229  * do not have to enter another one).  The thread has already been moved to
1230  * our cpu's allq, but we must wait for the thread to be completely switched
1231  * out on the originating cpu before we schedule it on ours or the stack
1232  * state may be corrupt.  We clear TDF_MIGRATING after flushing the GD
1233  * change to main memory.
1234  *
1235  * XXX The use of TDF_MIGRATING might not be sufficient to avoid races
1236  * against wakeups.  It is best if this interface is used only when there
1237  * are no pending events that might try to schedule the thread.
1238  */
1239 #ifdef SMP
1240 static void
1241 lwkt_setcpu_remote(void *arg)
1242 {
1243     thread_t td = arg;
1244     globaldata_t gd = mycpu;
1245
1246     while (td->td_flags & TDF_RUNNING)
1247         cpu_lfence();
1248     td->td_gd = gd;
1249     cpu_sfence();
1250     td->td_flags &= ~TDF_MIGRATING;
1251     _lwkt_enqueue(td);
1252 }
1253 #endif
1254
1255 struct lwp *
1256 lwkt_preempted_proc(void)
1257 {
1258     thread_t td = curthread;
1259     while (td->td_preempted)
1260         td = td->td_preempted;
1261     return(td->td_lwp);
1262 }
1263
1264 /*
1265  * Block on the specified wait queue until signaled.  A generation number
1266  * must be supplied to interlock the wait queue.  The function will
1267  * return immediately if the generation number does not match the wait
1268  * structure's generation number.
1269  */
1270 void
1271 lwkt_block(lwkt_wait_t w, const char *wmesg, int *gen)
1272 {
1273     thread_t td = curthread;
1274     lwkt_tokref ilock;
1275
1276     lwkt_gettoken(&ilock, &w->wa_token);
1277     crit_enter();
1278     if (w->wa_gen == *gen) {
1279         _lwkt_dequeue(td);
1280         TAILQ_INSERT_TAIL(&w->wa_waitq, td, td_threadq);
1281         ++w->wa_count;
1282         td->td_wait = w;
1283         td->td_wmesg = wmesg;
1284     again:
1285         lwkt_switch();
1286         if (td->td_wmesg != NULL) {
1287             _lwkt_dequeue(td);
1288             goto again;
1289         }
1290     }
1291     crit_exit();
1292     *gen = w->wa_gen;
1293     lwkt_reltoken(&ilock);
1294 }
1295
1296 /*
1297  * Signal a wait queue.  We gain ownership of the wait queue in order to
1298  * signal it.  Once a thread is removed from the wait queue we have to
1299  * deal with the cpu owning the thread.
1300  *
1301  * Note: alternatively we could message the target cpu owning the wait
1302  * queue.  YYY implement as sysctl.
1303  */
1304 void
1305 lwkt_signal(lwkt_wait_t w, int count)
1306 {
1307     thread_t td;
1308     lwkt_tokref ilock;
1309
1310     lwkt_gettoken(&ilock, &w->wa_token);
1311     ++w->wa_gen;
1312     crit_enter();
1313     if (count < 0)
1314         count = w->wa_count;
1315     while ((td = TAILQ_FIRST(&w->wa_waitq)) != NULL && count) {
1316         --count;
1317         --w->wa_count;
1318         TAILQ_REMOVE(&w->wa_waitq, td, td_threadq);
1319         td->td_wait = NULL;
1320         td->td_wmesg = NULL;
1321 #ifdef SMP
1322         if (td->td_gd == mycpu) {
1323             _lwkt_enqueue(td);
1324         } else {
1325             lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_schedule, td);
1326         }
1327 #else
1328         _lwkt_enqueue(td);
1329 #endif
1330     }
1331     crit_exit();
1332     lwkt_reltoken(&ilock);
1333 }
1334
1335 /*
1336  * Create a kernel process/thread/whatever.  It shares it's address space
1337  * with proc0 - ie: kernel only.
1338  *
1339  * NOTE!  By default new threads are created with the MP lock held.  A 
1340  * thread which does not require the MP lock should release it by calling
1341  * rel_mplock() at the start of the new thread.
1342  */
1343 int
1344 lwkt_create(void (*func)(void *), void *arg,
1345     struct thread **tdp, thread_t template, int tdflags, int cpu,
1346     const char *fmt, ...)
1347 {
1348     thread_t td;
1349     __va_list ap;
1350
1351     td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu);
1352     if (tdp)
1353         *tdp = td;
1354     cpu_set_thread_handler(td, lwkt_exit, func, arg);
1355     td->td_flags |= TDF_VERBOSE | tdflags;
1356 #ifdef SMP
1357     td->td_mpcount = 1;
1358 #endif
1359
1360     /*
1361      * Set up arg0 for 'ps' etc
1362      */
1363     __va_start(ap, fmt);
1364     vsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1365     __va_end(ap);
1366
1367     /*
1368      * Schedule the thread to run
1369      */
1370     if ((td->td_flags & TDF_STOPREQ) == 0)
1371         lwkt_schedule(td);
1372     else
1373         td->td_flags &= ~TDF_STOPREQ;
1374     return 0;
1375 }
1376
1377 /*
1378  * kthread_* is specific to the kernel and is not needed by userland.
1379  */
1380 #ifdef _KERNEL
1381
1382 /*
1383  * Destroy an LWKT thread.   Warning!  This function is not called when
1384  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1385  * uses a different reaping mechanism.
1386  */
1387 void
1388 lwkt_exit(void)
1389 {
1390     thread_t td = curthread;
1391     globaldata_t gd;
1392
1393     if (td->td_flags & TDF_VERBOSE)
1394         printf("kthread %p %s has exited\n", td, td->td_comm);
1395     caps_exit(td);
1396     crit_enter_quick(td);
1397     lwkt_deschedule_self(td);
1398     gd = mycpu;
1399     KKASSERT(gd == td->td_gd);
1400     TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1401     if (td->td_flags & TDF_ALLOCATED_THREAD) {
1402         ++gd->gd_tdfreecount;
1403         TAILQ_INSERT_TAIL(&gd->gd_tdfreeq, td, td_threadq);
1404     }
1405     cpu_thread_exit();
1406 }
1407
1408 #endif /* _KERNEL */
1409
1410 void
1411 crit_panic(void)
1412 {
1413     thread_t td = curthread;
1414     int lpri = td->td_pri;
1415
1416     td->td_pri = 0;
1417     panic("td_pri is/would-go negative! %p %d", td, lpri);
1418 }
1419
1420 #ifdef SMP
1421
1422 /*
1423  * Called from debugger/panic on cpus which have been stopped.  We must still
1424  * process the IPIQ while stopped, even if we were stopped while in a critical
1425  * section (XXX).
1426  *
1427  * If we are dumping also try to process any pending interrupts.  This may
1428  * or may not work depending on the state of the cpu at the point it was
1429  * stopped.
1430  */
1431 void
1432 lwkt_smp_stopped(void)
1433 {
1434     globaldata_t gd = mycpu;
1435
1436     crit_enter_gd(gd);
1437     if (dumping) {
1438         lwkt_process_ipiq();
1439         splz();
1440     } else {
1441         lwkt_process_ipiq();
1442     }
1443     crit_exit_gd(gd);
1444 }
1445
1446 #endif