modules: add/correct module versions and depends
[dragonfly.git] / sys / net / zlib.c
1 /*
2  * This file is derived from various .h and .c files from the zlib-1.0.4
3  * distribution by Jean-loup Gailly and Mark Adler, with some additions
4  * by Paul Mackerras to aid in implementing Deflate compression and
5  * decompression for PPP packets.  See zlib.h for conditions of
6  * distribution and use.
7  *
8  * Changes that have been made include:
9  * - added Z_PACKET_FLUSH (see zlib.h for details)
10  * - added inflateIncomp and deflateOutputPending
11  * - allow strm->next_out to be NULL, meaning discard the output
12  *
13  * $FreeBSD: src/sys/net/zlib.c,v 1.10.2.3 2002/03/24 23:12:48 jedgar Exp $
14  * $DragonFly: src/sys/net/zlib.c,v 1.11 2007/01/07 00:41:29 dillon Exp $
15  */
16
17 /* 
18  *  ==FILEVERSION 971210==
19  *
20  * This marker is used by the Linux installation script to determine
21  * whether an up-to-date version of this file is already installed.
22  */
23
24 #define NO_DUMMY_DECL
25 #define NO_ZCFUNCS
26 #define MY_ZCALLOC
27
28 #if (defined(__DragonFly__) || defined(__FreeBSD__)) && defined(_KERNEL)
29 #define inflate inflate_ppp     /* FreeBSD already has an inflate :-( */
30 #endif
31
32
33 /* +++ zutil.h */
34 /* zutil.h -- internal interface and configuration of the compression library
35  * Copyright (C) 1995-1996 Jean-loup Gailly.
36  * For conditions of distribution and use, see copyright notice in zlib.h
37  */
38
39 /* WARNING: this file should *not* be used by applications. It is
40    part of the implementation of the compression library and is
41    subject to change. Applications should only use zlib.h.
42  */
43
44 /* From: zutil.h,v 1.16 1996/07/24 13:41:13 me Exp $ */
45
46 #ifndef _Z_UTIL_H
47 #define _Z_UTIL_H
48
49 #ifdef _KERNEL
50 #include <net/zlib.h>
51 #else
52 #include "zlib.h"
53 #endif
54
55 #ifdef _KERNEL
56 /* Assume this is a *BSD or SVR4 kernel */
57 #include <sys/param.h>
58 #include <sys/types.h>
59 #include <sys/time.h>
60 #include <sys/systm.h>
61 #include <sys/module.h>
62 #  define HAVE_MEMCPY
63 #  define memcpy(d, s, n)       bcopy((s), (d), (n))
64 #  define memset(d, v, n)       bzero((d), (n))
65 #  define memcmp                bcmp
66
67 #else
68 #if defined(__KERNEL__)
69 /* Assume this is a Linux kernel */
70 #include <linux/string.h>
71 #define HAVE_MEMCPY
72
73 #else /* not kernel */
74
75 #if defined(MSDOS)||defined(VMS)||defined(CRAY)||defined(WIN32)||defined(RISCOS)
76 #   include <stddef.h>
77 #   include <errno.h>
78 #else
79     extern int errno;
80 #endif
81 #ifdef STDC
82 #  include <string.h>
83 #  include <stdlib.h>
84 #endif
85 #endif /* __KERNEL__ */
86 #endif /* _KERNEL */
87
88 #ifndef local
89 #  define local static
90 #endif
91 /* compile with -Dlocal if your debugger can't find static symbols */
92
93 typedef unsigned char  uch;
94 typedef uch FAR uchf;
95 typedef unsigned short ush;
96 typedef ush FAR ushf;
97 typedef unsigned long  ulg;
98
99 static const char *z_errmsg[10] = {
100 "need dictionary",     /* Z_NEED_DICT       2  */
101 "stream end",          /* Z_STREAM_END      1  */
102 "",                    /* Z_OK              0  */
103 "file error",          /* Z_ERRNO         (-1) */
104 "stream error",        /* Z_STREAM_ERROR  (-2) */
105 "data error",          /* Z_DATA_ERROR    (-3) */
106 "insufficient memory", /* Z_MEM_ERROR     (-4) */
107 "buffer error",        /* Z_BUF_ERROR     (-5) */
108 "incompatible version",/* Z_VERSION_ERROR (-6) */
109 ""};
110
111 #define ERR_MSG(err) z_errmsg[Z_NEED_DICT-(err)]
112
113 #define ERR_RETURN(strm,err) \
114   return (strm->msg = (const char*)ERR_MSG(err), (err))
115 /* To be used only when the state is known to be valid */
116
117         /* common constants */
118
119 #ifndef DEF_WBITS
120 #  define DEF_WBITS MAX_WBITS
121 #endif
122 /* default windowBits for decompression. MAX_WBITS is for compression only */
123
124 #if MAX_MEM_LEVEL >= 8
125 #  define DEF_MEM_LEVEL 8
126 #else
127 #  define DEF_MEM_LEVEL  MAX_MEM_LEVEL
128 #endif
129 /* default memLevel */
130
131 #define STORED_BLOCK 0
132 #define STATIC_TREES 1
133 #define DYN_TREES    2
134 /* The three kinds of block type */
135
136 #define MIN_MATCH  3
137 #define MAX_MATCH  258
138 /* The minimum and maximum match lengths */
139
140 #define PRESET_DICT 0x20 /* preset dictionary flag in zlib header */
141
142         /* target dependencies */
143
144 #ifdef MSDOS
145 #  define OS_CODE  0x00
146 #  ifdef __TURBOC__
147 #    include <alloc.h>
148 #  else /* MSC or DJGPP */
149 #    include <malloc.h>
150 #  endif
151 #endif
152
153 #ifdef OS2
154 #  define OS_CODE  0x06
155 #endif
156
157 #ifdef WIN32 /* Window 95 & Windows NT */
158 #  define OS_CODE  0x0b
159 #endif
160
161 #if defined(VAXC) || defined(VMS)
162 #  define OS_CODE  0x02
163 #  define FOPEN(name, mode) \
164      fopen((name), (mode), "mbc=60", "ctx=stm", "rfm=fix", "mrs=512")
165 #endif
166
167 #ifdef AMIGA
168 #  define OS_CODE  0x01
169 #endif
170
171 #if defined(ATARI) || defined(atarist)
172 #  define OS_CODE  0x05
173 #endif
174
175 #ifdef MACOS
176 #  define OS_CODE  0x07
177 #endif
178
179 #ifdef __50SERIES /* Prime/PRIMOS */
180 #  define OS_CODE  0x0F
181 #endif
182
183 #ifdef TOPS20
184 #  define OS_CODE  0x0a
185 #endif
186
187 #if defined(_BEOS_) || defined(RISCOS)
188 #  define fdopen(fd,mode) NULL /* No fdopen() */
189 #endif
190
191         /* Common defaults */
192
193 #ifndef OS_CODE
194 #  define OS_CODE  0x03  /* assume Unix */
195 #endif
196
197 #ifndef FOPEN
198 #  define FOPEN(name, mode) fopen((name), (mode))
199 #endif
200
201          /* functions */
202
203 #ifdef HAVE_STRERROR
204    extern char *strerror OF((int));
205 #  define zstrerror(errnum) strerror(errnum)
206 #else
207 #  define zstrerror(errnum) ""
208 #endif
209
210 #if defined(pyr)
211 #  define NO_MEMCPY
212 #endif
213 #if (defined(M_I86SM) || defined(M_I86MM)) && !defined(_MSC_VER)
214  /* Use our own functions for small and medium model with MSC <= 5.0.
215   * You may have to use the same strategy for Borland C (untested).
216   */
217 #  define NO_MEMCPY
218 #endif
219 #if defined(STDC) && !defined(HAVE_MEMCPY) && !defined(NO_MEMCPY)
220 #  define HAVE_MEMCPY
221 #endif
222 #ifdef HAVE_MEMCPY
223 #  ifdef SMALL_MEDIUM /* MSDOS small or medium model */
224 #    define zmemcpy _fmemcpy
225 #    define zmemcmp _fmemcmp
226 #    define zmemzero(dest, len) _fmemset(dest, 0, len)
227 #  else
228 #    define zmemcpy memcpy
229 #    define zmemcmp memcmp
230 #    define zmemzero(dest, len) memset(dest, 0, len)
231 #  endif
232 #else
233    extern void zmemcpy  OF((Bytef* dest, Bytef* source, uInt len));
234    extern int  zmemcmp  OF((Bytef* s1,   Bytef* s2, uInt len));
235    extern void zmemzero OF((Bytef* dest, uInt len));
236 #endif
237
238 /* Diagnostic functions */
239 #ifdef DEBUG_ZLIB
240 #  include <stdio.h>
241 #  ifndef verbose
242 #    define verbose 0
243 #  endif
244    extern void z_error    OF((char *m));
245 #  define Assert(cond,msg) {if(!(cond)) z_error(msg);}
246 #  define Trace(x) fprintf x
247 #  define Tracev(x) {if (verbose) fprintf x ;}
248 #  define Tracevv(x) {if (verbose>1) fprintf x ;}
249 #  define Tracec(c,x) {if (verbose && (c)) fprintf x ;}
250 #  define Tracecv(c,x) {if (verbose>1 && (c)) fprintf x ;}
251 #else
252 #  define Assert(cond,msg)
253 #  define Trace(x)
254 #  define Tracev(x)
255 #  define Tracevv(x)
256 #  define Tracec(c,x)
257 #  define Tracecv(c,x)
258 #endif
259
260
261 typedef uLong (*check_func) OF((uLong check, const Bytef *buf, uInt len));
262
263 voidpf zcalloc OF((voidpf opaque, unsigned items, unsigned size));
264 void   zcfree  OF((voidpf opaque, voidpf ptr));
265
266 #define ZALLOC(strm, items, size) \
267            (*((strm)->zalloc))((strm)->opaque, (items), (size))
268 #define ZFREE(strm, addr)  (*((strm)->zfree))((strm)->opaque, (voidpf)(addr))
269 #define TRY_FREE(s, p) {if (p) ZFREE(s, p);}
270
271 #endif /* _Z_UTIL_H */
272 /* --- zutil.h */
273
274 /* +++ deflate.h */
275 /* deflate.h -- internal compression state
276  * Copyright (C) 1995-1996 Jean-loup Gailly
277  * For conditions of distribution and use, see copyright notice in zlib.h 
278  */
279
280 /* WARNING: this file should *not* be used by applications. It is
281    part of the implementation of the compression library and is
282    subject to change. Applications should only use zlib.h.
283  */
284
285 /* From: deflate.h,v 1.10 1996/07/02 12:41:00 me Exp $ */
286
287 #ifndef _DEFLATE_H
288 #define _DEFLATE_H
289
290 /* #include "zutil.h" */
291
292 /* ===========================================================================
293  * Internal compression state.
294  */
295
296 #define LENGTH_CODES 29
297 /* number of length codes, not counting the special END_BLOCK code */
298
299 #define LITERALS  256
300 /* number of literal bytes 0..255 */
301
302 #define L_CODES (LITERALS+1+LENGTH_CODES)
303 /* number of Literal or Length codes, including the END_BLOCK code */
304
305 #define D_CODES   30
306 /* number of distance codes */
307
308 #define BL_CODES  19
309 /* number of codes used to transfer the bit lengths */
310
311 #define HEAP_SIZE (2*L_CODES+1)
312 /* maximum heap size */
313
314 #define MAX_BITS 15
315 /* All codes must not exceed MAX_BITS bits */
316
317 #define INIT_STATE    42
318 #define BUSY_STATE   113
319 #define FINISH_STATE 666
320 /* Stream status */
321
322
323 /* Data structure describing a single value and its code string. */
324 typedef struct ct_data_s {
325     union {
326         ush  freq;       /* frequency count */
327         ush  code;       /* bit string */
328     } fc;
329     union {
330         ush  dad;        /* father node in Huffman tree */
331         ush  len;        /* length of bit string */
332     } dl;
333 } FAR ct_data;
334
335 #define Freq fc.freq
336 #define Code fc.code
337 #define Dad  dl.dad
338 #define Len  dl.len
339
340 typedef struct static_tree_desc_s  static_tree_desc;
341
342 typedef struct tree_desc_s {
343     ct_data *dyn_tree;           /* the dynamic tree */
344     int     max_code;            /* largest code with non zero frequency */
345     static_tree_desc *stat_desc; /* the corresponding static tree */
346 } FAR tree_desc;
347
348 typedef ush Pos;
349 typedef Pos FAR Posf;
350 typedef unsigned IPos;
351
352 /* A Pos is an index in the character window. We use short instead of int to
353  * save space in the various tables. IPos is used only for parameter passing.
354  */
355
356 typedef struct deflate_state {
357     z_streamp strm;      /* pointer back to this zlib stream */
358     int   status;        /* as the name implies */
359     Bytef *pending_buf;  /* output still pending */
360     ulg   pending_buf_size; /* size of pending_buf */
361     Bytef *pending_out;  /* next pending byte to output to the stream */
362     int   pending;       /* nb of bytes in the pending buffer */
363     int   noheader;      /* suppress zlib header and adler32 */
364     Byte  data_type;     /* UNKNOWN, BINARY or ASCII */
365     Byte  method;        /* STORED (for zip only) or DEFLATED */
366     int   last_flush;    /* value of flush param for previous deflate call */
367
368                 /* used by deflate.c: */
369
370     uInt  w_size;        /* LZ77 window size (32K by default) */
371     uInt  w_bits;        /* log2(w_size)  (8..16) */
372     uInt  w_mask;        /* w_size - 1 */
373
374     Bytef *window;
375     /* Sliding window. Input bytes are read into the second half of the window,
376      * and move to the first half later to keep a dictionary of at least wSize
377      * bytes. With this organization, matches are limited to a distance of
378      * wSize-MAX_MATCH bytes, but this ensures that IO is always
379      * performed with a length multiple of the block size. Also, it limits
380      * the window size to 64K, which is quite useful on MSDOS.
381      * To do: use the user input buffer as sliding window.
382      */
383
384     ulg window_size;
385     /* Actual size of window: 2*wSize, except when the user input buffer
386      * is directly used as sliding window.
387      */
388
389     Posf *prev;
390     /* Link to older string with same hash index. To limit the size of this
391      * array to 64K, this link is maintained only for the last 32K strings.
392      * An index in this array is thus a window index modulo 32K.
393      */
394
395     Posf *head; /* Heads of the hash chains or NIL. */
396
397     uInt  ins_h;          /* hash index of string to be inserted */
398     uInt  hash_size;      /* number of elements in hash table */
399     uInt  hash_bits;      /* log2(hash_size) */
400     uInt  hash_mask;      /* hash_size-1 */
401
402     uInt  hash_shift;
403     /* Number of bits by which ins_h must be shifted at each input
404      * step. It must be such that after MIN_MATCH steps, the oldest
405      * byte no longer takes part in the hash key, that is:
406      *   hash_shift * MIN_MATCH >= hash_bits
407      */
408
409     long block_start;
410     /* Window position at the beginning of the current output block. Gets
411      * negative when the window is moved backwards.
412      */
413
414     uInt match_length;           /* length of best match */
415     IPos prev_match;             /* previous match */
416     int match_available;         /* set if previous match exists */
417     uInt strstart;               /* start of string to insert */
418     uInt match_start;            /* start of matching string */
419     uInt lookahead;              /* number of valid bytes ahead in window */
420
421     uInt prev_length;
422     /* Length of the best match at previous step. Matches not greater than this
423      * are discarded. This is used in the lazy match evaluation.
424      */
425
426     uInt max_chain_length;
427     /* To speed up deflation, hash chains are never searched beyond this
428      * length.  A higher limit improves compression ratio but degrades the
429      * speed.
430      */
431
432     uInt max_lazy_match;
433     /* Attempt to find a better match only when the current match is strictly
434      * smaller than this value. This mechanism is used only for compression
435      * levels >= 4.
436      */
437 #   define max_insert_length  max_lazy_match
438     /* Insert new strings in the hash table only if the match length is not
439      * greater than this length. This saves time but degrades compression.
440      * max_insert_length is used only for compression levels <= 3.
441      */
442
443     int level;    /* compression level (1..9) */
444     int strategy; /* favor or force Huffman coding*/
445
446     uInt good_match;
447     /* Use a faster search when the previous match is longer than this */
448
449     int nice_match; /* Stop searching when current match exceeds this */
450
451                 /* used by trees.c: */
452     /* Didn't use ct_data typedef below to supress compiler warning */
453     struct ct_data_s dyn_ltree[HEAP_SIZE];   /* literal and length tree */
454     struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */
455     struct ct_data_s bl_tree[2*BL_CODES+1];  /* Huffman tree for bit lengths */
456
457     struct tree_desc_s l_desc;               /* desc. for literal tree */
458     struct tree_desc_s d_desc;               /* desc. for distance tree */
459     struct tree_desc_s bl_desc;              /* desc. for bit length tree */
460
461     ush bl_count[MAX_BITS+1];
462     /* number of codes at each bit length for an optimal tree */
463
464     int heap[2*L_CODES+1];      /* heap used to build the Huffman trees */
465     int heap_len;               /* number of elements in the heap */
466     int heap_max;               /* element of largest frequency */
467     /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
468      * The same heap array is used to build all trees.
469      */
470
471     uch depth[2*L_CODES+1];
472     /* Depth of each subtree used as tie breaker for trees of equal frequency
473      */
474
475     uchf *l_buf;          /* buffer for literals or lengths */
476
477     uInt  lit_bufsize;
478     /* Size of match buffer for literals/lengths.  There are 4 reasons for
479      * limiting lit_bufsize to 64K:
480      *   - frequencies can be kept in 16 bit counters
481      *   - if compression is not successful for the first block, all input
482      *     data is still in the window so we can still emit a stored block even
483      *     when input comes from standard input.  (This can also be done for
484      *     all blocks if lit_bufsize is not greater than 32K.)
485      *   - if compression is not successful for a file smaller than 64K, we can
486      *     even emit a stored file instead of a stored block (saving 5 bytes).
487      *     This is applicable only for zip (not gzip or zlib).
488      *   - creating new Huffman trees less frequently may not provide fast
489      *     adaptation to changes in the input data statistics. (Take for
490      *     example a binary file with poorly compressible code followed by
491      *     a highly compressible string table.) Smaller buffer sizes give
492      *     fast adaptation but have of course the overhead of transmitting
493      *     trees more frequently.
494      *   - I can't count above 4
495      */
496
497     uInt last_lit;      /* running index in l_buf */
498
499     ushf *d_buf;
500     /* Buffer for distances. To simplify the code, d_buf and l_buf have
501      * the same number of elements. To use different lengths, an extra flag
502      * array would be necessary.
503      */
504
505     ulg opt_len;        /* bit length of current block with optimal trees */
506     ulg static_len;     /* bit length of current block with static trees */
507     ulg compressed_len; /* total bit length of compressed file */
508     uInt matches;       /* number of string matches in current block */
509     int last_eob_len;   /* bit length of EOB code for last block */
510
511 #ifdef DEBUG_ZLIB
512     ulg bits_sent;      /* bit length of the compressed data */
513 #endif
514
515     ush bi_buf;
516     /* Output buffer. bits are inserted starting at the bottom (least
517      * significant bits).
518      */
519     int bi_valid;
520     /* Number of valid bits in bi_buf.  All bits above the last valid bit
521      * are always zero.
522      */
523
524 } FAR deflate_state;
525
526 /* Output a byte on the stream.
527  * IN assertion: there is enough room in pending_buf.
528  */
529 #define put_byte(s, c) {s->pending_buf[s->pending++] = (c);}
530
531
532 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
533 /* Minimum amount of lookahead, except at the end of the input file.
534  * See deflate.c for comments about the MIN_MATCH+1.
535  */
536
537 #define MAX_DIST(s)  ((s)->w_size-MIN_LOOKAHEAD)
538 /* In order to simplify the code, particularly on 16 bit machines, match
539  * distances are limited to MAX_DIST instead of WSIZE.
540  */
541
542         /* in trees.c */
543 void _tr_init         OF((deflate_state *s));
544 int  _tr_tally        OF((deflate_state *s, unsigned dist, unsigned lc));
545 ulg  _tr_flush_block  OF((deflate_state *s, charf *buf, ulg stored_len,
546                           int eof));
547 void _tr_align        OF((deflate_state *s));
548 void _tr_stored_block OF((deflate_state *s, charf *buf, ulg stored_len,
549                           int eof));
550 void _tr_stored_type_only OF((deflate_state *));
551
552 #endif
553 /* --- deflate.h */
554
555 /* +++ deflate.c */
556 /* deflate.c -- compress data using the deflation algorithm
557  * Copyright (C) 1995-1996 Jean-loup Gailly.
558  * For conditions of distribution and use, see copyright notice in zlib.h 
559  */
560
561 /*
562  *  ALGORITHM
563  *
564  *      The "deflation" process depends on being able to identify portions
565  *      of the input text which are identical to earlier input (within a
566  *      sliding window trailing behind the input currently being processed).
567  *
568  *      The most straightforward technique turns out to be the fastest for
569  *      most input files: try all possible matches and select the longest.
570  *      The key feature of this algorithm is that insertions into the string
571  *      dictionary are very simple and thus fast, and deletions are avoided
572  *      completely. Insertions are performed at each input character, whereas
573  *      string matches are performed only when the previous match ends. So it
574  *      is preferable to spend more time in matches to allow very fast string
575  *      insertions and avoid deletions. The matching algorithm for small
576  *      strings is inspired from that of Rabin & Karp. A brute force approach
577  *      is used to find longer strings when a small match has been found.
578  *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
579  *      (by Leonid Broukhis).
580  *         A previous version of this file used a more sophisticated algorithm
581  *      (by Fiala and Greene) which is guaranteed to run in linear amortized
582  *      time, but has a larger average cost, uses more memory and is patented.
583  *      However the F&G algorithm may be faster for some highly redundant
584  *      files if the parameter max_chain_length (described below) is too large.
585  *
586  *  ACKNOWLEDGEMENTS
587  *
588  *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
589  *      I found it in 'freeze' written by Leonid Broukhis.
590  *      Thanks to many people for bug reports and testing.
591  *
592  *  REFERENCES
593  *
594  *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
595  *      Available in ftp://ds.internic.net/rfc/rfc1951.txt
596  *
597  *      A description of the Rabin and Karp algorithm is given in the book
598  *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
599  *
600  *      Fiala,E.R., and Greene,D.H.
601  *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
602  *
603  */
604
605 /* From: deflate.c,v 1.15 1996/07/24 13:40:58 me Exp $ */
606
607 /* #include "deflate.h" */
608
609 char deflate_copyright[] = " deflate 1.0.4 Copyright 1995-1996 Jean-loup Gailly ";
610 /*
611   If you use the zlib library in a product, an acknowledgment is welcome
612   in the documentation of your product. If for some reason you cannot
613   include such an acknowledgment, I would appreciate that you keep this
614   copyright string in the executable of your product.
615  */
616
617 /* ===========================================================================
618  *  Function prototypes.
619  */
620 typedef enum {
621     need_more,      /* block not completed, need more input or more output */
622     block_done,     /* block flush performed */
623     finish_started, /* finish started, need only more output at next deflate */
624     finish_done     /* finish done, accept no more input or output */
625 } block_state;
626
627 typedef block_state (*compress_func) OF((deflate_state *s, int flush));
628 /* Compression function. Returns the block state after the call. */
629
630 local void fill_window    OF((deflate_state *s));
631 local block_state deflate_stored OF((deflate_state *s, int flush));
632 local block_state deflate_fast   OF((deflate_state *s, int flush));
633 local block_state deflate_slow   OF((deflate_state *s, int flush));
634 local void lm_init        OF((deflate_state *s));
635 local void putShortMSB    OF((deflate_state *s, uInt b));
636 local void flush_pending  OF((z_streamp strm));
637 local int read_buf        OF((z_streamp strm, charf *buf, unsigned size));
638 #ifdef ASMV
639       void match_init OF((void)); /* asm code initialization */
640       uInt longest_match  OF((deflate_state *s, IPos cur_match));
641 #else
642 local uInt longest_match  OF((deflate_state *s, IPos cur_match));
643 #endif
644
645 #ifdef DEBUG_ZLIB
646 local  void check_match OF((deflate_state *s, IPos start, IPos match,
647                             int length));
648 #endif
649
650 /* ===========================================================================
651  * Local data
652  */
653
654 #define NIL 0
655 /* Tail of hash chains */
656
657 #ifndef TOO_FAR
658 #  define TOO_FAR 4096
659 #endif
660 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
661
662 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
663 /* Minimum amount of lookahead, except at the end of the input file.
664  * See deflate.c for comments about the MIN_MATCH+1.
665  */
666
667 /* Values for max_lazy_match, good_match and max_chain_length, depending on
668  * the desired pack level (0..9). The values given below have been tuned to
669  * exclude worst case performance for pathological files. Better values may be
670  * found for specific files.
671  */
672 typedef struct config_s {
673    ush good_length; /* reduce lazy search above this match length */
674    ush max_lazy;    /* do not perform lazy search above this match length */
675    ush nice_length; /* quit search above this match length */
676    ush max_chain;
677    compress_func func;
678 } config;
679
680 local config configuration_table[10] = {
681 /*      good lazy nice chain */
682 /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
683 /* 1 */ {4,    4,  8,    4, deflate_fast}, /* maximum speed, no lazy matches */
684 /* 2 */ {4,    5, 16,    8, deflate_fast},
685 /* 3 */ {4,    6, 32,   32, deflate_fast},
686
687 /* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
688 /* 5 */ {8,   16, 32,   32, deflate_slow},
689 /* 6 */ {8,   16, 128, 128, deflate_slow},
690 /* 7 */ {8,   32, 128, 256, deflate_slow},
691 /* 8 */ {32, 128, 258, 1024, deflate_slow},
692 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* maximum compression */
693
694 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
695  * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
696  * meaning.
697  */
698
699 #define EQUAL 0
700 /* result of memcmp for equal strings */
701
702 #ifndef NO_DUMMY_DECL
703 struct static_tree_desc_s {int dummy;}; /* for buggy compilers */
704 #endif
705
706 /* ===========================================================================
707  * Update a hash value with the given input byte
708  * IN  assertion: all calls to to UPDATE_HASH are made with consecutive
709  *    input characters, so that a running hash key can be computed from the
710  *    previous key instead of complete recalculation each time.
711  */
712 #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
713
714
715 /* ===========================================================================
716  * Insert string str in the dictionary and set match_head to the previous head
717  * of the hash chain (the most recent string with same hash key). Return
718  * the previous length of the hash chain.
719  * IN  assertion: all calls to to INSERT_STRING are made with consecutive
720  *    input characters and the first MIN_MATCH bytes of str are valid
721  *    (except for the last MIN_MATCH-1 bytes of the input file).
722  */
723 #define INSERT_STRING(s, str, match_head) \
724    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
725     s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \
726     s->head[s->ins_h] = (Pos)(str))
727
728 /* ===========================================================================
729  * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
730  * prev[] will be initialized on the fly.
731  */
732 #define CLEAR_HASH(s) \
733     s->head[s->hash_size-1] = NIL; \
734     zmemzero((charf *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
735
736 /* ========================================================================= */
737 int
738 deflateInit_(z_streamp strm, int level, const char * version,
739                  int stream_size)
740 {
741     return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
742                          Z_DEFAULT_STRATEGY, version, stream_size);
743     /* To do: ignore strm->next_in if we use it as window */
744 }
745
746 /* ========================================================================= */
747 int
748 deflateInit2_(z_streamp strm, int level, int method, int windowBits,
749                   int memLevel, int strategy, const char *version,
750                   int stream_size)
751 {
752     deflate_state *s;
753     int noheader = 0;
754     static char* my_version = ZLIB_VERSION;
755
756     ushf *overlay;
757     /* We overlay pending_buf and d_buf+l_buf. This works since the average
758      * output size for (length,distance) codes is <= 24 bits.
759      */
760
761     if (version == Z_NULL || version[0] != my_version[0] ||
762         stream_size != sizeof(z_stream)) {
763         return Z_VERSION_ERROR;
764     }
765     if (strm == Z_NULL) return Z_STREAM_ERROR;
766
767     strm->msg = Z_NULL;
768 #ifndef NO_ZCFUNCS
769     if (strm->zalloc == Z_NULL) {
770         strm->zalloc = zcalloc;
771         strm->opaque = (voidpf)0;
772     }
773     if (strm->zfree == Z_NULL) strm->zfree = zcfree;
774 #endif
775
776     if (level == Z_DEFAULT_COMPRESSION) level = 6;
777
778     if (windowBits < 0) { /* undocumented feature: suppress zlib header */
779         noheader = 1;
780         windowBits = -windowBits;
781     }
782     if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
783         windowBits < 9 || windowBits > 15 || level < 0 || level > 9 ||
784         strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
785         return Z_STREAM_ERROR;
786     }
787     s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
788     if (s == Z_NULL) return Z_MEM_ERROR;
789     strm->state = (struct internal_state FAR *)s;
790     s->strm = strm;
791
792     s->noheader = noheader;
793     s->w_bits = windowBits;
794     s->w_size = 1 << s->w_bits;
795     s->w_mask = s->w_size - 1;
796
797     s->hash_bits = memLevel + 7;
798     s->hash_size = 1 << s->hash_bits;
799     s->hash_mask = s->hash_size - 1;
800     s->hash_shift =  ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
801
802     s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
803     s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
804     s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
805
806     s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
807
808     overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
809     s->pending_buf = (uchf *) overlay;
810     s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);
811
812     if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
813         s->pending_buf == Z_NULL) {
814         strm->msg = (const char*)ERR_MSG(Z_MEM_ERROR);
815         deflateEnd (strm);
816         return Z_MEM_ERROR;
817     }
818     s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
819     s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
820
821     s->level = level;
822     s->strategy = strategy;
823     s->method = (Byte)method;
824
825     return deflateReset(strm);
826 }
827
828 /* ========================================================================= */
829 int
830 deflateSetDictionary(z_streamp strm, const Bytef *dictionary, uInt dictLength)
831 {
832     deflate_state *s;
833     uInt length = dictLength;
834     uInt n;
835     IPos hash_head = 0;
836
837     if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL)
838         return Z_STREAM_ERROR;
839
840     s = (deflate_state *) strm->state;
841     if (s->status != INIT_STATE) return Z_STREAM_ERROR;
842
843     strm->adler = adler32(strm->adler, dictionary, dictLength);
844
845     if (length < MIN_MATCH) return Z_OK;
846     if (length > MAX_DIST(s)) {
847         length = MAX_DIST(s);
848 #ifndef USE_DICT_HEAD
849         dictionary += dictLength - length; /* use the tail of the dictionary */
850 #endif
851     }
852     zmemcpy((charf *)s->window, dictionary, length);
853     s->strstart = length;
854     s->block_start = (long)length;
855
856     /* Insert all strings in the hash table (except for the last two bytes).
857      * s->lookahead stays null, so s->ins_h will be recomputed at the next
858      * call of fill_window.
859      */
860     s->ins_h = s->window[0];
861     UPDATE_HASH(s, s->ins_h, s->window[1]);
862     for (n = 0; n <= length - MIN_MATCH; n++) {
863         INSERT_STRING(s, n, hash_head);
864     }
865     if (hash_head) hash_head = 0;  /* to make compiler happy */
866     return Z_OK;
867 }
868
869 /* ========================================================================= */
870 int
871 deflateReset(z_streamp strm)
872 {
873     deflate_state *s;
874     
875     if (strm == Z_NULL || strm->state == Z_NULL ||
876         strm->zalloc == Z_NULL || strm->zfree == Z_NULL) return Z_STREAM_ERROR;
877
878     strm->total_in = strm->total_out = 0;
879     strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
880     strm->data_type = Z_UNKNOWN;
881
882     s = (deflate_state *)strm->state;
883     s->pending = 0;
884     s->pending_out = s->pending_buf;
885
886     if (s->noheader < 0) {
887         s->noheader = 0; /* was set to -1 by deflate(..., Z_FINISH); */
888     }
889     s->status = s->noheader ? BUSY_STATE : INIT_STATE;
890     strm->adler = 1;
891     s->last_flush = Z_NO_FLUSH;
892
893     _tr_init(s);
894     lm_init(s);
895
896     return Z_OK;
897 }
898
899 /* ========================================================================= */
900 int
901 deflateParams(z_streamp strm, int level, int strategy)
902 {
903     deflate_state *s;
904     compress_func func;
905     int err = Z_OK;
906
907     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
908     s = (deflate_state *) strm->state;
909
910     if (level == Z_DEFAULT_COMPRESSION) {
911         level = 6;
912     }
913     if (level < 0 || level > 9 || strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
914         return Z_STREAM_ERROR;
915     }
916     func = configuration_table[s->level].func;
917
918     if (func != configuration_table[level].func && strm->total_in != 0) {
919         /* Flush the last buffer: */
920         err = deflate(strm, Z_PARTIAL_FLUSH);
921     }
922     if (s->level != level) {
923         s->level = level;
924         s->max_lazy_match   = configuration_table[level].max_lazy;
925         s->good_match       = configuration_table[level].good_length;
926         s->nice_match       = configuration_table[level].nice_length;
927         s->max_chain_length = configuration_table[level].max_chain;
928     }
929     s->strategy = strategy;
930     return err;
931 }
932
933 /* =========================================================================
934  * Put a short in the pending buffer. The 16-bit value is put in MSB order.
935  * IN assertion: the stream state is correct and there is enough room in
936  * pending_buf.
937  */
938 local void
939 putShortMSB(deflate_state *s, uInt b)
940 {
941     put_byte(s, (Byte)(b >> 8));
942     put_byte(s, (Byte)(b & 0xff));
943 }   
944
945 /* =========================================================================
946  * Flush as much pending output as possible. All deflate() output goes
947  * through this function so some applications may wish to modify it
948  * to avoid allocating a large strm->next_out buffer and copying into it.
949  * (See also read_buf()).
950  */
951 local void
952 flush_pending(z_streamp strm)
953 {
954     deflate_state *s = (deflate_state *) strm->state;
955     unsigned len = s->pending;
956
957     if (len > strm->avail_out) len = strm->avail_out;
958     if (len == 0) return;
959
960     if (strm->next_out != Z_NULL) {
961         zmemcpy(strm->next_out, s->pending_out, len);
962         strm->next_out += len;
963     }
964     s->pending_out += len;
965     strm->total_out += len;
966     strm->avail_out  -= len;
967     s->pending -= len;
968     if (s->pending == 0) {
969         s->pending_out = s->pending_buf;
970     }
971 }
972
973 /* ========================================================================= */
974 int
975 deflate(z_streamp strm, int flush)
976 {
977     int old_flush; /* value of flush param for previous deflate call */
978     deflate_state *s;
979
980     if (strm == Z_NULL || strm->state == Z_NULL ||
981         flush > Z_FINISH || flush < 0) {
982         return Z_STREAM_ERROR;
983     }
984     s = (deflate_state *) strm->state;
985
986     if ((strm->next_in == Z_NULL && strm->avail_in != 0) ||
987         (s->status == FINISH_STATE && flush != Z_FINISH)) {
988         ERR_RETURN(strm, Z_STREAM_ERROR);
989     }
990     if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
991
992     s->strm = strm; /* just in case */
993     old_flush = s->last_flush;
994     s->last_flush = flush;
995
996     /* Write the zlib header */
997     if (s->status == INIT_STATE) {
998
999         uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
1000         uInt level_flags = (s->level-1) >> 1;
1001
1002         if (level_flags > 3) level_flags = 3;
1003         header |= (level_flags << 6);
1004         if (s->strstart != 0) header |= PRESET_DICT;
1005         header += 31 - (header % 31);
1006
1007         s->status = BUSY_STATE;
1008         putShortMSB(s, header);
1009
1010         /* Save the adler32 of the preset dictionary: */
1011         if (s->strstart != 0) {
1012             putShortMSB(s, (uInt)(strm->adler >> 16));
1013             putShortMSB(s, (uInt)(strm->adler & 0xffff));
1014         }
1015         strm->adler = 1L;
1016     }
1017
1018     /* Flush as much pending output as possible */
1019     if (s->pending != 0) {
1020         flush_pending(strm);
1021         if (strm->avail_out == 0) {
1022             /* Since avail_out is 0, deflate will be called again with
1023              * more output space, but possibly with both pending and
1024              * avail_in equal to zero. There won't be anything to do,
1025              * but this is not an error situation so make sure we
1026              * return OK instead of BUF_ERROR at next call of deflate:
1027              */
1028             s->last_flush = -1;
1029             return Z_OK;
1030         }
1031
1032     /* Make sure there is something to do and avoid duplicate consecutive
1033      * flushes. For repeated and useless calls with Z_FINISH, we keep
1034      * returning Z_STREAM_END instead of Z_BUFF_ERROR.
1035      */
1036     } else if (strm->avail_in == 0 && flush <= old_flush &&
1037                flush != Z_FINISH) {
1038         ERR_RETURN(strm, Z_BUF_ERROR);
1039     }
1040
1041     /* User must not provide more input after the first FINISH: */
1042     if (s->status == FINISH_STATE && strm->avail_in != 0) {
1043         ERR_RETURN(strm, Z_BUF_ERROR);
1044     }
1045
1046     /* Start a new block or continue the current one.
1047      */
1048     if (strm->avail_in != 0 || s->lookahead != 0 ||
1049         (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1050         block_state bstate;
1051
1052         bstate = (*(configuration_table[s->level].func))(s, flush);
1053
1054         if (bstate == finish_started || bstate == finish_done) {
1055             s->status = FINISH_STATE;
1056         }
1057         if (bstate == need_more || bstate == finish_started) {
1058             if (strm->avail_out == 0) {
1059                 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1060             }
1061             return Z_OK;
1062             /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1063              * of deflate should use the same flush parameter to make sure
1064              * that the flush is complete. So we don't have to output an
1065              * empty block here, this will be done at next call. This also
1066              * ensures that for a very small output buffer, we emit at most
1067              * one empty block.
1068              */
1069         }
1070         if (bstate == block_done) {
1071             if (flush == Z_PARTIAL_FLUSH) {
1072                 _tr_align(s);
1073             } else if (flush == Z_PACKET_FLUSH) {
1074                 /* Output just the 3-bit `stored' block type value,
1075                    but not a zero length. */
1076                 _tr_stored_type_only(s);
1077             } else { /* FULL_FLUSH or SYNC_FLUSH */
1078                 _tr_stored_block(s, NULL, 0L, 0);
1079                 /* For a full flush, this empty block will be recognized
1080                  * as a special marker by inflate_sync().
1081                  */
1082                 if (flush == Z_FULL_FLUSH) {
1083                     CLEAR_HASH(s);             /* forget history */
1084                 }
1085             }
1086             flush_pending(strm);
1087             if (strm->avail_out == 0) {
1088               s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1089               return Z_OK;
1090             }
1091         }
1092     }
1093     Assert(strm->avail_out > 0, "bug2");
1094
1095     if (flush != Z_FINISH) return Z_OK;
1096     if (s->noheader) return Z_STREAM_END;
1097
1098     /* Write the zlib trailer (adler32) */
1099     putShortMSB(s, (uInt)(strm->adler >> 16));
1100     putShortMSB(s, (uInt)(strm->adler & 0xffff));
1101     flush_pending(strm);
1102     /* If avail_out is zero, the application will call deflate again
1103      * to flush the rest.
1104      */
1105     s->noheader = -1; /* write the trailer only once! */
1106     return s->pending != 0 ? Z_OK : Z_STREAM_END;
1107 }
1108
1109 /* ========================================================================= */
1110 int
1111 deflateEnd(z_streamp strm)
1112 {
1113     int status;
1114     deflate_state *s;
1115
1116     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
1117     s = (deflate_state *) strm->state;
1118
1119     status = s->status;
1120     if (status != INIT_STATE && status != BUSY_STATE &&
1121         status != FINISH_STATE) {
1122       return Z_STREAM_ERROR;
1123     }
1124
1125     /* Deallocate in reverse order of allocations: */
1126     TRY_FREE(strm, s->pending_buf);
1127     TRY_FREE(strm, s->head);
1128     TRY_FREE(strm, s->prev);
1129     TRY_FREE(strm, s->window);
1130
1131     ZFREE(strm, s);
1132     strm->state = Z_NULL;
1133
1134     return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1135 }
1136
1137 /* =========================================================================
1138  * Copy the source state to the destination state.
1139  */
1140 int
1141 deflateCopy(z_streamp dest, z_streamp source)
1142 {
1143     deflate_state *ds;
1144     deflate_state *ss;
1145     ushf *overlay;
1146
1147     if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL)
1148         return Z_STREAM_ERROR;
1149     ss = (deflate_state *) source->state;
1150
1151     zmemcpy(dest, source, sizeof(*dest));
1152
1153     ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1154     if (ds == Z_NULL) return Z_MEM_ERROR;
1155     dest->state = (struct internal_state FAR *) ds;
1156     zmemcpy(ds, ss, sizeof(*ds));
1157     ds->strm = dest;
1158
1159     ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1160     ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
1161     ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
1162     overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2);
1163     ds->pending_buf = (uchf *) overlay;
1164
1165     if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1166         ds->pending_buf == Z_NULL) {
1167         deflateEnd (dest);
1168         return Z_MEM_ERROR;
1169     }
1170     /* ??? following zmemcpy doesn't work for 16-bit MSDOS */
1171     zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1172     zmemcpy(ds->prev, ss->prev, ds->w_size * sizeof(Pos));
1173     zmemcpy(ds->head, ss->head, ds->hash_size * sizeof(Pos));
1174     zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1175
1176     ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1177     ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush);
1178     ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;
1179
1180     ds->l_desc.dyn_tree = ds->dyn_ltree;
1181     ds->d_desc.dyn_tree = ds->dyn_dtree;
1182     ds->bl_desc.dyn_tree = ds->bl_tree;
1183
1184     return Z_OK;
1185 }
1186
1187 /* ===========================================================================
1188  * Return the number of bytes of output which are immediately available
1189  * for output from the decompressor.
1190  */
1191 int
1192 deflateOutputPending(z_streamp strm)
1193 {
1194     if (strm == Z_NULL || strm->state == Z_NULL) return 0;
1195     
1196     return ((deflate_state *)(strm->state))->pending;
1197 }
1198
1199 /* ===========================================================================
1200  * Read a new buffer from the current input stream, update the adler32
1201  * and total number of bytes read.  All deflate() input goes through
1202  * this function so some applications may wish to modify it to avoid
1203  * allocating a large strm->next_in buffer and copying from it.
1204  * (See also flush_pending()).
1205  */
1206 local int
1207 read_buf(z_streamp strm, charf *buf, unsigned size)
1208 {
1209     unsigned len = strm->avail_in;
1210
1211     if (len > size) len = size;
1212     if (len == 0) return 0;
1213
1214     strm->avail_in  -= len;
1215
1216     if (!((deflate_state *)(strm->state))->noheader) {
1217         strm->adler = adler32(strm->adler, strm->next_in, len);
1218     }
1219     zmemcpy(buf, strm->next_in, len);
1220     strm->next_in  += len;
1221     strm->total_in += len;
1222
1223     return (int)len;
1224 }
1225
1226 /* ===========================================================================
1227  * Initialize the "longest match" routines for a new zlib stream
1228  */
1229 local void
1230 lm_init(deflate_state *s)
1231 {
1232     s->window_size = (ulg)2L*s->w_size;
1233
1234     CLEAR_HASH(s);
1235
1236     /* Set the default configuration parameters:
1237      */
1238     s->max_lazy_match   = configuration_table[s->level].max_lazy;
1239     s->good_match       = configuration_table[s->level].good_length;
1240     s->nice_match       = configuration_table[s->level].nice_length;
1241     s->max_chain_length = configuration_table[s->level].max_chain;
1242
1243     s->strstart = 0;
1244     s->block_start = 0L;
1245     s->lookahead = 0;
1246     s->match_length = s->prev_length = MIN_MATCH-1;
1247     s->match_available = 0;
1248     s->ins_h = 0;
1249 #ifdef ASMV
1250     match_init(); /* initialize the asm code */
1251 #endif
1252 }
1253
1254 /* ===========================================================================
1255  * Set match_start to the longest match starting at the given string and
1256  * return its length. Matches shorter or equal to prev_length are discarded,
1257  * in which case the result is equal to prev_length and match_start is
1258  * garbage.
1259  * IN assertions: cur_match is the head of the hash chain for the current
1260  *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1261  * OUT assertion: the match length is not greater than s->lookahead.
1262  *
1263  * Parameters:
1264  *      cur_match:      current match
1265  */
1266 #ifndef ASMV
1267 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1268  * match.S. The code will be functionally equivalent.
1269  */
1270 local uInt
1271 longest_match(deflate_state *s, IPos cur_match)
1272 {
1273     unsigned chain_length = s->max_chain_length;/* max hash chain length */
1274     Bytef *scan = s->window + s->strstart; /* current string */
1275     Bytef *match;                       /* matched string */
1276     int len;                           /* length of current match */
1277     int best_len = s->prev_length;              /* best match length so far */
1278     int nice_match = s->nice_match;             /* stop if match long enough */
1279     IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1280         s->strstart - (IPos)MAX_DIST(s) : NIL;
1281     /* Stop when cur_match becomes <= limit. To simplify the code,
1282      * we prevent matches with the string of window index 0.
1283      */
1284     Posf *prev = s->prev;
1285     uInt wmask = s->w_mask;
1286
1287 #ifdef UNALIGNED_OK
1288     /* Compare two bytes at a time. Note: this is not always beneficial.
1289      * Try with and without -DUNALIGNED_OK to check.
1290      */
1291     Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1292     ush scan_start = *(ushf*)scan;
1293     ush scan_end   = *(ushf*)(scan+best_len-1);
1294 #else
1295     Bytef *strend = s->window + s->strstart + MAX_MATCH;
1296     Byte scan_end1  = scan[best_len-1];
1297     Byte scan_end   = scan[best_len];
1298 #endif
1299
1300     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1301      * It is easy to get rid of this optimization if necessary.
1302      */
1303     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1304
1305     /* Do not waste too much time if we already have a good match: */
1306     if (s->prev_length >= s->good_match) {
1307         chain_length >>= 2;
1308     }
1309     /* Do not look for matches beyond the end of the input. This is necessary
1310      * to make deflate deterministic.
1311      */
1312     if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead;
1313
1314     Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1315
1316     do {
1317         Assert(cur_match < s->strstart, "no future");
1318         match = s->window + cur_match;
1319
1320         /* Skip to next match if the match length cannot increase
1321          * or if the match length is less than 2:
1322          */
1323 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1324         /* This code assumes sizeof(unsigned short) == 2. Do not use
1325          * UNALIGNED_OK if your compiler uses a different size.
1326          */
1327         if (*(ushf*)(match+best_len-1) != scan_end ||
1328             *(ushf*)match != scan_start) continue;
1329
1330         /* It is not necessary to compare scan[2] and match[2] since they are
1331          * always equal when the other bytes match, given that the hash keys
1332          * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1333          * strstart+3, +5, ... up to strstart+257. We check for insufficient
1334          * lookahead only every 4th comparison; the 128th check will be made
1335          * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1336          * necessary to put more guard bytes at the end of the window, or
1337          * to check more often for insufficient lookahead.
1338          */
1339         Assert(scan[2] == match[2], "scan[2]?");
1340         scan++, match++;
1341         do {
1342         } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1343                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1344                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1345                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1346                  scan < strend);
1347         /* The funny "do {}" generates better code on most compilers */
1348
1349         /* Here, scan <= window+strstart+257 */
1350         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1351         if (*scan == *match) scan++;
1352
1353         len = (MAX_MATCH - 1) - (int)(strend-scan);
1354         scan = strend - (MAX_MATCH-1);
1355
1356 #else /* UNALIGNED_OK */
1357
1358         if (match[best_len]   != scan_end  ||
1359             match[best_len-1] != scan_end1 ||
1360             *match            != *scan     ||
1361             *++match          != scan[1])      continue;
1362
1363         /* The check at best_len-1 can be removed because it will be made
1364          * again later. (This heuristic is not always a win.)
1365          * It is not necessary to compare scan[2] and match[2] since they
1366          * are always equal when the other bytes match, given that
1367          * the hash keys are equal and that HASH_BITS >= 8.
1368          */
1369         scan += 2, match++;
1370         Assert(*scan == *match, "match[2]?");
1371
1372         /* We check for insufficient lookahead only every 8th comparison;
1373          * the 256th check will be made at strstart+258.
1374          */
1375         do {
1376         } while (*++scan == *++match && *++scan == *++match &&
1377                  *++scan == *++match && *++scan == *++match &&
1378                  *++scan == *++match && *++scan == *++match &&
1379                  *++scan == *++match && *++scan == *++match &&
1380                  scan < strend);
1381
1382         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1383
1384         len = MAX_MATCH - (int)(strend - scan);
1385         scan = strend - MAX_MATCH;
1386
1387 #endif /* UNALIGNED_OK */
1388
1389         if (len > best_len) {
1390             s->match_start = cur_match;
1391             best_len = len;
1392             if (len >= nice_match) break;
1393 #ifdef UNALIGNED_OK
1394             scan_end = *(ushf*)(scan+best_len-1);
1395 #else
1396             scan_end1  = scan[best_len-1];
1397             scan_end   = scan[best_len];
1398 #endif
1399         }
1400     } while ((cur_match = prev[cur_match & wmask]) > limit
1401              && --chain_length != 0);
1402
1403     if ((uInt)best_len <= s->lookahead) return best_len;
1404     return s->lookahead;
1405 }
1406 #endif /* ASMV */
1407
1408 #ifdef DEBUG_ZLIB
1409 /* ===========================================================================
1410  * Check that the match at match_start is indeed a match.
1411  */
1412 local void
1413 check_match(deflate_state *s, IPos start, IPos match, int length)
1414 {
1415     /* check that the match is indeed a match */
1416     if (zmemcmp((charf *)s->window + match,
1417                 (charf *)s->window + start, length) != EQUAL) {
1418         fprintf(stderr, " start %u, match %u, length %d\n",
1419                 start, match, length);
1420         do {
1421             fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1422         } while (--length != 0);
1423         z_error("invalid match");
1424     }
1425     if (z_verbose > 1) {
1426         fprintf(stderr,"\\[%d,%d]", start-match, length);
1427         do { putc(s->window[start++], stderr); } while (--length != 0);
1428     }
1429 }
1430 #else
1431 #  define check_match(s, start, match, length)
1432 #endif
1433
1434 /* ===========================================================================
1435  * Fill the window when the lookahead becomes insufficient.
1436  * Updates strstart and lookahead.
1437  *
1438  * IN assertion: lookahead < MIN_LOOKAHEAD
1439  * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1440  *    At least one byte has been read, or avail_in == 0; reads are
1441  *    performed for at least two bytes (required for the zip translate_eol
1442  *    option -- not supported here).
1443  */
1444 local void
1445 fill_window(deflate_state *s)
1446 {
1447     unsigned n, m;
1448     Posf *p;
1449     unsigned more;    /* Amount of free space at the end of the window. */
1450     uInt wsize = s->w_size;
1451
1452     do {
1453         more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1454
1455         /* Deal with !@#$% 64K limit: */
1456         if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1457             more = wsize;
1458
1459         } else if (more == (unsigned)(-1)) {
1460             /* Very unlikely, but possible on 16 bit machine if strstart == 0
1461              * and lookahead == 1 (input done one byte at time)
1462              */
1463             more--;
1464
1465         /* If the window is almost full and there is insufficient lookahead,
1466          * move the upper half to the lower one to make room in the upper half.
1467          */
1468         } else if (s->strstart >= wsize+MAX_DIST(s)) {
1469
1470             zmemcpy((charf *)s->window, (charf *)s->window+wsize,
1471                    (unsigned)wsize);
1472             s->match_start -= wsize;
1473             s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
1474             s->block_start -= (long) wsize;
1475
1476             /* Slide the hash table (could be avoided with 32 bit values
1477                at the expense of memory usage). We slide even when level == 0
1478                to keep the hash table consistent if we switch back to level > 0
1479                later. (Using level 0 permanently is not an optimal usage of
1480                zlib, so we don't care about this pathological case.)
1481              */
1482             n = s->hash_size;
1483             p = &s->head[n];
1484             do {
1485                 m = *--p;
1486                 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1487             } while (--n);
1488
1489             n = wsize;
1490             p = &s->prev[n];
1491             do {
1492                 m = *--p;
1493                 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1494                 /* If n is not on any hash chain, prev[n] is garbage but
1495                  * its value will never be used.
1496                  */
1497             } while (--n);
1498             more += wsize;
1499         }
1500         if (s->strm->avail_in == 0) return;
1501
1502         /* If there was no sliding:
1503          *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1504          *    more == window_size - lookahead - strstart
1505          * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1506          * => more >= window_size - 2*WSIZE + 2
1507          * In the BIG_MEM or MMAP case (not yet supported),
1508          *   window_size == input_size + MIN_LOOKAHEAD  &&
1509          *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1510          * Otherwise, window_size == 2*WSIZE so more >= 2.
1511          * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1512          */
1513         Assert(more >= 2, "more < 2");
1514
1515         n = read_buf(s->strm, (charf *)s->window + s->strstart + s->lookahead,
1516                      more);
1517         s->lookahead += n;
1518
1519         /* Initialize the hash value now that we have some input: */
1520         if (s->lookahead >= MIN_MATCH) {
1521             s->ins_h = s->window[s->strstart];
1522             UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1523 #if MIN_MATCH != 3
1524             Call UPDATE_HASH() MIN_MATCH-3 more times
1525 #endif
1526         }
1527         /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1528          * but this is not important since only literal bytes will be emitted.
1529          */
1530
1531     } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1532 }
1533
1534 /* ===========================================================================
1535  * Flush the current block, with given end-of-file flag.
1536  * IN assertion: strstart is set to the end of the current match.
1537  */
1538 #define FLUSH_BLOCK_ONLY(s, eof) { \
1539    _tr_flush_block(s, (s->block_start >= 0L ? \
1540                    (charf *)&s->window[(unsigned)s->block_start] : \
1541                    (charf *)Z_NULL), \
1542                 (ulg)((long)s->strstart - s->block_start), \
1543                 (eof)); \
1544    s->block_start = s->strstart; \
1545    flush_pending(s->strm); \
1546    Tracev((stderr,"[FLUSH]")); \
1547 }
1548
1549 /* Same but force premature exit if necessary. */
1550 #define FLUSH_BLOCK(s, eof) { \
1551    FLUSH_BLOCK_ONLY(s, eof); \
1552    if (s->strm->avail_out == 0) return (eof) ? finish_started : need_more; \
1553 }
1554
1555 /* ===========================================================================
1556  * Copy without compression as much as possible from the input stream, return
1557  * the current block state.
1558  * This function does not insert new strings in the dictionary since
1559  * uncompressible data is probably not useful. This function is used
1560  * only for the level=0 compression option.
1561  * NOTE: this function should be optimized to avoid extra copying from
1562  * window to pending_buf.
1563  */
1564 local block_state
1565 deflate_stored(deflate_state *s, int flush)
1566 {
1567     /* Stored blocks are limited to 0xffff bytes, pending_buf is limited
1568      * to pending_buf_size, and each stored block has a 5 byte header:
1569      */
1570     ulg max_block_size = 0xffff;
1571     ulg max_start;
1572
1573     if (max_block_size > s->pending_buf_size - 5) {
1574         max_block_size = s->pending_buf_size - 5;
1575     }
1576
1577     /* Copy as much as possible from input to output: */
1578     for (;;) {
1579         /* Fill the window as much as possible: */
1580         if (s->lookahead <= 1) {
1581
1582             Assert(s->strstart < s->w_size+MAX_DIST(s) ||
1583                    s->block_start >= (long)s->w_size, "slide too late");
1584
1585             fill_window(s);
1586             if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more;
1587
1588             if (s->lookahead == 0) break; /* flush the current block */
1589         }
1590         Assert(s->block_start >= 0L, "block gone");
1591
1592         s->strstart += s->lookahead;
1593         s->lookahead = 0;
1594
1595         /* Emit a stored block if pending_buf will be full: */
1596         max_start = s->block_start + max_block_size;
1597         if (s->strstart == 0 || (ulg)s->strstart >= max_start) {
1598             /* strstart == 0 is possible when wraparound on 16-bit machine */
1599             s->lookahead = (uInt)(s->strstart - max_start);
1600             s->strstart = (uInt)max_start;
1601             FLUSH_BLOCK(s, 0);
1602         }
1603         /* Flush if we may have to slide, otherwise block_start may become
1604          * negative and the data will be gone:
1605          */
1606         if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) {
1607             FLUSH_BLOCK(s, 0);
1608         }
1609     }
1610     FLUSH_BLOCK(s, flush == Z_FINISH);
1611     return flush == Z_FINISH ? finish_done : block_done;
1612 }
1613
1614 /* ===========================================================================
1615  * Compress as much as possible from the input stream, return the current
1616  * block state.
1617  * This function does not perform lazy evaluation of matches and inserts
1618  * new strings in the dictionary only for unmatched strings or for short
1619  * matches. It is used only for the fast compression options.
1620  */
1621 local block_state
1622 deflate_fast(deflate_state *s, int flush)
1623 {
1624     IPos hash_head = NIL; /* head of the hash chain */
1625     int bflush;           /* set if current block must be flushed */
1626
1627     for (;;) {
1628         /* Make sure that we always have enough lookahead, except
1629          * at the end of the input file. We need MAX_MATCH bytes
1630          * for the next match, plus MIN_MATCH bytes to insert the
1631          * string following the next match.
1632          */
1633         if (s->lookahead < MIN_LOOKAHEAD) {
1634             fill_window(s);
1635             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1636                 return need_more;
1637             }
1638             if (s->lookahead == 0) break; /* flush the current block */
1639         }
1640
1641         /* Insert the string window[strstart .. strstart+2] in the
1642          * dictionary, and set hash_head to the head of the hash chain:
1643          */
1644         if (s->lookahead >= MIN_MATCH) {
1645             INSERT_STRING(s, s->strstart, hash_head);
1646         }
1647
1648         /* Find the longest match, discarding those <= prev_length.
1649          * At this point we have always match_length < MIN_MATCH
1650          */
1651         if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1652             /* To simplify the code, we prevent matches with the string
1653              * of window index 0 (in particular we have to avoid a match
1654              * of the string with itself at the start of the input file).
1655              */
1656             if (s->strategy != Z_HUFFMAN_ONLY) {
1657                 s->match_length = longest_match (s, hash_head);
1658             }
1659             /* longest_match() sets match_start */
1660         }
1661         if (s->match_length >= MIN_MATCH) {
1662             check_match(s, s->strstart, s->match_start, s->match_length);
1663
1664             bflush = _tr_tally(s, s->strstart - s->match_start,
1665                                s->match_length - MIN_MATCH);
1666
1667             s->lookahead -= s->match_length;
1668
1669             /* Insert new strings in the hash table only if the match length
1670              * is not too large. This saves time but degrades compression.
1671              */
1672             if (s->match_length <= s->max_insert_length &&
1673                 s->lookahead >= MIN_MATCH) {
1674                 s->match_length--; /* string at strstart already in hash table */
1675                 do {
1676                     s->strstart++;
1677                     INSERT_STRING(s, s->strstart, hash_head);
1678                     /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1679                      * always MIN_MATCH bytes ahead.
1680                      */
1681                 } while (--s->match_length != 0);
1682                 s->strstart++; 
1683             } else {
1684                 s->strstart += s->match_length;
1685                 s->match_length = 0;
1686                 s->ins_h = s->window[s->strstart];
1687                 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1688 #if MIN_MATCH != 3
1689                 Call UPDATE_HASH() MIN_MATCH-3 more times
1690 #endif
1691                 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1692                  * matter since it will be recomputed at next deflate call.
1693                  */
1694             }
1695         } else {
1696             /* No match, output a literal byte */
1697             Tracevv((stderr,"%c", s->window[s->strstart]));
1698             bflush = _tr_tally (s, 0, s->window[s->strstart]);
1699             s->lookahead--;
1700             s->strstart++; 
1701         }
1702         if (bflush) FLUSH_BLOCK(s, 0);
1703     }
1704     FLUSH_BLOCK(s, flush == Z_FINISH);
1705     return flush == Z_FINISH ? finish_done : block_done;
1706 }
1707
1708 /* ===========================================================================
1709  * Same as above, but achieves better compression. We use a lazy
1710  * evaluation for matches: a match is finally adopted only if there is
1711  * no better match at the next window position.
1712  */
1713 local block_state
1714 deflate_slow(deflate_state *s, int flush)
1715 {
1716     IPos hash_head = NIL;    /* head of hash chain */
1717     int bflush;              /* set if current block must be flushed */
1718
1719     /* Process the input block. */
1720     for (;;) {
1721         /* Make sure that we always have enough lookahead, except
1722          * at the end of the input file. We need MAX_MATCH bytes
1723          * for the next match, plus MIN_MATCH bytes to insert the
1724          * string following the next match.
1725          */
1726         if (s->lookahead < MIN_LOOKAHEAD) {
1727             fill_window(s);
1728             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1729                 return need_more;
1730             }
1731             if (s->lookahead == 0) break; /* flush the current block */
1732         }
1733
1734         /* Insert the string window[strstart .. strstart+2] in the
1735          * dictionary, and set hash_head to the head of the hash chain:
1736          */
1737         if (s->lookahead >= MIN_MATCH) {
1738             INSERT_STRING(s, s->strstart, hash_head);
1739         }
1740
1741         /* Find the longest match, discarding those <= prev_length.
1742          */
1743         s->prev_length = s->match_length, s->prev_match = s->match_start;
1744         s->match_length = MIN_MATCH-1;
1745
1746         if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1747             s->strstart - hash_head <= MAX_DIST(s)) {
1748             /* To simplify the code, we prevent matches with the string
1749              * of window index 0 (in particular we have to avoid a match
1750              * of the string with itself at the start of the input file).
1751              */
1752             if (s->strategy != Z_HUFFMAN_ONLY) {
1753                 s->match_length = longest_match (s, hash_head);
1754             }
1755             /* longest_match() sets match_start */
1756
1757             if (s->match_length <= 5 && (s->strategy == Z_FILTERED ||
1758                  (s->match_length == MIN_MATCH &&
1759                   s->strstart - s->match_start > TOO_FAR))) {
1760
1761                 /* If prev_match is also MIN_MATCH, match_start is garbage
1762                  * but we will ignore the current match anyway.
1763                  */
1764                 s->match_length = MIN_MATCH-1;
1765             }
1766         }
1767         /* If there was a match at the previous step and the current
1768          * match is not better, output the previous match:
1769          */
1770         if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1771             uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1772             /* Do not insert strings in hash table beyond this. */
1773
1774             check_match(s, s->strstart-1, s->prev_match, s->prev_length);
1775
1776             bflush = _tr_tally(s, s->strstart -1 - s->prev_match,
1777                                s->prev_length - MIN_MATCH);
1778
1779             /* Insert in hash table all strings up to the end of the match.
1780              * strstart-1 and strstart are already inserted. If there is not
1781              * enough lookahead, the last two strings are not inserted in
1782              * the hash table.
1783              */
1784             s->lookahead -= s->prev_length-1;
1785             s->prev_length -= 2;
1786             do {
1787                 if (++s->strstart <= max_insert) {
1788                     INSERT_STRING(s, s->strstart, hash_head);
1789                 }
1790             } while (--s->prev_length != 0);
1791             s->match_available = 0;
1792             s->match_length = MIN_MATCH-1;
1793             s->strstart++;
1794
1795             if (bflush) FLUSH_BLOCK(s, 0);
1796
1797         } else if (s->match_available) {
1798             /* If there was no match at the previous position, output a
1799              * single literal. If there was a match but the current match
1800              * is longer, truncate the previous match to a single literal.
1801              */
1802             Tracevv((stderr,"%c", s->window[s->strstart-1]));
1803             if (_tr_tally (s, 0, s->window[s->strstart-1])) {
1804                 FLUSH_BLOCK_ONLY(s, 0);
1805             }
1806             s->strstart++;
1807             s->lookahead--;
1808             if (s->strm->avail_out == 0) return need_more;
1809         } else {
1810             /* There is no previous match to compare with, wait for
1811              * the next step to decide.
1812              */
1813             s->match_available = 1;
1814             s->strstart++;
1815             s->lookahead--;
1816         }
1817     }
1818     Assert (flush != Z_NO_FLUSH, "no flush?");
1819     if (s->match_available) {
1820         Tracevv((stderr,"%c", s->window[s->strstart-1]));
1821         _tr_tally (s, 0, s->window[s->strstart-1]);
1822         s->match_available = 0;
1823     }
1824     FLUSH_BLOCK(s, flush == Z_FINISH);
1825     return flush == Z_FINISH ? finish_done : block_done;
1826 }
1827 /* --- deflate.c */
1828
1829 /* +++ trees.c */
1830 /* trees.c -- output deflated data using Huffman coding
1831  * Copyright (C) 1995-1996 Jean-loup Gailly
1832  * For conditions of distribution and use, see copyright notice in zlib.h 
1833  */
1834
1835 /*
1836  *  ALGORITHM
1837  *
1838  *      The "deflation" process uses several Huffman trees. The more
1839  *      common source values are represented by shorter bit sequences.
1840  *
1841  *      Each code tree is stored in a compressed form which is itself
1842  * a Huffman encoding of the lengths of all the code strings (in
1843  * ascending order by source values).  The actual code strings are
1844  * reconstructed from the lengths in the inflate process, as described
1845  * in the deflate specification.
1846  *
1847  *  REFERENCES
1848  *
1849  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
1850  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
1851  *
1852  *      Storer, James A.
1853  *          Data Compression:  Methods and Theory, pp. 49-50.
1854  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
1855  *
1856  *      Sedgewick, R.
1857  *          Algorithms, p290.
1858  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
1859  */
1860
1861 /* From: trees.c,v 1.11 1996/07/24 13:41:06 me Exp $ */
1862
1863 /* #include "deflate.h" */
1864
1865 #ifdef DEBUG_ZLIB
1866 #  include <ctype.h>
1867 #endif
1868
1869 /* ===========================================================================
1870  * Constants
1871  */
1872
1873 #define MAX_BL_BITS 7
1874 /* Bit length codes must not exceed MAX_BL_BITS bits */
1875
1876 #define END_BLOCK 256
1877 /* end of block literal code */
1878
1879 #define REP_3_6      16
1880 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
1881
1882 #define REPZ_3_10    17
1883 /* repeat a zero length 3-10 times  (3 bits of repeat count) */
1884
1885 #define REPZ_11_138  18
1886 /* repeat a zero length 11-138 times  (7 bits of repeat count) */
1887
1888 local int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
1889    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
1890
1891 local int extra_dbits[D_CODES] /* extra bits for each distance code */
1892    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
1893
1894 local int extra_blbits[BL_CODES]/* extra bits for each bit length code */
1895    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
1896
1897 local uch bl_order[BL_CODES]
1898    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
1899 /* The lengths of the bit length codes are sent in order of decreasing
1900  * probability, to avoid transmitting the lengths for unused bit length codes.
1901  */
1902
1903 #define Buf_size (8 * 2*sizeof(char))
1904 /* Number of bits used within bi_buf. (bi_buf might be implemented on
1905  * more than 16 bits on some systems.)
1906  */
1907
1908 /* ===========================================================================
1909  * Local data. These are initialized only once.
1910  */
1911
1912 local ct_data static_ltree[L_CODES+2];
1913 /* The static literal tree. Since the bit lengths are imposed, there is no
1914  * need for the L_CODES extra codes used during heap construction. However
1915  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
1916  * below).
1917  */
1918
1919 local ct_data static_dtree[D_CODES];
1920 /* The static distance tree. (Actually a trivial tree since all codes use
1921  * 5 bits.)
1922  */
1923
1924 local uch dist_code[512];
1925 /* distance codes. The first 256 values correspond to the distances
1926  * 3 .. 258, the last 256 values correspond to the top 8 bits of
1927  * the 15 bit distances.
1928  */
1929
1930 local uch length_code[MAX_MATCH-MIN_MATCH+1];
1931 /* length code for each normalized match length (0 == MIN_MATCH) */
1932
1933 local int base_length[LENGTH_CODES];
1934 /* First normalized length for each code (0 = MIN_MATCH) */
1935
1936 local int base_dist[D_CODES];
1937 /* First normalized distance for each code (0 = distance of 1) */
1938
1939 struct static_tree_desc_s {
1940     ct_data *static_tree;        /* static tree or NULL */
1941     intf    *extra_bits;         /* extra bits for each code or NULL */
1942     int     extra_base;          /* base index for extra_bits */
1943     int     elems;               /* max number of elements in the tree */
1944     int     max_length;          /* max bit length for the codes */
1945 };
1946
1947 local static_tree_desc  static_l_desc =
1948 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
1949
1950 local static_tree_desc  static_d_desc =
1951 {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
1952
1953 local static_tree_desc  static_bl_desc =
1954 {NULL, extra_blbits, 0,      BL_CODES, MAX_BL_BITS};
1955
1956 /* ===========================================================================
1957  * Local (static) routines in this file.
1958  */
1959
1960 local void tr_static_init OF((void));
1961 local void init_block     OF((deflate_state *s));
1962 local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
1963 local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
1964 local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
1965 local void build_tree     OF((deflate_state *s, tree_desc *desc));
1966 local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
1967 local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
1968 local int  build_bl_tree  OF((deflate_state *s));
1969 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
1970                               int blcodes));
1971 local void compress_block OF((deflate_state *s, ct_data *ltree,
1972                               ct_data *dtree));
1973 local void set_data_type  OF((deflate_state *s));
1974 local unsigned bi_reverse OF((unsigned value, int length));
1975 local void bi_windup      OF((deflate_state *s));
1976 local void bi_flush       OF((deflate_state *s));
1977 local void copy_block     OF((deflate_state *s, charf *buf, unsigned len,
1978                               int header));
1979
1980 #ifndef DEBUG_ZLIB
1981 #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
1982    /* Send a code of the given tree. c and tree must not have side effects */
1983
1984 #else /* DEBUG_ZLIB */
1985 #  define send_code(s, c, tree) \
1986      { if (verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
1987        send_bits(s, tree[c].Code, tree[c].Len); }
1988 #endif
1989
1990 #define d_code(dist) \
1991    ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
1992 /* Mapping from a distance to a distance code. dist is the distance - 1 and
1993  * must not have side effects. dist_code[256] and dist_code[257] are never
1994  * used.
1995  */
1996
1997 /* ===========================================================================
1998  * Output a short LSB first on the stream.
1999  * IN assertion: there is enough room in pendingBuf.
2000  */
2001 #define put_short(s, w) { \
2002     put_byte(s, (uch)((w) & 0xff)); \
2003     put_byte(s, (uch)((ush)(w) >> 8)); \
2004 }
2005
2006 /* ===========================================================================
2007  * Send a value on a given number of bits.
2008  * IN assertion: length <= 16 and value fits in length bits.
2009  *
2010  * Parameters:
2011  *      value:  value to send
2012  *      length: number of bits
2013  */
2014 #ifdef DEBUG_ZLIB
2015 local void send_bits      OF((deflate_state *s, int value, int length));
2016
2017 local void
2018 send_bits(deflate_state *s, int value, int length)
2019 {
2020     Tracevv((stderr," l %2d v %4x ", length, value));
2021     Assert(length > 0 && length <= 15, "invalid length");
2022     s->bits_sent += (ulg)length;
2023
2024     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
2025      * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
2026      * unused bits in value.
2027      */
2028     if (s->bi_valid > (int)Buf_size - length) {
2029         s->bi_buf |= (value << s->bi_valid);
2030         put_short(s, s->bi_buf);
2031         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
2032         s->bi_valid += length - Buf_size;
2033     } else {
2034         s->bi_buf |= value << s->bi_valid;
2035         s->bi_valid += length;
2036     }
2037 }
2038 #else /* !DEBUG_ZLIB */
2039
2040 #define send_bits(s, value, length) \
2041 { int len = length;\
2042   if (s->bi_valid > (int)Buf_size - len) {\
2043     int val = value;\
2044     s->bi_buf |= (val << s->bi_valid);\
2045     put_short(s, s->bi_buf);\
2046     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
2047     s->bi_valid += len - Buf_size;\
2048   } else {\
2049     s->bi_buf |= (value) << s->bi_valid;\
2050     s->bi_valid += len;\
2051   }\
2052 }
2053 #endif /* DEBUG_ZLIB */
2054
2055 /* the arguments must not have side effects */
2056
2057 /* ===========================================================================
2058  * Initialize the various 'constant' tables. In a multi-threaded environment,
2059  * this function may be called by two threads concurrently, but this is
2060  * harmless since both invocations do exactly the same thing.
2061  */
2062 local void
2063 tr_static_init(void)
2064 {
2065     static int static_init_done = 0;
2066     int n;        /* iterates over tree elements */
2067     int bits;     /* bit counter */
2068     int length;   /* length value */
2069     int code;     /* code value */
2070     int dist;     /* distance index */
2071     ush bl_count[MAX_BITS+1];
2072     /* number of codes at each bit length for an optimal tree */
2073
2074     if (static_init_done) return;
2075
2076     /* Initialize the mapping length (0..255) -> length code (0..28) */
2077     length = 0;
2078     for (code = 0; code < LENGTH_CODES-1; code++) {
2079         base_length[code] = length;
2080         for (n = 0; n < (1<<extra_lbits[code]); n++) {
2081             length_code[length++] = (uch)code;
2082         }
2083     }
2084     Assert (length == 256, "tr_static_init: length != 256");
2085     /* Note that the length 255 (match length 258) can be represented
2086      * in two different ways: code 284 + 5 bits or code 285, so we
2087      * overwrite length_code[255] to use the best encoding:
2088      */
2089     length_code[length-1] = (uch)code;
2090
2091     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
2092     dist = 0;
2093     for (code = 0 ; code < 16; code++) {
2094         base_dist[code] = dist;
2095         for (n = 0; n < (1<<extra_dbits[code]); n++) {
2096             dist_code[dist++] = (uch)code;
2097         }
2098     }
2099     Assert (dist == 256, "tr_static_init: dist != 256");
2100     dist >>= 7; /* from now on, all distances are divided by 128 */
2101     for ( ; code < D_CODES; code++) {
2102         base_dist[code] = dist << 7;
2103         for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
2104             dist_code[256 + dist++] = (uch)code;
2105         }
2106     }
2107     Assert (dist == 256, "tr_static_init: 256+dist != 512");
2108
2109     /* Construct the codes of the static literal tree */
2110     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
2111     n = 0;
2112     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
2113     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
2114     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
2115     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
2116     /* Codes 286 and 287 do not exist, but we must include them in the
2117      * tree construction to get a canonical Huffman tree (longest code
2118      * all ones)
2119      */
2120     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
2121
2122     /* The static distance tree is trivial: */
2123     for (n = 0; n < D_CODES; n++) {
2124         static_dtree[n].Len = 5;
2125         static_dtree[n].Code = bi_reverse((unsigned)n, 5);
2126     }
2127     static_init_done = 1;
2128 }
2129
2130 /* ===========================================================================
2131  * Initialize the tree data structures for a new zlib stream.
2132  */
2133 void
2134 _tr_init(deflate_state *s)
2135 {
2136     tr_static_init();
2137
2138     s->compressed_len = 0L;
2139
2140     s->l_desc.dyn_tree = s->dyn_ltree;
2141     s->l_desc.stat_desc = &static_l_desc;
2142
2143     s->d_desc.dyn_tree = s->dyn_dtree;
2144     s->d_desc.stat_desc = &static_d_desc;
2145
2146     s->bl_desc.dyn_tree = s->bl_tree;
2147     s->bl_desc.stat_desc = &static_bl_desc;
2148
2149     s->bi_buf = 0;
2150     s->bi_valid = 0;
2151     s->last_eob_len = 8; /* enough lookahead for inflate */
2152 #ifdef DEBUG_ZLIB
2153     s->bits_sent = 0L;
2154 #endif
2155
2156     /* Initialize the first block of the first file: */
2157     init_block(s);
2158 }
2159
2160 /* ===========================================================================
2161  * Initialize a new block.
2162  */
2163 local void
2164 init_block(deflate_state *s)
2165 {
2166     int n; /* iterates over tree elements */
2167
2168     /* Initialize the trees. */
2169     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
2170     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
2171     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
2172
2173     s->dyn_ltree[END_BLOCK].Freq = 1;
2174     s->opt_len = s->static_len = 0L;
2175     s->last_lit = s->matches = 0;
2176 }
2177
2178 #define SMALLEST 1
2179 /* Index within the heap array of least frequent node in the Huffman tree */
2180
2181
2182 /* ===========================================================================
2183  * Remove the smallest element from the heap and recreate the heap with
2184  * one less element. Updates heap and heap_len.
2185  */
2186 #define pqremove(s, tree, top) \
2187 {\
2188     top = s->heap[SMALLEST]; \
2189     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
2190     pqdownheap(s, tree, SMALLEST); \
2191 }
2192
2193 /* ===========================================================================
2194  * Compares to subtrees, using the tree depth as tie breaker when
2195  * the subtrees have equal frequency. This minimizes the worst case length.
2196  */
2197 #define smaller(tree, n, m, depth) \
2198    (tree[n].Freq < tree[m].Freq || \
2199    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
2200
2201 /* ===========================================================================
2202  * Restore the heap property by moving down the tree starting at node k,
2203  * exchanging a node with the smallest of its two sons if necessary, stopping
2204  * when the heap property is re-established (each father smaller than its
2205  * two sons).
2206  *
2207  * Parameters:
2208  *      tree:   the tree to restore
2209  *      k:      node to move down
2210  */
2211 local void
2212 pqdownheap(deflate_state *s, ct_data *tree, int k)
2213 {
2214     int v = s->heap[k];
2215     int j = k << 1;  /* left son of k */
2216     while (j <= s->heap_len) {
2217         /* Set j to the smallest of the two sons: */
2218         if (j < s->heap_len &&
2219             smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
2220             j++;
2221         }
2222         /* Exit if v is smaller than both sons */
2223         if (smaller(tree, v, s->heap[j], s->depth)) break;
2224
2225         /* Exchange v with the smallest son */
2226         s->heap[k] = s->heap[j];  k = j;
2227
2228         /* And continue down the tree, setting j to the left son of k */
2229         j <<= 1;
2230     }
2231     s->heap[k] = v;
2232 }
2233
2234 /* ===========================================================================
2235  * Compute the optimal bit lengths for a tree and update the total bit length
2236  * for the current block.
2237  * IN assertion: the fields freq and dad are set, heap[heap_max] and
2238  *    above are the tree nodes sorted by increasing frequency.
2239  * OUT assertions: the field len is set to the optimal bit length, the
2240  *     array bl_count contains the frequencies for each bit length.
2241  *     The length opt_len is updated; static_len is also updated if stree is
2242  *     not null.
2243  *
2244  * Parameters:
2245  *      desc:   the tree descriptor
2246  */
2247 local void
2248 gen_bitlen(deflate_state *s, tree_desc *desc)
2249 {
2250     ct_data *tree  = desc->dyn_tree;
2251     int max_code   = desc->max_code;
2252     ct_data *stree = desc->stat_desc->static_tree;
2253     intf *extra    = desc->stat_desc->extra_bits;
2254     int base       = desc->stat_desc->extra_base;
2255     int max_length = desc->stat_desc->max_length;
2256     int h;              /* heap index */
2257     int n, m;           /* iterate over the tree elements */
2258     int bits;           /* bit length */
2259     int xbits;          /* extra bits */
2260     ush f;              /* frequency */
2261     int overflow = 0;   /* number of elements with bit length too large */
2262
2263     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
2264
2265     /* In a first pass, compute the optimal bit lengths (which may
2266      * overflow in the case of the bit length tree).
2267      */
2268     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
2269
2270     for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
2271         n = s->heap[h];
2272         bits = tree[tree[n].Dad].Len + 1;
2273         if (bits > max_length) bits = max_length, overflow++;
2274         tree[n].Len = (ush)bits;
2275         /* We overwrite tree[n].Dad which is no longer needed */
2276
2277         if (n > max_code) continue; /* not a leaf node */
2278
2279         s->bl_count[bits]++;
2280         xbits = 0;
2281         if (n >= base) xbits = extra[n-base];
2282         f = tree[n].Freq;
2283         s->opt_len += (ulg)f * (bits + xbits);
2284         if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
2285     }
2286     if (overflow == 0) return;
2287
2288     Trace((stderr,"\nbit length overflow\n"));
2289     /* This happens for example on obj2 and pic of the Calgary corpus */
2290
2291     /* Find the first bit length which could increase: */
2292     do {
2293         bits = max_length-1;
2294         while (s->bl_count[bits] == 0) bits--;
2295         s->bl_count[bits]--;      /* move one leaf down the tree */
2296         s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
2297         s->bl_count[max_length]--;
2298         /* The brother of the overflow item also moves one step up,
2299          * but this does not affect bl_count[max_length]
2300          */
2301         overflow -= 2;
2302     } while (overflow > 0);
2303
2304     /* Now recompute all bit lengths, scanning in increasing frequency.
2305      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
2306      * lengths instead of fixing only the wrong ones. This idea is taken
2307      * from 'ar' written by Haruhiko Okumura.)
2308      */
2309     for (bits = max_length; bits != 0; bits--) {
2310         n = s->bl_count[bits];
2311         while (n != 0) {
2312             m = s->heap[--h];
2313             if (m > max_code) continue;
2314             if (tree[m].Len != (unsigned) bits) {
2315                 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
2316                 s->opt_len += ((long)bits - (long)tree[m].Len)
2317                               *(long)tree[m].Freq;
2318                 tree[m].Len = (ush)bits;
2319             }
2320             n--;
2321         }
2322     }
2323 }
2324
2325 /* ===========================================================================
2326  * Generate the codes for a given tree and bit counts (which need not be
2327  * optimal).
2328  * IN assertion: the array bl_count contains the bit length statistics for
2329  * the given tree and the field len is set for all tree elements.
2330  * OUT assertion: the field code is set for all tree elements of non
2331  *     zero code length.
2332  *
2333  * Parameters:
2334  *      tree:           the tree to decorate
2335  *      max_code:       largest code with non zero frequency
2336  *      bl_count:       number of codes at each bit length
2337  */
2338 local void
2339 gen_codes(ct_data *tree, int max_code, ushf *bl_count)
2340 {
2341     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
2342     ush code = 0;              /* running code value */
2343     int bits;                  /* bit index */
2344     int n;                     /* code index */
2345
2346     /* The distribution counts are first used to generate the code values
2347      * without bit reversal.
2348      */
2349     for (bits = 1; bits <= MAX_BITS; bits++) {
2350         next_code[bits] = code = (code + bl_count[bits-1]) << 1;
2351     }
2352     /* Check that the bit counts in bl_count are consistent. The last code
2353      * must be all ones.
2354      */
2355     Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
2356             "inconsistent bit counts");
2357     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
2358
2359     for (n = 0;  n <= max_code; n++) {
2360         int len = tree[n].Len;
2361         if (len == 0) continue;
2362         /* Now reverse the bits */
2363         tree[n].Code = bi_reverse(next_code[len]++, len);
2364
2365         Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
2366              n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
2367     }
2368 }
2369
2370 /* ===========================================================================
2371  * Construct one Huffman tree and assigns the code bit strings and lengths.
2372  * Update the total bit length for the current block.
2373  * IN assertion: the field freq is set for all tree elements.
2374  * OUT assertions: the fields len and code are set to the optimal bit length
2375  *     and corresponding code. The length opt_len is updated; static_len is
2376  *     also updated if stree is not null. The field max_code is set.
2377  *
2378  * Parameters:
2379  *      desc:   the tree descriptor
2380  */
2381 local void
2382 build_tree(deflate_state *s, tree_desc *desc)
2383 {
2384     ct_data *tree   = desc->dyn_tree;
2385     ct_data *stree  = desc->stat_desc->static_tree;
2386     int elems       = desc->stat_desc->elems;
2387     int n, m;          /* iterate over heap elements */
2388     int max_code = -1; /* largest code with non zero frequency */
2389     int node;          /* new node being created */
2390
2391     /* Construct the initial heap, with least frequent element in
2392      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
2393      * heap[0] is not used.
2394      */
2395     s->heap_len = 0, s->heap_max = HEAP_SIZE;
2396
2397     for (n = 0; n < elems; n++) {
2398         if (tree[n].Freq != 0) {
2399             s->heap[++(s->heap_len)] = max_code = n;
2400             s->depth[n] = 0;
2401         } else {
2402             tree[n].Len = 0;
2403         }
2404     }
2405
2406     /* The pkzip format requires that at least one distance code exists,
2407      * and that at least one bit should be sent even if there is only one
2408      * possible code. So to avoid special checks later on we force at least
2409      * two codes of non zero frequency.
2410      */
2411     while (s->heap_len < 2) {
2412         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
2413         tree[node].Freq = 1;
2414         s->depth[node] = 0;
2415         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
2416         /* node is 0 or 1 so it does not have extra bits */
2417     }
2418     desc->max_code = max_code;
2419
2420     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
2421      * establish sub-heaps of increasing lengths:
2422      */
2423     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
2424
2425     /* Construct the Huffman tree by repeatedly combining the least two
2426      * frequent nodes.
2427      */
2428     node = elems;              /* next internal node of the tree */
2429     do {
2430         pqremove(s, tree, n);  /* n = node of least frequency */
2431         m = s->heap[SMALLEST]; /* m = node of next least frequency */
2432
2433         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
2434         s->heap[--(s->heap_max)] = m;
2435
2436         /* Create a new node father of n and m */
2437         tree[node].Freq = tree[n].Freq + tree[m].Freq;
2438         s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1);
2439         tree[n].Dad = tree[m].Dad = (ush)node;
2440 #ifdef DUMP_BL_TREE
2441         if (tree == s->bl_tree) {
2442             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
2443                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
2444         }
2445 #endif
2446         /* and insert the new node in the heap */
2447         s->heap[SMALLEST] = node++;
2448         pqdownheap(s, tree, SMALLEST);
2449
2450     } while (s->heap_len >= 2);
2451
2452     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
2453
2454     /* At this point, the fields freq and dad are set. We can now
2455      * generate the bit lengths.
2456      */
2457     gen_bitlen(s, (tree_desc *)desc);
2458
2459     /* The field len is now set, we can generate the bit codes */
2460     gen_codes ((ct_data *)tree, max_code, s->bl_count);
2461 }
2462
2463 /* ===========================================================================
2464  * Scan a literal or distance tree to determine the frequencies of the codes
2465  * in the bit length tree.
2466  *
2467  * Parameters:
2468  *      tree:           the tree to be scanned
2469  *      max_code:       and its largest code of non zero frequency
2470  */
2471 local void
2472 scan_tree (deflate_state *s, ct_data *tree, int max_code)
2473 {
2474     int n;                     /* iterates over all tree elements */
2475     int prevlen = -1;          /* last emitted length */
2476     int curlen;                /* length of current code */
2477     int nextlen = tree[0].Len; /* length of next code */
2478     int count = 0;             /* repeat count of the current code */
2479     int max_count = 7;         /* max repeat count */
2480     int min_count = 4;         /* min repeat count */
2481
2482     if (nextlen == 0) max_count = 138, min_count = 3;
2483     tree[max_code+1].Len = (ush)0xffff; /* guard */
2484
2485     for (n = 0; n <= max_code; n++) {
2486         curlen = nextlen; nextlen = tree[n+1].Len;
2487         if (++count < max_count && curlen == nextlen) {
2488             continue;
2489         } else if (count < min_count) {
2490             s->bl_tree[curlen].Freq += count;
2491         } else if (curlen != 0) {
2492             if (curlen != prevlen) s->bl_tree[curlen].Freq++;
2493             s->bl_tree[REP_3_6].Freq++;
2494         } else if (count <= 10) {
2495             s->bl_tree[REPZ_3_10].Freq++;
2496         } else {
2497             s->bl_tree[REPZ_11_138].Freq++;
2498         }
2499         count = 0; prevlen = curlen;
2500         if (nextlen == 0) {
2501             max_count = 138, min_count = 3;
2502         } else if (curlen == nextlen) {
2503             max_count = 6, min_count = 3;
2504         } else {
2505             max_count = 7, min_count = 4;
2506         }
2507     }
2508 }
2509
2510 /* ===========================================================================
2511  * Send a literal or distance tree in compressed form, using the codes in
2512  * bl_tree.
2513  *
2514  * Parameters:
2515  *      tree:           the tree to be scanned
2516  *      max_code:       and its largest code of non zero frequency
2517  */
2518 local void
2519 send_tree(deflate_state *s, ct_data *tree, int max_code)
2520 {
2521     int n;                     /* iterates over all tree elements */
2522     int prevlen = -1;          /* last emitted length */
2523     int curlen;                /* length of current code */
2524     int nextlen = tree[0].Len; /* length of next code */
2525     int count = 0;             /* repeat count of the current code */
2526     int max_count = 7;         /* max repeat count */
2527     int min_count = 4;         /* min repeat count */
2528
2529     /* tree[max_code+1].Len = -1; */  /* guard already set */
2530     if (nextlen == 0) max_count = 138, min_count = 3;
2531
2532     for (n = 0; n <= max_code; n++) {
2533         curlen = nextlen; nextlen = tree[n+1].Len;
2534         if (++count < max_count && curlen == nextlen) {
2535             continue;
2536         } else if (count < min_count) {
2537             do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
2538
2539         } else if (curlen != 0) {
2540             if (curlen != prevlen) {
2541                 send_code(s, curlen, s->bl_tree); count--;
2542             }
2543             Assert(count >= 3 && count <= 6, " 3_6?");
2544             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
2545
2546         } else if (count <= 10) {
2547             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
2548
2549         } else {
2550             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
2551         }
2552         count = 0; prevlen = curlen;
2553         if (nextlen == 0) {
2554             max_count = 138, min_count = 3;
2555         } else if (curlen == nextlen) {
2556             max_count = 6, min_count = 3;
2557         } else {
2558             max_count = 7, min_count = 4;
2559         }
2560     }
2561 }
2562
2563 /* ===========================================================================
2564  * Construct the Huffman tree for the bit lengths and return the index in
2565  * bl_order of the last bit length code to send.
2566  */
2567 local int
2568 build_bl_tree(deflate_state *s)
2569 {
2570     int max_blindex;  /* index of last bit length code of non zero freq */
2571
2572     /* Determine the bit length frequencies for literal and distance trees */
2573     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
2574     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
2575
2576     /* Build the bit length tree: */
2577     build_tree(s, (tree_desc *)(&(s->bl_desc)));
2578     /* opt_len now includes the length of the tree representations, except
2579      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
2580      */
2581
2582     /* Determine the number of bit length codes to send. The pkzip format
2583      * requires that at least 4 bit length codes be sent. (appnote.txt says
2584      * 3 but the actual value used is 4.)
2585      */
2586     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
2587         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
2588     }
2589     /* Update opt_len to include the bit length tree and counts */
2590     s->opt_len += 3*(max_blindex+1) + 5+5+4;
2591     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
2592             s->opt_len, s->static_len));
2593
2594     return max_blindex;
2595 }
2596
2597 /* ===========================================================================
2598  * Send the header for a block using dynamic Huffman trees: the counts, the
2599  * lengths of the bit length codes, the literal tree and the distance tree.
2600  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
2601  *
2602  * Parameters:
2603  *      lcodes, dcodes, blcodes:        number of codes for each tree
2604  */
2605 local void
2606 send_all_trees(deflate_state *s, int lcodes, int dcodes, int blcodes)
2607 {
2608     int rank;                    /* index in bl_order */
2609
2610     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
2611     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
2612             "too many codes");
2613     Tracev((stderr, "\nbl counts: "));
2614     send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
2615     send_bits(s, dcodes-1,   5);
2616     send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
2617     for (rank = 0; rank < blcodes; rank++) {
2618         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
2619         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
2620     }
2621     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
2622
2623     send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
2624     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
2625
2626     send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
2627     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
2628 }
2629
2630 /* ===========================================================================
2631  * Send a stored block
2632  *
2633  * Parameters:
2634  *      buf:            input block
2635  *      stored_len:     length of input block
2636  *      eof:            true if this is the last block for a file
2637  */
2638 void
2639 _tr_stored_block(deflate_state *s, charf *buf, ulg stored_len, int eof)
2640 {
2641     send_bits(s, (STORED_BLOCK<<1)+eof, 3);  /* send block type */
2642     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
2643     s->compressed_len += (stored_len + 4) << 3;
2644
2645     copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
2646 }
2647
2648 /* Send just the `stored block' type code without any length bytes or data.
2649  */
2650 void
2651 _tr_stored_type_only(deflate_state *s)
2652 {
2653     send_bits(s, (STORED_BLOCK << 1), 3);
2654     bi_windup(s);
2655     s->compressed_len = (s->compressed_len + 3) & ~7L;
2656 }
2657
2658
2659 /* ===========================================================================
2660  * Send one empty static block to give enough lookahead for inflate.
2661  * This takes 10 bits, of which 7 may remain in the bit buffer.
2662  * The current inflate code requires 9 bits of lookahead. If the
2663  * last two codes for the previous block (real code plus EOB) were coded
2664  * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
2665  * the last real code. In this case we send two empty static blocks instead
2666  * of one. (There are no problems if the previous block is stored or fixed.)
2667  * To simplify the code, we assume the worst case of last real code encoded
2668  * on one bit only.
2669  */
2670 void
2671 _tr_align(deflate_state *s)
2672 {
2673     send_bits(s, STATIC_TREES<<1, 3);
2674     send_code(s, END_BLOCK, static_ltree);
2675     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
2676     bi_flush(s);
2677     /* Of the 10 bits for the empty block, we have already sent
2678      * (10 - bi_valid) bits. The lookahead for the last real code (before
2679      * the EOB of the previous block) was thus at least one plus the length
2680      * of the EOB plus what we have just sent of the empty static block.
2681      */
2682     if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
2683         send_bits(s, STATIC_TREES<<1, 3);
2684         send_code(s, END_BLOCK, static_ltree);
2685         s->compressed_len += 10L;
2686         bi_flush(s);
2687     }
2688     s->last_eob_len = 7;
2689 }
2690
2691 /* ===========================================================================
2692  * Determine the best encoding for the current block: dynamic trees, static
2693  * trees or store, and output the encoded block to the zip file. This function
2694  * returns the total compressed length for the file so far.
2695  *
2696  * Parameters:
2697  *      buf:            input block, or NULL if too old
2698  *      stored_len:     length of input block
2699  *      eof:            true if this is the last block for a file
2700  */
2701 ulg
2702 _tr_flush_block(deflate_state *s, charf *buf, ulg stored_len, int eof)
2703 {
2704     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
2705     int max_blindex = 0;  /* index of last bit length code of non zero freq */
2706
2707     /* Build the Huffman trees unless a stored block is forced */
2708     if (s->level > 0) {
2709
2710          /* Check if the file is ascii or binary */
2711         if (s->data_type == Z_UNKNOWN) set_data_type(s);
2712
2713         /* Construct the literal and distance trees */
2714         build_tree(s, (tree_desc *)(&(s->l_desc)));
2715         Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
2716                 s->static_len));
2717
2718         build_tree(s, (tree_desc *)(&(s->d_desc)));
2719         Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
2720                 s->static_len));
2721         /* At this point, opt_len and static_len are the total bit lengths of
2722          * the compressed block data, excluding the tree representations.
2723          */
2724
2725         /* Build the bit length tree for the above two trees, and get the index
2726          * in bl_order of the last bit length code to send.
2727          */
2728         max_blindex = build_bl_tree(s);
2729
2730         /* Determine the best encoding. Compute first the block length in bytes*/
2731         opt_lenb = (s->opt_len+3+7)>>3;
2732         static_lenb = (s->static_len+3+7)>>3;
2733
2734         Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
2735                 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
2736                 s->last_lit));
2737
2738         if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
2739
2740     } else {
2741         Assert(buf != NULL, "lost buf");
2742         opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
2743     }
2744
2745     /* If compression failed and this is the first and last block,
2746      * and if the .zip file can be seeked (to rewrite the local header),
2747      * the whole file is transformed into a stored file:
2748      */
2749 #ifdef STORED_FILE_OK
2750 #  ifdef FORCE_STORED_FILE
2751     if (eof && s->compressed_len == 0L) { /* force stored file */
2752 #  else
2753     if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable()) {
2754 #  endif
2755         /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
2756         if (buf == NULL) error ("block vanished");
2757
2758         copy_block(s, buf, (unsigned)stored_len, 0); /* without header */
2759         s->compressed_len = stored_len << 3;
2760         s->method = STORED;
2761     } else
2762 #endif /* STORED_FILE_OK */
2763
2764 #ifdef FORCE_STORED
2765     if (buf != NULL) { /* force stored block */
2766 #else
2767     if (stored_len+4 <= opt_lenb && buf != NULL) {
2768                        /* 4: two words for the lengths */
2769 #endif
2770         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
2771          * Otherwise we can't have processed more than WSIZE input bytes since
2772          * the last block flush, because compression would have been
2773          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
2774          * transform a block into a stored block.
2775          */
2776         _tr_stored_block(s, buf, stored_len, eof);
2777
2778 #ifdef FORCE_STATIC
2779     } else if (static_lenb >= 0) { /* force static trees */
2780 #else
2781     } else if (static_lenb == opt_lenb) {
2782 #endif
2783         send_bits(s, (STATIC_TREES<<1)+eof, 3);
2784         compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
2785         s->compressed_len += 3 + s->static_len;
2786     } else {
2787         send_bits(s, (DYN_TREES<<1)+eof, 3);
2788         send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
2789                        max_blindex+1);
2790         compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
2791         s->compressed_len += 3 + s->opt_len;
2792     }
2793     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
2794     init_block(s);
2795
2796     if (eof) {
2797         bi_windup(s);
2798         s->compressed_len += 7;  /* align on byte boundary */
2799     }
2800     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
2801            s->compressed_len-7*eof));
2802
2803     return s->compressed_len >> 3;
2804 }
2805
2806 /* ===========================================================================
2807  * Save the match info and tally the frequency counts. Return true if
2808  * the current block must be flushed.
2809  *
2810  * Parameters:
2811  *      dist:   distance of matched string
2812  *      lc:     match length-MIN_MATCH or unmatched char (if dist==0)
2813  */
2814 int
2815 _tr_tally(deflate_state *s, unsigned dist, unsigned lc)
2816 {
2817     s->d_buf[s->last_lit] = (ush)dist;
2818     s->l_buf[s->last_lit++] = (uch)lc;
2819     if (dist == 0) {
2820         /* lc is the unmatched char */
2821         s->dyn_ltree[lc].Freq++;
2822     } else {
2823         s->matches++;
2824         /* Here, lc is the match length - MIN_MATCH */
2825         dist--;             /* dist = match distance - 1 */
2826         Assert((ush)dist < (ush)MAX_DIST(s) &&
2827                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
2828                (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
2829
2830         s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++;
2831         s->dyn_dtree[d_code(dist)].Freq++;
2832     }
2833
2834     /* Try to guess if it is profitable to stop the current block here */
2835     if (s->level > 2 && (s->last_lit & 0xfff) == 0) {
2836         /* Compute an upper bound for the compressed length */
2837         ulg out_length = (ulg)s->last_lit*8L;
2838         ulg in_length = (ulg)((long)s->strstart - s->block_start);
2839         int dcode;
2840         for (dcode = 0; dcode < D_CODES; dcode++) {
2841             out_length += (ulg)s->dyn_dtree[dcode].Freq *
2842                 (5L+extra_dbits[dcode]);
2843         }
2844         out_length >>= 3;
2845         Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
2846                s->last_lit, in_length, out_length,
2847                100L - out_length*100L/in_length));
2848         if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
2849     }
2850     return (s->last_lit == s->lit_bufsize-1);
2851     /* We avoid equality with lit_bufsize because of wraparound at 64K
2852      * on 16 bit machines and because stored blocks are restricted to
2853      * 64K-1 bytes.
2854      */
2855 }
2856
2857 /* ===========================================================================
2858  * Send the block data compressed using the given Huffman trees
2859  *
2860  * Parameters:
2861  *      ltree:  literal tree
2862  *      dtree:  distance tree   
2863  */
2864 local void
2865 compress_block(deflate_state *s, ct_data *ltree, ct_data *dtree)
2866 {
2867     unsigned dist;      /* distance of matched string */
2868     int lc;             /* match length or unmatched char (if dist == 0) */
2869     unsigned lx = 0;    /* running index in l_buf */
2870     unsigned code;      /* the code to send */
2871     int extra;          /* number of extra bits to send */
2872
2873     if (s->last_lit != 0) do {
2874         dist = s->d_buf[lx];
2875         lc = s->l_buf[lx++];
2876         if (dist == 0) {
2877             send_code(s, lc, ltree); /* send a literal byte */
2878             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
2879         } else {
2880             /* Here, lc is the match length - MIN_MATCH */
2881             code = length_code[lc];
2882             send_code(s, code+LITERALS+1, ltree); /* send the length code */
2883             extra = extra_lbits[code];
2884             if (extra != 0) {
2885                 lc -= base_length[code];
2886                 send_bits(s, lc, extra);       /* send the extra length bits */
2887             }
2888             dist--; /* dist is now the match distance - 1 */
2889             code = d_code(dist);
2890             Assert (code < D_CODES, "bad d_code");
2891
2892             send_code(s, code, dtree);       /* send the distance code */
2893             extra = extra_dbits[code];
2894             if (extra != 0) {
2895                 dist -= base_dist[code];
2896                 send_bits(s, dist, extra);   /* send the extra distance bits */
2897             }
2898         } /* literal or match pair ? */
2899
2900         /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
2901         Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
2902
2903     } while (lx < s->last_lit);
2904
2905     send_code(s, END_BLOCK, ltree);
2906     s->last_eob_len = ltree[END_BLOCK].Len;
2907 }
2908
2909 /* ===========================================================================
2910  * Set the data type to ASCII or BINARY, using a crude approximation:
2911  * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
2912  * IN assertion: the fields freq of dyn_ltree are set and the total of all
2913  * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
2914  */
2915 local void
2916 set_data_type(deflate_state *s)
2917 {
2918     int n = 0;
2919     unsigned ascii_freq = 0;
2920     unsigned bin_freq = 0;
2921     while (n < 7)        bin_freq += s->dyn_ltree[n++].Freq;
2922     while (n < 128)    ascii_freq += s->dyn_ltree[n++].Freq;
2923     while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
2924     s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII);
2925 }
2926
2927 /* ===========================================================================
2928  * Reverse the first len bits of a code, using straightforward code (a faster
2929  * method would use a table)
2930  * IN assertion: 1 <= len <= 15
2931  *
2932  * Parameters:
2933  *      code:   the value to invert
2934  *      len:    its bit length
2935  */
2936 local unsigned
2937 bi_reverse(unsigned code, int len)
2938 {
2939     unsigned res = 0;
2940     do {
2941         res |= code & 1;
2942         code >>= 1, res <<= 1;
2943     } while (--len > 0);
2944     return res >> 1;
2945 }
2946
2947 /* ===========================================================================
2948  * Flush the bit buffer, keeping at most 7 bits in it.
2949  */
2950 local void
2951 bi_flush(deflate_state *s)
2952 {
2953     if (s->bi_valid == 16) {
2954         put_short(s, s->bi_buf);
2955         s->bi_buf = 0;
2956         s->bi_valid = 0;
2957     } else if (s->bi_valid >= 8) {
2958         put_byte(s, (Byte)s->bi_buf);
2959         s->bi_buf >>= 8;
2960         s->bi_valid -= 8;
2961     }
2962 }
2963
2964 /* ===========================================================================
2965  * Flush the bit buffer and align the output on a byte boundary
2966  */
2967 local void
2968 bi_windup(deflate_state *s)
2969 {
2970     if (s->bi_valid > 8) {
2971         put_short(s, s->bi_buf);
2972     } else if (s->bi_valid > 0) {
2973         put_byte(s, (Byte)s->bi_buf);
2974     }
2975     s->bi_buf = 0;
2976     s->bi_valid = 0;
2977 #ifdef DEBUG_ZLIB
2978     s->bits_sent = (s->bits_sent+7) & ~7;
2979 #endif
2980 }
2981
2982 /* ===========================================================================
2983  * Copy a stored block, storing first the length and its
2984  * one's complement if requested.
2985  *
2986  * Parameters:
2987  *      buf:    the input data
2988  *      len:    its length
2989  *      header: true if block header must be written
2990  */
2991 local void
2992 copy_block(deflate_state *s, charf *buf, unsigned len, int header)
2993 {
2994     bi_windup(s);        /* align on byte boundary */
2995     s->last_eob_len = 8; /* enough lookahead for inflate */
2996
2997     if (header) {
2998         put_short(s, (ush)len);   
2999         put_short(s, (ush)~len);
3000 #ifdef DEBUG_ZLIB
3001         s->bits_sent += 2*16;
3002 #endif
3003     }
3004 #ifdef DEBUG_ZLIB
3005     s->bits_sent += (ulg)len<<3;
3006 #endif
3007     /* bundle up the put_byte(s, *buf++) calls */
3008     zmemcpy(&s->pending_buf[s->pending], buf, len);
3009     s->pending += len;
3010 }
3011 /* --- trees.c */
3012
3013 /* +++ inflate.c */
3014 /* inflate.c -- zlib interface to inflate modules
3015  * Copyright (C) 1995-1996 Mark Adler
3016  * For conditions of distribution and use, see copyright notice in zlib.h 
3017  */
3018
3019 /* #include "zutil.h" */
3020
3021 /* +++ infblock.h */
3022 /* infblock.h -- header to use infblock.c
3023  * Copyright (C) 1995-1996 Mark Adler
3024  * For conditions of distribution and use, see copyright notice in zlib.h 
3025  */
3026
3027 /* WARNING: this file should *not* be used by applications. It is
3028    part of the implementation of the compression library and is
3029    subject to change. Applications should only use zlib.h.
3030  */
3031
3032 struct inflate_blocks_state;
3033 typedef struct inflate_blocks_state FAR inflate_blocks_statef;
3034
3035 extern inflate_blocks_statef * inflate_blocks_new OF((
3036     z_streamp z,
3037     check_func c,               /* check function */
3038     uInt w));                   /* window size */
3039
3040 extern int inflate_blocks OF((
3041     inflate_blocks_statef *,
3042     z_streamp ,
3043     int));                      /* initial return code */
3044
3045 extern void inflate_blocks_reset OF((
3046     inflate_blocks_statef *,
3047     z_streamp ,
3048     uLongf *));                  /* check value on output */
3049
3050 extern int inflate_blocks_free OF((
3051     inflate_blocks_statef *,
3052     z_streamp ,
3053     uLongf *));                  /* check value on output */
3054
3055 extern void inflate_set_dictionary OF((
3056     inflate_blocks_statef *s,
3057     const Bytef *d,  /* dictionary */
3058     uInt  n));       /* dictionary length */
3059
3060 extern int inflate_addhistory OF((
3061     inflate_blocks_statef *,
3062     z_streamp));
3063
3064 extern int inflate_packet_flush OF((
3065     inflate_blocks_statef *));
3066 /* --- infblock.h */
3067
3068 #ifndef NO_DUMMY_DECL
3069 struct inflate_blocks_state {int dummy;}; /* for buggy compilers */
3070 #endif
3071
3072 /* inflate private state */
3073 struct internal_state {
3074
3075   /* mode */
3076   enum {
3077       METHOD,   /* waiting for method byte */
3078       FLAG,     /* waiting for flag byte */
3079       DICT4,    /* four dictionary check bytes to go */
3080       DICT3,    /* three dictionary check bytes to go */
3081       DICT2,    /* two dictionary check bytes to go */
3082       DICT1,    /* one dictionary check byte to go */
3083       DICT0,    /* waiting for inflateSetDictionary */
3084       BLOCKS,   /* decompressing blocks */
3085       CHECK4,   /* four check bytes to go */
3086       CHECK3,   /* three check bytes to go */
3087       CHECK2,   /* two check bytes to go */
3088       CHECK1,   /* one check byte to go */
3089       DONE,     /* finished check, done */
3090       BAD}      /* got an error--stay here */
3091     mode;               /* current inflate mode */
3092
3093   /* mode dependent information */
3094   union {
3095     uInt method;        /* if FLAGS, method byte */
3096     struct {
3097       uLong was;                /* computed check value */
3098       uLong need;               /* stream check value */
3099     } check;            /* if CHECK, check values to compare */
3100     uInt marker;        /* if BAD, inflateSync's marker bytes count */
3101   } sub;        /* submode */
3102
3103   /* mode independent information */
3104   int  nowrap;          /* flag for no wrapper */
3105   uInt wbits;           /* log2(window size)  (8..15, defaults to 15) */
3106   inflate_blocks_statef 
3107     *blocks;            /* current inflate_blocks state */
3108
3109 };
3110
3111
3112 int
3113 inflateReset(z_streamp z)
3114 {
3115   uLong c;
3116
3117   if (z == Z_NULL || z->state == Z_NULL)
3118     return Z_STREAM_ERROR;
3119   z->total_in = z->total_out = 0;
3120   z->msg = Z_NULL;
3121   z->state->mode = z->state->nowrap ? BLOCKS : METHOD;
3122   inflate_blocks_reset(z->state->blocks, z, &c);
3123   Trace((stderr, "inflate: reset\n"));
3124   return Z_OK;
3125 }
3126
3127
3128 int
3129 inflateEnd(z_streamp z)
3130 {
3131   uLong c;
3132
3133   if (z == Z_NULL || z->state == Z_NULL || z->zfree == Z_NULL)
3134     return Z_STREAM_ERROR;
3135   if (z->state->blocks != Z_NULL)
3136     inflate_blocks_free(z->state->blocks, z, &c);
3137   ZFREE(z, z->state);
3138   z->state = Z_NULL;
3139   Trace((stderr, "inflate: end\n"));
3140   return Z_OK;
3141 }
3142
3143
3144 int
3145 inflateInit2_(z_streamp z, int w, const char *version, int stream_size)
3146 {
3147   if (version == Z_NULL || version[0] != ZLIB_VERSION[0] ||
3148       stream_size != sizeof(z_stream))
3149       return Z_VERSION_ERROR;
3150
3151   /* initialize state */
3152   if (z == Z_NULL)
3153     return Z_STREAM_ERROR;
3154   z->msg = Z_NULL;
3155 #ifndef NO_ZCFUNCS
3156   if (z->zalloc == Z_NULL)
3157   {
3158     z->zalloc = zcalloc;
3159     z->opaque = (voidpf)0;
3160   }
3161   if (z->zfree == Z_NULL) z->zfree = zcfree;
3162 #endif
3163   if ((z->state = (struct internal_state FAR *)
3164        ZALLOC(z,1,sizeof(struct internal_state))) == Z_NULL)
3165     return Z_MEM_ERROR;
3166   z->state->blocks = Z_NULL;
3167
3168   /* handle undocumented nowrap option (no zlib header or check) */
3169   z->state->nowrap = 0;
3170   if (w < 0)
3171   {
3172     w = - w;
3173     z->state->nowrap = 1;
3174   }
3175
3176   /* set window size */
3177   if (w < 8 || w > 15)
3178   {
3179     inflateEnd(z);
3180     return Z_STREAM_ERROR;
3181   }
3182   z->state->wbits = (uInt)w;
3183
3184   /* create inflate_blocks state */
3185   if ((z->state->blocks =
3186       inflate_blocks_new(z, z->state->nowrap ? Z_NULL : adler32, (uInt)1 << w))
3187       == Z_NULL)
3188   {
3189     inflateEnd(z);
3190     return Z_MEM_ERROR;
3191   }
3192   Trace((stderr, "inflate: allocated\n"));
3193
3194   /* reset state */
3195   inflateReset(z);
3196   return Z_OK;
3197 }
3198
3199
3200 int
3201 inflateInit_(z_streamp z, const char *version, int stream_size)
3202 {
3203   return inflateInit2_(z, DEF_WBITS, version, stream_size);
3204 }
3205
3206
3207 #define NEEDBYTE {if(z->avail_in==0)goto empty;r=Z_OK;}
3208 #define NEXTBYTE (z->avail_in--,z->total_in++,*z->next_in++)
3209
3210 int
3211 inflate(z_streamp z, int f)
3212 {
3213   int r;
3214   uInt b;
3215
3216   if (z == Z_NULL || z->state == Z_NULL || z->next_in == Z_NULL || f < 0)
3217     return Z_STREAM_ERROR;
3218   r = Z_BUF_ERROR;
3219   while (1) switch (z->state->mode)
3220   {
3221     case METHOD:
3222       NEEDBYTE
3223       if (((z->state->sub.method = NEXTBYTE) & 0xf) != Z_DEFLATED)
3224       {
3225         z->state->mode = BAD;
3226         z->msg = (char*)"unknown compression method";
3227         z->state->sub.marker = 5;       /* can't try inflateSync */
3228         break;
3229       }
3230       if ((z->state->sub.method >> 4) + 8 > z->state->wbits)
3231       {
3232         z->state->mode = BAD;
3233         z->msg = (char*)"invalid window size";
3234         z->state->sub.marker = 5;       /* can't try inflateSync */
3235         break;
3236       }
3237       z->state->mode = FLAG;
3238     case FLAG:
3239       NEEDBYTE
3240       b = NEXTBYTE;
3241       if (((z->state->sub.method << 8) + b) % 31)
3242       {
3243         z->state->mode = BAD;
3244         z->msg = (char*)"incorrect header check";
3245         z->state->sub.marker = 5;       /* can't try inflateSync */
3246         break;
3247       }
3248       Trace((stderr, "inflate: zlib header ok\n"));
3249       if (!(b & PRESET_DICT))
3250       {
3251         z->state->mode = BLOCKS;
3252         break;
3253       }
3254       z->state->mode = DICT4;
3255     case DICT4:
3256       NEEDBYTE
3257       z->state->sub.check.need = (uLong)NEXTBYTE << 24;
3258       z->state->mode = DICT3;
3259     case DICT3:
3260       NEEDBYTE
3261       z->state->sub.check.need += (uLong)NEXTBYTE << 16;
3262       z->state->mode = DICT2;
3263     case DICT2:
3264       NEEDBYTE
3265       z->state->sub.check.need += (uLong)NEXTBYTE << 8;
3266       z->state->mode = DICT1;
3267     case DICT1:
3268       NEEDBYTE
3269       z->state->sub.check.need += (uLong)NEXTBYTE;
3270       z->adler = z->state->sub.check.need;
3271       z->state->mode = DICT0;
3272       return Z_NEED_DICT;
3273     case DICT0:
3274       z->state->mode = BAD;
3275       z->msg = (char*)"need dictionary";
3276       z->state->sub.marker = 0;       /* can try inflateSync */
3277       return Z_STREAM_ERROR;
3278     case BLOCKS:
3279       r = inflate_blocks(z->state->blocks, z, r);
3280       if (f == Z_PACKET_FLUSH && z->avail_in == 0 && z->avail_out != 0)
3281           r = inflate_packet_flush(z->state->blocks);
3282       if (r == Z_DATA_ERROR)
3283       {
3284         z->state->mode = BAD;
3285         z->state->sub.marker = 0;       /* can try inflateSync */
3286         break;
3287       }
3288       if (r != Z_STREAM_END)
3289         return r;
3290       r = Z_OK;
3291       inflate_blocks_reset(z->state->blocks, z, &z->state->sub.check.was);
3292       if (z->state->nowrap)
3293       {
3294         z->state->mode = DONE;
3295         break;
3296       }
3297       z->state->mode = CHECK4;
3298     case CHECK4:
3299       NEEDBYTE
3300       z->state->sub.check.need = (uLong)NEXTBYTE << 24;
3301       z->state->mode = CHECK3;
3302     case CHECK3:
3303       NEEDBYTE
3304       z->state->sub.check.need += (uLong)NEXTBYTE << 16;
3305       z->state->mode = CHECK2;
3306     case CHECK2:
3307       NEEDBYTE
3308       z->state->sub.check.need += (uLong)NEXTBYTE << 8;
3309       z->state->mode = CHECK1;
3310     case CHECK1:
3311       NEEDBYTE
3312       z->state->sub.check.need += (uLong)NEXTBYTE;
3313
3314       if (z->state->sub.check.was != z->state->sub.check.need)
3315       {
3316         z->state->mode = BAD;
3317         z->msg = (char*)"incorrect data check";
3318         z->state->sub.marker = 5;       /* can't try inflateSync */
3319         break;
3320       }
3321       Trace((stderr, "inflate: zlib check ok\n"));
3322       z->state->mode = DONE;
3323     case DONE:
3324       return Z_STREAM_END;
3325     case BAD:
3326       return Z_DATA_ERROR;
3327     default:
3328       return Z_STREAM_ERROR;
3329   }
3330
3331  empty:
3332   if (f != Z_PACKET_FLUSH)
3333     return r;
3334   z->state->mode = BAD;
3335   z->msg = (char *)"need more for packet flush";
3336   z->state->sub.marker = 0;       /* can try inflateSync */
3337   return Z_DATA_ERROR;
3338 }
3339
3340
3341 int
3342 inflateSetDictionary(z_streamp z, const Bytef *dictionary, uInt dictLength)
3343 {
3344   uInt length = dictLength;
3345
3346   if (z == Z_NULL || z->state == Z_NULL || z->state->mode != DICT0)
3347     return Z_STREAM_ERROR;
3348
3349   if (adler32(1L, dictionary, dictLength) != z->adler) return Z_DATA_ERROR;
3350   z->adler = 1L;
3351
3352   if (length >= ((uInt)1<<z->state->wbits))
3353   {
3354     length = (1<<z->state->wbits)-1;
3355     dictionary += dictLength - length;
3356   }
3357   inflate_set_dictionary(z->state->blocks, dictionary, length);
3358   z->state->mode = BLOCKS;
3359   return Z_OK;
3360 }
3361
3362 /*
3363  * This subroutine adds the data at next_in/avail_in to the output history
3364  * without performing any output.  The output buffer must be "caught up";
3365  * i.e. no pending output (hence s->read equals s->write), and the state must
3366  * be BLOCKS (i.e. we should be willing to see the start of a series of
3367  * BLOCKS).  On exit, the output will also be caught up, and the checksum
3368  * will have been updated if need be.
3369  */
3370
3371 int
3372 inflateIncomp(z_stream *z)
3373 {
3374     if (z->state->mode != BLOCKS)
3375         return Z_DATA_ERROR;
3376     return inflate_addhistory(z->state->blocks, z);
3377 }
3378
3379
3380 int
3381 inflateSync(z_streamp z)
3382 {
3383   uInt n;       /* number of bytes to look at */
3384   Bytef *p;     /* pointer to bytes */
3385   uInt m;       /* number of marker bytes found in a row */
3386   uLong r, w;   /* temporaries to save total_in and total_out */
3387
3388   /* set up */
3389   if (z == Z_NULL || z->state == Z_NULL)
3390     return Z_STREAM_ERROR;
3391   if (z->state->mode != BAD)
3392   {
3393     z->state->mode = BAD;
3394     z->state->sub.marker = 0;
3395   }
3396   if ((n = z->avail_in) == 0)
3397     return Z_BUF_ERROR;
3398   p = z->next_in;
3399   m = z->state->sub.marker;
3400
3401   /* search */
3402   while (n && m < 4)
3403   {
3404     if (*p == (Byte)(m < 2 ? 0 : 0xff))
3405       m++;
3406     else if (*p)
3407       m = 0;
3408     else
3409       m = 4 - m;
3410     p++, n--;
3411   }
3412
3413   /* restore */
3414   z->total_in += p - z->next_in;
3415   z->next_in = p;
3416   z->avail_in = n;
3417   z->state->sub.marker = m;
3418
3419   /* return no joy or set up to restart on a new block */
3420   if (m != 4)
3421     return Z_DATA_ERROR;
3422   r = z->total_in;  w = z->total_out;
3423   inflateReset(z);
3424   z->total_in = r;  z->total_out = w;
3425   z->state->mode = BLOCKS;
3426   return Z_OK;
3427 }
3428
3429 #undef NEEDBYTE
3430 #undef NEXTBYTE
3431 /* --- inflate.c */
3432
3433 /* +++ infblock.c */
3434 /* infblock.c -- interpret and process block types to last block
3435  * Copyright (C) 1995-1996 Mark Adler
3436  * For conditions of distribution and use, see copyright notice in zlib.h 
3437  */
3438
3439 /* #include "zutil.h" */
3440 /* #include "infblock.h" */
3441
3442 /* +++ inftrees.h */
3443 /* inftrees.h -- header to use inftrees.c
3444  * Copyright (C) 1995-1996 Mark Adler
3445  * For conditions of distribution and use, see copyright notice in zlib.h 
3446  */
3447
3448 /* WARNING: this file should *not* be used by applications. It is
3449    part of the implementation of the compression library and is
3450    subject to change. Applications should only use zlib.h.
3451  */
3452
3453 /* Huffman code lookup table entry--this entry is four bytes for machines
3454    that have 16-bit pointers (e.g. PC's in the small or medium model). */
3455
3456 typedef struct inflate_huft_s FAR inflate_huft;
3457
3458 struct inflate_huft_s {
3459   union {
3460     struct {
3461       Byte Exop;        /* number of extra bits or operation */
3462       Byte Bits;        /* number of bits in this code or subcode */
3463     } what;
3464     Bytef *pad;         /* pad structure to a power of 2 (4 bytes for */
3465   } word;               /*  16-bit, 8 bytes for 32-bit machines) */
3466   union {
3467     uInt Base;          /* literal, length base, or distance base */
3468     inflate_huft *Next; /* pointer to next level of table */
3469   } more;
3470 };
3471
3472 #ifdef DEBUG_ZLIB
3473   extern uInt inflate_hufts;
3474 #endif
3475
3476 extern int inflate_trees_bits OF((
3477     uIntf *,                    /* 19 code lengths */
3478     uIntf *,                    /* bits tree desired/actual depth */
3479     inflate_huft * FAR *,       /* bits tree result */
3480     z_streamp ));               /* for zalloc, zfree functions */
3481
3482 extern int inflate_trees_dynamic OF((
3483     uInt,                       /* number of literal/length codes */
3484     uInt,                       /* number of distance codes */
3485     uIntf *,                    /* that many (total) code lengths */
3486     uIntf *,                    /* literal desired/actual bit depth */
3487     uIntf *,                    /* distance desired/actual bit depth */
3488     inflate_huft * FAR *,       /* literal/length tree result */
3489     inflate_huft * FAR *,       /* distance tree result */
3490     z_streamp ));               /* for zalloc, zfree functions */
3491
3492 extern int inflate_trees_fixed OF((
3493     uIntf *,                    /* literal desired/actual bit depth */
3494     uIntf *,                    /* distance desired/actual bit depth */
3495     inflate_huft * FAR *,       /* literal/length tree result */
3496     inflate_huft * FAR *));     /* distance tree result */
3497
3498 extern int inflate_trees_free OF((
3499     inflate_huft *,             /* tables to free */
3500     z_streamp ));               /* for zfree function */
3501
3502 /* --- inftrees.h */
3503
3504 /* +++ infcodes.h */
3505 /* infcodes.h -- header to use infcodes.c
3506  * Copyright (C) 1995-1996 Mark Adler
3507  * For conditions of distribution and use, see copyright notice in zlib.h 
3508  */
3509
3510 /* WARNING: this file should *not* be used by applications. It is
3511    part of the implementation of the compression library and is
3512    subject to change. Applications should only use zlib.h.
3513  */
3514
3515 struct inflate_codes_state;
3516 typedef struct inflate_codes_state FAR inflate_codes_statef;
3517
3518 extern inflate_codes_statef *inflate_codes_new OF((
3519     uInt, uInt,
3520     inflate_huft *, inflate_huft *,
3521     z_streamp ));
3522
3523 extern int inflate_codes OF((
3524     inflate_blocks_statef *,
3525     z_streamp ,
3526     int));
3527
3528 extern void inflate_codes_free OF((
3529     inflate_codes_statef *,
3530     z_streamp ));
3531
3532 /* --- infcodes.h */
3533
3534 /* +++ infutil.h */
3535 /* infutil.h -- types and macros common to blocks and codes
3536  * Copyright (C) 1995-1996 Mark Adler
3537  * For conditions of distribution and use, see copyright notice in zlib.h 
3538  */
3539
3540 /* WARNING: this file should *not* be used by applications. It is
3541    part of the implementation of the compression library and is
3542    subject to change. Applications should only use zlib.h.
3543  */
3544
3545 #ifndef _INFUTIL_H
3546 #define _INFUTIL_H
3547
3548 typedef enum {
3549       TYPE,     /* get type bits (3, including end bit) */
3550       LENS,     /* get lengths for stored */
3551       STORED,   /* processing stored block */
3552       TABLE,    /* get table lengths */
3553       BTREE,    /* get bit lengths tree for a dynamic block */
3554       DTREE,    /* get length, distance trees for a dynamic block */
3555       CODES,    /* processing fixed or dynamic block */
3556       DRY,      /* output remaining window bytes */
3557       DONEB,    /* finished last block, done */
3558       BADB}     /* got a data error--stuck here */
3559 inflate_block_mode;
3560
3561 /* inflate blocks semi-private state */
3562 struct inflate_blocks_state {
3563
3564   /* mode */
3565   inflate_block_mode  mode;     /* current inflate_block mode */
3566
3567   /* mode dependent information */
3568   union {
3569     uInt left;          /* if STORED, bytes left to copy */
3570     struct {
3571       uInt table;               /* table lengths (14 bits) */
3572       uInt index;               /* index into blens (or border) */
3573       uIntf *blens;             /* bit lengths of codes */
3574       uInt bb;                  /* bit length tree depth */
3575       inflate_huft *tb;         /* bit length decoding tree */
3576     } trees;            /* if DTREE, decoding info for trees */
3577     struct {
3578       inflate_huft *tl;
3579       inflate_huft *td;         /* trees to free */
3580       inflate_codes_statef 
3581          *codes;
3582     } decode;           /* if CODES, current state */
3583   } sub;                /* submode */
3584   uInt last;            /* true if this block is the last block */
3585
3586   /* mode independent information */
3587   uInt bitk;            /* bits in bit buffer */
3588   uLong bitb;           /* bit buffer */
3589   Bytef *window;        /* sliding window */
3590   Bytef *end;           /* one byte after sliding window */
3591   Bytef *read;          /* window read pointer */
3592   Bytef *write;         /* window write pointer */
3593   check_func checkfn;   /* check function */
3594   uLong check;          /* check on output */
3595
3596 };
3597
3598
3599 /* defines for inflate input/output */
3600 /*   update pointers and return */
3601 #define UPDBITS {s->bitb=b;s->bitk=k;}
3602 #define UPDIN {z->avail_in=n;z->total_in+=p-z->next_in;z->next_in=p;}
3603 #define UPDOUT {s->write=q;}
3604 #define UPDATE {UPDBITS UPDIN UPDOUT}
3605 #define LEAVE {UPDATE return inflate_flush(s,z,r);}
3606 /*   get bytes and bits */
3607 #define LOADIN {p=z->next_in;n=z->avail_in;b=s->bitb;k=s->bitk;}
3608 #define NEEDBYTE {if(n)r=Z_OK;else LEAVE}
3609 #define NEXTBYTE (n--,*p++)
3610 #define NEEDBITS(j) {while(k<(j)){NEEDBYTE;b|=((uLong)NEXTBYTE)<<k;k+=8;}}
3611 #define DUMPBITS(j) {b>>=(j);k-=(j);}
3612 /*   output bytes */
3613 #define WAVAIL (uInt)(q<s->read?s->read-q-1:s->end-q)
3614 #define LOADOUT {q=s->write;m=(uInt)WAVAIL;}
3615 #define WWRAP {if(q==s->end&&s->read!=s->window){q=s->window;m=(uInt)WAVAIL;}}
3616 #define FLUSH {UPDOUT r=inflate_flush(s,z,r); LOADOUT}
3617 #define NEEDOUT {if(m==0){WWRAP if(m==0){FLUSH WWRAP if(m==0) LEAVE}}r=Z_OK;}
3618 #define OUTBYTE(a) {*q++=(Byte)(a);m--;}
3619 /*   load local pointers */
3620 #define LOAD {LOADIN LOADOUT}
3621
3622 /* masks for lower bits (size given to avoid silly warnings with Visual C++) */
3623 extern uInt inflate_mask[17];
3624
3625 /* copy as much as possible from the sliding window to the output area */
3626 extern int inflate_flush OF((
3627     inflate_blocks_statef *,
3628     z_streamp ,
3629     int));
3630
3631 #ifndef NO_DUMMY_DECL
3632 struct internal_state      {int dummy;}; /* for buggy compilers */
3633 #endif
3634
3635 #endif
3636 /* --- infutil.h */
3637
3638 #ifndef NO_DUMMY_DECL
3639 struct inflate_codes_state {int dummy;}; /* for buggy compilers */
3640 #endif
3641
3642 /* Table for deflate from PKZIP's appnote.txt. */
3643 local const uInt border[] = { /* Order of the bit length code lengths */
3644         16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
3645
3646 /*
3647    Notes beyond the 1.93a appnote.txt:
3648
3649    1. Distance pointers never point before the beginning of the output
3650       stream.
3651    2. Distance pointers can point back across blocks, up to 32k away.
3652    3. There is an implied maximum of 7 bits for the bit length table and
3653       15 bits for the actual data.
3654    4. If only one code exists, then it is encoded using one bit.  (Zero
3655       would be more efficient, but perhaps a little confusing.)  If two
3656       codes exist, they are coded using one bit each (0 and 1).
3657    5. There is no way of sending zero distance codes--a dummy must be
3658       sent if there are none.  (History: a pre 2.0 version of PKZIP would
3659       store blocks with no distance codes, but this was discovered to be
3660       too harsh a criterion.)  Valid only for 1.93a.  2.04c does allow
3661       zero distance codes, which is sent as one code of zero bits in
3662       length.
3663    6. There are up to 286 literal/length codes.  Code 256 represents the
3664       end-of-block.  Note however that the static length tree defines
3665       288 codes just to fill out the Huffman codes.  Codes 286 and 287
3666       cannot be used though, since there is no length base or extra bits
3667       defined for them.  Similarily, there are up to 30 distance codes.
3668       However, static trees define 32 codes (all 5 bits) to fill out the
3669       Huffman codes, but the last two had better not show up in the data.
3670    7. Unzip can check dynamic Huffman blocks for complete code sets.
3671       The exception is that a single code would not be complete (see #4).
3672    8. The five bits following the block type is really the number of
3673       literal codes sent minus 257.
3674    9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
3675       (1+6+6).  Therefore, to output three times the length, you output
3676       three codes (1+1+1), whereas to output four times the same length,
3677       you only need two codes (1+3).  Hmm.
3678   10. In the tree reconstruction algorithm, Code = Code + Increment
3679       only if BitLength(i) is not zero.  (Pretty obvious.)
3680   11. Correction: 4 Bits: # of Bit Length codes - 4     (4 - 19)
3681   12. Note: length code 284 can represent 227-258, but length code 285
3682       really is 258.  The last length deserves its own, short code
3683       since it gets used a lot in very redundant files.  The length
3684       258 is special since 258 - 3 (the min match length) is 255.
3685   13. The literal/length and distance code bit lengths are read as a
3686       single stream of lengths.  It is possible (and advantageous) for
3687       a repeat code (16, 17, or 18) to go across the boundary between
3688       the two sets of lengths.
3689  */
3690
3691
3692 void
3693 inflate_blocks_reset(inflate_blocks_statef *s, z_streamp z, uLongf *c)
3694 {
3695   if (s->checkfn != Z_NULL)
3696     *c = s->check;
3697   if (s->mode == BTREE || s->mode == DTREE)
3698     ZFREE(z, s->sub.trees.blens);
3699   if (s->mode == CODES)
3700   {
3701     inflate_codes_free(s->sub.decode.codes, z);
3702     inflate_trees_free(s->sub.decode.td, z);
3703     inflate_trees_free(s->sub.decode.tl, z);
3704   }
3705   s->mode = TYPE;
3706   s->bitk = 0;
3707   s->bitb = 0;
3708   s->read = s->write = s->window;
3709   if (s->checkfn != Z_NULL)
3710     z->adler = s->check = (*s->checkfn)(0L, Z_NULL, 0);
3711   Trace((stderr, "inflate:   blocks reset\n"));
3712 }
3713
3714
3715 inflate_blocks_statef *
3716 inflate_blocks_new(z_streamp z, check_func c, uInt w)
3717 {
3718   inflate_blocks_statef *s;
3719
3720   if ((s = (inflate_blocks_statef *)ZALLOC
3721        (z,1,sizeof(struct inflate_blocks_state))) == Z_NULL)
3722     return s;
3723   if ((s->window = (Bytef *)ZALLOC(z, 1, w)) == Z_NULL)
3724   {
3725     ZFREE(z, s);
3726     return Z_NULL;
3727   }
3728   s->end = s->window + w;
3729   s->checkfn = c;
3730   s->mode = TYPE;
3731   Trace((stderr, "inflate:   blocks allocated\n"));
3732   inflate_blocks_reset(s, z, &s->check);
3733   return s;
3734 }
3735
3736
3737 #ifdef DEBUG_ZLIB
3738   extern uInt inflate_hufts;
3739 #endif
3740
3741 int
3742 inflate_blocks(inflate_blocks_statef *s, z_streamp z, int r)
3743 {
3744   uInt t;               /* temporary storage */
3745   uLong b;              /* bit buffer */
3746   uInt k;               /* bits in bit buffer */
3747   Bytef *p;             /* input data pointer */
3748   uInt n;               /* bytes available there */
3749   Bytef *q;             /* output window write pointer */
3750   uInt m;               /* bytes to end of window or read pointer */
3751
3752   /* copy input/output information to locals (UPDATE macro restores) */
3753   LOAD
3754
3755   /* process input based on current state */
3756   while (1) switch (s->mode)
3757   {
3758     case TYPE:
3759       NEEDBITS(3)
3760       t = (uInt)b & 7;
3761       s->last = t & 1;
3762       switch (t >> 1)
3763       {
3764         case 0:                         /* stored */
3765           Trace((stderr, "inflate:     stored block%s\n",
3766                  s->last ? " (last)" : ""));
3767           DUMPBITS(3)
3768           t = k & 7;                    /* go to byte boundary */
3769           DUMPBITS(t)
3770           s->mode = LENS;               /* get length of stored block */
3771           break;
3772         case 1:                         /* fixed */
3773           Trace((stderr, "inflate:     fixed codes block%s\n",
3774                  s->last ? " (last)" : ""));
3775           {
3776             uInt bl, bd;
3777             inflate_huft *tl, *td;
3778
3779             inflate_trees_fixed(&bl, &bd, &tl, &td);
3780             s->sub.decode.codes = inflate_codes_new(bl, bd, tl, td, z);
3781             if (s->sub.decode.codes == Z_NULL)
3782             {
3783               r = Z_MEM_ERROR;
3784               LEAVE
3785             }
3786             s->sub.decode.tl = Z_NULL;  /* don't try to free these */
3787             s->sub.decode.td = Z_NULL;
3788           }
3789           DUMPBITS(3)
3790           s->mode = CODES;
3791           break;
3792         case 2:                         /* dynamic */
3793           Trace((stderr, "inflate:     dynamic codes block%s\n",
3794                  s->last ? " (last)" : ""));
3795           DUMPBITS(3)
3796           s->mode = TABLE;
3797           break;
3798         case 3:                         /* illegal */
3799           DUMPBITS(3)
3800           s->mode = BADB;
3801           z->msg = (char*)"invalid block type";
3802           r = Z_DATA_ERROR;
3803           LEAVE
3804       }
3805       break;
3806     case LENS:
3807       NEEDBITS(32)
3808       if ((((~b) >> 16) & 0xffff) != (b & 0xffff))
3809       {
3810         s->mode = BADB;
3811         z->msg = (char*)"invalid stored block lengths";
3812         r = Z_DATA_ERROR;
3813         LEAVE
3814       }
3815       s->sub.left = (uInt)b & 0xffff;
3816       b = k = 0;                      /* dump bits */
3817       Tracev((stderr, "inflate:       stored length %u\n", s->sub.left));
3818       s->mode = s->sub.left ? STORED : (s->last ? DRY : TYPE);
3819       break;
3820     case STORED:
3821       if (n == 0)
3822         LEAVE
3823       NEEDOUT
3824       t = s->sub.left;
3825       if (t > n) t = n;
3826       if (t > m) t = m;
3827       zmemcpy(q, p, t);
3828       p += t;  n -= t;
3829       q += t;  m -= t;
3830       if ((s->sub.left -= t) != 0)
3831         break;
3832       Tracev((stderr, "inflate:       stored end, %lu total out\n",
3833               z->total_out + (q >= s->read ? q - s->read :
3834               (s->end - s->read) + (q - s->window))));
3835       s->mode = s->last ? DRY : TYPE;
3836       break;
3837     case TABLE:
3838       NEEDBITS(14)
3839       s->sub.trees.table = t = (uInt)b & 0x3fff;
3840 #ifndef PKZIP_BUG_WORKAROUND
3841       if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29)
3842       {
3843         s->mode = BADB;
3844         z->msg = (char*)"too many length or distance symbols";
3845         r = Z_DATA_ERROR;
3846         LEAVE
3847       }
3848 #endif
3849       t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f);
3850       if (t < 19)
3851         t = 19;
3852       if ((s->sub.trees.blens = (uIntf*)ZALLOC(z, t, sizeof(uInt))) == Z_NULL)
3853       {
3854         r = Z_MEM_ERROR;
3855         LEAVE
3856       }
3857       DUMPBITS(14)
3858       s->sub.trees.index = 0;
3859       Tracev((stderr, "inflate:       table sizes ok\n"));
3860       s->mode = BTREE;
3861     case BTREE:
3862       while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10))
3863       {
3864         NEEDBITS(3)
3865         s->sub.trees.blens[border[s->sub.trees.index++]] = (uInt)b & 7;
3866         DUMPBITS(3)
3867       }
3868       while (s->sub.trees.index < 19)
3869         s->sub.trees.blens[border[s->sub.trees.index++]] = 0;
3870       s->sub.trees.bb = 7;
3871       t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb,
3872                              &s->sub.trees.tb, z);
3873       if (t != Z_OK)
3874       {
3875         r = t;
3876         if (r == Z_DATA_ERROR) {
3877           ZFREE(z, s->sub.trees.blens);
3878           s->mode = BADB;
3879         }
3880         LEAVE
3881       }
3882       s->sub.trees.index = 0;
3883       Tracev((stderr, "inflate:       bits tree ok\n"));
3884       s->mode = DTREE;
3885     case DTREE:
3886       while (t = s->sub.trees.table,
3887              s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f))
3888       {
3889         inflate_huft *h;
3890         uInt i, j, c;
3891
3892         t = s->sub.trees.bb;
3893         NEEDBITS(t)
3894         h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]);
3895         t = h->word.what.Bits;
3896         c = h->more.Base;
3897         if (c < 16)
3898         {
3899           DUMPBITS(t)
3900           s->sub.trees.blens[s->sub.trees.index++] = c;
3901         }
3902         else /* c == 16..18 */
3903         {
3904           i = c == 18 ? 7 : c - 14;
3905           j = c == 18 ? 11 : 3;
3906           NEEDBITS(t + i)
3907           DUMPBITS(t)
3908           j += (uInt)b & inflate_mask[i];
3909           DUMPBITS(i)
3910           i = s->sub.trees.index;
3911           t = s->sub.trees.table;
3912           if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) ||
3913               (c == 16 && i < 1))
3914           {
3915             inflate_trees_free(s->sub.trees.tb, z);
3916             ZFREE(z, s->sub.trees.blens);
3917             s->mode = BADB;
3918             z->msg = (char*)"invalid bit length repeat";
3919             r = Z_DATA_ERROR;
3920             LEAVE
3921           }
3922           c = c == 16 ? s->sub.trees.blens[i - 1] : 0;
3923           do {
3924             s->sub.trees.blens[i++] = c;
3925           } while (--j);
3926           s->sub.trees.index = i;
3927         }
3928       }
3929       inflate_trees_free(s->sub.trees.tb, z);
3930       s->sub.trees.tb = Z_NULL;
3931       {
3932         uInt bl, bd;
3933         inflate_huft *tl, *td;
3934         inflate_codes_statef *c;
3935
3936         bl = 9;         /* must be <= 9 for lookahead assumptions */
3937         bd = 6;         /* must be <= 9 for lookahead assumptions */
3938         t = s->sub.trees.table;
3939 #ifdef DEBUG_ZLIB
3940       inflate_hufts = 0;
3941 #endif
3942         t = inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f),
3943                                   s->sub.trees.blens, &bl, &bd, &tl, &td, z);
3944         if (t != Z_OK)
3945         {
3946           if (t == (uInt)Z_DATA_ERROR) {
3947             ZFREE(z, s->sub.trees.blens);
3948             s->mode = BADB;
3949           }
3950           r = t;
3951           LEAVE
3952         }
3953         Tracev((stderr, "inflate:       trees ok, %d * %d bytes used\n",
3954               inflate_hufts, sizeof(inflate_huft)));
3955         if ((c = inflate_codes_new(bl, bd, tl, td, z)) == Z_NULL)
3956         {
3957           inflate_trees_free(td, z);
3958           inflate_trees_free(tl, z);
3959           r = Z_MEM_ERROR;
3960           LEAVE
3961         }
3962         /*
3963          * this ZFREE must occur *BEFORE* we mess with sub.decode, because
3964          * sub.trees is union'd with sub.decode.
3965          */
3966         ZFREE(z, s->sub.trees.blens);
3967         s->sub.decode.codes = c;
3968         s->sub.decode.tl = tl;
3969         s->sub.decode.td = td;
3970       }
3971       s->mode = CODES;
3972     case CODES:
3973       UPDATE
3974       if ((r = inflate_codes(s, z, r)) != Z_STREAM_END)
3975         return inflate_flush(s, z, r);
3976       r = Z_OK;
3977       inflate_codes_free(s->sub.decode.codes, z);
3978       inflate_trees_free(s->sub.decode.td, z);
3979       inflate_trees_free(s->sub.decode.tl, z);
3980       LOAD
3981       Tracev((stderr, "inflate:       codes end, %lu total out\n",
3982               z->total_out + (q >= s->read ? q - s->read :
3983               (s->end - s->read) + (q - s->window))));
3984       if (!s->last)
3985       {
3986         s->mode = TYPE;
3987         break;
3988       }
3989       if (k > 7)              /* return unused byte, if any */
3990       {
3991         Assert(k < 16, "inflate_codes grabbed too many bytes")
3992         k -= 8;
3993         n++;
3994         p--;                    /* can always return one */
3995       }
3996       s->mode = DRY;
3997     case DRY:
3998       FLUSH
3999       if (s->read != s->write)
4000         LEAVE
4001       s->mode = DONEB;
4002     case DONEB:
4003       r = Z_STREAM_END;
4004       LEAVE
4005     case BADB:
4006       r = Z_DATA_ERROR;
4007       LEAVE
4008     default:
4009       r = Z_STREAM_ERROR;
4010       LEAVE
4011   }
4012 }
4013
4014
4015 int
4016 inflate_blocks_free(inflate_blocks_statef *s, z_streamp z, uLongf *c)
4017 {
4018   inflate_blocks_reset(s, z, c);
4019   ZFREE(z, s->window);
4020   ZFREE(z, s);
4021   Trace((stderr, "inflate:   blocks freed\n"));
4022   return Z_OK;
4023 }
4024
4025
4026 void
4027 inflate_set_dictionary(inflate_blocks_statef *s, const Bytef *d, uInt n)
4028 {
4029   zmemcpy((charf *)s->window, d, n);
4030   s->read = s->write = s->window + n;
4031 }
4032
4033 /*
4034  * This subroutine adds the data at next_in/avail_in to the output history
4035  * without performing any output.  The output buffer must be "caught up";
4036  * i.e. no pending output (hence s->read equals s->write), and the state must
4037  * be BLOCKS (i.e. we should be willing to see the start of a series of
4038  * BLOCKS).  On exit, the output will also be caught up, and the checksum
4039  * will have been updated if need be.
4040  */
4041 int
4042 inflate_addhistory(inflate_blocks_statef *s, z_stream *z)
4043 {
4044     uLong b;              /* bit buffer */  /* NOT USED HERE */
4045     uInt k;               /* bits in bit buffer */ /* NOT USED HERE */
4046     uInt t;               /* temporary storage */
4047     Bytef *p;             /* input data pointer */
4048     uInt n;               /* bytes available there */
4049     Bytef *q;             /* output window write pointer */
4050     uInt m;               /* bytes to end of window or read pointer */
4051
4052     if (s->read != s->write)
4053         return Z_STREAM_ERROR;
4054     if (s->mode != TYPE)
4055         return Z_DATA_ERROR;
4056
4057     /* we're ready to rock */
4058     LOAD
4059     /* while there is input ready, copy to output buffer, moving
4060      * pointers as needed.
4061      */
4062     while (n) {
4063         t = n;  /* how many to do */
4064         /* is there room until end of buffer? */
4065         if (t > m) t = m;
4066         /* update check information */
4067         if (s->checkfn != Z_NULL)
4068             s->check = (*s->checkfn)(s->check, q, t);
4069         zmemcpy(q, p, t);
4070         q += t;
4071         p += t;
4072         n -= t;
4073         z->total_out += t;
4074         s->read = q;    /* drag read pointer forward */
4075 /*      WWRAP  */       /* expand WWRAP macro by hand to handle s->read */
4076         if (q == s->end) {
4077             s->read = q = s->window;
4078             m = WAVAIL;
4079         }
4080     }
4081     UPDATE
4082     return Z_OK;
4083 }
4084
4085
4086 /*
4087  * At the end of a Deflate-compressed PPP packet, we expect to have seen
4088  * a `stored' block type value but not the (zero) length bytes.
4089  */
4090 int
4091 inflate_packet_flush(inflate_blocks_statef *s)
4092 {
4093     if (s->mode != LENS)
4094         return Z_DATA_ERROR;
4095     s->mode = TYPE;
4096     return Z_OK;
4097 }
4098 /* --- infblock.c */
4099
4100 /* +++ inftrees.c */
4101 /* inftrees.c -- generate Huffman trees for efficient decoding
4102  * Copyright (C) 1995-1996 Mark Adler
4103  * For conditions of distribution and use, see copyright notice in zlib.h 
4104  */
4105
4106 /* #include "zutil.h" */
4107 /* #include "inftrees.h" */
4108
4109 char inflate_copyright[] = " inflate 1.0.4 Copyright 1995-1996 Mark Adler ";
4110 /*
4111   If you use the zlib library in a product, an acknowledgment is welcome
4112   in the documentation of your product. If for some reason you cannot
4113   include such an acknowledgment, I would appreciate that you keep this
4114   copyright string in the executable of your product.
4115  */
4116
4117 #ifndef NO_DUMMY_DECL
4118 struct internal_state  {int dummy;}; /* for buggy compilers */
4119 #endif
4120
4121 /* simplify the use of the inflate_huft type with some defines */
4122 #define base more.Base
4123 #define next more.Next
4124 #define exop word.what.Exop
4125 #define bits word.what.Bits
4126
4127
4128 local int huft_build OF((
4129     uIntf *,            /* code lengths in bits */
4130     uInt,               /* number of codes */
4131     uInt,               /* number of "simple" codes */
4132     const uIntf *,      /* list of base values for non-simple codes */
4133     const uIntf *,      /* list of extra bits for non-simple codes */
4134     inflate_huft * FAR*,/* result: starting table */
4135     uIntf *,            /* maximum lookup bits (returns actual) */
4136     z_streamp ));       /* for zalloc function */
4137
4138 local voidpf zfalloc OF((
4139     voidpf,             /* opaque pointer (not used) */
4140     uInt,               /* number of items */
4141     uInt));             /* size of item */
4142
4143 /* Tables for deflate from PKZIP's appnote.txt. */
4144 local const uInt cplens[31] = { /* Copy lengths for literal codes 257..285 */
4145         3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
4146         35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
4147         /* see note #13 above about 258 */
4148 local const uInt cplext[31] = { /* Extra bits for literal codes 257..285 */
4149         0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
4150         3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112}; /* 112==invalid */
4151 local const uInt cpdist[30] = { /* Copy offsets for distance codes 0..29 */
4152         1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
4153         257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
4154         8193, 12289, 16385, 24577};
4155 local const uInt cpdext[30] = { /* Extra bits for distance codes */
4156         0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
4157         7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
4158         12, 12, 13, 13};
4159
4160 /*
4161    Huffman code decoding is performed using a multi-level table lookup.
4162    The fastest way to decode is to simply build a lookup table whose
4163    size is determined by the longest code.  However, the time it takes
4164    to build this table can also be a factor if the data being decoded
4165    is not very long.  The most common codes are necessarily the
4166    shortest codes, so those codes dominate the decoding time, and hence
4167    the speed.  The idea is you can have a shorter table that decodes the
4168    shorter, more probable codes, and then point to subsidiary tables for
4169    the longer codes.  The time it costs to decode the longer codes is
4170    then traded against the time it takes to make longer tables.
4171
4172    This results of this trade are in the variables lbits and dbits
4173    below.  lbits is the number of bits the first level table for literal/
4174    length codes can decode in one step, and dbits is the same thing for
4175    the distance codes.  Subsequent tables are also less than or equal to
4176    those sizes.  These values may be adjusted either when all of the
4177    codes are shorter than that, in which case the longest code length in
4178    bits is used, or when the shortest code is *longer* than the requested
4179    table size, in which case the length of the shortest code in bits is
4180    used.
4181
4182    There are two different values for the two tables, since they code a
4183    different number of possibilities each.  The literal/length table
4184    codes 286 possible values, or in a flat code, a little over eight
4185    bits.  The distance table codes 30 possible values, or a little less
4186    than five bits, flat.  The optimum values for speed end up being
4187    about one bit more than those, so lbits is 8+1 and dbits is 5+1.
4188    The optimum values may differ though from machine to machine, and
4189    possibly even between compilers.  Your mileage may vary.
4190  */
4191
4192
4193 /* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
4194 #define BMAX 15         /* maximum bit length of any code */
4195 #define N_MAX 288       /* maximum number of codes in any set */
4196
4197 #ifdef DEBUG_ZLIB
4198   uInt inflate_hufts;
4199 #endif
4200
4201 /*
4202  * Parameters:
4203  *      b:      code lengths in bits (all assumed <= BMAX)
4204  *      n:      number of codes (assumed <= N_MAX)
4205  *      s:      number of simple-valued codes (0..s-1)
4206  *      d:      list of base values for non-simple codes
4207  *      e:      list of extra bits for non-simple codes
4208  *      t:      result: starting table
4209  *      m:      maximum lookup bits, returns actual
4210  *      zs:     for zalloc function
4211  *
4212  * Given a list of code lengths and a maximum table size, make a set of
4213  * tables to decode that set of codes.  Return Z_OK on success, Z_BUF_ERROR
4214  * if the given code set is incomplete (the tables are still built in this
4215  * case), Z_DATA_ERROR if the input is invalid (an over-subscribed set of
4216  * lengths), or Z_MEM_ERROR if not enough memory. 
4217  */
4218 local int
4219 huft_build(uIntf *b, uInt n, uInt s, const uIntf *d, const uIntf *e,
4220            inflate_huft * FAR *t, uIntf *m, z_streamp zs)
4221 {
4222
4223   uInt a;                       /* counter for codes of length k */
4224   uInt c[BMAX+1];               /* bit length count table */
4225   uInt f;                       /* i repeats in table every f entries */
4226   int g;                        /* maximum code length */
4227   int h;                        /* table level */
4228   uInt i;              /* counter, current code */
4229   uInt j;              /* counter */
4230   int k;               /* number of bits in current code */
4231   int l;                        /* bits per table (returned in m) */
4232   uIntf *p;            /* pointer into c[], b[], or v[] */
4233   inflate_huft *q;              /* points to current table */
4234   struct inflate_huft_s r;      /* table entry for structure assignment */
4235   inflate_huft *u[BMAX];        /* table stack */
4236   uInt v[N_MAX];                /* values in order of bit length */
4237   int w;               /* bits before this table == (l * h) */
4238   uInt x[BMAX+1];               /* bit offsets, then code stack */
4239   uIntf *xp;                    /* pointer into x */
4240   int y;                        /* number of dummy codes added */
4241   uInt z;                       /* number of entries in current table */
4242
4243
4244   /* Generate counts for each bit length */
4245   p = c;
4246 #define C0 *p++ = 0;
4247 #define C2 C0 C0 C0 C0
4248 #define C4 C2 C2 C2 C2
4249   C4                            /* clear c[]--assume BMAX+1 is 16 */
4250   p = b;  i = n;
4251   do {
4252     c[*p++]++;                  /* assume all entries <= BMAX */
4253   } while (--i);
4254   if (c[0] == n)                /* null input--all zero length codes */
4255   {
4256     *t = (inflate_huft *)Z_NULL;
4257     *m = 0;
4258     return Z_OK;
4259   }
4260
4261
4262   /* Find minimum and maximum length, bound *m by those */
4263   l = *m;
4264   for (j = 1; j <= BMAX; j++)
4265     if (c[j])
4266       break;
4267   k = j;                        /* minimum code length */
4268   if ((uInt)l < j)
4269     l = j;
4270   for (i = BMAX; i; i--)
4271     if (c[i])
4272       break;
4273   g = i;                        /* maximum code length */
4274   if ((uInt)l > i)
4275     l = i;
4276   *m = l;
4277
4278
4279   /* Adjust last length count to fill out codes, if needed */
4280   for (y = 1 << j; j < i; j++, y <<= 1)
4281     if ((y -= c[j]) < 0)
4282       return Z_DATA_ERROR;
4283   if ((y -= c[i]) < 0)
4284     return Z_DATA_ERROR;
4285   c[i] += y;
4286
4287
4288   /* Generate starting offsets into the value table for each length */
4289   x[1] = j = 0;
4290   p = c + 1;  xp = x + 2;
4291   while (--i) {                 /* note that i == g from above */
4292     *xp++ = (j += *p++);
4293   }
4294
4295
4296   /* Make a table of values in order of bit lengths */
4297   p = b;  i = 0;
4298   do {
4299     if ((j = *p++) != 0)
4300       v[x[j]++] = i;
4301   } while (++i < n);
4302   n = x[g];                   /* set n to length of v */
4303
4304
4305   /* Generate the Huffman codes and for each, make the table entries */
4306   x[0] = i = 0;                 /* first Huffman code is zero */
4307   p = v;                        /* grab values in bit order */
4308   h = -1;                       /* no tables yet--level -1 */
4309   w = -l;                       /* bits decoded == (l * h) */
4310   u[0] = (inflate_huft *)Z_NULL;        /* just to keep compilers happy */
4311   q = (inflate_huft *)Z_NULL;   /* ditto */
4312   z = 0;                        /* ditto */
4313
4314   /* go through the bit lengths (k already is bits in shortest code) */
4315   for (; k <= g; k++)
4316   {
4317     a = c[k];
4318     while (a--)
4319     {
4320       /* here i is the Huffman code of length k bits for value *p */
4321       /* make tables up to required level */
4322       while (k > w + l)
4323       {
4324         h++;
4325         w += l;                 /* previous table always l bits */
4326
4327         /* compute minimum size table less than or equal to l bits */
4328         z = g - w;
4329         z = z > (uInt)l ? l : z;        /* table size upper limit */
4330         if ((f = 1 << (j = k - w)) > a + 1)     /* try a k-w bit table */
4331         {                       /* too few codes for k-w bit table */
4332           f -= a + 1;           /* deduct codes from patterns left */
4333           xp = c + k;
4334           if (j < z)
4335             while (++j < z)     /* try smaller tables up to z bits */
4336             {
4337               if ((f <<= 1) <= *++xp)
4338                 break;          /* enough codes to use up j bits */
4339               f -= *xp;         /* else deduct codes from patterns */
4340             }
4341         }
4342         z = 1 << j;             /* table entries for j-bit table */
4343
4344         /* allocate and link in new table */
4345         if ((q = (inflate_huft *)ZALLOC
4346              (zs,z + 1,sizeof(inflate_huft))) == Z_NULL)
4347         {
4348           if (h)
4349             inflate_trees_free(u[0], zs);
4350           return Z_MEM_ERROR;   /* not enough memory */
4351         }
4352 #ifdef DEBUG_ZLIB
4353         inflate_hufts += z + 1;
4354 #endif
4355         *t = q + 1;             /* link to list for huft_free() */
4356         *(t = &(q->next)) = Z_NULL;
4357         u[h] = ++q;             /* table starts after link */
4358
4359         /* connect to last table, if there is one */
4360         if (h)
4361         {
4362           x[h] = i;             /* save pattern for backing up */
4363           r.bits = (Byte)l;     /* bits to dump before this table */
4364           r.exop = (Byte)j;     /* bits in this table */
4365           r.next = q;           /* pointer to this table */
4366           j = i >> (w - l);     /* (get around Turbo C bug) */
4367           u[h-1][j] = r;        /* connect to last table */
4368         }
4369       }
4370
4371       /* set up table entry in r */
4372       r.bits = (Byte)(k - w);
4373       if (p >= v + n)
4374         r.exop = 128 + 64;      /* out of values--invalid code */
4375       else if (*p < s)
4376       {
4377         r.exop = (Byte)(*p < 256 ? 0 : 32 + 64);     /* 256 is end-of-block */
4378         r.base = *p++;          /* simple code is just the value */
4379       }
4380       else
4381       {
4382         r.exop = (Byte)(e[*p - s] + 16 + 64);/* non-simple--look up in lists */
4383         r.base = d[*p++ - s];
4384       }
4385
4386       /* fill code-like entries with r */
4387       f = 1 << (k - w);
4388       for (j = i >> w; j < z; j += f)
4389         q[j] = r;
4390
4391       /* backwards increment the k-bit code i */
4392       for (j = 1 << (k - 1); i & j; j >>= 1)
4393         i ^= j;
4394       i ^= j;
4395
4396       /* backup over finished tables */
4397       while ((i & ((1 << w) - 1)) != x[h])
4398       {
4399         h--;                    /* don't need to update q */
4400         w -= l;
4401       }
4402     }
4403   }
4404
4405
4406   /* Return Z_BUF_ERROR if we were given an incomplete table */
4407   return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
4408 }
4409
4410 /*
4411  * Parameters:
4412  *      c:      19 code lengths
4413  *      bb:     bits tree desired/actual depth
4414  *      tb:     bits tree result
4415  *      z:      for zfree function
4416  */
4417 int
4418 inflate_trees_bits(uIntf *c, uIntf *bb, inflate_huft * FAR *tb, z_streamp z)
4419 {
4420   int r;
4421
4422   r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL, tb, bb, z);
4423   if (r == Z_DATA_ERROR)
4424     z->msg = (char*)"oversubscribed dynamic bit lengths tree";
4425   else if (r == Z_BUF_ERROR || *bb == 0)
4426   {
4427     inflate_trees_free(*tb, z);
4428     z->msg = (char*)"incomplete dynamic bit lengths tree";
4429     r = Z_DATA_ERROR;
4430   }
4431   return r;
4432 }
4433
4434 /*
4435  * Parameters:
4436  *      nl:     number of literal/length codes
4437  *      nd:     number of distance codes
4438  *      c:      that many (total) code lengths
4439  *      bl:     literal desired/actual bit depth
4440  *      bd:     distance desired/actual bit depth
4441  *      tl:     literal/length tree result
4442  *      td:     distance tree result
4443  *      z:      for zfree function
4444  */
4445 int
4446 inflate_trees_dynamic(uInt nl, uInt nd, uIntf *c, uIntf *bl, uIntf *bd,
4447                       inflate_huft * FAR *tl, inflate_huft * FAR *td,
4448                       z_streamp z)
4449 {
4450   int r;
4451
4452   /* build literal/length tree */
4453   r = huft_build(c, nl, 257, cplens, cplext, tl, bl, z);
4454   if (r != Z_OK || *bl == 0)
4455   {
4456     if (r == Z_DATA_ERROR)
4457       z->msg = (char*)"oversubscribed literal/length tree";
4458     else if (r != Z_MEM_ERROR)
4459     {
4460       inflate_trees_free(*tl, z);
4461       z->msg = (char*)"incomplete literal/length tree";
4462       r = Z_DATA_ERROR;
4463     }
4464     return r;
4465   }
4466
4467   /* build distance tree */
4468   r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, z);
4469   if (r != Z_OK || (*bd == 0 && nl > 257))
4470   {
4471     if (r == Z_DATA_ERROR)
4472       z->msg = (char*)"oversubscribed distance tree";
4473     else if (r == Z_BUF_ERROR) {
4474 #ifdef PKZIP_BUG_WORKAROUND
4475       r = Z_OK;
4476     }
4477 #else
4478       inflate_trees_free(*td, z);
4479       z->msg = (char*)"incomplete distance tree";
4480       r = Z_DATA_ERROR;
4481     }
4482     else if (r != Z_MEM_ERROR)
4483     {
4484       z->msg = (char*)"empty distance tree with lengths";
4485       r = Z_DATA_ERROR;
4486     }
4487     inflate_trees_free(*tl, z);
4488     return r;
4489 #endif
4490   }
4491
4492   /* done */
4493   return Z_OK;
4494 }
4495
4496
4497 /* build fixed tables only once--keep them here */
4498 local int fixed_built = 0;
4499 #define FIXEDH 530      /* number of hufts used by fixed tables */
4500 local inflate_huft fixed_mem[FIXEDH];
4501 local uInt fixed_bl;
4502 local uInt fixed_bd;
4503 local inflate_huft *fixed_tl;
4504 local inflate_huft *fixed_td;
4505
4506 /*
4507  * Parameters:
4508  *      q:      opaque pointer
4509  *      n:      number of items
4510  *      s:      size of item
4511  */
4512 local voidpf
4513 zfalloc(voidpf q, uInt n, uInt s)
4514 {
4515   Assert(s == sizeof(inflate_huft) && n <= *(intf *)q,
4516          "inflate_trees zfalloc overflow");
4517   *(intf *)q -= n+s-s; /* s-s to avoid warning */
4518   return (voidpf)(fixed_mem + *(intf *)q);
4519 }
4520
4521 /*
4522  * Parameters:
4523  *      bl:     literal desired/actual bit depth
4524  *      bd:     distance desired/actual bit depth
4525  *      tl:     literal/length tree result
4526  *      td:     distance tree result
4527  */
4528 int
4529 inflate_trees_fixed(uIntf *bl, uIntf *bd, inflate_huft * FAR *tl,
4530                     inflate_huft * FAR *td)
4531 {
4532   /* build fixed tables if not already (multiple overlapped executions ok) */
4533   if (!fixed_built)
4534   {
4535     int k;              /* temporary variable */
4536     unsigned c[288];    /* length list for huft_build */
4537     z_stream z;         /* for zfalloc function */
4538     int f = FIXEDH;     /* number of hufts left in fixed_mem */
4539
4540     /* set up fake z_stream for memory routines */
4541     z.zalloc = zfalloc;
4542     z.zfree = Z_NULL;
4543     z.opaque = (voidpf)&f;
4544
4545     /* literal table */
4546     for (k = 0; k < 144; k++)
4547       c[k] = 8;
4548     for (; k < 256; k++)
4549       c[k] = 9;
4550     for (; k < 280; k++)
4551       c[k] = 7;
4552     for (; k < 288; k++)
4553       c[k] = 8;
4554     fixed_bl = 7;