0aaf7eb6cfd21f3d337fbd4c3ca122d29930c979
[dragonfly.git] / sys / dev / netif / age / if_age.c
1 /*-
2  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  * $FreeBSD: src/sys/dev/age/if_age.c,v 1.6 2008/11/07 07:02:28 yongari Exp $
28  */
29
30 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
31
32 #include <sys/param.h>
33 #include <sys/endian.h>
34 #include <sys/kernel.h>
35 #include <sys/bus.h>
36 #include <sys/interrupt.h>
37 #include <sys/malloc.h>
38 #include <sys/proc.h>
39 #include <sys/rman.h>
40 #include <sys/serialize.h>
41 #include <sys/socket.h>
42 #include <sys/sockio.h>
43 #include <sys/sysctl.h>
44
45 #include <net/ethernet.h>
46 #include <net/if.h>
47 #include <net/bpf.h>
48 #include <net/if_arp.h>
49 #include <net/if_dl.h>
50 #include <net/if_media.h>
51 #include <net/ifq_var.h>
52 #include <net/vlan/if_vlan_var.h>
53 #include <net/vlan/if_vlan_ether.h>
54
55 #include <dev/netif/mii_layer/miivar.h>
56 #include <dev/netif/mii_layer/jmphyreg.h>
57
58 #include <bus/pci/pcireg.h>
59 #include <bus/pci/pcivar.h>
60 #include <bus/pci/pcidevs.h>
61
62 #include <dev/netif/age/if_agereg.h>
63 #include <dev/netif/age/if_agevar.h>
64
65 /* "device miibus" required.  See GENERIC if you get errors here. */
66 #include "miibus_if.h"
67
68 #define AGE_CSUM_FEATURES       (CSUM_TCP | CSUM_UDP)
69
70 struct age_dmamap_ctx {
71         int                     nsegs;
72         bus_dma_segment_t       *segs;
73 };
74
75 static int      age_probe(device_t);
76 static int      age_attach(device_t);
77 static int      age_detach(device_t);
78 static int      age_shutdown(device_t);
79 static int      age_suspend(device_t);
80 static int      age_resume(device_t);
81
82 static int      age_miibus_readreg(device_t, int, int);
83 static int      age_miibus_writereg(device_t, int, int, int);
84 static void     age_miibus_statchg(device_t);
85
86 static void     age_init(void *);
87 static int      age_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
88 static void     age_start(struct ifnet *);
89 static void     age_watchdog(struct ifnet *);
90 static void     age_mediastatus(struct ifnet *, struct ifmediareq *);
91 static int      age_mediachange(struct ifnet *);
92
93 static void     age_intr(void *);
94 static void     age_txintr(struct age_softc *, int);
95 static void     age_rxintr(struct age_softc *, int);
96 static void     age_rxeof(struct age_softc *sc, struct rx_rdesc *);
97
98 static int      age_dma_alloc(struct age_softc *);
99 static void     age_dma_free(struct age_softc *);
100 static void     age_dmamap_cb(void *, bus_dma_segment_t *, int, int);
101 static void     age_dmamap_buf_cb(void *, bus_dma_segment_t *, int,
102                     bus_size_t, int);
103 static int      age_check_boundary(struct age_softc *);
104 static int      age_newbuf(struct age_softc *, struct age_rxdesc *, int);
105 static int      age_encap(struct age_softc *, struct mbuf **);
106 static void     age_init_tx_ring(struct age_softc *);
107 static int      age_init_rx_ring(struct age_softc *);
108 static void     age_init_rr_ring(struct age_softc *);
109 static void     age_init_cmb_block(struct age_softc *);
110 static void     age_init_smb_block(struct age_softc *);
111
112 static void     age_tick(void *);
113 static void     age_stop(struct age_softc *);
114 static void     age_reset(struct age_softc *);
115 static int      age_read_vpd_word(struct age_softc *, uint32_t, uint32_t,
116                     uint32_t *);
117 static void     age_get_macaddr(struct age_softc *);
118 static void     age_phy_reset(struct age_softc *);
119 static void     age_mac_config(struct age_softc *);
120 static void     age_stats_update(struct age_softc *);
121 static void     age_stop_txmac(struct age_softc *);
122 static void     age_stop_rxmac(struct age_softc *);
123 static void     age_rxvlan(struct age_softc *);
124 static void     age_rxfilter(struct age_softc *);
125 #ifdef wol_notyet
126 static void age_setwol(struct age_softc *);
127 #endif
128
129 static void     age_sysctl_node(struct age_softc *);
130 static int      sysctl_age_stats(SYSCTL_HANDLER_ARGS);
131 static int      sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS);
132
133 /*
134  * Devices supported by this driver.
135  */
136 static struct age_dev {
137         uint16_t        age_vendorid;
138         uint16_t        age_deviceid;
139         const char      *age_name;
140 } age_devs[] = {
141         { VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L1,
142             "Attansic Technology Corp, L1 Gigabit Ethernet" },
143 };
144
145 static device_method_t age_methods[] = {
146         /* Device interface. */
147         DEVMETHOD(device_probe,         age_probe),
148         DEVMETHOD(device_attach,        age_attach),
149         DEVMETHOD(device_detach,        age_detach),
150         DEVMETHOD(device_shutdown,      age_shutdown),
151         DEVMETHOD(device_suspend,       age_suspend),
152         DEVMETHOD(device_resume,        age_resume),
153
154         /* Bus interface. */
155         DEVMETHOD(bus_print_child,      bus_generic_print_child),
156         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
157
158         /* MII interface. */
159         DEVMETHOD(miibus_readreg,       age_miibus_readreg),
160         DEVMETHOD(miibus_writereg,      age_miibus_writereg),
161         DEVMETHOD(miibus_statchg,       age_miibus_statchg),
162
163         { NULL, NULL }
164 };
165
166 static driver_t age_driver = {
167         "age",
168         age_methods,
169         sizeof(struct age_softc)
170 };
171
172 static devclass_t age_devclass;
173
174 DECLARE_DUMMY_MODULE(if_age);
175 MODULE_DEPEND(if_age, miibus, 1, 1, 1);
176 DRIVER_MODULE(if_age, pci, age_driver, age_devclass, 0, 0);
177 DRIVER_MODULE(miibus, age, miibus_driver, miibus_devclass, 0, 0);
178
179 /*
180  *      Read a PHY register on the MII of the L1.
181  */
182 static int
183 age_miibus_readreg(device_t dev, int phy, int reg)
184 {
185         struct age_softc *sc;
186         uint32_t v;
187         int i;
188
189         sc = device_get_softc(dev);
190         if (phy != sc->age_phyaddr)
191                 return (0);
192
193         CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
194             MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
195         for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
196                 DELAY(1);
197                 v = CSR_READ_4(sc, AGE_MDIO);
198                 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
199                         break;
200         }
201
202         if (i == 0) {
203                 device_printf(sc->age_dev, "phy read timeout : %d\n", reg);
204                 return (0);
205         }
206
207         return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
208 }
209
210 /*
211  *      Write a PHY register on the MII of the L1.
212  */
213 static int
214 age_miibus_writereg(device_t dev, int phy, int reg, int val)
215 {
216         struct age_softc *sc;
217         uint32_t v;
218         int i;
219
220         sc = device_get_softc(dev);
221         if (phy != sc->age_phyaddr)
222                 return (0);
223
224         CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
225             (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
226             MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
227         for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
228                 DELAY(1);
229                 v = CSR_READ_4(sc, AGE_MDIO);
230                 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
231                         break;
232         }
233
234         if (i == 0)
235                 device_printf(sc->age_dev, "phy write timeout : %d\n", reg);
236
237         return (0);
238 }
239
240 /*
241  *      Callback from MII layer when media changes.
242  */
243 static void
244 age_miibus_statchg(device_t dev)
245 {
246         struct age_softc *sc = device_get_softc(dev);
247         struct ifnet *ifp = &sc->arpcom.ac_if;
248         struct mii_data *mii;
249
250         ASSERT_SERIALIZED(ifp->if_serializer);
251
252         if ((ifp->if_flags & IFF_RUNNING) == 0)
253                 return;
254
255         mii = device_get_softc(sc->age_miibus);
256
257         sc->age_flags &= ~AGE_FLAG_LINK;
258         if ((mii->mii_media_status & IFM_AVALID) != 0) {
259                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
260                 case IFM_10_T:
261                 case IFM_100_TX:
262                 case IFM_1000_T:
263                         sc->age_flags |= AGE_FLAG_LINK;
264                         break;
265                 default:
266                         break;
267                 }
268         }
269
270         /* Stop Rx/Tx MACs. */
271         age_stop_rxmac(sc);
272         age_stop_txmac(sc);
273
274         /* Program MACs with resolved speed/duplex/flow-control. */
275         if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
276                 uint32_t reg;
277
278                 age_mac_config(sc);
279
280                 reg = CSR_READ_4(sc, AGE_MAC_CFG);
281                 /* Restart DMA engine and Tx/Rx MAC. */
282                 CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
283                     DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
284                 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
285                 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
286         }
287 }
288
289 /*
290  *      Get the current interface media status.
291  */
292 static void
293 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
294 {
295         struct age_softc *sc = ifp->if_softc;
296         struct mii_data *mii = device_get_softc(sc->age_miibus);
297
298         ASSERT_SERIALIZED(ifp->if_serializer);
299
300         mii_pollstat(mii);
301         ifmr->ifm_status = mii->mii_media_status;
302         ifmr->ifm_active = mii->mii_media_active;
303 }
304
305 /*
306  *      Set hardware to newly-selected media.
307  */
308 static int
309 age_mediachange(struct ifnet *ifp)
310 {
311         struct age_softc *sc = ifp->if_softc;
312         struct mii_data *mii = device_get_softc(sc->age_miibus);
313         int error;
314
315         ASSERT_SERIALIZED(ifp->if_serializer);
316
317         if (mii->mii_instance != 0) {
318                 struct mii_softc *miisc;
319
320                 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
321                         mii_phy_reset(miisc);
322         }
323         error = mii_mediachg(mii);
324
325         return (error);
326 }
327
328 static int
329 age_read_vpd_word(struct age_softc *sc, uint32_t vpdc, uint32_t offset,
330     uint32_t *word)
331 {
332         int i;
333
334         pci_write_config(sc->age_dev, vpdc + PCIR_VPD_ADDR, offset, 2);
335         for (i = AGE_TIMEOUT; i > 0; i--) {
336                 DELAY(10);
337                 if ((pci_read_config(sc->age_dev, vpdc + PCIR_VPD_ADDR, 2) &
338                     0x8000) == 0x8000)
339                         break;
340         }
341         if (i == 0) {
342                 device_printf(sc->age_dev, "VPD read timeout!\n");
343                 *word = 0;
344                 return (ETIMEDOUT);
345         }
346
347         *word = pci_read_config(sc->age_dev, vpdc + PCIR_VPD_DATA, 4);
348         return (0);
349 }
350
351 static int
352 age_probe(device_t dev)
353 {
354         struct age_dev *sp;
355         int i;
356         uint16_t vendor, devid;
357
358         vendor = pci_get_vendor(dev);
359         devid = pci_get_device(dev);
360         sp = age_devs;
361         for (i = 0; i < sizeof(age_devs) / sizeof(age_devs[0]);
362              i++, sp++) {
363                 if (vendor == sp->age_vendorid &&
364                     devid == sp->age_deviceid) {
365                         device_set_desc(dev, sp->age_name);
366                         return (0);
367                 }
368         }
369         return (ENXIO);
370 }
371
372 static void
373 age_get_macaddr(struct age_softc *sc)
374 {
375         uint32_t ea[2], off, reg, word;
376         int vpd_error, match, vpdc;
377
378         reg = CSR_READ_4(sc, AGE_SPI_CTRL);
379         if ((reg & SPI_VPD_ENB) != 0) {
380                 /* Get VPD stored in TWSI EEPROM. */
381                 reg &= ~SPI_VPD_ENB;
382                 CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
383         }
384
385         ea[0] = ea[1] = 0;
386         vpdc = pci_get_vpdcap_ptr(sc->age_dev);
387         if (vpdc) {
388                 vpd_error = 0;
389
390                 /*
391                  * PCI VPD capability exists, but it seems that it's
392                  * not in the standard form as stated in PCI VPD
393                  * specification such that driver could not use
394                  * pci_get_vpd_readonly(9) with keyword 'NA'.
395                  * Search VPD data starting at address 0x0100. The data
396                  * should be used as initializers to set AGE_PAR0,
397                  * AGE_PAR1 register including other PCI configuration
398                  * registers.
399                  */
400                 word = 0;
401                 match = 0;
402                 reg = 0;
403                 for (off = AGE_VPD_REG_CONF_START; off < AGE_VPD_REG_CONF_END;
404                     off += sizeof(uint32_t)) {
405                         vpd_error = age_read_vpd_word(sc, vpdc, off, &word);
406                         if (vpd_error != 0)
407                                 break;
408                         if (match != 0) {
409                                 switch (reg) {
410                                 case AGE_PAR0:
411                                         ea[0] = word;
412                                         break;
413                                 case AGE_PAR1:
414                                         ea[1] = word;
415                                         break;
416                                 default:
417                                         break;
418                                 }
419                                 match = 0;
420                         } else if ((word & 0xFF) == AGE_VPD_REG_CONF_SIG) {
421                                 match = 1;
422                                 reg = word >> 16;
423                         } else
424                                 break;
425                 }
426                 if (off >= AGE_VPD_REG_CONF_END)
427                         vpd_error = ENOENT;
428                 if (vpd_error == 0) {
429                         /*
430                          * Don't blindly trust ethernet address obtained
431                          * from VPD. Check whether ethernet address is
432                          * valid one. Otherwise fall-back to reading
433                          * PAR register.
434                          */
435                         ea[1] &= 0xFFFF;
436                         if ((ea[0] == 0 && ea[1] == 0) ||
437                             (ea[0] == 0xFFFFFFFF && ea[1] == 0xFFFF)) {
438                                 if (bootverbose)
439                                         device_printf(sc->age_dev,
440                                             "invalid ethernet address "
441                                             "returned from VPD.\n");
442                                 vpd_error = EINVAL;
443                         }
444                 }
445                 if (vpd_error != 0 && (bootverbose))
446                         device_printf(sc->age_dev, "VPD access failure!\n");
447         } else {
448                 vpd_error = ENOENT;
449                 if (bootverbose)
450                         device_printf(sc->age_dev,
451                             "PCI VPD capability not found!\n");
452         }
453
454         /*
455          * It seems that L1 also provides a way to extract ethernet
456          * address via SPI flash interface. Because SPI flash memory
457          * device of different vendors vary in their instruction
458          * codes for read ID instruction, it's very hard to get
459          * instructions codes without detailed information for the
460          * flash memory device used on ethernet controller. To simplify
461          * code, just read AGE_PAR0/AGE_PAR1 register to get ethernet
462          * address which is supposed to be set by hardware during
463          * power on reset.
464          */
465         if (vpd_error != 0) {
466                 /*
467                  * VPD is mapped to SPI flash memory or BIOS set it.
468                  */
469                 ea[0] = CSR_READ_4(sc, AGE_PAR0);
470                 ea[1] = CSR_READ_4(sc, AGE_PAR1);
471         }
472
473         ea[1] &= 0xFFFF;
474         if ((ea[0] == 0 && ea[1]  == 0) ||
475             (ea[0] == 0xFFFFFFFF && ea[1] == 0xFFFF)) {
476                 device_printf(sc->age_dev,
477                     "generating fake ethernet address.\n");
478                 ea[0] = karc4random();
479                 /* Set OUI to ASUSTek COMPUTER INC. */
480                 sc->age_eaddr[0] = 0x00;
481                 sc->age_eaddr[1] = 0x1B;
482                 sc->age_eaddr[2] = 0xFC;
483                 sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
484                 sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
485                 sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
486         } else {
487                 sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
488                 sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
489                 sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
490                 sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
491                 sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
492                 sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
493         }
494 }
495
496 static void
497 age_phy_reset(struct age_softc *sc)
498 {
499         /* Reset PHY. */
500         CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
501         DELAY(1000);
502         CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
503         DELAY(1000);
504 }
505
506 static int
507 age_attach(device_t dev)
508 {
509         struct age_softc *sc = device_get_softc(dev);
510         struct ifnet *ifp = &sc->arpcom.ac_if;
511         uint8_t pcie_ptr;
512         int error;
513
514         error = 0;
515         sc->age_dev = dev;
516         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
517
518         callout_init(&sc->age_tick_ch);
519
520 #ifndef BURN_BRIDGES
521         if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
522                 uint32_t irq, mem;
523
524                 irq = pci_read_config(dev, PCIR_INTLINE, 4);
525                 mem = pci_read_config(dev, AGE_PCIR_BAR, 4);
526
527                 device_printf(dev, "chip is in D%d power mode "
528                     "-- setting to D0\n", pci_get_powerstate(dev));
529
530                 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
531
532                 pci_write_config(dev, PCIR_INTLINE, irq, 4);
533                 pci_write_config(dev, AGE_PCIR_BAR, mem, 4);
534         }
535 #endif  /* !BURN_BRIDGE */
536
537         /* Enable bus mastering */
538         pci_enable_busmaster(dev);
539
540         /*
541          * Allocate memory mapped IO
542          */
543         sc->age_mem_rid = AGE_PCIR_BAR;
544         sc->age_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
545                                                  &sc->age_mem_rid, RF_ACTIVE);
546         if (sc->age_mem_res == NULL) {
547                 device_printf(dev, "can't allocate IO memory\n");
548                 return ENXIO;
549         }
550         sc->age_mem_bt = rman_get_bustag(sc->age_mem_res);
551         sc->age_mem_bh = rman_get_bushandle(sc->age_mem_res);
552
553         /*
554          * Allocate IRQ
555          */
556         sc->age_irq_rid = 0;
557         sc->age_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
558                                                  &sc->age_irq_rid,
559                                                  RF_SHAREABLE | RF_ACTIVE);
560         if (sc->age_irq_res == NULL) {
561                 device_printf(dev, "can't allocate irq\n");
562                 error = ENXIO;
563                 goto fail;
564         }
565
566         /* Set PHY address. */
567         sc->age_phyaddr = AGE_PHY_ADDR;
568
569         /* Reset PHY. */
570         age_phy_reset(sc);
571
572         /* Reset the ethernet controller. */
573         age_reset(sc);
574
575         /* Get PCI and chip id/revision. */
576         sc->age_rev = pci_get_revid(dev);
577         sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
578             MASTER_CHIP_REV_SHIFT;
579         if (bootverbose) {
580                 device_printf(dev, "PCI device revision : 0x%04x\n", sc->age_rev);
581                 device_printf(dev, "Chip id/revision : 0x%04x\n",
582                     sc->age_chip_rev);
583         }
584
585         /*
586          * XXX
587          * Unintialized hardware returns an invalid chip id/revision
588          * as well as 0xFFFFFFFF for Tx/Rx fifo length. It seems that
589          * unplugged cable results in putting hardware into automatic
590          * power down mode which in turn returns invalld chip revision.
591          */
592         if (sc->age_chip_rev == 0xFFFF) {
593                 device_printf(dev,"invalid chip revision : 0x%04x -- "
594                     "not initialized?\n", sc->age_chip_rev);
595                 error = ENXIO;
596                 goto fail;
597         }
598         device_printf(dev, "%d Tx FIFO, %d Rx FIFO\n",
599             CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
600             CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
601
602         /* Get DMA parameters from PCIe device control register. */
603         pcie_ptr = pci_get_pciecap_ptr(dev);
604         if (pcie_ptr) {
605                 uint16_t devctl;
606
607                 sc->age_flags |= AGE_FLAG_PCIE;
608                 devctl = pci_read_config(dev, pcie_ptr + PCIER_DEVCTRL, 2);
609                 /* Max read request size. */
610                 sc->age_dma_rd_burst = ((devctl >> 12) & 0x07) <<
611                     DMA_CFG_RD_BURST_SHIFT;
612                 /* Max payload size. */
613                 sc->age_dma_wr_burst = ((devctl >> 5) & 0x07) <<
614                     DMA_CFG_WR_BURST_SHIFT;
615                 if (bootverbose) {
616                         device_printf(dev, "Read request size : %d bytes.\n",
617                             128 << ((devctl >> 12) & 0x07));
618                         device_printf(dev, "TLP payload size : %d bytes.\n",
619                             128 << ((devctl >> 5) & 0x07));
620                 }
621         } else {
622                 sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
623                 sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
624         }
625
626         /* Create device sysctl node. */
627         age_sysctl_node(sc);
628
629         if ((error = age_dma_alloc(sc) != 0))
630                 goto fail;
631
632         /* Load station address. */
633         age_get_macaddr(sc);
634
635         ifp->if_softc = sc;
636         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
637         ifp->if_ioctl = age_ioctl;
638         ifp->if_start = age_start;
639         ifp->if_init = age_init;
640         ifp->if_watchdog = age_watchdog;
641         ifq_set_maxlen(&ifp->if_snd, AGE_TX_RING_CNT - 1);
642         ifq_set_ready(&ifp->if_snd);
643
644         ifp->if_capabilities = IFCAP_HWCSUM |
645                                IFCAP_VLAN_MTU |
646                                IFCAP_VLAN_HWTAGGING;
647         ifp->if_hwassist = AGE_CSUM_FEATURES;
648         ifp->if_capenable = ifp->if_capabilities;
649
650         /* Set up MII bus. */
651         if ((error = mii_phy_probe(dev, &sc->age_miibus, age_mediachange,
652             age_mediastatus)) != 0) {
653                 device_printf(dev, "no PHY found!\n");
654                 goto fail;
655         }
656
657         ether_ifattach(ifp, sc->age_eaddr, NULL);
658
659         /* Tell the upper layer(s) we support long frames. */
660         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
661
662         error = bus_setup_intr(dev, sc->age_irq_res, INTR_MPSAFE, age_intr, sc,
663                                &sc->age_irq_handle, ifp->if_serializer);
664         if (error) {
665                 device_printf(dev, "could not set up interrupt handler.\n");
666                 ether_ifdetach(ifp);
667                 goto fail;
668         }
669
670         ifp->if_cpuid = ithread_cpuid(rman_get_start(sc->age_irq_res));
671         KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
672         return 0;
673 fail:
674         age_detach(dev);
675         return (error);
676 }
677
678 static int
679 age_detach(device_t dev)
680 {
681         struct age_softc *sc = device_get_softc(dev);
682
683         if (device_is_attached(dev)) {
684                 struct ifnet *ifp = &sc->arpcom.ac_if;
685
686                 lwkt_serialize_enter(ifp->if_serializer);
687                 sc->age_flags |= AGE_FLAG_DETACH;
688                 age_stop(sc);
689                 bus_teardown_intr(dev, sc->age_irq_res, sc->age_irq_handle);
690                 lwkt_serialize_exit(ifp->if_serializer);
691
692                 ether_ifdetach(ifp);
693         }
694
695         if (sc->age_sysctl_tree != NULL)
696                 sysctl_ctx_free(&sc->age_sysctl_ctx);
697
698         if (sc->age_miibus != NULL)
699                 device_delete_child(dev, sc->age_miibus);
700         bus_generic_detach(dev);
701
702         if (sc->age_irq_res != NULL) {
703                 bus_release_resource(dev, SYS_RES_IRQ, sc->age_irq_rid,
704                                      sc->age_irq_res);
705         }
706         if (sc->age_mem_res != NULL) {
707                 bus_release_resource(dev, SYS_RES_MEMORY, sc->age_mem_rid,
708                                      sc->age_mem_res);
709         }
710
711         age_dma_free(sc);
712
713         return (0);
714 }
715
716 static void
717 age_sysctl_node(struct age_softc *sc)
718 {
719         int error;
720
721         sysctl_ctx_init(&sc->age_sysctl_ctx);
722         sc->age_sysctl_tree = SYSCTL_ADD_NODE(&sc->age_sysctl_ctx,
723                                 SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
724                                 device_get_nameunit(sc->age_dev),
725                                 CTLFLAG_RD, 0, "");
726         if (sc->age_sysctl_tree == NULL) {
727                 device_printf(sc->age_dev, "can't add sysctl node\n");
728                 return;
729         }
730
731         SYSCTL_ADD_PROC(&sc->age_sysctl_ctx,
732             SYSCTL_CHILDREN(sc->age_sysctl_tree), OID_AUTO,
733             "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_age_stats,
734             "I", "Statistics");
735
736         SYSCTL_ADD_PROC(&sc->age_sysctl_ctx,
737             SYSCTL_CHILDREN(sc->age_sysctl_tree), OID_AUTO,
738             "int_mod", CTLTYPE_INT | CTLFLAG_RW, &sc->age_int_mod, 0,
739             sysctl_hw_age_int_mod, "I", "age interrupt moderation");
740
741         /* Pull in device tunables. */
742         sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
743         error = resource_int_value(device_get_name(sc->age_dev),
744             device_get_unit(sc->age_dev), "int_mod", &sc->age_int_mod);
745         if (error == 0) {
746                 if (sc->age_int_mod < AGE_IM_TIMER_MIN ||
747                     sc->age_int_mod > AGE_IM_TIMER_MAX) {
748                         device_printf(sc->age_dev,
749                             "int_mod value out of range; using default: %d\n",
750                             AGE_IM_TIMER_DEFAULT);
751                         sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
752                 }
753         }
754 }
755
756 struct age_dmamap_arg {
757         bus_addr_t      age_busaddr;
758 };
759
760 static void
761 age_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
762 {
763         struct age_dmamap_arg *ctx;
764
765         if (error != 0)
766                 return;
767
768         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
769
770         ctx = (struct age_dmamap_arg *)arg;
771         ctx->age_busaddr = segs[0].ds_addr;
772 }
773
774 /*
775  * Attansic L1 controller have single register to specify high
776  * address part of DMA blocks. So all descriptor structures and
777  * DMA memory blocks should have the same high address of given
778  * 4GB address space(i.e. crossing 4GB boundary is not allowed).
779  */
780 static int
781 age_check_boundary(struct age_softc *sc)
782 {
783         bus_addr_t rx_ring_end, rr_ring_end, tx_ring_end;
784         bus_addr_t cmb_block_end, smb_block_end;
785
786         /* Tx/Rx descriptor queue should reside within 4GB boundary. */
787         tx_ring_end = sc->age_rdata.age_tx_ring_paddr + AGE_TX_RING_SZ;
788         rx_ring_end = sc->age_rdata.age_rx_ring_paddr + AGE_RX_RING_SZ;
789         rr_ring_end = sc->age_rdata.age_rr_ring_paddr + AGE_RR_RING_SZ;
790         cmb_block_end = sc->age_rdata.age_cmb_block_paddr + AGE_CMB_BLOCK_SZ;
791         smb_block_end = sc->age_rdata.age_smb_block_paddr + AGE_SMB_BLOCK_SZ;
792
793         if ((AGE_ADDR_HI(tx_ring_end) !=
794             AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr)) ||
795             (AGE_ADDR_HI(rx_ring_end) !=
796             AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)) ||
797             (AGE_ADDR_HI(rr_ring_end) !=
798             AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)) ||
799             (AGE_ADDR_HI(cmb_block_end) !=
800             AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)) ||
801             (AGE_ADDR_HI(smb_block_end) !=
802             AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr)))
803                 return (EFBIG);
804
805         if ((AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rx_ring_end)) ||
806             (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rr_ring_end)) ||
807             (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(cmb_block_end)) ||
808             (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(smb_block_end)))
809                 return (EFBIG);
810
811         return (0);
812 }
813
814 static int
815 age_dma_alloc(struct age_softc *sc)
816 {
817         struct age_txdesc *txd;
818         struct age_rxdesc *rxd;
819         bus_addr_t lowaddr;
820         struct age_dmamap_arg ctx;
821         int error, i;
822
823         lowaddr = BUS_SPACE_MAXADDR;
824 again:
825         /* Create parent ring/DMA block tag. */
826         error = bus_dma_tag_create(
827             NULL,                       /* parent */
828             1, 0,                       /* alignment, boundary */
829             lowaddr,                    /* lowaddr */
830             BUS_SPACE_MAXADDR,          /* highaddr */
831             NULL, NULL,                 /* filter, filterarg */
832             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
833             0,                          /* nsegments */
834             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
835             0,                          /* flags */
836             &sc->age_cdata.age_parent_tag);
837         if (error != 0) {
838                 device_printf(sc->age_dev,
839                     "could not create parent DMA tag.\n");
840                 goto fail;
841         }
842
843         /* Create tag for Tx ring. */
844         error = bus_dma_tag_create(
845             sc->age_cdata.age_parent_tag, /* parent */
846             AGE_TX_RING_ALIGN, 0,       /* alignment, boundary */
847             BUS_SPACE_MAXADDR,          /* lowaddr */
848             BUS_SPACE_MAXADDR,          /* highaddr */
849             NULL, NULL,                 /* filter, filterarg */
850             AGE_TX_RING_SZ,             /* maxsize */
851             1,                          /* nsegments */
852             AGE_TX_RING_SZ,             /* maxsegsize */
853             0,                          /* flags */
854             &sc->age_cdata.age_tx_ring_tag);
855         if (error != 0) {
856                 device_printf(sc->age_dev,
857                     "could not create Tx ring DMA tag.\n");
858                 goto fail;
859         }
860
861         /* Create tag for Rx ring. */
862         error = bus_dma_tag_create(
863             sc->age_cdata.age_parent_tag, /* parent */
864             AGE_RX_RING_ALIGN, 0,       /* alignment, boundary */
865             BUS_SPACE_MAXADDR,          /* lowaddr */
866             BUS_SPACE_MAXADDR,          /* highaddr */
867             NULL, NULL,                 /* filter, filterarg */
868             AGE_RX_RING_SZ,             /* maxsize */
869             1,                          /* nsegments */
870             AGE_RX_RING_SZ,             /* maxsegsize */
871             0,                          /* flags */
872             &sc->age_cdata.age_rx_ring_tag);
873         if (error != 0) {
874                 device_printf(sc->age_dev,
875                     "could not create Rx ring DMA tag.\n");
876                 goto fail;
877         }
878
879         /* Create tag for Rx return ring. */
880         error = bus_dma_tag_create(
881             sc->age_cdata.age_parent_tag, /* parent */
882             AGE_RR_RING_ALIGN, 0,       /* alignment, boundary */
883             BUS_SPACE_MAXADDR,          /* lowaddr */
884             BUS_SPACE_MAXADDR,          /* highaddr */
885             NULL, NULL,                 /* filter, filterarg */
886             AGE_RR_RING_SZ,             /* maxsize */
887             1,                          /* nsegments */
888             AGE_RR_RING_SZ,             /* maxsegsize */
889             0,                          /* flags */
890             &sc->age_cdata.age_rr_ring_tag);
891         if (error != 0) {
892                 device_printf(sc->age_dev,
893                     "could not create Rx return ring DMA tag.\n");
894                 goto fail;
895         }
896
897         /* Create tag for coalesing message block. */
898         error = bus_dma_tag_create(
899             sc->age_cdata.age_parent_tag, /* parent */
900             AGE_CMB_ALIGN, 0,           /* alignment, boundary */
901             BUS_SPACE_MAXADDR,          /* lowaddr */
902             BUS_SPACE_MAXADDR,          /* highaddr */
903             NULL, NULL,                 /* filter, filterarg */
904             AGE_CMB_BLOCK_SZ,           /* maxsize */
905             1,                          /* nsegments */
906             AGE_CMB_BLOCK_SZ,           /* maxsegsize */
907             0,                          /* flags */
908             &sc->age_cdata.age_cmb_block_tag);
909         if (error != 0) {
910                 device_printf(sc->age_dev,
911                     "could not create CMB DMA tag.\n");
912                 goto fail;
913         }
914
915         /* Create tag for statistics message block. */
916         error = bus_dma_tag_create(
917             sc->age_cdata.age_parent_tag, /* parent */
918             AGE_SMB_ALIGN, 0,           /* alignment, boundary */
919             BUS_SPACE_MAXADDR,          /* lowaddr */
920             BUS_SPACE_MAXADDR,          /* highaddr */
921             NULL, NULL,                 /* filter, filterarg */
922             AGE_SMB_BLOCK_SZ,           /* maxsize */
923             1,                          /* nsegments */
924             AGE_SMB_BLOCK_SZ,           /* maxsegsize */
925             0,                          /* flags */
926             &sc->age_cdata.age_smb_block_tag);
927         if (error != 0) {
928                 device_printf(sc->age_dev,
929                     "could not create SMB DMA tag.\n");
930                 goto fail;
931         }
932
933         /* Allocate DMA'able memory and load the DMA map. */
934         error = bus_dmamem_alloc(sc->age_cdata.age_tx_ring_tag,
935             (void **)&sc->age_rdata.age_tx_ring,
936             BUS_DMA_WAITOK | BUS_DMA_ZERO,
937             &sc->age_cdata.age_tx_ring_map);
938         if (error != 0) {
939                 device_printf(sc->age_dev,
940                     "could not allocate DMA'able memory for Tx ring.\n");
941                 goto fail;
942         }
943         ctx.age_busaddr = 0;
944         error = bus_dmamap_load(sc->age_cdata.age_tx_ring_tag,
945             sc->age_cdata.age_tx_ring_map, sc->age_rdata.age_tx_ring,
946             AGE_TX_RING_SZ, age_dmamap_cb, &ctx, 0);
947         if (error != 0 || ctx.age_busaddr == 0) {
948                 device_printf(sc->age_dev,
949                     "could not load DMA'able memory for Tx ring.\n");
950                 goto fail;
951         }
952         sc->age_rdata.age_tx_ring_paddr = ctx.age_busaddr;
953         /* Rx ring */
954         error = bus_dmamem_alloc(sc->age_cdata.age_rx_ring_tag,
955             (void **)&sc->age_rdata.age_rx_ring,
956             BUS_DMA_WAITOK | BUS_DMA_ZERO,
957             &sc->age_cdata.age_rx_ring_map);
958         if (error != 0) {
959                 device_printf(sc->age_dev,
960                     "could not allocate DMA'able memory for Rx ring.\n");
961                 goto fail;
962         }
963         ctx.age_busaddr = 0;
964         error = bus_dmamap_load(sc->age_cdata.age_rx_ring_tag,
965             sc->age_cdata.age_rx_ring_map, sc->age_rdata.age_rx_ring,
966             AGE_RX_RING_SZ, age_dmamap_cb, &ctx, 0);
967         if (error != 0 || ctx.age_busaddr == 0) {
968                 device_printf(sc->age_dev,
969                     "could not load DMA'able memory for Rx ring.\n");
970                 goto fail;
971         }
972         sc->age_rdata.age_rx_ring_paddr = ctx.age_busaddr;
973         /* Rx return ring */
974         error = bus_dmamem_alloc(sc->age_cdata.age_rr_ring_tag,
975             (void **)&sc->age_rdata.age_rr_ring,
976             BUS_DMA_WAITOK | BUS_DMA_ZERO,
977             &sc->age_cdata.age_rr_ring_map);
978         if (error != 0) {
979                 device_printf(sc->age_dev,
980                     "could not allocate DMA'able memory for Rx return ring.\n");
981                 goto fail;
982         }
983         ctx.age_busaddr = 0;
984         error = bus_dmamap_load(sc->age_cdata.age_rr_ring_tag,
985             sc->age_cdata.age_rr_ring_map, sc->age_rdata.age_rr_ring,
986             AGE_RR_RING_SZ, age_dmamap_cb, &ctx, 0);
987         if (error != 0 || ctx.age_busaddr == 0) {
988                 device_printf(sc->age_dev,
989                     "could not load DMA'able memory for Rx return ring.\n");
990                 goto fail;
991         }
992         sc->age_rdata.age_rr_ring_paddr = ctx.age_busaddr;
993         /* CMB block */
994         error = bus_dmamem_alloc(sc->age_cdata.age_cmb_block_tag,
995             (void **)&sc->age_rdata.age_cmb_block,
996             BUS_DMA_WAITOK | BUS_DMA_ZERO,
997             &sc->age_cdata.age_cmb_block_map);
998         if (error != 0) {
999                 device_printf(sc->age_dev,
1000                     "could not allocate DMA'able memory for CMB block.\n");
1001                 goto fail;
1002         }
1003         ctx.age_busaddr = 0;
1004         error = bus_dmamap_load(sc->age_cdata.age_cmb_block_tag,
1005             sc->age_cdata.age_cmb_block_map, sc->age_rdata.age_cmb_block,
1006             AGE_CMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1007         if (error != 0 || ctx.age_busaddr == 0) {
1008                 device_printf(sc->age_dev,
1009                     "could not load DMA'able memory for CMB block.\n");
1010                 goto fail;
1011         }
1012         sc->age_rdata.age_cmb_block_paddr = ctx.age_busaddr;
1013         /* SMB block */
1014         error = bus_dmamem_alloc(sc->age_cdata.age_smb_block_tag,
1015             (void **)&sc->age_rdata.age_smb_block,
1016             BUS_DMA_WAITOK | BUS_DMA_ZERO,
1017             &sc->age_cdata.age_smb_block_map);
1018         if (error != 0) {
1019                 device_printf(sc->age_dev,
1020                     "could not allocate DMA'able memory for SMB block.\n");
1021                 goto fail;
1022         }
1023         ctx.age_busaddr = 0;
1024         error = bus_dmamap_load(sc->age_cdata.age_smb_block_tag,
1025             sc->age_cdata.age_smb_block_map, sc->age_rdata.age_smb_block,
1026             AGE_SMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1027         if (error != 0 || ctx.age_busaddr == 0) {
1028                 device_printf(sc->age_dev,
1029                     "could not load DMA'able memory for SMB block.\n");
1030                 goto fail;
1031         }
1032         sc->age_rdata.age_smb_block_paddr = ctx.age_busaddr;
1033
1034         /*
1035          * All ring buffer and DMA blocks should have the same
1036          * high address part of 64bit DMA address space.
1037          */
1038         if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1039             (error = age_check_boundary(sc)) != 0) {
1040                 device_printf(sc->age_dev, "4GB boundary crossed, "
1041                     "switching to 32bit DMA addressing mode.\n");
1042                 age_dma_free(sc);
1043                 /* Limit DMA address space to 32bit and try again. */
1044                 lowaddr = BUS_SPACE_MAXADDR_32BIT;
1045                 goto again;
1046         }
1047
1048         /*
1049          * Create Tx/Rx buffer parent tag.
1050          * L1 supports full 64bit DMA addressing in Tx/Rx buffers
1051          * so it needs separate parent DMA tag.
1052          */
1053         error = bus_dma_tag_create(
1054             NULL,                       /* parent */
1055             1, 0,                       /* alignment, boundary */
1056             BUS_SPACE_MAXADDR,          /* lowaddr */
1057             BUS_SPACE_MAXADDR,          /* highaddr */
1058             NULL, NULL,                 /* filter, filterarg */
1059             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
1060             0,                          /* nsegments */
1061             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
1062             0,                          /* flags */
1063             &sc->age_cdata.age_buffer_tag);
1064         if (error != 0) {
1065                 device_printf(sc->age_dev,
1066                     "could not create parent buffer DMA tag.\n");
1067                 goto fail;
1068         }
1069
1070         /* Create tag for Tx buffers. */
1071         error = bus_dma_tag_create(
1072             sc->age_cdata.age_buffer_tag, /* parent */
1073             1, 0,                       /* alignment, boundary */
1074             BUS_SPACE_MAXADDR,          /* lowaddr */
1075             BUS_SPACE_MAXADDR,          /* highaddr */
1076             NULL, NULL,                 /* filter, filterarg */
1077             AGE_TSO_MAXSIZE,            /* maxsize */
1078             AGE_MAXTXSEGS,              /* nsegments */
1079             AGE_TSO_MAXSEGSIZE,         /* maxsegsize */
1080             0,                          /* flags */
1081             &sc->age_cdata.age_tx_tag);
1082         if (error != 0) {
1083                 device_printf(sc->age_dev, "could not create Tx DMA tag.\n");
1084                 goto fail;
1085         }
1086
1087         /* Create tag for Rx buffers. */
1088         error = bus_dma_tag_create(
1089             sc->age_cdata.age_buffer_tag, /* parent */
1090             1, 0,                       /* alignment, boundary */
1091             BUS_SPACE_MAXADDR,          /* lowaddr */
1092             BUS_SPACE_MAXADDR,          /* highaddr */
1093             NULL, NULL,                 /* filter, filterarg */
1094             MCLBYTES,                   /* maxsize */
1095             1,                          /* nsegments */
1096             MCLBYTES,                   /* maxsegsize */
1097             0,                          /* flags */
1098             &sc->age_cdata.age_rx_tag);
1099         if (error != 0) {
1100                 device_printf(sc->age_dev, "could not create Rx DMA tag.\n");
1101                 goto fail;
1102         }
1103
1104         /* Create DMA maps for Tx buffers. */
1105         for (i = 0; i < AGE_TX_RING_CNT; i++) {
1106                 txd = &sc->age_cdata.age_txdesc[i];
1107                 txd->tx_m = NULL;
1108                 txd->tx_dmamap = NULL;
1109                 error = bus_dmamap_create(sc->age_cdata.age_tx_tag, 0,
1110                     &txd->tx_dmamap);
1111                 if (error != 0) {
1112                         device_printf(sc->age_dev,
1113                             "could not create Tx dmamap.\n");
1114                         goto fail;
1115                 }
1116         }
1117         /* Create DMA maps for Rx buffers. */
1118         if ((error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1119             &sc->age_cdata.age_rx_sparemap)) != 0) {
1120                 device_printf(sc->age_dev,
1121                     "could not create spare Rx dmamap.\n");
1122                 goto fail;
1123         }
1124         for (i = 0; i < AGE_RX_RING_CNT; i++) {
1125                 rxd = &sc->age_cdata.age_rxdesc[i];
1126                 rxd->rx_m = NULL;
1127                 rxd->rx_dmamap = NULL;
1128                 error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1129                     &rxd->rx_dmamap);
1130                 if (error != 0) {
1131                         device_printf(sc->age_dev,
1132                             "could not create Rx dmamap.\n");
1133                         goto fail;
1134                 }
1135         }
1136 fail:
1137         return (error);
1138 }
1139
1140 static void
1141 age_dma_free(struct age_softc *sc)
1142 {
1143         struct age_txdesc *txd;
1144         struct age_rxdesc *rxd;
1145         int i;
1146
1147         /* Tx buffers */
1148         if (sc->age_cdata.age_tx_tag != NULL) {
1149                 for (i = 0; i < AGE_TX_RING_CNT; i++) {
1150                         txd = &sc->age_cdata.age_txdesc[i];
1151                         if (txd->tx_dmamap != NULL) {
1152                                 bus_dmamap_destroy(sc->age_cdata.age_tx_tag,
1153                                     txd->tx_dmamap);
1154                                 txd->tx_dmamap = NULL;
1155                         }
1156                 }
1157                 bus_dma_tag_destroy(sc->age_cdata.age_tx_tag);
1158                 sc->age_cdata.age_tx_tag = NULL;
1159         }
1160         /* Rx buffers */
1161         if (sc->age_cdata.age_rx_tag != NULL) {
1162                 for (i = 0; i < AGE_RX_RING_CNT; i++) {
1163                         rxd = &sc->age_cdata.age_rxdesc[i];
1164                         if (rxd->rx_dmamap != NULL) {
1165                                 bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1166                                     rxd->rx_dmamap);
1167                                 rxd->rx_dmamap = NULL;
1168                         }
1169                 }
1170                 if (sc->age_cdata.age_rx_sparemap != NULL) {
1171                         bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1172                             sc->age_cdata.age_rx_sparemap);
1173                         sc->age_cdata.age_rx_sparemap = NULL;
1174                 }
1175                 bus_dma_tag_destroy(sc->age_cdata.age_rx_tag);
1176                 sc->age_cdata.age_rx_tag = NULL;
1177         }
1178         /* Tx ring. */
1179         if (sc->age_cdata.age_tx_ring_tag != NULL) {
1180                 if (sc->age_cdata.age_tx_ring_map != NULL)
1181                         bus_dmamap_unload(sc->age_cdata.age_tx_ring_tag,
1182                             sc->age_cdata.age_tx_ring_map);
1183                 if (sc->age_cdata.age_tx_ring_map != NULL &&
1184                     sc->age_rdata.age_tx_ring != NULL)
1185                         bus_dmamem_free(sc->age_cdata.age_tx_ring_tag,
1186                             sc->age_rdata.age_tx_ring,
1187                             sc->age_cdata.age_tx_ring_map);
1188                 sc->age_rdata.age_tx_ring = NULL;
1189                 sc->age_cdata.age_tx_ring_map = NULL;
1190                 bus_dma_tag_destroy(sc->age_cdata.age_tx_ring_tag);
1191                 sc->age_cdata.age_tx_ring_tag = NULL;
1192         }
1193         /* Rx ring. */
1194         if (sc->age_cdata.age_rx_ring_tag != NULL) {
1195                 if (sc->age_cdata.age_rx_ring_map != NULL)
1196                         bus_dmamap_unload(sc->age_cdata.age_rx_ring_tag,
1197                             sc->age_cdata.age_rx_ring_map);
1198                 if (sc->age_cdata.age_rx_ring_map != NULL &&
1199                     sc->age_rdata.age_rx_ring != NULL)
1200                         bus_dmamem_free(sc->age_cdata.age_rx_ring_tag,
1201                             sc->age_rdata.age_rx_ring,
1202                             sc->age_cdata.age_rx_ring_map);
1203                 sc->age_rdata.age_rx_ring = NULL;
1204                 sc->age_cdata.age_rx_ring_map = NULL;
1205                 bus_dma_tag_destroy(sc->age_cdata.age_rx_ring_tag);
1206                 sc->age_cdata.age_rx_ring_tag = NULL;
1207         }
1208         /* Rx return ring. */
1209         if (sc->age_cdata.age_rr_ring_tag != NULL) {
1210                 if (sc->age_cdata.age_rr_ring_map != NULL)
1211                         bus_dmamap_unload(sc->age_cdata.age_rr_ring_tag,
1212                             sc->age_cdata.age_rr_ring_map);
1213                 if (sc->age_cdata.age_rr_ring_map != NULL &&
1214                     sc->age_rdata.age_rr_ring != NULL)
1215                         bus_dmamem_free(sc->age_cdata.age_rr_ring_tag,
1216                             sc->age_rdata.age_rr_ring,
1217                             sc->age_cdata.age_rr_ring_map);
1218                 sc->age_rdata.age_rr_ring = NULL;
1219                 sc->age_cdata.age_rr_ring_map = NULL;
1220                 bus_dma_tag_destroy(sc->age_cdata.age_rr_ring_tag);
1221                 sc->age_cdata.age_rr_ring_tag = NULL;
1222         }
1223         /* CMB block */
1224         if (sc->age_cdata.age_cmb_block_tag != NULL) {
1225                 if (sc->age_cdata.age_cmb_block_map != NULL)
1226                         bus_dmamap_unload(sc->age_cdata.age_cmb_block_tag,
1227                             sc->age_cdata.age_cmb_block_map);
1228                 if (sc->age_cdata.age_cmb_block_map != NULL &&
1229                     sc->age_rdata.age_cmb_block != NULL)
1230                         bus_dmamem_free(sc->age_cdata.age_cmb_block_tag,
1231                             sc->age_rdata.age_cmb_block,
1232                             sc->age_cdata.age_cmb_block_map);
1233                 sc->age_rdata.age_cmb_block = NULL;
1234                 sc->age_cdata.age_cmb_block_map = NULL;
1235                 bus_dma_tag_destroy(sc->age_cdata.age_cmb_block_tag);
1236                 sc->age_cdata.age_cmb_block_tag = NULL;
1237         }
1238         /* SMB block */
1239         if (sc->age_cdata.age_smb_block_tag != NULL) {
1240                 if (sc->age_cdata.age_smb_block_map != NULL)
1241                         bus_dmamap_unload(sc->age_cdata.age_smb_block_tag,
1242                             sc->age_cdata.age_smb_block_map);
1243                 if (sc->age_cdata.age_smb_block_map != NULL &&
1244                     sc->age_rdata.age_smb_block != NULL)
1245                         bus_dmamem_free(sc->age_cdata.age_smb_block_tag,
1246                             sc->age_rdata.age_smb_block,
1247                             sc->age_cdata.age_smb_block_map);
1248                 sc->age_rdata.age_smb_block = NULL;
1249                 sc->age_cdata.age_smb_block_map = NULL;
1250                 bus_dma_tag_destroy(sc->age_cdata.age_smb_block_tag);
1251                 sc->age_cdata.age_smb_block_tag = NULL;
1252         }
1253
1254         if (sc->age_cdata.age_buffer_tag != NULL) {
1255                 bus_dma_tag_destroy(sc->age_cdata.age_buffer_tag);
1256                 sc->age_cdata.age_buffer_tag = NULL;
1257         }
1258         if (sc->age_cdata.age_parent_tag != NULL) {
1259                 bus_dma_tag_destroy(sc->age_cdata.age_parent_tag);
1260                 sc->age_cdata.age_parent_tag = NULL;
1261         }
1262 }
1263
1264 /*
1265  *      Make sure the interface is stopped at reboot time.
1266  */
1267 static int
1268 age_shutdown(device_t dev)
1269 {
1270         return age_suspend(dev);
1271 }
1272
1273 #ifdef wol_notyet
1274
1275 static void
1276 age_setwol(struct age_softc *sc)
1277 {
1278         struct ifnet *ifp;
1279         struct mii_data *mii;
1280         uint32_t reg, pmcs;
1281         uint16_t pmstat;
1282         int aneg, i, pmc;
1283
1284         AGE_LOCK_ASSERT(sc);
1285
1286         if (pci_find_extcap(sc->age_dev, PCIY_PMG, &pmc) == 0) {
1287                 CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1288                 /*
1289                  * No PME capability, PHY power down.
1290                  * XXX
1291                  * Due to an unknown reason powering down PHY resulted
1292                  * in unexpected results such as inaccessbility of
1293                  * hardware of freshly rebooted system. Disable
1294                  * powering down PHY until I got more information for
1295                  * Attansic/Atheros PHY hardwares.
1296                  */
1297 #ifdef notyet
1298                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1299                     MII_BMCR, BMCR_PDOWN);
1300 #endif
1301                 return;
1302         }
1303
1304         ifp = sc->age_ifp;
1305         if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1306                 /*
1307                  * Note, this driver resets the link speed to 10/100Mbps with
1308                  * auto-negotiation but we don't know whether that operation
1309                  * would succeed or not as it have no control after powering
1310                  * off. If the renegotiation fail WOL may not work. Running
1311                  * at 1Gbps will draw more power than 375mA at 3.3V which is
1312                  * specified in PCI specification and that would result in
1313                  * complete shutdowning power to ethernet controller.
1314                  *
1315                  * TODO
1316                  *  Save current negotiated media speed/duplex/flow-control
1317                  *  to softc and restore the same link again after resuming.
1318                  *  PHY handling such as power down/resetting to 100Mbps
1319                  *  may be better handled in suspend method in phy driver.
1320                  */
1321                 mii = device_get_softc(sc->age_miibus);
1322                 mii_pollstat(mii);
1323                 aneg = 0;
1324                 if ((mii->mii_media_status & IFM_AVALID) != 0) {
1325                         switch IFM_SUBTYPE(mii->mii_media_active) {
1326                         case IFM_10_T:
1327                         case IFM_100_TX:
1328                                 goto got_link;
1329                         case IFM_1000_T:
1330                                 aneg++;
1331                         default:
1332                                 break;
1333                         }
1334                 }
1335                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1336                     MII_100T2CR, 0);
1337                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1338                     MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD |
1339                     ANAR_10 | ANAR_CSMA);
1340                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1341                     MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1342                 DELAY(1000);
1343                 if (aneg != 0) {
1344                         /* Poll link state until age(4) get a 10/100 link. */
1345                         for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1346                                 mii_pollstat(mii);
1347                                 if ((mii->mii_media_status & IFM_AVALID) != 0) {
1348                                         switch (IFM_SUBTYPE(
1349                                             mii->mii_media_active)) {
1350                                         case IFM_10_T:
1351                                         case IFM_100_TX:
1352                                                 age_mac_config(sc);
1353                                                 goto got_link;
1354                                         default:
1355                                                 break;
1356                                         }
1357                                 }
1358                                 AGE_UNLOCK(sc);
1359                                 pause("agelnk", hz);
1360                                 AGE_LOCK(sc);
1361                         }
1362                         if (i == MII_ANEGTICKS_GIGE)
1363                                 device_printf(sc->age_dev,
1364                                     "establishing link failed, "
1365                                     "WOL may not work!");
1366                 }
1367                 /*
1368                  * No link, force MAC to have 100Mbps, full-duplex link.
1369                  * This is the last resort and may/may not work.
1370                  */
1371                 mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1372                 mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1373                 age_mac_config(sc);
1374         }
1375
1376 got_link:
1377         pmcs = 0;
1378         if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1379                 pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1380         CSR_WRITE_4(sc, AGE_WOL_CFG, pmcs);
1381         reg = CSR_READ_4(sc, AGE_MAC_CFG);
1382         reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC);
1383         reg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST);
1384         if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1385                 reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1386         if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1387                 reg |= MAC_CFG_RX_ENB;
1388                 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1389         }
1390
1391         /* Request PME. */
1392         pmstat = pci_read_config(sc->age_dev, pmc + PCIR_POWER_STATUS, 2);
1393         pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1394         if ((ifp->if_capenable & IFCAP_WOL) != 0)
1395                 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1396         pci_write_config(sc->age_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1397 #ifdef notyet
1398         /* See above for powering down PHY issues. */
1399         if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1400                 /* No WOL, PHY power down. */
1401                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1402                     MII_BMCR, BMCR_PDOWN);
1403         }
1404 #endif
1405 }
1406
1407 #endif  /* wol_notyet */
1408
1409 static int
1410 age_suspend(device_t dev)
1411 {
1412         struct age_softc *sc = device_get_softc(dev);
1413         struct ifnet *ifp = &sc->arpcom.ac_if;
1414
1415         lwkt_serialize_enter(ifp->if_serializer);
1416         age_stop(sc);
1417 #ifdef wol_notyet
1418         age_setwol(sc);
1419 #endif
1420         lwkt_serialize_exit(ifp->if_serializer);
1421
1422         return (0);
1423 }
1424
1425 static int
1426 age_resume(device_t dev)
1427 {
1428         struct age_softc *sc = device_get_softc(dev);
1429         struct ifnet *ifp = &sc->arpcom.ac_if;
1430         uint16_t cmd;
1431
1432         lwkt_serialize_enter(ifp->if_serializer);
1433
1434         /*
1435          * Clear INTx emulation disable for hardwares that
1436          * is set in resume event. From Linux.
1437          */
1438         cmd = pci_read_config(sc->age_dev, PCIR_COMMAND, 2);
1439         if ((cmd & 0x0400) != 0) {
1440                 cmd &= ~0x0400;
1441                 pci_write_config(sc->age_dev, PCIR_COMMAND, cmd, 2);
1442         }
1443         if ((ifp->if_flags & IFF_UP) != 0)
1444                 age_init(sc);
1445
1446         lwkt_serialize_exit(ifp->if_serializer);
1447
1448         return (0);
1449 }
1450
1451 static int
1452 age_encap(struct age_softc *sc, struct mbuf **m_head)
1453 {
1454         struct age_txdesc *txd, *txd_last;
1455         struct tx_desc *desc;
1456         struct mbuf *m;
1457         struct age_dmamap_ctx ctx;
1458         bus_dma_segment_t txsegs[AGE_MAXTXSEGS];
1459         bus_dmamap_t map;
1460         uint32_t cflags, poff, vtag;
1461         int error, i, nsegs, prod, si;
1462
1463         M_ASSERTPKTHDR((*m_head));
1464
1465         m = *m_head;
1466         cflags = vtag = 0;
1467         poff = 0;
1468
1469         si = prod = sc->age_cdata.age_tx_prod;
1470         txd = &sc->age_cdata.age_txdesc[prod];
1471         txd_last = txd;
1472         map = txd->tx_dmamap;
1473
1474         ctx.nsegs = AGE_MAXTXSEGS;
1475         ctx.segs = txsegs;
1476         error = bus_dmamap_load_mbuf(sc->age_cdata.age_tx_tag, map,
1477                                      *m_head, age_dmamap_buf_cb, &ctx,
1478                                      BUS_DMA_NOWAIT);
1479         if (!error && ctx.nsegs == 0) {
1480                 bus_dmamap_unload(sc->age_cdata.age_tx_tag, map);
1481                 error = EFBIG;
1482         }
1483         if (error == EFBIG) {
1484                 m = m_defrag(*m_head, MB_DONTWAIT);
1485                 if (m == NULL) {
1486                         m_freem(*m_head);
1487                         *m_head = NULL;
1488                         return (ENOBUFS);
1489                 }
1490                 *m_head = m;
1491
1492                 ctx.nsegs = AGE_MAXTXSEGS;
1493                 ctx.segs = txsegs;
1494                 error = bus_dmamap_load_mbuf(sc->age_cdata.age_tx_tag, map,
1495                                              *m_head, age_dmamap_buf_cb, &ctx,
1496                                              BUS_DMA_NOWAIT);
1497                 if (error || ctx.nsegs == 0) {
1498                         if (!error) {
1499                                 bus_dmamap_unload(sc->age_cdata.age_tx_tag,
1500                                                   map);
1501                                 error = EFBIG;
1502                         }
1503                         m_freem(*m_head);
1504                         *m_head = NULL;
1505                         return (error);
1506                 }
1507         } else if (error != 0) {
1508                 return (error);
1509         }
1510         nsegs = ctx.nsegs;
1511
1512         if (nsegs == 0) {
1513                 m_freem(*m_head);
1514                 *m_head = NULL;
1515                 return (EIO);
1516         }
1517
1518         /* Check descriptor overrun. */
1519         if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1520                 bus_dmamap_unload(sc->age_cdata.age_tx_tag, map);
1521                 return (ENOBUFS);
1522         }
1523
1524         m = *m_head;
1525         /* Configure Tx IP/TCP/UDP checksum offload. */
1526         if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1527                 cflags |= AGE_TD_CSUM;
1528                 if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1529                         cflags |= AGE_TD_TCPCSUM;
1530                 if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1531                         cflags |= AGE_TD_UDPCSUM;
1532                 /* Set checksum start offset. */
1533                 cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1534                 /* Set checksum insertion position of TCP/UDP. */
1535                 cflags |= ((poff + m->m_pkthdr.csum_data) <<
1536                     AGE_TD_CSUM_XSUMOFFSET_SHIFT);
1537         }
1538
1539         /* Configure VLAN hardware tag insertion. */
1540         if ((m->m_flags & M_VLANTAG) != 0) {
1541                 vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vlantag);
1542                 vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1543                 cflags |= AGE_TD_INSERT_VLAN_TAG;
1544         }
1545
1546         desc = NULL;
1547         for (i = 0; i < nsegs; i++) {
1548                 desc = &sc->age_rdata.age_tx_ring[prod];
1549                 desc->addr = htole64(txsegs[i].ds_addr);
1550                 desc->len = htole32(AGE_TX_BYTES(txsegs[i].ds_len) | vtag);
1551                 desc->flags = htole32(cflags);
1552                 sc->age_cdata.age_tx_cnt++;
1553                 AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1554         }
1555         /* Update producer index. */
1556         sc->age_cdata.age_tx_prod = prod;
1557
1558         /* Set EOP on the last descriptor. */
1559         prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1560         desc = &sc->age_rdata.age_tx_ring[prod];
1561         desc->flags |= htole32(AGE_TD_EOP);
1562
1563         /* Swap dmamap of the first and the last. */
1564         txd = &sc->age_cdata.age_txdesc[prod];
1565         map = txd_last->tx_dmamap;
1566         txd_last->tx_dmamap = txd->tx_dmamap;
1567         txd->tx_dmamap = map;
1568         txd->tx_m = m;
1569
1570         /* Sync descriptors. */
1571         bus_dmamap_sync(sc->age_cdata.age_tx_tag, map, BUS_DMASYNC_PREWRITE);
1572         bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
1573             sc->age_cdata.age_tx_ring_map, BUS_DMASYNC_PREWRITE);
1574
1575         return (0);
1576 }
1577
1578 static void
1579 age_start(struct ifnet *ifp)
1580 {
1581         struct age_softc *sc = ifp->if_softc;
1582         struct mbuf *m_head;
1583         int enq;
1584
1585         ASSERT_SERIALIZED(ifp->if_serializer);
1586
1587         if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1588                 ifq_purge(&ifp->if_snd);
1589                 return;
1590         }
1591
1592         if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1593                 return;
1594
1595         enq = 0;
1596         while (!ifq_is_empty(&ifp->if_snd)) {
1597                 m_head = ifq_dequeue(&ifp->if_snd, NULL);
1598                 if (m_head == NULL)
1599                         break;
1600
1601                 /*
1602                  * Pack the data into the transmit ring. If we
1603                  * don't have room, set the OACTIVE flag and wait
1604                  * for the NIC to drain the ring.
1605                  */
1606                 if (age_encap(sc, &m_head)) {
1607                         if (m_head == NULL)
1608                                 break;
1609                         ifq_prepend(&ifp->if_snd, m_head);
1610                         ifp->if_flags |= IFF_OACTIVE;
1611                         break;
1612                 }
1613                 enq = 1;
1614
1615                 /*
1616                  * If there's a BPF listener, bounce a copy of this frame
1617                  * to him.
1618                  */
1619                 ETHER_BPF_MTAP(ifp, m_head);
1620         }
1621
1622         if (enq) {
1623                 /* Update mbox. */
1624                 AGE_COMMIT_MBOX(sc);
1625                 /* Set a timeout in case the chip goes out to lunch. */
1626                 ifp->if_timer = AGE_TX_TIMEOUT;
1627         }
1628 }
1629
1630 static void
1631 age_watchdog(struct ifnet *ifp)
1632 {
1633         struct age_softc *sc = ifp->if_softc;
1634
1635         ASSERT_SERIALIZED(ifp->if_serializer);
1636
1637         if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1638                 if_printf(ifp, "watchdog timeout (missed link)\n");
1639                 ifp->if_oerrors++;
1640                 age_init(sc);
1641                 return;
1642         }
1643
1644         if (sc->age_cdata.age_tx_cnt == 0) {
1645                 if_printf(ifp,
1646                     "watchdog timeout (missed Tx interrupts) -- recovering\n");
1647                 if (!ifq_is_empty(&ifp->if_snd))
1648                         if_devstart(ifp);
1649                 return;
1650         }
1651
1652         if_printf(ifp, "watchdog timeout\n");
1653         ifp->if_oerrors++;
1654         age_init(sc);
1655         if (!ifq_is_empty(&ifp->if_snd))
1656                 if_devstart(ifp);
1657 }
1658
1659 static int
1660 age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
1661 {
1662         struct age_softc *sc = ifp->if_softc;
1663         struct ifreq *ifr;
1664         struct mii_data *mii;
1665         uint32_t reg;
1666         int error, mask;
1667
1668         ASSERT_SERIALIZED(ifp->if_serializer);
1669
1670         ifr = (struct ifreq *)data;
1671         error = 0;
1672         switch (cmd) {
1673         case SIOCSIFMTU:
1674                 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > AGE_JUMBO_MTU) {
1675                         error = EINVAL;
1676                 } else if (ifp->if_mtu != ifr->ifr_mtu) {
1677                         ifp->if_mtu = ifr->ifr_mtu;
1678                         if ((ifp->if_flags & IFF_RUNNING) != 0)
1679                                 age_init(sc);
1680                 }
1681                 break;
1682
1683         case SIOCSIFFLAGS:
1684                 if ((ifp->if_flags & IFF_UP) != 0) {
1685                         if ((ifp->if_flags & IFF_RUNNING) != 0) {
1686                                 if (((ifp->if_flags ^ sc->age_if_flags)
1687                                     & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1688                                         age_rxfilter(sc);
1689                         } else {
1690                                 if ((sc->age_flags & AGE_FLAG_DETACH) == 0)
1691                                         age_init(sc);
1692                         }
1693                 } else {
1694                         if ((ifp->if_flags & IFF_RUNNING) != 0)
1695                                 age_stop(sc);
1696                 }
1697                 sc->age_if_flags = ifp->if_flags;
1698                 break;
1699
1700         case SIOCADDMULTI:
1701         case SIOCDELMULTI:
1702                 if ((ifp->if_flags & IFF_RUNNING) != 0)
1703                         age_rxfilter(sc);
1704                 break;
1705
1706         case SIOCSIFMEDIA:
1707         case SIOCGIFMEDIA:
1708                 mii = device_get_softc(sc->age_miibus);
1709                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1710                 break;
1711
1712         case SIOCSIFCAP:
1713                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1714
1715                 if ((mask & IFCAP_TXCSUM) != 0 &&
1716                     (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1717                         ifp->if_capenable ^= IFCAP_TXCSUM;
1718                         if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1719                                 ifp->if_hwassist |= AGE_CSUM_FEATURES;
1720                         else
1721                                 ifp->if_hwassist &= ~AGE_CSUM_FEATURES;
1722                 }
1723
1724                 if ((mask & IFCAP_RXCSUM) != 0 &&
1725                     (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
1726                         ifp->if_capenable ^= IFCAP_RXCSUM;
1727                         reg = CSR_READ_4(sc, AGE_MAC_CFG);
1728                         reg &= ~MAC_CFG_RXCSUM_ENB;
1729                         if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1730                                 reg |= MAC_CFG_RXCSUM_ENB;
1731                         CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1732                 }
1733
1734                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1735                     (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
1736                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1737                         age_rxvlan(sc);
1738                 }
1739                 break;
1740
1741         default:
1742                 error = ether_ioctl(ifp, cmd, data);
1743                 break;
1744         }
1745         return (error);
1746 }
1747
1748 static void
1749 age_mac_config(struct age_softc *sc)
1750 {
1751         struct mii_data *mii = device_get_softc(sc->age_miibus);
1752         uint32_t reg;
1753
1754         reg = CSR_READ_4(sc, AGE_MAC_CFG);
1755         reg &= ~MAC_CFG_FULL_DUPLEX;
1756         reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1757         reg &= ~MAC_CFG_SPEED_MASK;
1758
1759         /* Reprogram MAC with resolved speed/duplex. */
1760         switch (IFM_SUBTYPE(mii->mii_media_active)) {
1761         case IFM_10_T:
1762         case IFM_100_TX:
1763                 reg |= MAC_CFG_SPEED_10_100;
1764                 break;
1765         case IFM_1000_T:
1766                 reg |= MAC_CFG_SPEED_1000;
1767                 break;
1768         }
1769         if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1770                 reg |= MAC_CFG_FULL_DUPLEX;
1771 #ifdef notyet
1772                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1773                         reg |= MAC_CFG_TX_FC;
1774                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1775                         reg |= MAC_CFG_RX_FC;
1776 #endif
1777         }
1778         CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1779 }
1780
1781 static void
1782 age_stats_update(struct age_softc *sc)
1783 {
1784         struct ifnet *ifp = &sc->arpcom.ac_if;
1785         struct age_stats *stat;
1786         struct smb *smb;
1787
1788         stat = &sc->age_stat;
1789
1790         bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
1791             sc->age_cdata.age_smb_block_map, BUS_DMASYNC_POSTREAD);
1792
1793         smb = sc->age_rdata.age_smb_block;
1794         if (smb->updated == 0)
1795                 return;
1796
1797         /* Rx stats. */
1798         stat->rx_frames += smb->rx_frames;
1799         stat->rx_bcast_frames += smb->rx_bcast_frames;
1800         stat->rx_mcast_frames += smb->rx_mcast_frames;
1801         stat->rx_pause_frames += smb->rx_pause_frames;
1802         stat->rx_control_frames += smb->rx_control_frames;
1803         stat->rx_crcerrs += smb->rx_crcerrs;
1804         stat->rx_lenerrs += smb->rx_lenerrs;
1805         stat->rx_bytes += smb->rx_bytes;
1806         stat->rx_runts += smb->rx_runts;
1807         stat->rx_fragments += smb->rx_fragments;
1808         stat->rx_pkts_64 += smb->rx_pkts_64;
1809         stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1810         stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1811         stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
1812         stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
1813         stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
1814         stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
1815         stat->rx_pkts_truncated += smb->rx_pkts_truncated;
1816         stat->rx_fifo_oflows += smb->rx_fifo_oflows;
1817         stat->rx_desc_oflows += smb->rx_desc_oflows;
1818         stat->rx_alignerrs += smb->rx_alignerrs;
1819         stat->rx_bcast_bytes += smb->rx_bcast_bytes;
1820         stat->rx_mcast_bytes += smb->rx_mcast_bytes;
1821         stat->rx_pkts_filtered += smb->rx_pkts_filtered;
1822
1823         /* Tx stats. */
1824         stat->tx_frames += smb->tx_frames;
1825         stat->tx_bcast_frames += smb->tx_bcast_frames;
1826         stat->tx_mcast_frames += smb->tx_mcast_frames;
1827         stat->tx_pause_frames += smb->tx_pause_frames;
1828         stat->tx_excess_defer += smb->tx_excess_defer;
1829         stat->tx_control_frames += smb->tx_control_frames;
1830         stat->tx_deferred += smb->tx_deferred;
1831         stat->tx_bytes += smb->tx_bytes;
1832         stat->tx_pkts_64 += smb->tx_pkts_64;
1833         stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
1834         stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
1835         stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
1836         stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
1837         stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
1838         stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
1839         stat->tx_single_colls += smb->tx_single_colls;
1840         stat->tx_multi_colls += smb->tx_multi_colls;
1841         stat->tx_late_colls += smb->tx_late_colls;
1842         stat->tx_excess_colls += smb->tx_excess_colls;
1843         stat->tx_underrun += smb->tx_underrun;
1844         stat->tx_desc_underrun += smb->tx_desc_underrun;
1845         stat->tx_lenerrs += smb->tx_lenerrs;
1846         stat->tx_pkts_truncated += smb->tx_pkts_truncated;
1847         stat->tx_bcast_bytes += smb->tx_bcast_bytes;
1848         stat->tx_mcast_bytes += smb->tx_mcast_bytes;
1849
1850         /* Update counters in ifnet. */
1851         ifp->if_opackets += smb->tx_frames;
1852
1853         ifp->if_collisions += smb->tx_single_colls +
1854             smb->tx_multi_colls + smb->tx_late_colls +
1855             smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
1856
1857         ifp->if_oerrors += smb->tx_excess_colls +
1858             smb->tx_late_colls + smb->tx_underrun +
1859             smb->tx_pkts_truncated;
1860
1861         ifp->if_ipackets += smb->rx_frames;
1862
1863         ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
1864             smb->rx_runts + smb->rx_pkts_truncated +
1865             smb->rx_fifo_oflows + smb->rx_desc_oflows +
1866             smb->rx_alignerrs;
1867
1868         /* Update done, clear. */
1869         smb->updated = 0;
1870
1871         bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
1872             sc->age_cdata.age_smb_block_map, BUS_DMASYNC_PREWRITE);
1873 }
1874
1875 static void
1876 age_intr(void *xsc)
1877 {
1878         struct age_softc *sc = xsc;
1879         struct ifnet *ifp = &sc->arpcom.ac_if;
1880         struct cmb *cmb;
1881         uint32_t status;
1882
1883         ASSERT_SERIALIZED(ifp->if_serializer);
1884
1885         status = CSR_READ_4(sc, AGE_INTR_STATUS);
1886         if (status == 0 || (status & AGE_INTRS) == 0)
1887                 return;
1888
1889         /* Disable and acknowledge interrupts. */
1890         CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
1891
1892         cmb = sc->age_rdata.age_cmb_block;
1893
1894         bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
1895             sc->age_cdata.age_cmb_block_map, BUS_DMASYNC_POSTREAD);
1896         status = le32toh(cmb->intr_status);
1897         if ((status & AGE_INTRS) == 0)
1898                 goto done;
1899 again:
1900         sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
1901             TPD_CONS_SHIFT;
1902         sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
1903             RRD_PROD_SHIFT;
1904
1905         /* Let hardware know CMB was served. */
1906         cmb->intr_status = 0;
1907         bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
1908             sc->age_cdata.age_cmb_block_map, BUS_DMASYNC_PREWRITE);
1909
1910 #if 0
1911         kprintf("INTR: 0x%08x\n", status);
1912         status &= ~INTR_DIS_DMA;
1913         CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
1914 #endif
1915
1916         if ((ifp->if_flags & IFF_RUNNING) != 0) {
1917                 if ((status & INTR_CMB_RX) != 0)
1918                         age_rxintr(sc, sc->age_rr_prod);
1919
1920                 if ((status & INTR_CMB_TX) != 0)
1921                         age_txintr(sc, sc->age_tpd_cons);
1922
1923                 if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
1924                         if ((status & INTR_DMA_RD_TO_RST) != 0)
1925                                 device_printf(sc->age_dev,
1926                                     "DMA read error! -- resetting\n");
1927                         if ((status & INTR_DMA_WR_TO_RST) != 0)
1928                                 device_printf(sc->age_dev,
1929                                     "DMA write error! -- resetting\n");
1930                         age_init(sc);
1931                         /* XXX return? */
1932                 }
1933
1934                 if (!ifq_is_empty(&ifp->if_snd))
1935                         if_devstart(ifp);
1936
1937                 if ((status & INTR_SMB) != 0)
1938                         age_stats_update(sc);
1939         }
1940
1941         /* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
1942         bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
1943             sc->age_cdata.age_cmb_block_map, BUS_DMASYNC_POSTREAD);
1944         status = le32toh(cmb->intr_status);
1945         if ((status & AGE_INTRS) != 0)
1946                 goto again;
1947 done:
1948         /* Re-enable interrupts. */
1949         CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
1950 }
1951
1952 static void
1953 age_txintr(struct age_softc *sc, int tpd_cons)
1954 {
1955         struct ifnet *ifp = &sc->arpcom.ac_if;
1956         struct age_txdesc *txd;
1957         int cons, prog;
1958
1959         bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
1960             sc->age_cdata.age_tx_ring_map, BUS_DMASYNC_POSTREAD);
1961
1962         /*
1963          * Go through our Tx list and free mbufs for those
1964          * frames which have been transmitted.
1965          */
1966         cons = sc->age_cdata.age_tx_cons;
1967         for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
1968                 if (sc->age_cdata.age_tx_cnt <= 0)
1969                         break;
1970                 prog++;
1971                 ifp->if_flags &= ~IFF_OACTIVE;
1972                 sc->age_cdata.age_tx_cnt--;
1973                 txd = &sc->age_cdata.age_txdesc[cons];
1974                 /*
1975                  * Clear Tx descriptors, it's not required but would
1976                  * help debugging in case of Tx issues.
1977                  */
1978                 txd->tx_desc->addr = 0;
1979                 txd->tx_desc->len = 0;
1980                 txd->tx_desc->flags = 0;
1981
1982                 if (txd->tx_m == NULL)
1983                         continue;
1984                 /* Reclaim transmitted mbufs. */
1985                 bus_dmamap_unload(sc->age_cdata.age_tx_tag, txd->tx_dmamap);
1986                 m_freem(txd->tx_m);
1987                 txd->tx_m = NULL;
1988         }
1989
1990         if (prog > 0) {
1991                 sc->age_cdata.age_tx_cons = cons;
1992
1993                 /*
1994                  * Unarm watchdog timer only when there are no pending
1995                  * Tx descriptors in queue.
1996                  */
1997                 if (sc->age_cdata.age_tx_cnt == 0)
1998                         ifp->if_timer = 0;
1999                 bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2000                     sc->age_cdata.age_tx_ring_map, BUS_DMASYNC_PREWRITE);
2001         }
2002 }
2003
2004 /* Receive a frame. */
2005 static void
2006 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
2007 {
2008         struct ifnet *ifp = &sc->arpcom.ac_if;
2009         struct age_rxdesc *rxd;
2010         struct rx_desc *desc;
2011         struct mbuf *mp, *m;
2012         uint32_t status, index, vtag;
2013         int count, nsegs, pktlen;
2014         int rx_cons;
2015
2016         status = le32toh(rxrd->flags);
2017         index = le32toh(rxrd->index);
2018         rx_cons = AGE_RX_CONS(index);
2019         nsegs = AGE_RX_NSEGS(index);
2020
2021         sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
2022         if ((status & AGE_RRD_ERROR) != 0 &&
2023             (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
2024             AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
2025                 /*
2026                  * We want to pass the following frames to upper
2027                  * layer regardless of error status of Rx return
2028                  * ring.
2029                  *
2030                  *  o IP/TCP/UDP checksum is bad.
2031                  *  o frame length and protocol specific length
2032                  *     does not match.
2033                  */
2034                 sc->age_cdata.age_rx_cons += nsegs;
2035                 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2036                 return;
2037         }
2038
2039         pktlen = 0;
2040         for (count = 0; count < nsegs; count++,
2041             AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
2042                 rxd = &sc->age_cdata.age_rxdesc[rx_cons];
2043                 mp = rxd->rx_m;
2044                 desc = rxd->rx_desc;
2045                 /* Add a new receive buffer to the ring. */
2046                 if (age_newbuf(sc, rxd, 0) != 0) {
2047                         ifp->if_iqdrops++;
2048                         /* Reuse Rx buffers. */
2049                         if (sc->age_cdata.age_rxhead != NULL) {
2050                                 m_freem(sc->age_cdata.age_rxhead);
2051                                 AGE_RXCHAIN_RESET(sc);
2052                         }
2053                         break;
2054                 }
2055
2056                 /* The length of the first mbuf is computed last. */
2057                 if (count != 0) {
2058                         mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
2059                         pktlen += mp->m_len;
2060                 }
2061
2062                 /* Chain received mbufs. */
2063                 if (sc->age_cdata.age_rxhead == NULL) {
2064                         sc->age_cdata.age_rxhead = mp;
2065                         sc->age_cdata.age_rxtail = mp;
2066                 } else {
2067                         mp->m_flags &= ~M_PKTHDR;
2068                         sc->age_cdata.age_rxprev_tail =
2069                             sc->age_cdata.age_rxtail;
2070                         sc->age_cdata.age_rxtail->m_next = mp;
2071                         sc->age_cdata.age_rxtail = mp;
2072                 }
2073
2074                 if (count == nsegs - 1) {
2075                         /*
2076                          * It seems that L1 controller has no way
2077                          * to tell hardware to strip CRC bytes.
2078                          */
2079                         sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
2080                         if (nsegs > 1) {
2081                                 /* Remove the CRC bytes in chained mbufs. */
2082                                 pktlen -= ETHER_CRC_LEN;
2083                                 if (mp->m_len <= ETHER_CRC_LEN) {
2084                                         sc->age_cdata.age_rxtail =
2085                                             sc->age_cdata.age_rxprev_tail;
2086                                         sc->age_cdata.age_rxtail->m_len -=
2087                                             (ETHER_CRC_LEN - mp->m_len);
2088                                         sc->age_cdata.age_rxtail->m_next = NULL;
2089                                         m_freem(mp);
2090                                 } else {
2091                                         mp->m_len -= ETHER_CRC_LEN;
2092                                 }
2093                         }
2094
2095                         m = sc->age_cdata.age_rxhead;
2096                         m->m_flags |= M_PKTHDR;
2097                         m->m_pkthdr.rcvif = ifp;
2098                         m->m_pkthdr.len = sc->age_cdata.age_rxlen;
2099                         /* Set the first mbuf length. */
2100                         m->m_len = sc->age_cdata.age_rxlen - pktlen;
2101
2102                         /*
2103                          * Set checksum information.
2104                          * It seems that L1 controller can compute partial
2105                          * checksum. The partial checksum value can be used
2106                          * to accelerate checksum computation for fragmented
2107                          * TCP/UDP packets. Upper network stack already
2108                          * takes advantage of the partial checksum value in
2109                          * IP reassembly stage. But I'm not sure the
2110                          * correctness of the partial hardware checksum
2111                          * assistance due to lack of data sheet. If it is
2112                          * proven to work on L1 I'll enable it.
2113                          */
2114                         if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2115                             (status & AGE_RRD_IPV4) != 0) {
2116                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2117                                 if ((status & AGE_RRD_IPCSUM_NOK) == 0)
2118                                         m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2119                                 if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
2120                                     (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
2121                                         m->m_pkthdr.csum_flags |=
2122                                             CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2123                                         m->m_pkthdr.csum_data = 0xffff;
2124                                 }
2125                                 /*
2126                                  * Don't mark bad checksum for TCP/UDP frames
2127                                  * as fragmented frames may always have set
2128                                  * bad checksummed bit of descriptor status.
2129                                  */
2130                         }
2131
2132                         /* Check for VLAN tagged frames. */
2133                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2134                             (status & AGE_RRD_VLAN) != 0) {
2135                                 vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
2136                                 m->m_pkthdr.ether_vlantag =
2137                                     AGE_RX_VLAN_TAG(vtag);
2138                                 m->m_flags |= M_VLANTAG;
2139                         }
2140
2141                         /* Pass it on. */
2142                         ifp->if_input(ifp, m);
2143
2144                         /* Reset mbuf chains. */
2145                         AGE_RXCHAIN_RESET(sc);
2146                 }
2147         }
2148
2149         if (count != nsegs) {
2150                 sc->age_cdata.age_rx_cons += nsegs;
2151                 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2152         } else {
2153                 sc->age_cdata.age_rx_cons = rx_cons;
2154         }
2155 }
2156
2157 static void
2158 age_rxintr(struct age_softc *sc, int rr_prod)
2159 {
2160         struct rx_rdesc *rxrd;
2161         int rr_cons, nsegs, pktlen, prog;
2162
2163         rr_cons = sc->age_cdata.age_rr_cons;
2164         if (rr_cons == rr_prod)
2165                 return;
2166
2167         bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2168             sc->age_cdata.age_rr_ring_map, BUS_DMASYNC_POSTREAD);
2169
2170         for (prog = 0; rr_cons != rr_prod; prog++) {
2171                 rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
2172                 nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
2173                 if (nsegs == 0)
2174                         break;
2175
2176                 /*
2177                  * Check number of segments against received bytes.
2178                  * Non-matching value would indicate that hardware
2179                  * is still trying to update Rx return descriptors.
2180                  * I'm not sure whether this check is really needed.
2181                  */
2182                 pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
2183                 if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
2184                     (MCLBYTES - ETHER_ALIGN)))
2185                         break;
2186
2187                 /* Received a frame. */
2188                 age_rxeof(sc, rxrd);
2189
2190                 /* Clear return ring. */
2191                 rxrd->index = 0;
2192                 AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
2193         }
2194
2195         if (prog > 0) {
2196                 /* Update the consumer index. */
2197                 sc->age_cdata.age_rr_cons = rr_cons;
2198
2199                 /* Sync descriptors. */
2200                 bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2201                     sc->age_cdata.age_rr_ring_map, BUS_DMASYNC_PREWRITE);
2202
2203                 /* Notify hardware availability of new Rx buffers. */
2204                 AGE_COMMIT_MBOX(sc);
2205         }
2206 }
2207
2208 static void
2209 age_tick(void *xsc)
2210 {
2211         struct age_softc *sc = xsc;
2212         struct ifnet *ifp = &sc->arpcom.ac_if;
2213         struct mii_data *mii = device_get_softc(sc->age_miibus);
2214
2215         lwkt_serialize_enter(ifp->if_serializer);
2216
2217         mii_tick(mii);
2218         callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2219
2220         lwkt_serialize_exit(ifp->if_serializer);
2221 }
2222
2223 static void
2224 age_reset(struct age_softc *sc)
2225 {
2226         uint32_t reg;
2227         int i;
2228
2229         CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
2230         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2231                 DELAY(1);
2232                 if ((CSR_READ_4(sc, AGE_MASTER_CFG) & MASTER_RESET) == 0)
2233                         break;
2234         }
2235         if (i == 0)
2236                 device_printf(sc->age_dev, "master reset timeout!\n");
2237
2238         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2239                 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2240                         break;
2241                 DELAY(10);
2242         }
2243         if (i == 0)
2244                 device_printf(sc->age_dev, "reset timeout(0x%08x)!\n", reg);
2245
2246         /* Initialize PCIe module. From Linux. */
2247         CSR_WRITE_4(sc, 0x12FC, 0x6500);
2248         CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2249 }
2250
2251 static void
2252 age_init(void *xsc)
2253 {
2254         struct age_softc *sc = xsc;
2255         struct ifnet *ifp = &sc->arpcom.ac_if;
2256         struct mii_data *mii;
2257         uint8_t eaddr[ETHER_ADDR_LEN];
2258         bus_addr_t paddr;
2259         uint32_t reg, fsize;
2260         uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
2261         int error;
2262
2263         ASSERT_SERIALIZED(ifp->if_serializer);
2264
2265         mii = device_get_softc(sc->age_miibus);
2266
2267         /*
2268          * Cancel any pending I/O.
2269          */
2270         age_stop(sc);
2271
2272         /*
2273          * Reset the chip to a known state.
2274          */
2275         age_reset(sc);
2276
2277         /* Initialize descriptors. */
2278         error = age_init_rx_ring(sc);
2279         if (error != 0) {
2280                 device_printf(sc->age_dev, "no memory for Rx buffers.\n");
2281                 age_stop(sc);
2282                 return;
2283         }
2284         age_init_rr_ring(sc);
2285         age_init_tx_ring(sc);
2286         age_init_cmb_block(sc);
2287         age_init_smb_block(sc);
2288
2289         /* Reprogram the station address. */
2290         bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2291         CSR_WRITE_4(sc, AGE_PAR0,
2292             eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2293         CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
2294
2295         /* Set descriptor base addresses. */
2296         paddr = sc->age_rdata.age_tx_ring_paddr;
2297         CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
2298         paddr = sc->age_rdata.age_rx_ring_paddr;
2299         CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
2300         paddr = sc->age_rdata.age_rr_ring_paddr;
2301         CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
2302         paddr = sc->age_rdata.age_tx_ring_paddr;
2303         CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
2304         paddr = sc->age_rdata.age_cmb_block_paddr;
2305         CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
2306         paddr = sc->age_rdata.age_smb_block_paddr;
2307         CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
2308
2309         /* Set Rx/Rx return descriptor counter. */
2310         CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
2311             ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
2312             DESC_RRD_CNT_MASK) |
2313             ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
2314
2315         /* Set Tx descriptor counter. */
2316         CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
2317             (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
2318
2319         /* Tell hardware that we're ready to load descriptors. */
2320         CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
2321
2322         /*
2323          * Initialize mailbox register.
2324          * Updated producer/consumer index information is exchanged
2325          * through this mailbox register. However Tx producer and
2326          * Rx return consumer/Rx producer are all shared such that
2327          * it's hard to separate code path between Tx and Rx without
2328          * locking. If L1 hardware have a separate mail box register
2329          * for Tx and Rx consumer/producer management we could have
2330          * indepent Tx/Rx handler which in turn Rx handler could have
2331          * been run without any locking.
2332          */
2333         AGE_COMMIT_MBOX(sc);
2334
2335         /* Configure IPG/IFG parameters. */
2336         CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
2337             ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
2338             ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2339             ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2340             ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
2341
2342         /* Set parameters for half-duplex media. */
2343         CSR_WRITE_4(sc, AGE_HDPX_CFG,
2344             ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2345             HDPX_CFG_LCOL_MASK) |
2346             ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2347             HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2348             ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2349             HDPX_CFG_ABEBT_MASK) |
2350             ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2351             HDPX_CFG_JAMIPG_MASK));
2352
2353         /* Configure interrupt moderation timer. */
2354         CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
2355         reg = CSR_READ_4(sc, AGE_MASTER_CFG);
2356         reg &= ~MASTER_MTIMER_ENB;
2357         if (AGE_USECS(sc->age_int_mod) == 0)
2358                 reg &= ~MASTER_ITIMER_ENB;
2359         else
2360                 reg |= MASTER_ITIMER_ENB;
2361         CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
2362         if (bootverbose)
2363                 device_printf(sc->age_dev, "interrupt moderation is %d us.\n",
2364                     sc->age_int_mod);
2365         CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
2366
2367         /* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
2368         if (ifp->if_mtu < ETHERMTU)
2369                 sc->age_max_frame_size = ETHERMTU;
2370         else
2371                 sc->age_max_frame_size = ifp->if_mtu;
2372         sc->age_max_frame_size += ETHER_HDR_LEN +
2373             sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
2374         CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
2375
2376         /* Configure jumbo frame. */
2377         fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
2378         CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
2379             (((fsize / sizeof(uint64_t)) <<
2380             RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
2381             ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
2382             RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
2383             ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
2384             RXQ_JUMBO_CFG_RRD_TIMER_MASK));
2385
2386         /* Configure flow-control parameters. From Linux. */
2387         if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
2388                 /*
2389                  * Magic workaround for old-L1.
2390                  * Don't know which hw revision requires this magic.
2391                  */
2392                 CSR_WRITE_4(sc, 0x12FC, 0x6500);
2393                 /*
2394                  * Another magic workaround for flow-control mode
2395                  * change. From Linux.
2396                  */
2397                 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2398         }
2399         /*
2400          * TODO
2401          *  Should understand pause parameter relationships between FIFO
2402          *  size and number of Rx descriptors and Rx return descriptors.
2403          *
2404          *  Magic parameters came from Linux.
2405          */
2406         switch (sc->age_chip_rev) {
2407         case 0x8001:
2408         case 0x9001:
2409         case 0x9002:
2410         case 0x9003:
2411                 rxf_hi = AGE_RX_RING_CNT / 16;
2412                 rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
2413                 rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
2414                 rrd_lo = AGE_RR_RING_CNT / 16;
2415                 break;
2416         default:
2417                 reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
2418                 rxf_lo = reg / 16;
2419                 if (rxf_lo < 192)
2420                         rxf_lo = 192;
2421                 rxf_hi = (reg * 7) / 8;
2422                 if (rxf_hi < rxf_lo)
2423                         rxf_hi = rxf_lo + 16;
2424                 reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
2425                 rrd_lo = reg / 8;
2426                 rrd_hi = (reg * 7) / 8;
2427                 if (rrd_lo < 2)
2428                         rrd_lo = 2;
2429                 if (rrd_hi < rrd_lo)
2430                         rrd_hi = rrd_lo + 3;
2431                 break;
2432         }
2433         CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
2434             ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
2435             RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
2436             ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
2437             RXQ_FIFO_PAUSE_THRESH_HI_MASK));
2438         CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
2439             ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
2440             RXQ_RRD_PAUSE_THRESH_LO_MASK) |
2441             ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
2442             RXQ_RRD_PAUSE_THRESH_HI_MASK));
2443
2444         /* Configure RxQ. */
2445         CSR_WRITE_4(sc, AGE_RXQ_CFG,
2446             ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
2447             RXQ_CFG_RD_BURST_MASK) |
2448             ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
2449             RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
2450             ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
2451             RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
2452             RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2453
2454         /* Configure TxQ. */
2455         CSR_WRITE_4(sc, AGE_TXQ_CFG,
2456             ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2457             TXQ_CFG_TPD_BURST_MASK) |
2458             ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
2459             TXQ_CFG_TX_FIFO_BURST_MASK) |
2460             ((TXQ_CFG_TPD_FETCH_DEFAULT <<
2461             TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
2462             TXQ_CFG_ENB);
2463
2464         CSR_WRITE_4(sc, AGE_TX_JUMBO_TPD_TH_IPG,
2465             (((fsize / sizeof(uint64_t) << TX_JUMBO_TPD_TH_SHIFT)) &
2466             TX_JUMBO_TPD_TH_MASK) |
2467             ((TX_JUMBO_TPD_IPG_DEFAULT << TX_JUMBO_TPD_IPG_SHIFT) &
2468             TX_JUMBO_TPD_IPG_MASK));
2469
2470         /* Configure DMA parameters. */
2471         CSR_WRITE_4(sc, AGE_DMA_CFG,
2472             DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
2473             sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
2474             sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
2475
2476         /* Configure CMB DMA write threshold. */
2477         CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
2478             ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
2479             CMB_WR_THRESH_RRD_MASK) |
2480             ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
2481             CMB_WR_THRESH_TPD_MASK));
2482
2483         /* Set CMB/SMB timer and enable them. */
2484         CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
2485             ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
2486             ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
2487
2488         /* Request SMB updates for every seconds. */
2489         CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
2490         CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
2491
2492         /*
2493          * Disable all WOL bits as WOL can interfere normal Rx
2494          * operation.
2495          */
2496         CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
2497
2498         /*
2499          * Configure Tx/Rx MACs.
2500          *  - Auto-padding for short frames.
2501          *  - Enable CRC generation.
2502          *  Start with full-duplex/1000Mbps media. Actual reconfiguration
2503          *  of MAC is followed after link establishment.
2504          */
2505         CSR_WRITE_4(sc, AGE_MAC_CFG,
2506             MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
2507             MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
2508             ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2509             MAC_CFG_PREAMBLE_MASK));
2510
2511         /* Set up the receive filter. */
2512         age_rxfilter(sc);
2513         age_rxvlan(sc);
2514
2515         reg = CSR_READ_4(sc, AGE_MAC_CFG);
2516         if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2517                 reg |= MAC_CFG_RXCSUM_ENB;
2518
2519         /* Ack all pending interrupts and clear it. */
2520         CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2521         CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
2522
2523         /* Finally enable Tx/Rx MAC. */
2524         CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2525
2526         sc->age_flags &= ~AGE_FLAG_LINK;
2527         /* Switch to the current media. */
2528         mii_mediachg(mii);
2529
2530         callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2531
2532         ifp->if_flags |= IFF_RUNNING;
2533         ifp->if_flags &= ~IFF_OACTIVE;
2534 }
2535
2536 static void
2537 age_stop(struct age_softc *sc)
2538 {
2539         struct ifnet *ifp = &sc->arpcom.ac_if;
2540         struct age_txdesc *txd;
2541         struct age_rxdesc *rxd;
2542         uint32_t reg;
2543         int i;
2544
2545         ASSERT_SERIALIZED(ifp->if_serializer);
2546
2547         /*
2548          * Mark the interface down and cancel the watchdog timer.
2549          */
2550         ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2551         ifp->if_timer = 0;
2552
2553         sc->age_flags &= ~AGE_FLAG_LINK;
2554         callout_stop(&sc->age_tick_ch);
2555
2556         /*
2557          * Disable interrupts.
2558          */
2559         CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
2560         CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
2561
2562         /* Stop CMB/SMB updates. */
2563         CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
2564
2565         /* Stop Rx/Tx MAC. */
2566         age_stop_rxmac(sc);
2567         age_stop_txmac(sc);
2568
2569         /* Stop DMA. */
2570         CSR_WRITE_4(sc, AGE_DMA_CFG,
2571             CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
2572
2573         /* Stop TxQ/RxQ. */
2574         CSR_WRITE_4(sc, AGE_TXQ_CFG,
2575             CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
2576         CSR_WRITE_4(sc, AGE_RXQ_CFG,
2577             CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
2578         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2579                 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2580                         break;
2581                 DELAY(10);
2582         }
2583         if (i == 0)
2584                 device_printf(sc->age_dev,
2585                     "stopping Rx/Tx MACs timed out(0x%08x)!\n", reg);
2586
2587         /* Reclaim Rx buffers that have been processed. */
2588         if (sc->age_cdata.age_rxhead != NULL)
2589                 m_freem(sc->age_cdata.age_rxhead);
2590         AGE_RXCHAIN_RESET(sc);
2591
2592         /*
2593          * Free RX and TX mbufs still in the queues.
2594          */
2595         for (i = 0; i < AGE_RX_RING_CNT; i++) {
2596                 rxd = &sc->age_cdata.age_rxdesc[i];
2597                 if (rxd->rx_m != NULL) {
2598                         bus_dmamap_unload(sc->age_cdata.age_rx_tag,
2599                             rxd->rx_dmamap);
2600                         m_freem(rxd->rx_m);
2601                         rxd->rx_m = NULL;
2602                 }
2603         }
2604         for (i = 0; i < AGE_TX_RING_CNT; i++) {
2605                 txd = &sc->age_cdata.age_txdesc[i];
2606                 if (txd->tx_m != NULL) {
2607                         bus_dmamap_unload(sc->age_cdata.age_tx_tag,
2608                             txd->tx_dmamap);
2609                         m_freem(txd->tx_m);
2610                         txd->tx_m = NULL;
2611                 }
2612         }
2613 }
2614
2615 static void
2616 age_stop_txmac(struct age_softc *sc)
2617 {
2618         uint32_t reg;
2619         int i;
2620
2621         reg = CSR_READ_4(sc, AGE_MAC_CFG);
2622         if ((reg & MAC_CFG_TX_ENB) != 0) {
2623                 reg &= ~MAC_CFG_TX_ENB;
2624                 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2625         }
2626         /* Stop Tx DMA engine. */
2627         reg = CSR_READ_4(sc, AGE_DMA_CFG);
2628         if ((reg & DMA_CFG_RD_ENB) != 0) {
2629                 reg &= ~DMA_CFG_RD_ENB;
2630                 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2631         }
2632         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2633                 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2634                     (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2635                         break;
2636                 DELAY(10);
2637         }
2638         if (i == 0)
2639                 device_printf(sc->age_dev, "stopping TxMAC timeout!\n");
2640 }
2641
2642 static void
2643 age_stop_rxmac(struct age_softc *sc)
2644 {
2645         uint32_t reg;
2646         int i;
2647
2648         reg = CSR_READ_4(sc, AGE_MAC_CFG);
2649         if ((reg & MAC_CFG_RX_ENB) != 0) {
2650                 reg &= ~MAC_CFG_RX_ENB;
2651                 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2652         }
2653         /* Stop Rx DMA engine. */
2654         reg = CSR_READ_4(sc, AGE_DMA_CFG);
2655         if ((reg & DMA_CFG_WR_ENB) != 0) {
2656                 reg &= ~DMA_CFG_WR_ENB;
2657                 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2658         }
2659         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2660                 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2661                     (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2662                         break;
2663                 DELAY(10);
2664         }
2665         if (i == 0)
2666                 device_printf(sc->age_dev, "stopping RxMAC timeout!\n");
2667 }
2668
2669 static void
2670 age_init_tx_ring(struct age_softc *sc)
2671 {
2672         struct age_ring_data *rd;
2673         struct age_txdesc *txd;
2674         int i;
2675
2676         sc->age_cdata.age_tx_prod = 0;
2677         sc->age_cdata.age_tx_cons = 0;
2678         sc->age_cdata.age_tx_cnt = 0;
2679
2680         rd = &sc->age_rdata;
2681         bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
2682         for (i = 0; i < AGE_TX_RING_CNT; i++) {
2683                 txd = &sc->age_cdata.age_txdesc[i];
2684                 txd->tx_desc = &rd->age_tx_ring[i];
2685                 txd->tx_m = NULL;
2686         }
2687
2688         bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2689             sc->age_cdata.age_tx_ring_map, BUS_DMASYNC_PREWRITE);
2690 }
2691
2692 static int
2693 age_init_rx_ring(struct age_softc *sc)
2694 {
2695         struct age_ring_data *rd;
2696         struct age_rxdesc *rxd;
2697         int i;
2698
2699         sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2700         rd = &sc->age_rdata;
2701         bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
2702         for (i = 0; i < AGE_RX_RING_CNT; i++) {
2703                 rxd = &sc->age_cdata.age_rxdesc[i];
2704                 rxd->rx_m = NULL;
2705                 rxd->rx_desc = &rd->age_rx_ring[i];
2706                 if (age_newbuf(sc, rxd, 1) != 0)
2707                         return (ENOBUFS);
2708         }
2709
2710         bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2711             sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
2712
2713         return (0);
2714 }
2715
2716 static void
2717 age_init_rr_ring(struct age_softc *sc)
2718 {
2719         struct age_ring_data *rd;
2720
2721         sc->age_cdata.age_rr_cons = 0;
2722         AGE_RXCHAIN_RESET(sc);
2723
2724         rd = &sc->age_rdata;
2725         bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
2726         bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2727             sc->age_cdata.age_rr_ring_map, BUS_DMASYNC_PREWRITE);
2728 }
2729
2730 static void
2731 age_init_cmb_block(struct age_softc *sc)
2732 {
2733         struct age_ring_data *rd;
2734
2735         rd = &sc->age_rdata;
2736         bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
2737         bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2738             sc->age_cdata.age_cmb_block_map, BUS_DMASYNC_PREWRITE);
2739 }
2740
2741 static void
2742 age_init_smb_block(struct age_softc *sc)
2743 {
2744         struct age_ring_data *rd;
2745
2746         rd = &sc->age_rdata;
2747         bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
2748         bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2749             sc->age_cdata.age_smb_block_map, BUS_DMASYNC_PREWRITE);
2750 }
2751
2752 static int
2753 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd, int init)
2754 {
2755         struct rx_desc *desc;
2756         struct mbuf *m;
2757         struct age_dmamap_ctx ctx;
2758         bus_dma_segment_t segs[1];
2759         bus_dmamap_t map;
2760         int error;
2761
2762         m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2763         if (m == NULL)
2764                 return (ENOBUFS);
2765
2766         m->m_len = m->m_pkthdr.len = MCLBYTES;
2767         m_adj(m, ETHER_ALIGN);
2768
2769         ctx.nsegs = 1;
2770         ctx.segs = segs;
2771         error = bus_dmamap_load_mbuf(sc->age_cdata.age_rx_tag,
2772                                      sc->age_cdata.age_rx_sparemap,
2773                                      m, age_dmamap_buf_cb, &ctx,
2774                                      BUS_DMA_NOWAIT);
2775         if (error || ctx.nsegs == 0) {
2776                 if (!error) {
2777                         bus_dmamap_unload(sc->age_cdata.age_rx_tag,
2778                                           sc->age_cdata.age_rx_sparemap);
2779                         error = EFBIG;
2780                         if_printf(&sc->arpcom.ac_if, "too many segments?!\n");
2781                 }
2782                 m_freem(m);
2783
2784                 if (init)
2785                         if_printf(&sc->arpcom.ac_if, "can't load RX mbuf\n");
2786                 return (error);
2787         }
2788         KASSERT(ctx.nsegs == 1,
2789                 ("%s: %d segments returned!", __func__, ctx.nsegs));
2790
2791         if (rxd->rx_m != NULL) {
2792                 bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
2793                     BUS_DMASYNC_POSTREAD);
2794                 bus_dmamap_unload(sc->age_cdata.age_rx_tag, rxd->rx_dmamap);
2795         }
2796         map = rxd->rx_dmamap;
2797         rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
2798         sc->age_cdata.age_rx_sparemap = map;
2799         rxd->rx_m = m;
2800
2801         desc = rxd->rx_desc;
2802         desc->addr = htole64(segs[0].ds_addr);
2803         desc->len = htole32((segs[0].ds_len & AGE_RD_LEN_MASK) <<
2804             AGE_RD_LEN_SHIFT);
2805         return (0);
2806 }
2807
2808 static void
2809 age_rxvlan(struct age_softc *sc)
2810 {
2811         struct ifnet *ifp = &sc->arpcom.ac_if;
2812         uint32_t reg;
2813
2814         reg = CSR_READ_4(sc, AGE_MAC_CFG);
2815         reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2816         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2817                 reg |= MAC_CFG_VLAN_TAG_STRIP;
2818         CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2819 }
2820
2821 static void
2822 age_rxfilter(struct age_softc *sc)
2823 {
2824         struct ifnet *ifp = &sc->arpcom.ac_if;
2825         struct ifmultiaddr *ifma;
2826         uint32_t crc;
2827         uint32_t mchash[2];
2828         uint32_t rxcfg;
2829
2830         rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
2831         rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2832         if ((ifp->if_flags & IFF_BROADCAST) != 0)
2833                 rxcfg |= MAC_CFG_BCAST;
2834         if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
2835                 if ((ifp->if_flags & IFF_PROMISC) != 0)
2836                         rxcfg |= MAC_CFG_PROMISC;
2837                 if ((ifp->if_flags & IFF_ALLMULTI) != 0)
2838                         rxcfg |= MAC_CFG_ALLMULTI;
2839                 CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
2840                 CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
2841                 CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2842                 return;
2843         }
2844
2845         /* Program new filter. */
2846         bzero(mchash, sizeof(mchash));
2847
2848         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2849                 if (ifma->ifma_addr->sa_family != AF_LINK)
2850                         continue;
2851                 crc = ether_crc32_le(LLADDR((struct sockaddr_dl *)
2852                     ifma->ifma_addr), ETHER_ADDR_LEN);
2853                 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2854         }
2855
2856         CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
2857         CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
2858         CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2859 }
2860
2861 static int
2862 sysctl_age_stats(SYSCTL_HANDLER_ARGS)
2863 {
2864         struct age_softc *sc;
2865         struct age_stats *stats;
2866         int error, result;
2867
2868         result = -1;
2869         error = sysctl_handle_int(oidp, &result, 0, req);
2870
2871         if (error != 0 || req->newptr == NULL)
2872                 return (error);
2873
2874         if (result != 1)
2875                 return (error);
2876
2877         sc = (struct age_softc *)arg1;
2878         stats = &sc->age_stat;
2879         kprintf("%s statistics:\n", device_get_nameunit(sc->age_dev));
2880         kprintf("Transmit good frames : %ju\n",
2881             (uintmax_t)stats->tx_frames);
2882         kprintf("Transmit good broadcast frames : %ju\n",
2883             (uintmax_t)stats->tx_bcast_frames);
2884         kprintf("Transmit good multicast frames : %ju\n",
2885             (uintmax_t)stats->tx_mcast_frames);
2886         kprintf("Transmit pause control frames : %u\n",
2887             stats->tx_pause_frames);
2888         kprintf("Transmit control frames : %u\n",
2889             stats->tx_control_frames);
2890         kprintf("Transmit frames with excessive deferrals : %u\n",
2891             stats->tx_excess_defer);
2892         kprintf("Transmit deferrals : %u\n",
2893             stats->tx_deferred);
2894         kprintf("Transmit good octets : %ju\n",
2895             (uintmax_t)stats->tx_bytes);
2896         kprintf("Transmit good broadcast octets : %ju\n",
2897             (uintmax_t)stats->tx_bcast_bytes);
2898         kprintf("Transmit good multicast octets : %ju\n",
2899             (uintmax_t)stats->tx_mcast_bytes);
2900         kprintf("Transmit frames 64 bytes : %ju\n",
2901             (uintmax_t)stats->tx_pkts_64);
2902         kprintf("Transmit frames 65 to 127 bytes : %ju\n",
2903             (uintmax_t)stats->tx_pkts_65_127);
2904         kprintf("Transmit frames 128 to 255 bytes : %ju\n",
2905             (uintmax_t)stats->tx_pkts_128_255);
2906         kprintf("Transmit frames 256 to 511 bytes : %ju\n",
2907             (uintmax_t)stats->tx_pkts_256_511);
2908         kprintf("Transmit frames 512 to 1024 bytes : %ju\n",
2909             (uintmax_t)stats->tx_pkts_512_1023);
2910         kprintf("Transmit frames 1024 to 1518 bytes : %ju\n",
2911             (uintmax_t)stats->tx_pkts_1024_1518);
2912         kprintf("Transmit frames 1519 to MTU bytes : %ju\n",
2913             (uintmax_t)stats->tx_pkts_1519_max);
2914         kprintf("Transmit single collisions : %u\n",
2915             stats->tx_single_colls);
2916         kprintf("Transmit multiple collisions : %u\n",
2917             stats->tx_multi_colls);
2918         kprintf("Transmit late collisions : %u\n",
2919             stats->tx_late_colls);
2920         kprintf("Transmit abort due to excessive collisions : %u\n",
2921             stats->tx_excess_colls);
2922         kprintf("Transmit underruns due to FIFO underruns : %u\n",
2923             stats->tx_underrun);
2924         kprintf("Transmit descriptor write-back errors : %u\n",
2925             stats->tx_desc_underrun);
2926         kprintf("Transmit frames with length mismatched frame size : %u\n",
2927             stats->tx_lenerrs);
2928         kprintf("Transmit frames with truncated due to MTU size : %u\n",
2929             stats->tx_lenerrs);
2930
2931         kprintf("Receive good frames : %ju\n",
2932             (uintmax_t)stats->rx_frames);
2933         kprintf("Receive good broadcast frames : %ju\n",
2934             (uintmax_t)stats->rx_bcast_frames);
2935         kprintf("Receive good multicast frames : %ju\n",
2936             (uintmax_t)stats->rx_mcast_frames);
2937         kprintf("Receive pause control frames : %u\n",
2938             stats->rx_pause_frames);
2939         kprintf("Receive control frames : %u\n",
2940             stats->rx_control_frames);
2941         kprintf("Receive CRC errors : %u\n",
2942             stats->rx_crcerrs);
2943         kprintf("Receive frames with length errors : %u\n",
2944             stats->rx_lenerrs);
2945         kprintf("Receive good octets : %ju\n",
2946             (uintmax_t)stats->rx_bytes);
2947         kprintf("Receive good broadcast octets : %ju\n",
2948             (uintmax_t)stats->rx_bcast_bytes);
2949         kprintf("Receive good multicast octets : %ju\n",
2950             (uintmax_t)stats->rx_mcast_bytes);
2951         kprintf("Receive frames too short : %u\n",
2952             stats->rx_runts);
2953         kprintf("Receive fragmented frames : %ju\n",
2954             (uintmax_t)stats->rx_fragments);
2955         kprintf("Receive frames 64 bytes : %ju\n",
2956             (uintmax_t)stats->rx_pkts_64);
2957         kprintf("Receive frames 65 to 127 bytes : %ju\n",
2958             (uintmax_t)stats->rx_pkts_65_127);
2959         kprintf("Receive frames 128 to 255 bytes : %ju\n",
2960             (uintmax_t)stats->rx_pkts_128_255);
2961         kprintf("Receive frames 256 to 511 bytes : %ju\n",
2962             (uintmax_t)stats->rx_pkts_256_511);
2963         kprintf("Receive frames 512 to 1024 bytes : %ju\n",
2964             (uintmax_t)stats->rx_pkts_512_1023);
2965         kprintf("Receive frames 1024 to 1518 bytes : %ju\n",
2966             (uintmax_t)stats->rx_pkts_1024_1518);
2967         kprintf("Receive frames 1519 to MTU bytes : %ju\n",
2968             (uintmax_t)stats->rx_pkts_1519_max);
2969         kprintf("Receive frames too long : %ju\n",
2970             (uint64_t)stats->rx_pkts_truncated);
2971         kprintf("Receive frames with FIFO overflow : %u\n",
2972             stats->rx_fifo_oflows);
2973         kprintf("Receive frames with return descriptor overflow : %u\n",
2974             stats->rx_desc_oflows);
2975         kprintf("Receive frames with alignment errors : %u\n",
2976             stats->rx_alignerrs);
2977         kprintf("Receive frames dropped due to address filtering : %ju\n",
2978             (uint64_t)stats->rx_pkts_filtered);
2979
2980         return (error);
2981 }
2982
2983 static int
2984 sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS)
2985 {
2986
2987         return (sysctl_int_range(oidp, arg1, arg2, req, AGE_IM_TIMER_MIN,
2988             AGE_IM_TIMER_MAX));
2989 }
2990
2991 static void
2992 age_dmamap_buf_cb(void *xctx, bus_dma_segment_t *segs, int nsegs,
2993                   bus_size_t mapsz __unused, int error)
2994 {
2995         struct age_dmamap_ctx *ctx = xctx;
2996         int i;
2997
2998         if (error)
2999                 return;
3000
3001         if (nsegs > ctx->nsegs) {
3002                 ctx->nsegs = 0;
3003                 return;
3004         }
3005
3006         ctx->nsegs = nsegs;
3007         for (i = 0; i < nsegs; ++i)
3008                 ctx->segs[i] = segs[i];
3009 }