0b9d6097f7582681280b325ca04a65ade8d55c07
[dragonfly.git] / sys / platform / pc64 / x86_64 / pmap.c
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1994 David Greenman
5  * Copyright (c) 2003 Peter Wemm
6  * Copyright (c) 2005-2008 Alan L. Cox <alc@cs.rice.edu>
7  * Copyright (c) 2008, 2009 The DragonFly Project.
8  * Copyright (c) 2008, 2009 Jordan Gordeev.
9  * Copyright (c) 2011-2012 Matthew Dillon
10  * All rights reserved.
11  *
12  * This code is derived from software contributed to Berkeley by
13  * the Systems Programming Group of the University of Utah Computer
14  * Science Department and William Jolitz of UUNET Technologies Inc.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. All advertising materials mentioning features or use of this software
25  *    must display the following acknowledgement:
26  *      This product includes software developed by the University of
27  *      California, Berkeley and its contributors.
28  * 4. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  */
44 /*
45  * Manage physical address maps for x86-64 systems.
46  */
47
48 #if 0 /* JG */
49 #include "opt_disable_pse.h"
50 #include "opt_pmap.h"
51 #endif
52 #include "opt_msgbuf.h"
53
54 #include <sys/param.h>
55 #include <sys/kernel.h>
56 #include <sys/proc.h>
57 #include <sys/msgbuf.h>
58 #include <sys/vmmeter.h>
59 #include <sys/mman.h>
60 #include <sys/systm.h>
61
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <sys/sysctl.h>
65 #include <sys/lock.h>
66 #include <vm/vm_kern.h>
67 #include <vm/vm_page.h>
68 #include <vm/vm_map.h>
69 #include <vm/vm_object.h>
70 #include <vm/vm_extern.h>
71 #include <vm/vm_pageout.h>
72 #include <vm/vm_pager.h>
73 #include <vm/vm_zone.h>
74
75 #include <sys/user.h>
76 #include <sys/thread2.h>
77 #include <sys/sysref2.h>
78 #include <sys/spinlock2.h>
79 #include <vm/vm_page2.h>
80
81 #include <machine/cputypes.h>
82 #include <machine/md_var.h>
83 #include <machine/specialreg.h>
84 #include <machine/smp.h>
85 #include <machine_base/apic/apicreg.h>
86 #include <machine/globaldata.h>
87 #include <machine/pmap.h>
88 #include <machine/pmap_inval.h>
89 #include <machine/inttypes.h>
90
91 #include <ddb/ddb.h>
92
93 #define PMAP_KEEP_PDIRS
94 #ifndef PMAP_SHPGPERPROC
95 #define PMAP_SHPGPERPROC 2000
96 #endif
97
98 #if defined(DIAGNOSTIC)
99 #define PMAP_DIAGNOSTIC
100 #endif
101
102 #define MINPV 2048
103
104 /*
105  * pmap debugging will report who owns a pv lock when blocking.
106  */
107 #ifdef PMAP_DEBUG
108
109 #define PMAP_DEBUG_DECL         ,const char *func, int lineno
110 #define PMAP_DEBUG_ARGS         , __func__, __LINE__
111 #define PMAP_DEBUG_COPY         , func, lineno
112
113 #define pv_get(pmap, pindex, pmarkp)    _pv_get(pmap, pindex, pmarkp    \
114                                                         PMAP_DEBUG_ARGS)
115 #define pv_lock(pv)                     _pv_lock(pv                     \
116                                                         PMAP_DEBUG_ARGS)
117 #define pv_hold_try(pv)                 _pv_hold_try(pv                 \
118                                                         PMAP_DEBUG_ARGS)
119 #define pv_alloc(pmap, pindex, isnewp)  _pv_alloc(pmap, pindex, isnewp  \
120                                                         PMAP_DEBUG_ARGS)
121
122 #else
123
124 #define PMAP_DEBUG_DECL
125 #define PMAP_DEBUG_ARGS
126 #define PMAP_DEBUG_COPY
127
128 #define pv_get(pmap, pindex, pmarkp)            _pv_get(pmap, pindex, pmarkp)
129 #define pv_lock(pv)                     _pv_lock(pv)
130 #define pv_hold_try(pv)                 _pv_hold_try(pv)
131 #define pv_alloc(pmap, pindex, isnewp)  _pv_alloc(pmap, pindex, isnewp)
132
133 #endif
134
135 /*
136  * Get PDEs and PTEs for user/kernel address space
137  */
138 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
139
140 #define pmap_pde_v(pmap, pte)           ((*(pd_entry_t *)pte & pmap->pmap_bits[PG_V_IDX]) != 0)
141 #define pmap_pte_w(pmap, pte)           ((*(pt_entry_t *)pte & pmap->pmap_bits[PG_W_IDX]) != 0)
142 #define pmap_pte_m(pmap, pte)           ((*(pt_entry_t *)pte & pmap->pmap_bits[PG_M_IDX]) != 0)
143 #define pmap_pte_u(pmap, pte)           ((*(pt_entry_t *)pte & pmap->pmap_bits[PG_U_IDX]) != 0)
144 #define pmap_pte_v(pmap, pte)           ((*(pt_entry_t *)pte & pmap->pmap_bits[PG_V_IDX]) != 0)
145
146 /*
147  * Given a map and a machine independent protection code,
148  * convert to a vax protection code.
149  */
150 #define pte_prot(m, p)          \
151         (m->protection_codes[p & (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE)])
152 static int protection_codes[PROTECTION_CODES_SIZE];
153
154 struct pmap kernel_pmap;
155
156 MALLOC_DEFINE(M_OBJPMAP, "objpmap", "pmaps associated with VM objects");
157
158 vm_paddr_t avail_start;         /* PA of first available physical page */
159 vm_paddr_t avail_end;           /* PA of last available physical page */
160 vm_offset_t virtual2_start;     /* cutout free area prior to kernel start */
161 vm_offset_t virtual2_end;
162 vm_offset_t virtual_start;      /* VA of first avail page (after kernel bss) */
163 vm_offset_t virtual_end;        /* VA of last avail page (end of kernel AS) */
164 vm_offset_t KvaStart;           /* VA start of KVA space */
165 vm_offset_t KvaEnd;             /* VA end of KVA space (non-inclusive) */
166 vm_offset_t KvaSize;            /* max size of kernel virtual address space */
167 static boolean_t pmap_initialized = FALSE;      /* Has pmap_init completed? */
168 //static int pgeflag;           /* PG_G or-in */
169 //static int pseflag;           /* PG_PS or-in */
170 uint64_t PatMsr;
171
172 static int ndmpdp;
173 static vm_paddr_t dmaplimit;
174 static int nkpt;
175 vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
176
177 static pt_entry_t pat_pte_index[PAT_INDEX_SIZE];        /* PAT -> PG_ bits */
178 /*static pt_entry_t pat_pde_index[PAT_INDEX_SIZE];*/    /* PAT -> PG_ bits */
179
180 static uint64_t KPTbase;
181 static uint64_t KPTphys;
182 static uint64_t KPDphys;        /* phys addr of kernel level 2 */
183 static uint64_t KPDbase;        /* phys addr of kernel level 2 @ KERNBASE */
184 uint64_t KPDPphys;      /* phys addr of kernel level 3 */
185 uint64_t KPML4phys;     /* phys addr of kernel level 4 */
186
187 static uint64_t DMPDphys;       /* phys addr of direct mapped level 2 */
188 static uint64_t DMPDPphys;      /* phys addr of direct mapped level 3 */
189
190 /*
191  * Data for the pv entry allocation mechanism
192  */
193 static vm_zone_t pvzone;
194 static struct vm_zone pvzone_store;
195 static struct vm_object pvzone_obj;
196 static int pv_entry_max=0, pv_entry_high_water=0;
197 static int pmap_pagedaemon_waken = 0;
198 static struct pv_entry *pvinit;
199
200 /*
201  * All those kernel PT submaps that BSD is so fond of
202  */
203 pt_entry_t *CMAP1 = NULL, *ptmmap;
204 caddr_t CADDR1 = NULL, ptvmmap = NULL;
205 static pt_entry_t *msgbufmap;
206 struct msgbuf *msgbufp=NULL;
207
208 /*
209  * PMAP default PG_* bits. Needed to be able to add
210  * EPT/NPT pagetable pmap_bits for the VMM module
211  */
212 uint64_t pmap_bits_default[] = {
213                 REGULAR_PMAP,                                   /* TYPE_IDX             0 */
214                 X86_PG_V,                                       /* PG_V_IDX             1 */
215                 X86_PG_RW,                                      /* PG_RW_IDX            2 */
216                 X86_PG_U,                                       /* PG_U_IDX             3 */
217                 X86_PG_A,                                       /* PG_A_IDX             4 */
218                 X86_PG_M,                                       /* PG_M_IDX             5 */
219                 X86_PG_PS,                                      /* PG_PS_IDX3           6 */
220                 X86_PG_G,                                       /* PG_G_IDX             7 */
221                 X86_PG_AVAIL1,                                  /* PG_AVAIL1_IDX        8 */
222                 X86_PG_AVAIL2,                                  /* PG_AVAIL2_IDX        9 */
223                 X86_PG_AVAIL3,                                  /* PG_AVAIL3_IDX        10 */
224                 X86_PG_NC_PWT | X86_PG_NC_PCD,                  /* PG_N_IDX     11 */
225 };
226 /*
227  * Crashdump maps.
228  */
229 static pt_entry_t *pt_crashdumpmap;
230 static caddr_t crashdumpmap;
231
232 static int pmap_debug = 0;
233 SYSCTL_INT(_machdep, OID_AUTO, pmap_debug, CTLFLAG_RW,
234     &pmap_debug, 0, "Debug pmap's");
235 #ifdef PMAP_DEBUG2
236 static int pmap_enter_debug = 0;
237 SYSCTL_INT(_machdep, OID_AUTO, pmap_enter_debug, CTLFLAG_RW,
238     &pmap_enter_debug, 0, "Debug pmap_enter's");
239 #endif
240 static int pmap_yield_count = 64;
241 SYSCTL_INT(_machdep, OID_AUTO, pmap_yield_count, CTLFLAG_RW,
242     &pmap_yield_count, 0, "Yield during init_pt/release");
243 static int pmap_mmu_optimize = 0;
244 SYSCTL_INT(_machdep, OID_AUTO, pmap_mmu_optimize, CTLFLAG_RW,
245     &pmap_mmu_optimize, 0, "Share page table pages when possible");
246 int pmap_fast_kernel_cpusync = 0;
247 SYSCTL_INT(_machdep, OID_AUTO, pmap_fast_kernel_cpusync, CTLFLAG_RW,
248     &pmap_fast_kernel_cpusync, 0, "Share page table pages when possible");
249 int pmap_dynamic_delete = -1;
250 SYSCTL_INT(_machdep, OID_AUTO, pmap_dynamic_delete, CTLFLAG_RW,
251     &pmap_dynamic_delete, 0, "Dynamically delete PT/PD/PDPs");
252
253 #define DISABLE_PSE
254
255 /* Standard user access funtions */
256 extern int std_copyinstr (const void *udaddr, void *kaddr, size_t len,
257     size_t *lencopied);
258 extern int std_copyin (const void *udaddr, void *kaddr, size_t len);
259 extern int std_copyout (const void *kaddr, void *udaddr, size_t len);
260 extern int std_fubyte (const void *base);
261 extern int std_subyte (void *base, int byte);
262 extern long std_fuword (const void *base);
263 extern int std_suword (void *base, long word);
264 extern int std_suword32 (void *base, int word);
265
266 static void pv_hold(pv_entry_t pv);
267 static int _pv_hold_try(pv_entry_t pv
268                                 PMAP_DEBUG_DECL);
269 static void pv_drop(pv_entry_t pv);
270 static void _pv_lock(pv_entry_t pv
271                                 PMAP_DEBUG_DECL);
272 static void pv_unlock(pv_entry_t pv);
273 static pv_entry_t _pv_alloc(pmap_t pmap, vm_pindex_t pindex, int *isnew
274                                 PMAP_DEBUG_DECL);
275 static pv_entry_t _pv_get(pmap_t pmap, vm_pindex_t pindex, vm_pindex_t **pmarkp
276                                 PMAP_DEBUG_DECL);
277 static pv_entry_t pv_get_try(pmap_t pmap, vm_pindex_t pindex,
278                                 vm_pindex_t **pmarkp, int *errorp);
279 static void pv_put(pv_entry_t pv);
280 static void pv_free(pv_entry_t pv, pv_entry_t pvp);
281 static void *pv_pte_lookup(pv_entry_t pv, vm_pindex_t pindex);
282 static pv_entry_t pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex,
283                       pv_entry_t *pvpp);
284 static pv_entry_t pmap_allocpte_seg(pmap_t pmap, vm_pindex_t ptepindex,
285                       pv_entry_t *pvpp, vm_map_entry_t entry, vm_offset_t va);
286 static void pmap_remove_pv_pte(pv_entry_t pv, pv_entry_t pvp,
287                         pmap_inval_bulk_t *bulk, int destroy);
288 static vm_page_t pmap_remove_pv_page(pv_entry_t pv);
289 static int pmap_release_pv(pv_entry_t pv, pv_entry_t pvp,
290                         pmap_inval_bulk_t *bulk);
291
292 struct pmap_scan_info;
293 static void pmap_remove_callback(pmap_t pmap, struct pmap_scan_info *info,
294                       pv_entry_t pte_pv, vm_pindex_t *pte_placemark,
295                       pv_entry_t pt_pv, int sharept,
296                       vm_offset_t va, pt_entry_t *ptep, void *arg __unused);
297 static void pmap_protect_callback(pmap_t pmap, struct pmap_scan_info *info,
298                       pv_entry_t pte_pv, vm_pindex_t *pte_placemark,
299                       pv_entry_t pt_pv, int sharept,
300                       vm_offset_t va, pt_entry_t *ptep, void *arg __unused);
301
302 static void i386_protection_init (void);
303 static void create_pagetables(vm_paddr_t *firstaddr);
304 static void pmap_remove_all (vm_page_t m);
305 static boolean_t pmap_testbit (vm_page_t m, int bit);
306
307 static pt_entry_t * pmap_pte_quick (pmap_t pmap, vm_offset_t va);
308 static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
309
310 static void pmap_pinit_defaults(struct pmap *pmap);
311 static void pv_placemarker_wait(pmap_t pmap, vm_pindex_t *pmark);
312 static void pv_placemarker_wakeup(pmap_t pmap, vm_pindex_t *pmark);
313
314 static unsigned pdir4mb;
315
316 static int
317 pv_entry_compare(pv_entry_t pv1, pv_entry_t pv2)
318 {
319         if (pv1->pv_pindex < pv2->pv_pindex)
320                 return(-1);
321         if (pv1->pv_pindex > pv2->pv_pindex)
322                 return(1);
323         return(0);
324 }
325
326 RB_GENERATE2(pv_entry_rb_tree, pv_entry, pv_entry,
327              pv_entry_compare, vm_pindex_t, pv_pindex);
328
329 static __inline
330 void
331 pmap_page_stats_adding(vm_page_t m)
332 {
333         globaldata_t gd = mycpu;
334
335         if (TAILQ_EMPTY(&m->md.pv_list)) {
336                 ++gd->gd_vmtotal.t_arm;
337         } else if (TAILQ_FIRST(&m->md.pv_list) ==
338                    TAILQ_LAST(&m->md.pv_list, md_page_pv_list)) {
339                 ++gd->gd_vmtotal.t_armshr;
340                 ++gd->gd_vmtotal.t_avmshr;
341         } else {
342                 ++gd->gd_vmtotal.t_avmshr;
343         }
344 }
345
346 static __inline
347 void
348 pmap_page_stats_deleting(vm_page_t m)
349 {
350         globaldata_t gd = mycpu;
351
352         if (TAILQ_EMPTY(&m->md.pv_list)) {
353                 --gd->gd_vmtotal.t_arm;
354         } else if (TAILQ_FIRST(&m->md.pv_list) ==
355                    TAILQ_LAST(&m->md.pv_list, md_page_pv_list)) {
356                 --gd->gd_vmtotal.t_armshr;
357                 --gd->gd_vmtotal.t_avmshr;
358         } else {
359                 --gd->gd_vmtotal.t_avmshr;
360         }
361 }
362
363 /*
364  * Move the kernel virtual free pointer to the next
365  * 2MB.  This is used to help improve performance
366  * by using a large (2MB) page for much of the kernel
367  * (.text, .data, .bss)
368  */
369 static
370 vm_offset_t
371 pmap_kmem_choose(vm_offset_t addr)
372 {
373         vm_offset_t newaddr = addr;
374
375         newaddr = roundup2(addr, NBPDR);
376         return newaddr;
377 }
378
379 /*
380  * pmap_pte_quick:
381  *
382  *      Super fast pmap_pte routine best used when scanning the pv lists.
383  *      This eliminates many course-grained invltlb calls.  Note that many of
384  *      the pv list scans are across different pmaps and it is very wasteful
385  *      to do an entire invltlb when checking a single mapping.
386  */
387 static __inline pt_entry_t *pmap_pte(pmap_t pmap, vm_offset_t va);
388
389 static
390 pt_entry_t *
391 pmap_pte_quick(pmap_t pmap, vm_offset_t va)
392 {
393         return pmap_pte(pmap, va);
394 }
395
396 /*
397  * Returns the pindex of a page table entry (representing a terminal page).
398  * There are NUPTE_TOTAL page table entries possible (a huge number)
399  *
400  * x86-64 has a 48-bit address space, where bit 47 is sign-extended out.
401  * We want to properly translate negative KVAs.
402  */
403 static __inline
404 vm_pindex_t
405 pmap_pte_pindex(vm_offset_t va)
406 {
407         return ((va >> PAGE_SHIFT) & (NUPTE_TOTAL - 1));
408 }
409
410 /*
411  * Returns the pindex of a page table.
412  */
413 static __inline
414 vm_pindex_t
415 pmap_pt_pindex(vm_offset_t va)
416 {
417         return (NUPTE_TOTAL + ((va >> PDRSHIFT) & (NUPT_TOTAL - 1)));
418 }
419
420 /*
421  * Returns the pindex of a page directory.
422  */
423 static __inline
424 vm_pindex_t
425 pmap_pd_pindex(vm_offset_t va)
426 {
427         return (NUPTE_TOTAL + NUPT_TOTAL +
428                 ((va >> PDPSHIFT) & (NUPD_TOTAL - 1)));
429 }
430
431 static __inline
432 vm_pindex_t
433 pmap_pdp_pindex(vm_offset_t va)
434 {
435         return (NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL +
436                 ((va >> PML4SHIFT) & (NUPDP_TOTAL - 1)));
437 }
438
439 static __inline
440 vm_pindex_t
441 pmap_pml4_pindex(void)
442 {
443         return (NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL);
444 }
445
446 /*
447  * Return various clipped indexes for a given VA
448  *
449  * Returns the index of a pt in a page directory, representing a page
450  * table.
451  */
452 static __inline
453 vm_pindex_t
454 pmap_pt_index(vm_offset_t va)
455 {
456         return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
457 }
458
459 /*
460  * Returns the index of a pd in a page directory page, representing a page
461  * directory.
462  */
463 static __inline
464 vm_pindex_t
465 pmap_pd_index(vm_offset_t va)
466 {
467         return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
468 }
469
470 /*
471  * Returns the index of a pdp in the pml4 table, representing a page
472  * directory page.
473  */
474 static __inline
475 vm_pindex_t
476 pmap_pdp_index(vm_offset_t va)
477 {
478         return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
479 }
480
481 /*
482  * The placemarker hash must be broken up into four zones so lock
483  * ordering semantics continue to work (e.g. pte, pt, pd, then pdp).
484  *
485  * Placemarkers are used to 'lock' page table indices that do not have
486  * a pv_entry.  This allows the pmap to support managed and unmanaged
487  * pages and shared page tables.
488  */
489 #define PM_PLACE_BASE   (PM_PLACEMARKS >> 2)
490
491 static __inline
492 vm_pindex_t *
493 pmap_placemarker_hash(pmap_t pmap, vm_pindex_t pindex)
494 {
495         int hi;
496
497         if (pindex < pmap_pt_pindex(0))         /* zone 0 - PTE */
498                 hi = 0;
499         else if (pindex < pmap_pd_pindex(0))    /* zone 1 - PT */
500                 hi = PM_PLACE_BASE;
501         else if (pindex < pmap_pdp_pindex(0))   /* zone 2 - PD */
502                 hi = PM_PLACE_BASE << 1;
503         else                                    /* zone 3 - PDP (and PML4E) */
504                 hi = PM_PLACE_BASE | (PM_PLACE_BASE << 1);
505         hi += pindex & (PM_PLACE_BASE - 1);
506
507         return (&pmap->pm_placemarks[hi]);
508 }
509
510
511 /*
512  * Generic procedure to index a pte from a pt, pd, or pdp.
513  *
514  * NOTE: Normally passed pindex as pmap_xx_index().  pmap_xx_pindex() is NOT
515  *       a page table page index but is instead of PV lookup index.
516  */
517 static
518 void *
519 pv_pte_lookup(pv_entry_t pv, vm_pindex_t pindex)
520 {
521         pt_entry_t *pte;
522
523         pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pv->pv_m));
524         return(&pte[pindex]);
525 }
526
527 /*
528  * Return pointer to PDP slot in the PML4
529  */
530 static __inline
531 pml4_entry_t *
532 pmap_pdp(pmap_t pmap, vm_offset_t va)
533 {
534         return (&pmap->pm_pml4[pmap_pdp_index(va)]);
535 }
536
537 /*
538  * Return pointer to PD slot in the PDP given a pointer to the PDP
539  */
540 static __inline
541 pdp_entry_t *
542 pmap_pdp_to_pd(pml4_entry_t pdp_pte, vm_offset_t va)
543 {
544         pdp_entry_t *pd;
545
546         pd = (pdp_entry_t *)PHYS_TO_DMAP(pdp_pte & PG_FRAME);
547         return (&pd[pmap_pd_index(va)]);
548 }
549
550 /*
551  * Return pointer to PD slot in the PDP.
552  */
553 static __inline
554 pdp_entry_t *
555 pmap_pd(pmap_t pmap, vm_offset_t va)
556 {
557         pml4_entry_t *pdp;
558
559         pdp = pmap_pdp(pmap, va);
560         if ((*pdp & pmap->pmap_bits[PG_V_IDX]) == 0)
561                 return NULL;
562         return (pmap_pdp_to_pd(*pdp, va));
563 }
564
565 /*
566  * Return pointer to PT slot in the PD given a pointer to the PD
567  */
568 static __inline
569 pd_entry_t *
570 pmap_pd_to_pt(pdp_entry_t pd_pte, vm_offset_t va)
571 {
572         pd_entry_t *pt;
573
574         pt = (pd_entry_t *)PHYS_TO_DMAP(pd_pte & PG_FRAME);
575         return (&pt[pmap_pt_index(va)]);
576 }
577
578 /*
579  * Return pointer to PT slot in the PD
580  *
581  * SIMPLE PMAP NOTE: Simple pmaps (embedded in objects) do not have PDPs,
582  *                   so we cannot lookup the PD via the PDP.  Instead we
583  *                   must look it up via the pmap.
584  */
585 static __inline
586 pd_entry_t *
587 pmap_pt(pmap_t pmap, vm_offset_t va)
588 {
589         pdp_entry_t *pd;
590         pv_entry_t pv;
591         vm_pindex_t pd_pindex;
592
593         if (pmap->pm_flags & PMAP_FLAG_SIMPLE) {
594                 pd_pindex = pmap_pd_pindex(va);
595                 spin_lock(&pmap->pm_spin);
596                 pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, pd_pindex);
597                 spin_unlock(&pmap->pm_spin);
598                 if (pv == NULL || pv->pv_m == NULL)
599                         return NULL;
600                 return (pmap_pd_to_pt(VM_PAGE_TO_PHYS(pv->pv_m), va));
601         } else {
602                 pd = pmap_pd(pmap, va);
603                 if (pd == NULL || (*pd & pmap->pmap_bits[PG_V_IDX]) == 0)
604                          return NULL;
605                 return (pmap_pd_to_pt(*pd, va));
606         }
607 }
608
609 /*
610  * Return pointer to PTE slot in the PT given a pointer to the PT
611  */
612 static __inline
613 pt_entry_t *
614 pmap_pt_to_pte(pd_entry_t pt_pte, vm_offset_t va)
615 {
616         pt_entry_t *pte;
617
618         pte = (pt_entry_t *)PHYS_TO_DMAP(pt_pte & PG_FRAME);
619         return (&pte[pmap_pte_index(va)]);
620 }
621
622 /*
623  * Return pointer to PTE slot in the PT
624  */
625 static __inline
626 pt_entry_t *
627 pmap_pte(pmap_t pmap, vm_offset_t va)
628 {
629         pd_entry_t *pt;
630
631         pt = pmap_pt(pmap, va);
632         if (pt == NULL || (*pt & pmap->pmap_bits[PG_V_IDX]) == 0)
633                  return NULL;
634         if ((*pt & pmap->pmap_bits[PG_PS_IDX]) != 0)
635                 return ((pt_entry_t *)pt);
636         return (pmap_pt_to_pte(*pt, va));
637 }
638
639 /*
640  * Of all the layers (PTE, PT, PD, PDP, PML4) the best one to cache is
641  * the PT layer.  This will speed up core pmap operations considerably.
642  *
643  * NOTE: The pmap spinlock does not need to be held but the passed-in pv
644  *       must be in a known associated state (typically by being locked when
645  *       the pmap spinlock isn't held).  We allow the race for that case.
646  *
647  * NOTE: pm_pvhint is only accessed (read) with the spin-lock held, using
648  *       cpu_ccfence() to prevent compiler optimizations from reloading the
649  *       field.
650  */
651 static __inline
652 void
653 pv_cache(pv_entry_t pv, vm_pindex_t pindex)
654 {
655         if (pindex >= pmap_pt_pindex(0) && pindex <= pmap_pd_pindex(0)) {
656                 if (pv->pv_pmap)
657                         pv->pv_pmap->pm_pvhint = pv;
658         }
659 }
660
661
662 /*
663  * Return address of PT slot in PD (KVM only)
664  *
665  * Cannot be used for user page tables because it might interfere with
666  * the shared page-table-page optimization (pmap_mmu_optimize).
667  */
668 static __inline
669 pd_entry_t *
670 vtopt(vm_offset_t va)
671 {
672         uint64_t mask = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
673                                   NPML4EPGSHIFT)) - 1);
674
675         return (PDmap + ((va >> PDRSHIFT) & mask));
676 }
677
678 /*
679  * KVM - return address of PTE slot in PT
680  */
681 static __inline
682 pt_entry_t *
683 vtopte(vm_offset_t va)
684 {
685         uint64_t mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT +
686                                   NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
687
688         return (PTmap + ((va >> PAGE_SHIFT) & mask));
689 }
690
691 static uint64_t
692 allocpages(vm_paddr_t *firstaddr, long n)
693 {
694         uint64_t ret;
695
696         ret = *firstaddr;
697         bzero((void *)ret, n * PAGE_SIZE);
698         *firstaddr += n * PAGE_SIZE;
699         return (ret);
700 }
701
702 static
703 void
704 create_pagetables(vm_paddr_t *firstaddr)
705 {
706         long i;         /* must be 64 bits */
707         long nkpt_base;
708         long nkpt_phys;
709         int j;
710
711         /*
712          * We are running (mostly) V=P at this point
713          *
714          * Calculate NKPT - number of kernel page tables.  We have to
715          * accomodoate prealloction of the vm_page_array, dump bitmap,
716          * MSGBUF_SIZE, and other stuff.  Be generous.
717          *
718          * Maxmem is in pages.
719          *
720          * ndmpdp is the number of 1GB pages we wish to map.
721          */
722         ndmpdp = (ptoa(Maxmem) + NBPDP - 1) >> PDPSHIFT;
723         if (ndmpdp < 4)         /* Minimum 4GB of dirmap */
724                 ndmpdp = 4;
725         KKASSERT(ndmpdp <= NKPDPE * NPDEPG);
726
727         /*
728          * Starting at the beginning of kvm (not KERNBASE).
729          */
730         nkpt_phys = (Maxmem * sizeof(struct vm_page) + NBPDR - 1) / NBPDR;
731         nkpt_phys += (Maxmem * sizeof(struct pv_entry) + NBPDR - 1) / NBPDR;
732         nkpt_phys += ((nkpt + nkpt + 1 + NKPML4E + NKPDPE + NDMPML4E +
733                        ndmpdp) + 511) / 512;
734         nkpt_phys += 128;
735
736         /*
737          * Starting at KERNBASE - map 2G worth of page table pages.
738          * KERNBASE is offset -2G from the end of kvm.
739          */
740         nkpt_base = (NPDPEPG - KPDPI) * NPTEPG; /* typically 2 x 512 */
741
742         /*
743          * Allocate pages
744          */
745         KPTbase = allocpages(firstaddr, nkpt_base);
746         KPTphys = allocpages(firstaddr, nkpt_phys);
747         KPML4phys = allocpages(firstaddr, 1);
748         KPDPphys = allocpages(firstaddr, NKPML4E);
749         KPDphys = allocpages(firstaddr, NKPDPE);
750
751         /*
752          * Calculate the page directory base for KERNBASE,
753          * that is where we start populating the page table pages.
754          * Basically this is the end - 2.
755          */
756         KPDbase = KPDphys + ((NKPDPE - (NPDPEPG - KPDPI)) << PAGE_SHIFT);
757
758         DMPDPphys = allocpages(firstaddr, NDMPML4E);
759         if ((amd_feature & AMDID_PAGE1GB) == 0)
760                 DMPDphys = allocpages(firstaddr, ndmpdp);
761         dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
762
763         /*
764          * Fill in the underlying page table pages for the area around
765          * KERNBASE.  This remaps low physical memory to KERNBASE.
766          *
767          * Read-only from zero to physfree
768          * XXX not fully used, underneath 2M pages
769          */
770         for (i = 0; (i << PAGE_SHIFT) < *firstaddr; i++) {
771                 ((pt_entry_t *)KPTbase)[i] = i << PAGE_SHIFT;
772                 ((pt_entry_t *)KPTbase)[i] |=
773                     pmap_bits_default[PG_RW_IDX] |
774                     pmap_bits_default[PG_V_IDX] |
775                     pmap_bits_default[PG_G_IDX];
776         }
777
778         /*
779          * Now map the initial kernel page tables.  One block of page
780          * tables is placed at the beginning of kernel virtual memory,
781          * and another block is placed at KERNBASE to map the kernel binary,
782          * data, bss, and initial pre-allocations.
783          */
784         for (i = 0; i < nkpt_base; i++) {
785                 ((pd_entry_t *)KPDbase)[i] = KPTbase + (i << PAGE_SHIFT);
786                 ((pd_entry_t *)KPDbase)[i] |=
787                     pmap_bits_default[PG_RW_IDX] |
788                     pmap_bits_default[PG_V_IDX];
789         }
790         for (i = 0; i < nkpt_phys; i++) {
791                 ((pd_entry_t *)KPDphys)[i] = KPTphys + (i << PAGE_SHIFT);
792                 ((pd_entry_t *)KPDphys)[i] |=
793                     pmap_bits_default[PG_RW_IDX] |
794                     pmap_bits_default[PG_V_IDX];
795         }
796
797         /*
798          * Map from zero to end of allocations using 2M pages as an
799          * optimization.  This will bypass some of the KPTBase pages
800          * above in the KERNBASE area.
801          */
802         for (i = 0; (i << PDRSHIFT) < *firstaddr; i++) {
803                 ((pd_entry_t *)KPDbase)[i] = i << PDRSHIFT;
804                 ((pd_entry_t *)KPDbase)[i] |=
805                     pmap_bits_default[PG_RW_IDX] |
806                     pmap_bits_default[PG_V_IDX] |
807                     pmap_bits_default[PG_PS_IDX] |
808                     pmap_bits_default[PG_G_IDX];
809         }
810
811         /*
812          * And connect up the PD to the PDP.  The kernel pmap is expected
813          * to pre-populate all of its PDs.  See NKPDPE in vmparam.h.
814          */
815         for (i = 0; i < NKPDPE; i++) {
816                 ((pdp_entry_t *)KPDPphys)[NPDPEPG - NKPDPE + i] =
817                                 KPDphys + (i << PAGE_SHIFT);
818                 ((pdp_entry_t *)KPDPphys)[NPDPEPG - NKPDPE + i] |=
819                     pmap_bits_default[PG_RW_IDX] |
820                     pmap_bits_default[PG_V_IDX] |
821                     pmap_bits_default[PG_U_IDX];
822         }
823
824         /*
825          * Now set up the direct map space using either 2MB or 1GB pages
826          * Preset PG_M and PG_A because demotion expects it.
827          *
828          * When filling in entries in the PD pages make sure any excess
829          * entries are set to zero as we allocated enough PD pages
830          */
831         if ((amd_feature & AMDID_PAGE1GB) == 0) {
832                 for (i = 0; i < NPDEPG * ndmpdp; i++) {
833                         ((pd_entry_t *)DMPDphys)[i] = i << PDRSHIFT;
834                         ((pd_entry_t *)DMPDphys)[i] |=
835                             pmap_bits_default[PG_RW_IDX] |
836                             pmap_bits_default[PG_V_IDX] |
837                             pmap_bits_default[PG_PS_IDX] |
838                             pmap_bits_default[PG_G_IDX] |
839                             pmap_bits_default[PG_M_IDX] |
840                             pmap_bits_default[PG_A_IDX];
841                 }
842
843                 /*
844                  * And the direct map space's PDP
845                  */
846                 for (i = 0; i < ndmpdp; i++) {
847                         ((pdp_entry_t *)DMPDPphys)[i] = DMPDphys +
848                                                         (i << PAGE_SHIFT);
849                         ((pdp_entry_t *)DMPDPphys)[i] |=
850                             pmap_bits_default[PG_RW_IDX] |
851                             pmap_bits_default[PG_V_IDX] |
852                             pmap_bits_default[PG_U_IDX];
853                 }
854         } else {
855                 for (i = 0; i < ndmpdp; i++) {
856                         ((pdp_entry_t *)DMPDPphys)[i] =
857                                                 (vm_paddr_t)i << PDPSHIFT;
858                         ((pdp_entry_t *)DMPDPphys)[i] |=
859                             pmap_bits_default[PG_RW_IDX] |
860                             pmap_bits_default[PG_V_IDX] |
861                             pmap_bits_default[PG_PS_IDX] |
862                             pmap_bits_default[PG_G_IDX] |
863                             pmap_bits_default[PG_M_IDX] |
864                             pmap_bits_default[PG_A_IDX];
865                 }
866         }
867
868         /* And recursively map PML4 to itself in order to get PTmap */
869         ((pdp_entry_t *)KPML4phys)[PML4PML4I] = KPML4phys;
870         ((pdp_entry_t *)KPML4phys)[PML4PML4I] |=
871             pmap_bits_default[PG_RW_IDX] |
872             pmap_bits_default[PG_V_IDX] |
873             pmap_bits_default[PG_U_IDX];
874
875         /*
876          * Connect the Direct Map slots up to the PML4
877          */
878         for (j = 0; j < NDMPML4E; ++j) {
879                 ((pdp_entry_t *)KPML4phys)[DMPML4I + j] =
880                     (DMPDPphys + ((vm_paddr_t)j << PML4SHIFT)) |
881                     pmap_bits_default[PG_RW_IDX] |
882                     pmap_bits_default[PG_V_IDX] |
883                     pmap_bits_default[PG_U_IDX];
884         }
885
886         /*
887          * Connect the KVA slot up to the PML4
888          */
889         ((pdp_entry_t *)KPML4phys)[KPML4I] = KPDPphys;
890         ((pdp_entry_t *)KPML4phys)[KPML4I] |=
891             pmap_bits_default[PG_RW_IDX] |
892             pmap_bits_default[PG_V_IDX] |
893             pmap_bits_default[PG_U_IDX];
894 }
895
896 /*
897  *      Bootstrap the system enough to run with virtual memory.
898  *
899  *      On the i386 this is called after mapping has already been enabled
900  *      and just syncs the pmap module with what has already been done.
901  *      [We can't call it easily with mapping off since the kernel is not
902  *      mapped with PA == VA, hence we would have to relocate every address
903  *      from the linked base (virtual) address "KERNBASE" to the actual
904  *      (physical) address starting relative to 0]
905  */
906 void
907 pmap_bootstrap(vm_paddr_t *firstaddr)
908 {
909         vm_offset_t va;
910         pt_entry_t *pte;
911         int i;
912
913         KvaStart = VM_MIN_KERNEL_ADDRESS;
914         KvaEnd = VM_MAX_KERNEL_ADDRESS;
915         KvaSize = KvaEnd - KvaStart;
916
917         avail_start = *firstaddr;
918
919         /*
920          * Create an initial set of page tables to run the kernel in.
921          */
922         create_pagetables(firstaddr);
923
924         virtual2_start = KvaStart;
925         virtual2_end = PTOV_OFFSET;
926
927         virtual_start = (vm_offset_t) PTOV_OFFSET + *firstaddr;
928         virtual_start = pmap_kmem_choose(virtual_start);
929
930         virtual_end = VM_MAX_KERNEL_ADDRESS;
931
932         /* XXX do %cr0 as well */
933         load_cr4(rcr4() | CR4_PGE | CR4_PSE);
934         load_cr3(KPML4phys);
935
936         /*
937          * Initialize protection array.
938          */
939         i386_protection_init();
940
941         /*
942          * The kernel's pmap is statically allocated so we don't have to use
943          * pmap_create, which is unlikely to work correctly at this part of
944          * the boot sequence (XXX and which no longer exists).
945          */
946         kernel_pmap.pm_pml4 = (pdp_entry_t *) (PTOV_OFFSET + KPML4phys);
947         kernel_pmap.pm_count = 1;
948         CPUMASK_ASSALLONES(kernel_pmap.pm_active);
949         RB_INIT(&kernel_pmap.pm_pvroot);
950         spin_init(&kernel_pmap.pm_spin, "pmapbootstrap");
951         for (i = 0; i < PM_PLACEMARKS; ++i)
952                 kernel_pmap.pm_placemarks[i] = PM_NOPLACEMARK;
953
954         /*
955          * Reserve some special page table entries/VA space for temporary
956          * mapping of pages.
957          */
958 #define SYSMAP(c, p, v, n)      \
959         v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
960
961         va = virtual_start;
962         pte = vtopte(va);
963
964         /*
965          * CMAP1/CMAP2 are used for zeroing and copying pages.
966          */
967         SYSMAP(caddr_t, CMAP1, CADDR1, 1)
968
969         /*
970          * Crashdump maps.
971          */
972         SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
973
974         /*
975          * ptvmmap is used for reading arbitrary physical pages via
976          * /dev/mem.
977          */
978         SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
979
980         /*
981          * msgbufp is used to map the system message buffer.
982          * XXX msgbufmap is not used.
983          */
984         SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
985                atop(round_page(MSGBUF_SIZE)))
986
987         virtual_start = va;
988         virtual_start = pmap_kmem_choose(virtual_start);
989
990         *CMAP1 = 0;
991
992         /*
993          * PG_G is terribly broken on SMP because we IPI invltlb's in some
994          * cases rather then invl1pg.  Actually, I don't even know why it
995          * works under UP because self-referential page table mappings
996          */
997 //      pgeflag = 0;
998
999 /*
1000  * Initialize the 4MB page size flag
1001  */
1002 //      pseflag = 0;
1003 /*
1004  * The 4MB page version of the initial
1005  * kernel page mapping.
1006  */
1007         pdir4mb = 0;
1008
1009 #if !defined(DISABLE_PSE)
1010         if (cpu_feature & CPUID_PSE) {
1011                 pt_entry_t ptditmp;
1012                 /*
1013                  * Note that we have enabled PSE mode
1014                  */
1015 //              pseflag = kernel_pmap.pmap_bits[PG_PS_IDX];
1016                 ptditmp = *(PTmap + x86_64_btop(KERNBASE));
1017                 ptditmp &= ~(NBPDR - 1);
1018                 ptditmp |= pmap_bits_default[PG_V_IDX] |
1019                     pmap_bits_default[PG_RW_IDX] |
1020                     pmap_bits_default[PG_PS_IDX] |
1021                     pmap_bits_default[PG_U_IDX];
1022 //                  pgeflag;
1023                 pdir4mb = ptditmp;
1024         }
1025 #endif
1026         cpu_invltlb();
1027
1028         /* Initialize the PAT MSR */
1029         pmap_init_pat();
1030         pmap_pinit_defaults(&kernel_pmap);
1031
1032         TUNABLE_INT_FETCH("machdep.pmap_fast_kernel_cpusync",
1033                           &pmap_fast_kernel_cpusync);
1034
1035 }
1036
1037 /*
1038  * Setup the PAT MSR.
1039  */
1040 void
1041 pmap_init_pat(void)
1042 {
1043         uint64_t pat_msr;
1044         u_long cr0, cr4;
1045
1046         /*
1047          * Default values mapping PATi,PCD,PWT bits at system reset.
1048          * The default values effectively ignore the PATi bit by
1049          * repeating the encodings for 0-3 in 4-7, and map the PCD
1050          * and PWT bit combinations to the expected PAT types.
1051          */
1052         pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |        /* 000 */
1053                   PAT_VALUE(1, PAT_WRITE_THROUGH) |     /* 001 */
1054                   PAT_VALUE(2, PAT_UNCACHED) |          /* 010 */
1055                   PAT_VALUE(3, PAT_UNCACHEABLE) |       /* 011 */
1056                   PAT_VALUE(4, PAT_WRITE_BACK) |        /* 100 */
1057                   PAT_VALUE(5, PAT_WRITE_THROUGH) |     /* 101 */
1058                   PAT_VALUE(6, PAT_UNCACHED) |          /* 110 */
1059                   PAT_VALUE(7, PAT_UNCACHEABLE);        /* 111 */
1060         pat_pte_index[PAT_WRITE_BACK]   = 0;
1061         pat_pte_index[PAT_WRITE_THROUGH]= 0         | X86_PG_NC_PWT;
1062         pat_pte_index[PAT_UNCACHED]     = X86_PG_NC_PCD;
1063         pat_pte_index[PAT_UNCACHEABLE]  = X86_PG_NC_PCD | X86_PG_NC_PWT;
1064         pat_pte_index[PAT_WRITE_PROTECTED] = pat_pte_index[PAT_UNCACHEABLE];
1065         pat_pte_index[PAT_WRITE_COMBINING] = pat_pte_index[PAT_UNCACHEABLE];
1066
1067         if (cpu_feature & CPUID_PAT) {
1068                 /*
1069                  * If we support the PAT then set-up entries for
1070                  * WRITE_PROTECTED and WRITE_COMBINING using bit patterns
1071                  * 4 and 5.
1072                  */
1073                 pat_msr = (pat_msr & ~PAT_MASK(4)) |
1074                           PAT_VALUE(4, PAT_WRITE_PROTECTED);
1075                 pat_msr = (pat_msr & ~PAT_MASK(5)) |
1076                           PAT_VALUE(5, PAT_WRITE_COMBINING);
1077                 pat_pte_index[PAT_WRITE_PROTECTED] = X86_PG_PTE_PAT | 0;
1078                 pat_pte_index[PAT_WRITE_COMBINING] = X86_PG_PTE_PAT | X86_PG_NC_PWT;
1079
1080                 /*
1081                  * Then enable the PAT
1082                  */
1083
1084                 /* Disable PGE. */
1085                 cr4 = rcr4();
1086                 load_cr4(cr4 & ~CR4_PGE);
1087
1088                 /* Disable caches (CD = 1, NW = 0). */
1089                 cr0 = rcr0();
1090                 load_cr0((cr0 & ~CR0_NW) | CR0_CD);
1091
1092                 /* Flushes caches and TLBs. */
1093                 wbinvd();
1094                 cpu_invltlb();
1095
1096                 /* Update PAT and index table. */
1097                 wrmsr(MSR_PAT, pat_msr);
1098
1099                 /* Flush caches and TLBs again. */
1100                 wbinvd();
1101                 cpu_invltlb();
1102
1103                 /* Restore caches and PGE. */
1104                 load_cr0(cr0);
1105                 load_cr4(cr4);
1106                 PatMsr = pat_msr;
1107         }
1108 }
1109
1110 /*
1111  * Set 4mb pdir for mp startup
1112  */
1113 void
1114 pmap_set_opt(void)
1115 {
1116         if (cpu_feature & CPUID_PSE) {
1117                 load_cr4(rcr4() | CR4_PSE);
1118                 if (pdir4mb && mycpu->gd_cpuid == 0) {  /* only on BSP */
1119                         cpu_invltlb();
1120                 }
1121         }
1122 }
1123
1124 /*
1125  *      Initialize the pmap module.
1126  *      Called by vm_init, to initialize any structures that the pmap
1127  *      system needs to map virtual memory.
1128  *      pmap_init has been enhanced to support in a fairly consistant
1129  *      way, discontiguous physical memory.
1130  */
1131 void
1132 pmap_init(void)
1133 {
1134         int i;
1135         int initial_pvs;
1136
1137         /*
1138          * Allocate memory for random pmap data structures.  Includes the
1139          * pv_head_table.
1140          */
1141
1142         for (i = 0; i < vm_page_array_size; i++) {
1143                 vm_page_t m;
1144
1145                 m = &vm_page_array[i];
1146                 TAILQ_INIT(&m->md.pv_list);
1147         }
1148
1149         /*
1150          * init the pv free list
1151          */
1152         initial_pvs = vm_page_array_size;
1153         if (initial_pvs < MINPV)
1154                 initial_pvs = MINPV;
1155         pvzone = &pvzone_store;
1156         pvinit = (void *)kmem_alloc(&kernel_map,
1157                                     initial_pvs * sizeof (struct pv_entry),
1158                                     VM_SUBSYS_PVENTRY);
1159         zbootinit(pvzone, "PV ENTRY", sizeof (struct pv_entry),
1160                   pvinit, initial_pvs);
1161
1162         /*
1163          * Now it is safe to enable pv_table recording.
1164          */
1165         pmap_initialized = TRUE;
1166 }
1167
1168 /*
1169  * Initialize the address space (zone) for the pv_entries.  Set a
1170  * high water mark so that the system can recover from excessive
1171  * numbers of pv entries.
1172  */
1173 void
1174 pmap_init2(void)
1175 {
1176         int shpgperproc = PMAP_SHPGPERPROC;
1177         int entry_max;
1178
1179         TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1180         pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
1181         TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1182         pv_entry_high_water = 9 * (pv_entry_max / 10);
1183
1184         /*
1185          * Subtract out pages already installed in the zone (hack)
1186          */
1187         entry_max = pv_entry_max - vm_page_array_size;
1188         if (entry_max <= 0)
1189                 entry_max = 1;
1190
1191         zinitna(pvzone, &pvzone_obj, NULL, 0, entry_max, ZONE_INTERRUPT);
1192
1193         /*
1194          * Enable dynamic deletion of empty higher-level page table pages
1195          * by default only if system memory is < 8GB (use 7GB for slop).
1196          * This can save a little memory, but imposes significant
1197          * performance overhead for things like bulk builds, and for programs
1198          * which do a lot of memory mapping and memory unmapping.
1199          */
1200         if (pmap_dynamic_delete < 0) {
1201                 if (vmstats.v_page_count < 7LL * 1024 * 1024 * 1024 / PAGE_SIZE)
1202                         pmap_dynamic_delete = 1;
1203                 else
1204                         pmap_dynamic_delete = 0;
1205         }
1206 }
1207
1208 /*
1209  * Typically used to initialize a fictitious page by vm/device_pager.c
1210  */
1211 void
1212 pmap_page_init(struct vm_page *m)
1213 {
1214         vm_page_init(m);
1215         TAILQ_INIT(&m->md.pv_list);
1216 }
1217
1218 /***************************************************
1219  * Low level helper routines.....
1220  ***************************************************/
1221
1222 /*
1223  * this routine defines the region(s) of memory that should
1224  * not be tested for the modified bit.
1225  */
1226 static __inline
1227 int
1228 pmap_track_modified(vm_pindex_t pindex)
1229 {
1230         vm_offset_t va = (vm_offset_t)pindex << PAGE_SHIFT;
1231         if ((va < clean_sva) || (va >= clean_eva)) 
1232                 return 1;
1233         else
1234                 return 0;
1235 }
1236
1237 /*
1238  * Extract the physical page address associated with the map/VA pair.
1239  * The page must be wired for this to work reliably.
1240  */
1241 vm_paddr_t 
1242 pmap_extract(pmap_t pmap, vm_offset_t va, void **handlep)
1243 {
1244         vm_paddr_t rtval;
1245         pv_entry_t pt_pv;
1246         pt_entry_t *ptep;
1247
1248         rtval = 0;
1249         if (va >= VM_MAX_USER_ADDRESS) {
1250                 /*
1251                  * Kernel page directories might be direct-mapped and
1252                  * there is typically no PV tracking of pte's
1253                  */
1254                 pd_entry_t *pt;
1255
1256                 pt = pmap_pt(pmap, va);
1257                 if (pt && (*pt & pmap->pmap_bits[PG_V_IDX])) {
1258                         if (*pt & pmap->pmap_bits[PG_PS_IDX]) {
1259                                 rtval = *pt & PG_PS_FRAME;
1260                                 rtval |= va & PDRMASK;
1261                         } else {
1262                                 ptep = pmap_pt_to_pte(*pt, va);
1263                                 if (*pt & pmap->pmap_bits[PG_V_IDX]) {
1264                                         rtval = *ptep & PG_FRAME;
1265                                         rtval |= va & PAGE_MASK;
1266                                 }
1267                         }
1268                 }
1269                 if (handlep)
1270                         *handlep = NULL;
1271         } else {
1272                 /*
1273                  * User pages currently do not direct-map the page directory
1274                  * and some pages might not used managed PVs.  But all PT's
1275                  * will have a PV.
1276                  */
1277                 pt_pv = pv_get(pmap, pmap_pt_pindex(va), NULL);
1278                 if (pt_pv) {
1279                         ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
1280                         if (*ptep & pmap->pmap_bits[PG_V_IDX]) {
1281                                 rtval = *ptep & PG_FRAME;
1282                                 rtval |= va & PAGE_MASK;
1283                         }
1284                         if (handlep)
1285                                 *handlep = pt_pv;       /* locked until done */
1286                         else
1287                                 pv_put (pt_pv);
1288                 } else if (handlep) {
1289                         *handlep = NULL;
1290                 }
1291         }
1292         return rtval;
1293 }
1294
1295 void
1296 pmap_extract_done(void *handle)
1297 {
1298         if (handle)
1299                 pv_put((pv_entry_t)handle);
1300 }
1301
1302 /*
1303  * Similar to extract but checks protections, SMP-friendly short-cut for
1304  * vm_fault_page[_quick]().  Can return NULL to cause the caller to
1305  * fall-through to the real fault code.
1306  *
1307  * The returned page, if not NULL, is held (and not busied).
1308  */
1309 vm_page_t
1310 pmap_fault_page_quick(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1311 {
1312         if (pmap && va < VM_MAX_USER_ADDRESS) {
1313                 pv_entry_t pt_pv;
1314                 pv_entry_t pte_pv;
1315                 pt_entry_t *ptep;
1316                 pt_entry_t req;
1317                 vm_page_t m;
1318                 int error;
1319
1320                 req = pmap->pmap_bits[PG_V_IDX] |
1321                       pmap->pmap_bits[PG_U_IDX];
1322                 if (prot & VM_PROT_WRITE)
1323                         req |= pmap->pmap_bits[PG_RW_IDX];
1324
1325                 pt_pv = pv_get(pmap, pmap_pt_pindex(va), NULL);
1326                 if (pt_pv == NULL)
1327                         return (NULL);
1328                 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
1329                 if ((*ptep & req) != req) {
1330                         pv_put(pt_pv);
1331                         return (NULL);
1332                 }
1333                 pte_pv = pv_get_try(pmap, pmap_pte_pindex(va), NULL, &error);
1334                 if (pte_pv && error == 0) {
1335                         m = pte_pv->pv_m;
1336                         vm_page_hold(m);
1337                         if (prot & VM_PROT_WRITE)
1338                                 vm_page_dirty(m);
1339                         pv_put(pte_pv);
1340                 } else if (pte_pv) {
1341                         pv_drop(pte_pv);
1342                         m = NULL;
1343                 } else {
1344                         /* error can be 0 or 1 */
1345                         m = NULL;
1346                 }
1347                 pv_put(pt_pv);
1348                 return(m);
1349         } else {
1350                 return(NULL);
1351         }
1352 }
1353
1354 /*
1355  * Extract the physical page address associated kernel virtual address.
1356  */
1357 vm_paddr_t
1358 pmap_kextract(vm_offset_t va)
1359 {
1360         pd_entry_t pt;          /* pt entry in pd */
1361         vm_paddr_t pa;
1362
1363         if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
1364                 pa = DMAP_TO_PHYS(va);
1365         } else {
1366                 pt = *vtopt(va);
1367                 if (pt & kernel_pmap.pmap_bits[PG_PS_IDX]) {
1368                         pa = (pt & PG_PS_FRAME) | (va & PDRMASK);
1369                 } else {
1370                         /*
1371                          * Beware of a concurrent promotion that changes the
1372                          * PDE at this point!  For example, vtopte() must not
1373                          * be used to access the PTE because it would use the
1374                          * new PDE.  It is, however, safe to use the old PDE
1375                          * because the page table page is preserved by the
1376                          * promotion.
1377                          */
1378                         pa = *pmap_pt_to_pte(pt, va);
1379                         pa = (pa & PG_FRAME) | (va & PAGE_MASK);
1380                 }
1381         }
1382         return pa;
1383 }
1384
1385 /***************************************************
1386  * Low level mapping routines.....
1387  ***************************************************/
1388
1389 /*
1390  * Routine: pmap_kenter
1391  * Function:
1392  *      Add a wired page to the KVA
1393  *      NOTE! note that in order for the mapping to take effect -- you
1394  *      should do an invltlb after doing the pmap_kenter().
1395  */
1396 void 
1397 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1398 {
1399         pt_entry_t *ptep;
1400         pt_entry_t npte;
1401
1402         npte = pa |
1403             kernel_pmap.pmap_bits[PG_RW_IDX] |
1404             kernel_pmap.pmap_bits[PG_V_IDX];
1405 //          pgeflag;
1406         ptep = vtopte(va);
1407 #if 1
1408         pmap_inval_smp(&kernel_pmap, va, 1, ptep, npte);
1409 #else
1410         /* FUTURE */
1411         if (*ptep)
1412                 pmap_inval_smp(&kernel_pmap, va, ptep, npte);
1413         else
1414                 *ptep = npte;
1415 #endif
1416 }
1417
1418 /*
1419  * Similar to pmap_kenter(), except we only invalidate the mapping on the
1420  * current CPU.  Returns 0 if the previous pte was 0, 1 if it wasn't
1421  * (caller can conditionalize calling smp_invltlb()).
1422  */
1423 int
1424 pmap_kenter_quick(vm_offset_t va, vm_paddr_t pa)
1425 {
1426         pt_entry_t *ptep;
1427         pt_entry_t npte;
1428         int res;
1429
1430         npte = pa | kernel_pmap.pmap_bits[PG_RW_IDX] |
1431                     kernel_pmap.pmap_bits[PG_V_IDX];
1432         // npte |= pgeflag;
1433         ptep = vtopte(va);
1434 #if 1
1435         res = 1;
1436 #else
1437         /* FUTURE */
1438         res = (*ptep != 0);
1439 #endif
1440         atomic_swap_long(ptep, npte);
1441         cpu_invlpg((void *)va);
1442
1443         return res;
1444 }
1445
1446 /*
1447  * Enter addresses into the kernel pmap but don't bother
1448  * doing any tlb invalidations.  Caller will do a rollup
1449  * invalidation via pmap_rollup_inval().
1450  */
1451 int
1452 pmap_kenter_noinval(vm_offset_t va, vm_paddr_t pa)
1453 {
1454         pt_entry_t *ptep;
1455         pt_entry_t npte;
1456         int res;
1457
1458         npte = pa |
1459             kernel_pmap.pmap_bits[PG_RW_IDX] |
1460             kernel_pmap.pmap_bits[PG_V_IDX];
1461 //          pgeflag;
1462         ptep = vtopte(va);
1463 #if 1
1464         res = 1;
1465 #else
1466         /* FUTURE */
1467         res = (*ptep != 0);
1468 #endif
1469         atomic_swap_long(ptep, npte);
1470         cpu_invlpg((void *)va);
1471
1472         return res;
1473 }
1474
1475 /*
1476  * remove a page from the kernel pagetables
1477  */
1478 void
1479 pmap_kremove(vm_offset_t va)
1480 {
1481         pt_entry_t *ptep;
1482
1483         ptep = vtopte(va);
1484         pmap_inval_smp(&kernel_pmap, va, 1, ptep, 0);
1485 }
1486
1487 void
1488 pmap_kremove_quick(vm_offset_t va)
1489 {
1490         pt_entry_t *ptep;
1491
1492         ptep = vtopte(va);
1493         (void)pte_load_clear(ptep);
1494         cpu_invlpg((void *)va);
1495 }
1496
1497 /*
1498  * Remove addresses from the kernel pmap but don't bother
1499  * doing any tlb invalidations.  Caller will do a rollup
1500  * invalidation via pmap_rollup_inval().
1501  */
1502 void
1503 pmap_kremove_noinval(vm_offset_t va)
1504 {
1505         pt_entry_t *ptep;
1506
1507         ptep = vtopte(va);
1508         (void)pte_load_clear(ptep);
1509 }
1510
1511 /*
1512  * XXX these need to be recoded.  They are not used in any critical path.
1513  */
1514 void
1515 pmap_kmodify_rw(vm_offset_t va)
1516 {
1517         atomic_set_long(vtopte(va), kernel_pmap.pmap_bits[PG_RW_IDX]);
1518         cpu_invlpg((void *)va);
1519 }
1520
1521 /* NOT USED
1522 void
1523 pmap_kmodify_nc(vm_offset_t va)
1524 {
1525         atomic_set_long(vtopte(va), PG_N);
1526         cpu_invlpg((void *)va);
1527 }
1528 */
1529
1530 /*
1531  * Used to map a range of physical addresses into kernel virtual
1532  * address space during the low level boot, typically to map the
1533  * dump bitmap, message buffer, and vm_page_array.
1534  *
1535  * These mappings are typically made at some pointer after the end of the
1536  * kernel text+data.
1537  *
1538  * We could return PHYS_TO_DMAP(start) here and not allocate any
1539  * via (*virtp), but then kmem from userland and kernel dumps won't
1540  * have access to the related pointers.
1541  */
1542 vm_offset_t
1543 pmap_map(vm_offset_t *virtp, vm_paddr_t start, vm_paddr_t end, int prot)
1544 {
1545         vm_offset_t va;
1546         vm_offset_t va_start;
1547
1548         /*return PHYS_TO_DMAP(start);*/
1549
1550         va_start = *virtp;
1551         va = va_start;
1552
1553         while (start < end) {
1554                 pmap_kenter_quick(va, start);
1555                 va += PAGE_SIZE;
1556                 start += PAGE_SIZE;
1557         }
1558         *virtp = va;
1559         return va_start;
1560 }
1561
1562 #define PMAP_CLFLUSH_THRESHOLD  (2 * 1024 * 1024)
1563
1564 /*
1565  * Remove the specified set of pages from the data and instruction caches.
1566  *
1567  * In contrast to pmap_invalidate_cache_range(), this function does not
1568  * rely on the CPU's self-snoop feature, because it is intended for use
1569  * when moving pages into a different cache domain.
1570  */
1571 void
1572 pmap_invalidate_cache_pages(vm_page_t *pages, int count)
1573 {
1574         vm_offset_t daddr, eva;
1575         int i;
1576
1577         if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
1578             (cpu_feature & CPUID_CLFSH) == 0)
1579                 wbinvd();
1580         else {
1581                 cpu_mfence();
1582                 for (i = 0; i < count; i++) {
1583                         daddr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pages[i]));
1584                         eva = daddr + PAGE_SIZE;
1585                         for (; daddr < eva; daddr += cpu_clflush_line_size)
1586                                 clflush(daddr);
1587                 }
1588                 cpu_mfence();
1589         }
1590 }
1591
1592 void
1593 pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
1594 {
1595         KASSERT((sva & PAGE_MASK) == 0,
1596             ("pmap_invalidate_cache_range: sva not page-aligned"));
1597         KASSERT((eva & PAGE_MASK) == 0,
1598             ("pmap_invalidate_cache_range: eva not page-aligned"));
1599
1600         if (cpu_feature & CPUID_SS) {
1601                 ; /* If "Self Snoop" is supported, do nothing. */
1602         } else {
1603                 /* Globally invalidate caches */
1604                 cpu_wbinvd_on_all_cpus();
1605         }
1606 }
1607
1608 /*
1609  * Invalidate the specified range of virtual memory on all cpus associated
1610  * with the pmap.
1611  */
1612 void
1613 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1614 {
1615         pmap_inval_smp(pmap, sva, (eva - sva) >> PAGE_SHIFT, NULL, 0);
1616 }
1617
1618 /*
1619  * Add a list of wired pages to the kva.  This routine is used for temporary
1620  * kernel mappings such as those found in buffer cache buffer.  Page
1621  * modifications and accesses are not tracked or recorded.
1622  *
1623  * NOTE! Old mappings are simply overwritten, and we cannot assume relaxed
1624  *       semantics as previous mappings may have been zerod without any
1625  *       invalidation.
1626  *
1627  * The page *must* be wired.
1628  */
1629 void
1630 pmap_qenter(vm_offset_t beg_va, vm_page_t *m, int count)
1631 {
1632         vm_offset_t end_va;
1633         vm_offset_t va;
1634
1635         end_va = beg_va + count * PAGE_SIZE;
1636
1637         for (va = beg_va; va < end_va; va += PAGE_SIZE) {
1638                 pt_entry_t pte;
1639                 pt_entry_t *ptep;
1640
1641                 ptep = vtopte(va);
1642                 pte = VM_PAGE_TO_PHYS(*m) |
1643                         kernel_pmap.pmap_bits[PG_RW_IDX] |
1644                         kernel_pmap.pmap_bits[PG_V_IDX] |
1645                         kernel_pmap.pmap_cache_bits[(*m)->pat_mode];
1646 //              pgeflag;
1647                 atomic_swap_long(ptep, pte);
1648                 m++;
1649         }
1650         pmap_invalidate_range(&kernel_pmap, beg_va, end_va);
1651 }
1652
1653 /*
1654  * This routine jerks page mappings from the kernel -- it is meant only
1655  * for temporary mappings such as those found in buffer cache buffers.
1656  * No recording modified or access status occurs.
1657  *
1658  * MPSAFE, INTERRUPT SAFE (cluster callback)
1659  */
1660 void
1661 pmap_qremove(vm_offset_t beg_va, int count)
1662 {
1663         vm_offset_t end_va;
1664         vm_offset_t va;
1665
1666         end_va = beg_va + count * PAGE_SIZE;
1667
1668         for (va = beg_va; va < end_va; va += PAGE_SIZE) {
1669                 pt_entry_t *pte;
1670
1671                 pte = vtopte(va);
1672                 (void)pte_load_clear(pte);
1673                 cpu_invlpg((void *)va);
1674         }
1675         pmap_invalidate_range(&kernel_pmap, beg_va, end_va);
1676 }
1677
1678 /*
1679  * This routine removes temporary kernel mappings, only invalidating them
1680  * on the current cpu.  It should only be used under carefully controlled
1681  * conditions.
1682  */
1683 void
1684 pmap_qremove_quick(vm_offset_t beg_va, int count)
1685 {
1686         vm_offset_t end_va;
1687         vm_offset_t va;
1688
1689         end_va = beg_va + count * PAGE_SIZE;
1690
1691         for (va = beg_va; va < end_va; va += PAGE_SIZE) {
1692                 pt_entry_t *pte;
1693
1694                 pte = vtopte(va);
1695                 (void)pte_load_clear(pte);
1696                 cpu_invlpg((void *)va);
1697         }
1698 }
1699
1700 /*
1701  * This routine removes temporary kernel mappings *without* invalidating
1702  * the TLB.  It can only be used on permanent kva reservations such as those
1703  * found in buffer cache buffers, under carefully controlled circumstances.
1704  *
1705  * NOTE: Repopulating these KVAs requires unconditional invalidation.
1706  *       (pmap_qenter() does unconditional invalidation).
1707  */
1708 void
1709 pmap_qremove_noinval(vm_offset_t beg_va, int count)
1710 {
1711         vm_offset_t end_va;
1712         vm_offset_t va;
1713
1714         end_va = beg_va + count * PAGE_SIZE;
1715
1716         for (va = beg_va; va < end_va; va += PAGE_SIZE) {
1717                 pt_entry_t *pte;
1718
1719                 pte = vtopte(va);
1720                 (void)pte_load_clear(pte);
1721         }
1722 }
1723
1724 /*
1725  * Create a new thread and optionally associate it with a (new) process.
1726  * NOTE! the new thread's cpu may not equal the current cpu.
1727  */
1728 void
1729 pmap_init_thread(thread_t td)
1730 {
1731         /* enforce pcb placement & alignment */
1732         td->td_pcb = (struct pcb *)(td->td_kstack + td->td_kstack_size) - 1;
1733         td->td_pcb = (struct pcb *)((intptr_t)td->td_pcb & ~(intptr_t)0xF);
1734         td->td_savefpu = &td->td_pcb->pcb_save;
1735         td->td_sp = (char *)td->td_pcb; /* no -16 */
1736 }
1737
1738 /*
1739  * This routine directly affects the fork perf for a process.
1740  */
1741 void
1742 pmap_init_proc(struct proc *p)
1743 {
1744 }
1745
1746 static void
1747 pmap_pinit_defaults(struct pmap *pmap)
1748 {
1749         bcopy(pmap_bits_default, pmap->pmap_bits,
1750               sizeof(pmap_bits_default));
1751         bcopy(protection_codes, pmap->protection_codes,
1752               sizeof(protection_codes));
1753         bcopy(pat_pte_index, pmap->pmap_cache_bits,
1754               sizeof(pat_pte_index));
1755         pmap->pmap_cache_mask = X86_PG_NC_PWT | X86_PG_NC_PCD | X86_PG_PTE_PAT;
1756         pmap->copyinstr = std_copyinstr;
1757         pmap->copyin = std_copyin;
1758         pmap->copyout = std_copyout;
1759         pmap->fubyte = std_fubyte;
1760         pmap->subyte = std_subyte;
1761         pmap->fuword = std_fuword;
1762         pmap->suword = std_suword;
1763         pmap->suword32 = std_suword32;
1764 }
1765 /*
1766  * Initialize pmap0/vmspace0.
1767  *
1768  * On architectures where the kernel pmap is not integrated into the user
1769  * process pmap, this pmap represents the process pmap, not the kernel pmap.
1770  * kernel_pmap should be used to directly access the kernel_pmap.
1771  */
1772 void
1773 pmap_pinit0(struct pmap *pmap)
1774 {
1775         int i;
1776
1777         pmap->pm_pml4 = (pml4_entry_t *)(PTOV_OFFSET + KPML4phys);
1778         pmap->pm_count = 1;
1779         CPUMASK_ASSZERO(pmap->pm_active);
1780         pmap->pm_pvhint = NULL;
1781         RB_INIT(&pmap->pm_pvroot);
1782         spin_init(&pmap->pm_spin, "pmapinit0");
1783         for (i = 0; i < PM_PLACEMARKS; ++i)
1784                 pmap->pm_placemarks[i] = PM_NOPLACEMARK;
1785         bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1786         pmap_pinit_defaults(pmap);
1787 }
1788
1789 /*
1790  * Initialize a preallocated and zeroed pmap structure,
1791  * such as one in a vmspace structure.
1792  */
1793 static void
1794 pmap_pinit_simple(struct pmap *pmap)
1795 {
1796         int i;
1797
1798         /*
1799          * Misc initialization
1800          */
1801         pmap->pm_count = 1;
1802         CPUMASK_ASSZERO(pmap->pm_active);
1803         pmap->pm_pvhint = NULL;
1804         pmap->pm_flags = PMAP_FLAG_SIMPLE;
1805
1806         pmap_pinit_defaults(pmap);
1807
1808         /*
1809          * Don't blow up locks/tokens on re-use (XXX fix/use drop code
1810          * for this).
1811          */
1812         if (pmap->pm_pmlpv == NULL) {
1813                 RB_INIT(&pmap->pm_pvroot);
1814                 bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1815                 spin_init(&pmap->pm_spin, "pmapinitsimple");
1816                 for (i = 0; i < PM_PLACEMARKS; ++i)
1817                         pmap->pm_placemarks[i] = PM_NOPLACEMARK;
1818         }
1819 }
1820
1821 void
1822 pmap_pinit(struct pmap *pmap)
1823 {
1824         pv_entry_t pv;
1825         int j;
1826
1827         if (pmap->pm_pmlpv) {
1828                 if (pmap->pmap_bits[TYPE_IDX] != REGULAR_PMAP) {
1829                         pmap_puninit(pmap);
1830                 }
1831         }
1832
1833         pmap_pinit_simple(pmap);
1834         pmap->pm_flags &= ~PMAP_FLAG_SIMPLE;
1835
1836         /*
1837          * No need to allocate page table space yet but we do need a valid
1838          * page directory table.
1839          */
1840         if (pmap->pm_pml4 == NULL) {
1841                 pmap->pm_pml4 =
1842                     (pml4_entry_t *)kmem_alloc_pageable(&kernel_map,
1843                                                         PAGE_SIZE,
1844                                                         VM_SUBSYS_PML4);
1845         }
1846
1847         /*
1848          * Allocate the page directory page, which wires it even though
1849          * it isn't being entered into some higher level page table (it
1850          * being the highest level).  If one is already cached we don't
1851          * have to do anything.
1852          */
1853         if ((pv = pmap->pm_pmlpv) == NULL) {
1854                 pv = pmap_allocpte(pmap, pmap_pml4_pindex(), NULL);
1855                 pmap->pm_pmlpv = pv;
1856                 pmap_kenter((vm_offset_t)pmap->pm_pml4,
1857                             VM_PAGE_TO_PHYS(pv->pv_m));
1858                 pv_put(pv);
1859
1860                 /*
1861                  * Install DMAP and KMAP.
1862                  */
1863                 for (j = 0; j < NDMPML4E; ++j) {
1864                         pmap->pm_pml4[DMPML4I + j] =
1865                             (DMPDPphys + ((vm_paddr_t)j << PML4SHIFT)) |
1866                             pmap->pmap_bits[PG_RW_IDX] |
1867                             pmap->pmap_bits[PG_V_IDX] |
1868                             pmap->pmap_bits[PG_U_IDX];
1869                 }
1870                 pmap->pm_pml4[KPML4I] = KPDPphys |
1871                     pmap->pmap_bits[PG_RW_IDX] |
1872                     pmap->pmap_bits[PG_V_IDX] |
1873                     pmap->pmap_bits[PG_U_IDX];
1874
1875                 /*
1876                  * install self-referential address mapping entry
1877                  */
1878                 pmap->pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(pv->pv_m) |
1879                     pmap->pmap_bits[PG_V_IDX] |
1880                     pmap->pmap_bits[PG_RW_IDX] |
1881                     pmap->pmap_bits[PG_A_IDX] |
1882                     pmap->pmap_bits[PG_M_IDX];
1883         } else {
1884                 KKASSERT(pv->pv_m->flags & PG_MAPPED);
1885                 KKASSERT(pv->pv_m->flags & PG_WRITEABLE);
1886         }
1887         KKASSERT(pmap->pm_pml4[255] == 0);
1888         KKASSERT(RB_ROOT(&pmap->pm_pvroot) == pv);
1889         KKASSERT(pv->pv_entry.rbe_left == NULL);
1890         KKASSERT(pv->pv_entry.rbe_right == NULL);
1891 }
1892
1893 /*
1894  * Clean up a pmap structure so it can be physically freed.  This routine
1895  * is called by the vmspace dtor function.  A great deal of pmap data is
1896  * left passively mapped to improve vmspace management so we have a bit
1897  * of cleanup work to do here.
1898  */
1899 void
1900 pmap_puninit(pmap_t pmap)
1901 {
1902         pv_entry_t pv;
1903         vm_page_t p;
1904
1905         KKASSERT(CPUMASK_TESTZERO(pmap->pm_active));
1906         if ((pv = pmap->pm_pmlpv) != NULL) {
1907                 if (pv_hold_try(pv) == 0)
1908                         pv_lock(pv);
1909                 KKASSERT(pv == pmap->pm_pmlpv);
1910                 p = pmap_remove_pv_page(pv);
1911                 pv_free(pv, NULL);
1912                 pv = NULL;      /* safety */
1913                 pmap_kremove((vm_offset_t)pmap->pm_pml4);
1914                 vm_page_busy_wait(p, FALSE, "pgpun");
1915                 KKASSERT(p->flags & (PG_FICTITIOUS|PG_UNMANAGED));
1916                 vm_page_unwire(p, 0);
1917                 vm_page_flag_clear(p, PG_MAPPED | PG_WRITEABLE);
1918
1919                 /*
1920                  * XXX eventually clean out PML4 static entries and
1921                  * use vm_page_free_zero()
1922                  */
1923                 vm_page_free(p);
1924                 pmap->pm_pmlpv = NULL;
1925         }
1926         if (pmap->pm_pml4) {
1927                 KKASSERT(pmap->pm_pml4 != (void *)(PTOV_OFFSET + KPML4phys));
1928                 kmem_free(&kernel_map, (vm_offset_t)pmap->pm_pml4, PAGE_SIZE);
1929                 pmap->pm_pml4 = NULL;
1930         }
1931         KKASSERT(pmap->pm_stats.resident_count == 0);
1932         KKASSERT(pmap->pm_stats.wired_count == 0);
1933 }
1934
1935 /*
1936  * This function is now unused (used to add the pmap to the pmap_list)
1937  */
1938 void
1939 pmap_pinit2(struct pmap *pmap)
1940 {
1941 }
1942
1943 /*
1944  * This routine is called when various levels in the page table need to
1945  * be populated.  This routine cannot fail.
1946  *
1947  * This function returns two locked pv_entry's, one representing the
1948  * requested pv and one representing the requested pv's parent pv.  If
1949  * an intermediate page table does not exist it will be created, mapped,
1950  * wired, and the parent page table will be given an additional hold
1951  * count representing the presence of the child pv_entry.
1952  */
1953 static
1954 pv_entry_t
1955 pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, pv_entry_t *pvpp)
1956 {
1957         pt_entry_t *ptep;
1958         pv_entry_t pv;
1959         pv_entry_t pvp;
1960         pt_entry_t v;
1961         vm_pindex_t pt_pindex;
1962         vm_page_t m;
1963         int isnew;
1964         int ispt;
1965
1966         /*
1967          * If the pv already exists and we aren't being asked for the
1968          * parent page table page we can just return it.  A locked+held pv
1969          * is returned.  The pv will also have a second hold related to the
1970          * pmap association that we don't have to worry about.
1971          */
1972         ispt = 0;
1973         pv = pv_alloc(pmap, ptepindex, &isnew);
1974         if (isnew == 0 && pvpp == NULL)
1975                 return(pv);
1976
1977         /*
1978          * Special case terminal PVs.  These are not page table pages so
1979          * no vm_page is allocated (the caller supplied the vm_page).  If
1980          * pvpp is non-NULL we are being asked to also removed the pt_pv
1981          * for this pv.
1982          *
1983          * Note that pt_pv's are only returned for user VAs. We assert that
1984          * a pt_pv is not being requested for kernel VAs.  The kernel
1985          * pre-wires all higher-level page tables so don't overload managed
1986          * higher-level page tables on top of it!
1987          */
1988         if (ptepindex < pmap_pt_pindex(0)) {
1989                 if (ptepindex >= NUPTE_USER) {
1990                         /* kernel manages this manually for KVM */
1991                         KKASSERT(pvpp == NULL);
1992                 } else {
1993                         KKASSERT(pvpp != NULL);
1994                         pt_pindex = NUPTE_TOTAL + (ptepindex >> NPTEPGSHIFT);
1995                         pvp = pmap_allocpte(pmap, pt_pindex, NULL);
1996                         if (isnew)
1997                                 vm_page_wire_quick(pvp->pv_m);
1998                         *pvpp = pvp;
1999                 }
2000                 return(pv);
2001         }
2002
2003         /*
2004          * The kernel never uses managed PT/PD/PDP pages.
2005          */
2006         KKASSERT(pmap != &kernel_pmap);
2007
2008         /*
2009          * Non-terminal PVs allocate a VM page to represent the page table,
2010          * so we have to resolve pvp and calculate ptepindex for the pvp
2011          * and then for the page table entry index in the pvp for
2012          * fall-through.
2013          */
2014         if (ptepindex < pmap_pd_pindex(0)) {
2015                 /*
2016                  * pv is PT, pvp is PD
2017                  */
2018                 ptepindex = (ptepindex - pmap_pt_pindex(0)) >> NPDEPGSHIFT;
2019                 ptepindex += NUPTE_TOTAL + NUPT_TOTAL;
2020                 pvp = pmap_allocpte(pmap, ptepindex, NULL);
2021
2022                 /*
2023                  * PT index in PD
2024                  */
2025                 ptepindex = pv->pv_pindex - pmap_pt_pindex(0);
2026                 ptepindex &= ((1ul << NPDEPGSHIFT) - 1);
2027                 ispt = 1;
2028         } else if (ptepindex < pmap_pdp_pindex(0)) {
2029                 /*
2030                  * pv is PD, pvp is PDP
2031                  *
2032                  * SIMPLE PMAP NOTE: Simple pmaps do not allocate above
2033                  *                   the PD.
2034                  */
2035                 ptepindex = (ptepindex - pmap_pd_pindex(0)) >> NPDPEPGSHIFT;
2036                 ptepindex += NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL;
2037
2038                 if (pmap->pm_flags & PMAP_FLAG_SIMPLE) {
2039                         KKASSERT(pvpp == NULL);
2040                         pvp = NULL;
2041                 } else {
2042                         pvp = pmap_allocpte(pmap, ptepindex, NULL);
2043                 }
2044
2045                 /*
2046                  * PD index in PDP
2047                  */
2048                 ptepindex = pv->pv_pindex - pmap_pd_pindex(0);
2049                 ptepindex &= ((1ul << NPDPEPGSHIFT) - 1);
2050         } else if (ptepindex < pmap_pml4_pindex()) {
2051                 /*
2052                  * pv is PDP, pvp is the root pml4 table
2053                  */
2054                 pvp = pmap_allocpte(pmap, pmap_pml4_pindex(), NULL);
2055
2056                 /*
2057                  * PDP index in PML4
2058                  */
2059                 ptepindex = pv->pv_pindex - pmap_pdp_pindex(0);
2060                 ptepindex &= ((1ul << NPML4EPGSHIFT) - 1);
2061         } else {
2062                 /*
2063                  * pv represents the top-level PML4, there is no parent.
2064                  */
2065                 pvp = NULL;
2066         }
2067
2068         if (isnew == 0)
2069                 goto notnew;
2070
2071         /*
2072          * (isnew) is TRUE, pv is not terminal.
2073          *
2074          * (1) Add a wire count to the parent page table (pvp).
2075          * (2) Allocate a VM page for the page table.
2076          * (3) Enter the VM page into the parent page table.
2077          *
2078          * page table pages are marked PG_WRITEABLE and PG_MAPPED.
2079          */
2080         if (pvp)
2081                 vm_page_wire_quick(pvp->pv_m);
2082
2083         for (;;) {
2084                 m = vm_page_alloc(NULL, pv->pv_pindex,
2085                                   VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM |
2086                                   VM_ALLOC_INTERRUPT);
2087                 if (m)
2088                         break;
2089                 vm_wait(0);
2090         }
2091         vm_page_wire(m);        /* wire for mapping in parent */
2092         vm_page_unmanage(m);    /* m must be spinunlocked */
2093         pmap_zero_page(VM_PAGE_TO_PHYS(m));
2094         m->valid = VM_PAGE_BITS_ALL;
2095
2096         vm_page_spin_lock(m);
2097         pmap_page_stats_adding(m);
2098         TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2099         pv->pv_m = m;
2100         vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
2101         vm_page_spin_unlock(m);
2102
2103         /*
2104          * (isnew) is TRUE, pv is not terminal.
2105          *
2106          * Wire the page into pvp.  Bump the resident_count for the pmap.
2107          * There is no pvp for the top level, address the pm_pml4[] array
2108          * directly.
2109          *
2110          * If the caller wants the parent we return it, otherwise
2111          * we just put it away.
2112          *
2113          * No interlock is needed for pte 0 -> non-zero.
2114          *
2115          * In the situation where *ptep is valid we might have an unmanaged
2116          * page table page shared from another page table which we need to
2117          * unshare before installing our private page table page.
2118          */
2119         if (pvp) {
2120                 v = VM_PAGE_TO_PHYS(m) |
2121                     (pmap->pmap_bits[PG_U_IDX] |
2122                      pmap->pmap_bits[PG_RW_IDX] |
2123                      pmap->pmap_bits[PG_V_IDX] |
2124                      pmap->pmap_bits[PG_A_IDX] |
2125                      pmap->pmap_bits[PG_M_IDX]);
2126                 ptep = pv_pte_lookup(pvp, ptepindex);
2127                 if (*ptep & pmap->pmap_bits[PG_V_IDX]) {
2128                         pt_entry_t pte;
2129
2130                         if (ispt == 0) {
2131                                 panic("pmap_allocpte: unexpected pte %p/%d",
2132                                       pvp, (int)ptepindex);
2133                         }
2134                         pte = pmap_inval_smp(pmap, (vm_offset_t)-1, 1, ptep, v);
2135                         if (vm_page_unwire_quick(
2136                                         PHYS_TO_VM_PAGE(pte & PG_FRAME))) {
2137                                 panic("pmap_allocpte: shared pgtable "
2138                                       "pg bad wirecount");
2139                         }
2140                 } else {
2141                         pt_entry_t pte;
2142
2143                         pte = atomic_swap_long(ptep, v);
2144                         if (pte != 0) {
2145                                 kprintf("install pgtbl mixup 0x%016jx "
2146                                         "old/new 0x%016jx/0x%016jx\n",
2147                                         (intmax_t)ptepindex, pte, v);
2148                         }
2149                 }
2150         }
2151         vm_page_wakeup(m);
2152
2153         /*
2154          * (isnew) may be TRUE or FALSE, pv may or may not be terminal.
2155          */
2156 notnew:
2157         if (pvp) {
2158                 KKASSERT(pvp->pv_m != NULL);
2159                 ptep = pv_pte_lookup(pvp, ptepindex);
2160                 v = VM_PAGE_TO_PHYS(pv->pv_m) |
2161                     (pmap->pmap_bits[PG_U_IDX] |
2162                      pmap->pmap_bits[PG_RW_IDX] |
2163                      pmap->pmap_bits[PG_V_IDX] |
2164                      pmap->pmap_bits[PG_A_IDX] |
2165                      pmap->pmap_bits[PG_M_IDX]);
2166                 if (*ptep != v) {
2167                         kprintf("mismatched upper level pt %016jx/%016jx\n",
2168                                 *ptep, v);
2169                 }
2170         }
2171         if (pvpp)
2172                 *pvpp = pvp;
2173         else if (pvp)
2174                 pv_put(pvp);
2175         return (pv);
2176 }
2177
2178 /*
2179  * This version of pmap_allocpte() checks for possible segment optimizations
2180  * that would allow page-table sharing.  It can be called for terminal
2181  * page or page table page ptepindex's.
2182  *
2183  * The function is called with page table page ptepindex's for fictitious
2184  * and unmanaged terminal pages.  That is, we don't want to allocate a
2185  * terminal pv, we just want the pt_pv.  pvpp is usually passed as NULL
2186  * for this case.
2187  *
2188  * This function can return a pv and *pvpp associated with the passed in pmap
2189  * OR a pv and *pvpp associated with the shared pmap.  In the latter case
2190  * an unmanaged page table page will be entered into the pass in pmap.
2191  */
2192 static
2193 pv_entry_t
2194 pmap_allocpte_seg(pmap_t pmap, vm_pindex_t ptepindex, pv_entry_t *pvpp,
2195                   vm_map_entry_t entry, vm_offset_t va)
2196 {
2197         vm_object_t object;
2198         pmap_t obpmap;
2199         pmap_t *obpmapp;
2200         vm_offset_t b;
2201         pv_entry_t pte_pv;      /* in original or shared pmap */
2202         pv_entry_t pt_pv;       /* in original or shared pmap */
2203         pv_entry_t proc_pd_pv;  /* in original pmap */
2204         pv_entry_t proc_pt_pv;  /* in original pmap */
2205         pv_entry_t xpv;         /* PT in shared pmap */
2206         pd_entry_t *pt;         /* PT entry in PD of original pmap */
2207         pd_entry_t opte;        /* contents of *pt */
2208         pd_entry_t npte;        /* contents of *pt */
2209         vm_page_t m;
2210
2211 retry:
2212         /*
2213          * Basic tests, require a non-NULL vm_map_entry, require proper
2214          * alignment and type for the vm_map_entry, require that the
2215          * underlying object already be allocated.
2216          *
2217          * We allow almost any type of object to use this optimization.
2218          * The object itself does NOT have to be sized to a multiple of the
2219          * segment size, but the memory mapping does.
2220          *
2221          * XXX don't handle devices currently, because VM_PAGE_TO_PHYS()
2222          *     won't work as expected.
2223          */
2224         if (entry == NULL ||
2225             pmap_mmu_optimize == 0 ||                   /* not enabled */
2226             (pmap->pm_flags & PMAP_HVM) ||              /* special pmap */
2227             ptepindex >= pmap_pd_pindex(0) ||           /* not terminal or pt */
2228             entry->inheritance != VM_INHERIT_SHARE ||   /* not shared */
2229             entry->maptype != VM_MAPTYPE_NORMAL ||      /* weird map type */
2230             entry->object.vm_object == NULL ||          /* needs VM object */
2231             entry->object.vm_object->type == OBJT_DEVICE ||     /* ick */
2232             entry->object.vm_object->type == OBJT_MGTDEVICE ||  /* ick */
2233             (entry->offset & SEG_MASK) ||               /* must be aligned */
2234             (entry->start & SEG_MASK)) {
2235                 return(pmap_allocpte(pmap, ptepindex, pvpp));
2236         }
2237
2238         /*
2239          * Make sure the full segment can be represented.
2240          */
2241         b = va & ~(vm_offset_t)SEG_MASK;
2242         if (b < entry->start || b + SEG_SIZE > entry->end)
2243                 return(pmap_allocpte(pmap, ptepindex, pvpp));
2244
2245         /*
2246          * If the full segment can be represented dive the VM object's
2247          * shared pmap, allocating as required.
2248          */
2249         object = entry->object.vm_object;
2250
2251         if (entry->protection & VM_PROT_WRITE)
2252                 obpmapp = &object->md.pmap_rw;
2253         else
2254                 obpmapp = &object->md.pmap_ro;
2255
2256 #ifdef PMAP_DEBUG2
2257         if (pmap_enter_debug > 0) {
2258                 --pmap_enter_debug;
2259                 kprintf("pmap_allocpte_seg: va=%jx prot %08x o=%p "
2260                         "obpmapp %p %p\n",
2261                         va, entry->protection, object,
2262                         obpmapp, *obpmapp);
2263                 kprintf("pmap_allocpte_seg: entry %p %jx-%jx\n",
2264                         entry, entry->start, entry->end);
2265         }
2266 #endif
2267
2268         /*
2269          * We allocate what appears to be a normal pmap but because portions
2270          * of this pmap are shared with other unrelated pmaps we have to
2271          * set pm_active to point to all cpus.
2272          *
2273          * XXX Currently using pmap_spin to interlock the update, can't use
2274          *     vm_object_hold/drop because the token might already be held
2275          *     shared OR exclusive and we don't know.
2276          */
2277         while ((obpmap = *obpmapp) == NULL) {
2278                 obpmap = kmalloc(sizeof(*obpmap), M_OBJPMAP, M_WAITOK|M_ZERO);
2279                 pmap_pinit_simple(obpmap);
2280                 pmap_pinit2(obpmap);
2281                 spin_lock(&pmap_spin);
2282                 if (*obpmapp != NULL) {
2283                         /*
2284                          * Handle race
2285                          */
2286                         spin_unlock(&pmap_spin);
2287                         pmap_release(obpmap);
2288                         pmap_puninit(obpmap);
2289                         kfree(obpmap, M_OBJPMAP);
2290                         obpmap = *obpmapp; /* safety */
2291                 } else {
2292                         obpmap->pm_active = smp_active_mask;
2293                         obpmap->pm_flags |= PMAP_SEGSHARED;
2294                         *obpmapp = obpmap;
2295                         spin_unlock(&pmap_spin);
2296                 }
2297         }
2298
2299         /*
2300          * Layering is: PTE, PT, PD, PDP, PML4.  We have to return the
2301          * pte/pt using the shared pmap from the object but also adjust
2302          * the process pmap's page table page as a side effect.
2303          */
2304
2305         /*
2306          * Resolve the terminal PTE and PT in the shared pmap.  This is what
2307          * we will return.  This is true if ptepindex represents a terminal
2308          * page, otherwise pte_pv is actually the PT and pt_pv is actually
2309          * the PD.
2310          */
2311         pt_pv = NULL;
2312         pte_pv = pmap_allocpte(obpmap, ptepindex, &pt_pv);
2313         if (ptepindex >= pmap_pt_pindex(0))
2314                 xpv = pte_pv;
2315         else
2316                 xpv = pt_pv;
2317
2318         /*
2319          * Resolve the PD in the process pmap so we can properly share the
2320          * page table page.  Lock order is bottom-up (leaf first)!
2321          *
2322          * NOTE: proc_pt_pv can be NULL.
2323          */
2324         proc_pt_pv = pv_get(pmap, pmap_pt_pindex(b), NULL);
2325         proc_pd_pv = pmap_allocpte(pmap, pmap_pd_pindex(b), NULL);
2326 #ifdef PMAP_DEBUG2
2327         if (pmap_enter_debug > 0) {
2328                 --pmap_enter_debug;
2329                 kprintf("proc_pt_pv %p (wc %d) pd_pv %p va=%jx\n",
2330                         proc_pt_pv,
2331                         (proc_pt_pv ? proc_pt_pv->pv_m->wire_count : -1),
2332                         proc_pd_pv,
2333                         va);
2334         }
2335 #endif
2336
2337         /*
2338          * xpv is the page table page pv from the shared object
2339          * (for convenience), from above.
2340          *
2341          * Calculate the pte value for the PT to load into the process PD.
2342          * If we have to change it we must properly dispose of the previous
2343          * entry.
2344          */
2345         pt = pv_pte_lookup(proc_pd_pv, pmap_pt_index(b));
2346         npte = VM_PAGE_TO_PHYS(xpv->pv_m) |
2347                (pmap->pmap_bits[PG_U_IDX] |
2348                 pmap->pmap_bits[PG_RW_IDX] |
2349                 pmap->pmap_bits[PG_V_IDX] |
2350                 pmap->pmap_bits[PG_A_IDX] |
2351                 pmap->pmap_bits[PG_M_IDX]);
2352
2353         /*
2354          * Dispose of previous page table page if it was local to the
2355          * process pmap.  If the old pt is not empty we cannot dispose of it
2356          * until we clean it out.  This case should not arise very often so
2357          * it is not optimized.
2358          */
2359         if (proc_pt_pv) {
2360                 pmap_inval_bulk_t bulk;
2361
2362                 if (proc_pt_pv->pv_m->wire_count != 1) {
2363                         pv_put(proc_pd_pv);
2364                         pv_put(proc_pt_pv);
2365                         pv_put(pt_pv);
2366                         pv_put(pte_pv);
2367                         pmap_remove(pmap,
2368                                     va & ~(vm_offset_t)SEG_MASK,
2369                                     (va + SEG_SIZE) & ~(vm_offset_t)SEG_MASK);
2370                         goto retry;
2371                 }
2372
2373                 /*
2374                  * The release call will indirectly clean out *pt
2375                  */
2376                 pmap_inval_bulk_init(&bulk, proc_pt_pv->pv_pmap);
2377                 pmap_release_pv(proc_pt_pv, proc_pd_pv, &bulk);
2378                 pmap_inval_bulk_flush(&bulk);
2379                 proc_pt_pv = NULL;
2380                 /* relookup */
2381                 pt = pv_pte_lookup(proc_pd_pv, pmap_pt_index(b));
2382         }
2383
2384         /*
2385          * Handle remaining cases.
2386          */
2387         if (*pt == 0) {
2388                 atomic_swap_long(pt, npte);
2389                 vm_page_wire_quick(xpv->pv_m);          /* shared pt -> proc */
2390                 vm_page_wire_quick(proc_pd_pv->pv_m);   /* proc pd for sh pt */
2391                 atomic_add_long(&pmap->pm_stats.resident_count, 1);
2392         } else if (*pt != npte) {
2393                 opte = pmap_inval_smp(pmap, (vm_offset_t)-1, 1, pt, npte);
2394
2395 #if 0
2396                 opte = pte_load_clear(pt);
2397                 KKASSERT(opte && opte != npte);
2398
2399                 *pt = npte;
2400 #endif
2401                 vm_page_wire_quick(xpv->pv_m);          /* shared pt -> proc */
2402
2403                 /*
2404                  * Clean up opte, bump the wire_count for the process
2405                  * PD page representing the new entry if it was
2406                  * previously empty.
2407                  *
2408                  * If the entry was not previously empty and we have
2409                  * a PT in the proc pmap then opte must match that
2410                  * pt.  The proc pt must be retired (this is done
2411                  * later on in this procedure).
2412                  *
2413                  * NOTE: replacing valid pte, wire_count on proc_pd_pv
2414                  * stays the same.
2415                  */
2416                 KKASSERT(opte & pmap->pmap_bits[PG_V_IDX]);
2417                 m = PHYS_TO_VM_PAGE(opte & PG_FRAME);
2418                 if (vm_page_unwire_quick(m)) {
2419                         panic("pmap_allocpte_seg: "
2420                               "bad wire count %p",
2421                               m);
2422                 }
2423         }
2424
2425         /*
2426          * The existing process page table was replaced and must be destroyed
2427          * here.
2428          */
2429         if (proc_pd_pv)
2430                 pv_put(proc_pd_pv);
2431         if (pvpp)
2432                 *pvpp = pt_pv;
2433         else
2434                 pv_put(pt_pv);
2435
2436         return (pte_pv);
2437 }
2438
2439 /*
2440  * Release any resources held by the given physical map.
2441  *
2442  * Called when a pmap initialized by pmap_pinit is being released.  Should
2443  * only be called if the map contains no valid mappings.
2444  */
2445 struct pmap_release_info {
2446         pmap_t  pmap;
2447         int     retry;
2448         pv_entry_t pvp;
2449 };
2450
2451 static int pmap_release_callback(pv_entry_t pv, void *data);
2452
2453 void
2454 pmap_release(struct pmap *pmap)
2455 {
2456         struct pmap_release_info info;
2457
2458         KASSERT(CPUMASK_TESTZERO(pmap->pm_active),
2459                 ("pmap still active! %016jx",
2460                 (uintmax_t)CPUMASK_LOWMASK(pmap->pm_active)));
2461
2462         /*
2463          * There is no longer a pmap_list, if there were we would remove the
2464          * pmap from it here.
2465          */
2466
2467         /*
2468          * Pull pv's off the RB tree in order from low to high and release
2469          * each page.
2470          */
2471         info.pmap = pmap;
2472         do {
2473                 info.retry = 0;
2474                 info.pvp = NULL;
2475
2476                 spin_lock(&pmap->pm_spin);
2477                 RB_SCAN(pv_entry_rb_tree, &pmap->pm_pvroot, NULL,
2478                         pmap_release_callback, &info);
2479                 spin_unlock(&pmap->pm_spin);
2480
2481                 if (info.pvp)
2482                         pv_put(info.pvp);
2483         } while (info.retry);
2484
2485
2486         /*
2487          * One resident page (the pml4 page) should remain.
2488          * No wired pages should remain.
2489          */
2490 #if 1
2491         if (pmap->pm_stats.resident_count !=
2492             ((pmap->pm_flags & PMAP_FLAG_SIMPLE) ? 0 : 1) ||
2493             pmap->pm_stats.wired_count != 0) {
2494                 kprintf("fatal pmap problem - pmap %p flags %08x "
2495                         "rescnt=%jd wirecnt=%jd\n",
2496                         pmap,
2497                         pmap->pm_flags,
2498                         pmap->pm_stats.resident_count,
2499                         pmap->pm_stats.wired_count);
2500                 tsleep(pmap, 0, "DEAD", 0);
2501         }
2502 #else
2503         KKASSERT(pmap->pm_stats.resident_count ==
2504                  ((pmap->pm_flags & PMAP_FLAG_SIMPLE) ? 0 : 1));
2505         KKASSERT(pmap->pm_stats.wired_count == 0);
2506 #endif
2507 }
2508
2509 /*
2510  * Called from low to high.  We must cache the proper parent pv so we
2511  * can adjust its wired count.
2512  */
2513 static int
2514 pmap_release_callback(pv_entry_t pv, void *data)
2515 {
2516         struct pmap_release_info *info = data;
2517         pmap_t pmap = info->pmap;
2518         vm_pindex_t pindex;
2519         int r;
2520
2521         /*
2522          * Acquire a held and locked pv, check for release race
2523          */
2524         pindex = pv->pv_pindex;
2525         if (info->pvp == pv) {
2526                 spin_unlock(&pmap->pm_spin);
2527                 info->pvp = NULL;
2528         } else if (pv_hold_try(pv)) {
2529                 spin_unlock(&pmap->pm_spin);
2530         } else {
2531                 spin_unlock(&pmap->pm_spin);
2532                 pv_lock(pv);
2533         }
2534         if (pv->pv_pmap != pmap || pindex != pv->pv_pindex) {
2535                 pv_put(pv);
2536                 spin_lock(&pmap->pm_spin);
2537                 info->retry = 1;
2538                 return(-1);
2539         }
2540
2541         if (pv->pv_pindex < pmap_pt_pindex(0)) {
2542                 /*
2543                  * I am PTE, parent is PT
2544                  */
2545                 pindex = pv->pv_pindex >> NPTEPGSHIFT;
2546                 pindex += NUPTE_TOTAL;
2547         } else if (pv->pv_pindex < pmap_pd_pindex(0)) {
2548                 /*
2549                  * I am PT, parent is PD
2550                  */
2551                 pindex = (pv->pv_pindex - NUPTE_TOTAL) >> NPDEPGSHIFT;
2552                 pindex += NUPTE_TOTAL + NUPT_TOTAL;
2553         } else if (pv->pv_pindex < pmap_pdp_pindex(0)) {
2554                 /*
2555                  * I am PD, parent is PDP
2556                  */
2557                 pindex = (pv->pv_pindex - NUPTE_TOTAL - NUPT_TOTAL) >>
2558                          NPDPEPGSHIFT;
2559                 pindex += NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL;
2560         } else if (pv->pv_pindex < pmap_pml4_pindex()) {
2561                 /*
2562                  * I am PDP, parent is PML4 (there's only one)
2563                  */
2564 #if 0
2565                 pindex = (pv->pv_pindex - NUPTE_TOTAL - NUPT_TOTAL -
2566                            NUPD_TOTAL) >> NPML4EPGSHIFT;
2567                 pindex += NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL;
2568 #endif
2569                 pindex = pmap_pml4_pindex();
2570         } else {
2571                 /*
2572                  * parent is NULL
2573                  */
2574                 if (info->pvp) {
2575                         pv_put(info->pvp);
2576                         info->pvp = NULL;
2577                 }
2578                 pindex = 0;
2579         }
2580         if (pindex) {
2581                 if (info->pvp && info->pvp->pv_pindex != pindex) {
2582                         pv_put(info->pvp);
2583                         info->pvp = NULL;
2584                 }
2585                 if (info->pvp == NULL)
2586                         info->pvp = pv_get(pmap, pindex, NULL);
2587         } else {
2588                 if (info->pvp) {
2589                         pv_put(info->pvp);
2590                         info->pvp = NULL;
2591                 }
2592         }
2593         r = pmap_release_pv(pv, info->pvp, NULL);
2594         spin_lock(&pmap->pm_spin);
2595
2596         return(r);
2597 }
2598
2599 /*
2600  * Called with held (i.e. also locked) pv.  This function will dispose of
2601  * the lock along with the pv.
2602  *
2603  * If the caller already holds the locked parent page table for pv it
2604  * must pass it as pvp, allowing us to avoid a deadlock, else it can
2605  * pass NULL for pvp.
2606  */
2607 static int
2608 pmap_release_pv(pv_entry_t pv, pv_entry_t pvp, pmap_inval_bulk_t *bulk)
2609 {
2610         vm_page_t p;
2611
2612         /*
2613          * The pmap is currently not spinlocked, pv is held+locked.
2614          * Remove the pv's page from its parent's page table.  The
2615          * parent's page table page's wire_count will be decremented.
2616          *
2617          * This will clean out the pte at any level of the page table.
2618          * If smp != 0 all cpus are affected.
2619          *
2620          * Do not tear-down recursively, its faster to just let the
2621          * release run its course.
2622          */
2623         pmap_remove_pv_pte(pv, pvp, bulk, 0);
2624
2625         /*
2626          * Terminal pvs are unhooked from their vm_pages.  Because
2627          * terminal pages aren't page table pages they aren't wired
2628          * by us, so we have to be sure not to unwire them either.
2629          */
2630         if (pv->pv_pindex < pmap_pt_pindex(0)) {
2631                 pmap_remove_pv_page(pv);
2632                 goto skip;
2633         }
2634
2635         /*
2636          * We leave the top-level page table page cached, wired, and
2637          * mapped in the pmap until the dtor function (pmap_puninit())
2638          * gets called.
2639          *
2640          * Since we are leaving the top-level pv intact we need
2641          * to break out of what would otherwise be an infinite loop.
2642          */
2643         if (pv->pv_pindex == pmap_pml4_pindex()) {
2644                 pv_put(pv);
2645                 return(-1);
2646         }
2647
2648         /*
2649          * For page table pages (other than the top-level page),
2650          * remove and free the vm_page.  The representitive mapping
2651          * removed above by pmap_remove_pv_pte() did not undo the
2652          * last wire_count so we have to do that as well.
2653          */
2654         p = pmap_remove_pv_page(pv);
2655         vm_page_busy_wait(p, FALSE, "pmaprl");
2656         if (p->wire_count != 1) {
2657                 kprintf("p->wire_count was %016lx %d\n",
2658                         pv->pv_pindex, p->wire_count);
2659         }
2660         KKASSERT(p->wire_count == 1);
2661         KKASSERT(p->flags & PG_UNMANAGED);
2662
2663         vm_page_unwire(p, 0);
2664         KKASSERT(p->wire_count == 0);
2665
2666         vm_page_free(p);
2667 skip:
2668         pv_free(pv, pvp);
2669
2670         return 0;
2671 }
2672
2673 /*
2674  * This function will remove the pte associated with a pv from its parent.
2675  * Terminal pv's are supported.  All cpus specified by (bulk) are properly
2676  * invalidated.
2677  *
2678  * The wire count will be dropped on the parent page table.  The wire
2679  * count on the page being removed (pv->pv_m) from the parent page table
2680  * is NOT touched.  Note that terminal pages will not have any additional
2681  * wire counts while page table pages will have at least one representing
2682  * the mapping, plus others representing sub-mappings.
2683  *
2684  * NOTE: Cannot be called on kernel page table pages, only KVM terminal
2685  *       pages and user page table and terminal pages.
2686  *
2687  * The pv must be locked.  The pvp, if supplied, must be locked.  All
2688  * supplied pv's will remain locked on return.
2689  *
2690  * XXX must lock parent pv's if they exist to remove pte XXX
2691  */
2692 static
2693 void
2694 pmap_remove_pv_pte(pv_entry_t pv, pv_entry_t pvp, pmap_inval_bulk_t *bulk,
2695                    int destroy)
2696 {
2697         vm_pindex_t ptepindex = pv->pv_pindex;
2698         pmap_t pmap = pv->pv_pmap;
2699         vm_page_t p;
2700         int gotpvp = 0;
2701
2702         KKASSERT(pmap);
2703
2704         if (ptepindex == pmap_pml4_pindex()) {
2705                 /*
2706                  * We are the top level PML4E table, there is no parent.
2707                  */
2708                 p = pmap->pm_pmlpv->pv_m;
2709         } else if (ptepindex >= pmap_pdp_pindex(0)) {
2710                 /*
2711                  * Remove a PDP page from the PML4E.  This can only occur
2712                  * with user page tables.  We do not have to lock the
2713                  * pml4 PV so just ignore pvp.
2714                  */
2715                 vm_pindex_t pml4_pindex;
2716                 vm_pindex_t pdp_index;
2717                 pml4_entry_t *pdp;
2718
2719                 pdp_index = ptepindex - pmap_pdp_pindex(0);
2720                 if (pvp == NULL) {
2721                         pml4_pindex = pmap_pml4_pindex();
2722                         pvp = pv_get(pv->pv_pmap, pml4_pindex, NULL);
2723                         KKASSERT(pvp);
2724                         gotpvp = 1;
2725                 }
2726
2727                 pdp = &pmap->pm_pml4[pdp_index & ((1ul << NPML4EPGSHIFT) - 1)];
2728                 KKASSERT((*pdp & pmap->pmap_bits[PG_V_IDX]) != 0);
2729                 p = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
2730                 pmap_inval_bulk(bulk, (vm_offset_t)-1, pdp, 0);
2731         } else if (ptepindex >= pmap_pd_pindex(0)) {
2732                 /*
2733                  * Remove a PD page from the PDP
2734                  *
2735                  * SIMPLE PMAP NOTE: Non-existant pvp's are ok in the case
2736                  *                   of a simple pmap because it stops at
2737                  *                   the PD page.
2738                  */
2739                 vm_pindex_t pdp_pindex;
2740                 vm_pindex_t pd_index;
2741                 pdp_entry_t *pd;
2742
2743                 pd_index = ptepindex - pmap_pd_pindex(0);
2744
2745                 if (pvp == NULL) {
2746                         pdp_pindex = NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL +
2747                                      (pd_index >> NPML4EPGSHIFT);
2748                         pvp = pv_get(pv->pv_pmap, pdp_pindex, NULL);
2749                         gotpvp = 1;
2750                 }
2751
2752                 if (pvp) {
2753                         pd = pv_pte_lookup(pvp, pd_index &
2754                                                 ((1ul << NPDPEPGSHIFT) - 1));
2755                         KKASSERT((*pd & pmap->pmap_bits[PG_V_IDX]) != 0);
2756                         p = PHYS_TO_VM_PAGE(*pd & PG_FRAME);
2757                         pmap_inval_bulk(bulk, (vm_offset_t)-1, pd, 0);
2758                 } else {
2759                         KKASSERT(pmap->pm_flags & PMAP_FLAG_SIMPLE);
2760                         p = pv->pv_m;           /* degenerate test later */
2761                 }
2762         } else if (ptepindex >= pmap_pt_pindex(0)) {
2763                 /*
2764                  *  Remove a PT page from the PD
2765                  */
2766                 vm_pindex_t pd_pindex;
2767                 vm_pindex_t pt_index;
2768                 pd_entry_t *pt;
2769
2770                 pt_index = ptepindex - pmap_pt_pindex(0);
2771
2772                 if (pvp == NULL) {
2773                         pd_pindex = NUPTE_TOTAL + NUPT_TOTAL +
2774                                     (pt_index >> NPDPEPGSHIFT);
2775                         pvp = pv_get(pv->pv_pmap, pd_pindex, NULL);
2776                         KKASSERT(pvp);
2777                         gotpvp = 1;
2778                 }
2779
2780                 pt = pv_pte_lookup(pvp, pt_index & ((1ul << NPDPEPGSHIFT) - 1));
2781 #if 0
2782                 KASSERT((*pt & pmap->pmap_bits[PG_V_IDX]) != 0,
2783                         ("*pt unexpectedly invalid %016jx "
2784                          "gotpvp=%d ptepindex=%ld ptindex=%ld pv=%p pvp=%p",
2785                         *pt, gotpvp, ptepindex, pt_index, pv, pvp));
2786                 p = PHYS_TO_VM_PAGE(*pt & PG_FRAME);
2787 #else
2788                 if ((*pt & pmap->pmap_bits[PG_V_IDX]) == 0) {
2789                         kprintf("*pt unexpectedly invalid %016jx "
2790                                 "gotpvp=%d ptepindex=%ld ptindex=%ld "
2791                                 "pv=%p pvp=%p\n",
2792                                 *pt, gotpvp, ptepindex, pt_index, pv, pvp);
2793                         tsleep(pt, 0, "DEAD", 0);
2794                         p = pv->pv_m;
2795                 } else {
2796                         p = PHYS_TO_VM_PAGE(*pt & PG_FRAME);
2797                 }
2798 #endif
2799                 pmap_inval_bulk(bulk, (vm_offset_t)-1, pt, 0);
2800         } else {
2801                 /*
2802                  * Remove a managed PTE from the PT page.  Userland pmaps
2803                  * manage PT/PD/PDP page tables pages but the kernel_pmap
2804                  * does not.
2805                  *
2806                  * NOTE: pv's must be locked bottom-up to avoid deadlocking.
2807                  *       pv is a pte_pv so we can safely lock pt_pv.
2808                  *
2809                  * NOTE: FICTITIOUS pages may have multiple physical mappings
2810                  *       so PHYS_TO_VM_PAGE() will not necessarily work for
2811                  *       terminal ptes.
2812                  */
2813                 vm_pindex_t pt_pindex;
2814                 pt_entry_t *ptep;
2815                 pt_entry_t pte;
2816                 vm_offset_t va;
2817
2818                 pt_pindex = ptepindex >> NPTEPGSHIFT;
2819                 va = (vm_offset_t)ptepindex << PAGE_SHIFT;
2820
2821                 if (ptepindex >= NUPTE_USER) {
2822                         ptep = vtopte(ptepindex << PAGE_SHIFT);
2823                         KKASSERT(pvp == NULL);
2824                         /* pvp remains NULL */
2825                 } else {
2826                         if (pvp == NULL) {
2827                                 pt_pindex = NUPTE_TOTAL +
2828                                             (ptepindex >> NPDPEPGSHIFT);
2829                                 pvp = pv_get(pv->pv_pmap, pt_pindex, NULL);
2830                                 KKASSERT(pvp);
2831                                 gotpvp = 1;
2832                         }
2833                         ptep = pv_pte_lookup(pvp, ptepindex &
2834                                                   ((1ul << NPDPEPGSHIFT) - 1));
2835                 }
2836                 pte = pmap_inval_bulk(bulk, va, ptep, 0);
2837                 if (bulk == NULL)               /* XXX */
2838                         cpu_invlpg((void *)va); /* XXX */
2839
2840                 /*
2841                  * Now update the vm_page_t
2842                  */
2843                 if ((pte & (pmap->pmap_bits[PG_MANAGED_IDX] |
2844                             pmap->pmap_bits[PG_V_IDX])) !=
2845                     (pmap->pmap_bits[PG_MANAGED_IDX] |
2846                      pmap->pmap_bits[PG_V_IDX])) {
2847                         kprintf("remove_pte badpte %016lx %016lx %d\n",
2848                                 pte, pv->pv_pindex,
2849                                 pv->pv_pindex < pmap_pt_pindex(0));
2850                 }
2851
2852                 /* PHYS_TO_VM_PAGE() will not work for FICTITIOUS pages */
2853                 /*KKASSERT((pte & (PG_MANAGED|PG_V)) == (PG_MANAGED|PG_V));*/
2854                 if (pte & pmap->pmap_bits[PG_DEVICE_IDX])
2855                         p = pv->pv_m;
2856                 else
2857                         p = PHYS_TO_VM_PAGE(pte & PG_FRAME);
2858                 /* p = pv->pv_m; */
2859
2860                 if (pte & pmap->pmap_bits[PG_M_IDX]) {
2861                         if (pmap_track_modified(ptepindex))
2862                                 vm_page_dirty(p);
2863                 }
2864                 if (pte & pmap->pmap_bits[PG_A_IDX]) {
2865                         vm_page_flag_set(p, PG_REFERENCED);
2866                 }
2867                 if (pte & pmap->pmap_bits[PG_W_IDX])
2868                         atomic_add_long(&pmap->pm_stats.wired_count, -1);
2869                 if (pte & pmap->pmap_bits[PG_G_IDX])
2870                         cpu_invlpg((void *)va);
2871         }
2872         KKASSERT(pv->pv_m == p);        /* XXX remove me later */
2873
2874         /*
2875          * If requested, scrap the underlying pv->pv_m and the underlying
2876          * pv.  If this is a page-table-page we must also free the page.
2877          *
2878          * pvp must be returned locked.
2879          */
2880         if (destroy == 1) {
2881                 /*
2882                  * page table page (PT, PD, PDP, PML4), caller was responsible
2883                  * for testing wired_count.
2884                  */
2885                 vm_page_t p;
2886
2887                 KKASSERT(pv->pv_m->wire_count == 1);
2888                 p = pmap_remove_pv_page(pv);
2889                 pv_free(pv, pvp);
2890                 pv = NULL;
2891
2892                 KKASSERT(p->flags & (PG_FICTITIOUS|PG_UNMANAGED));
2893                 vm_page_busy_wait(p, FALSE, "pgpun");
2894
2895 #if 0
2896                 if (ptepindex != pmap_pml4_pindex()) {
2897                         pt_entry_t *ptep;
2898                         int i;
2899
2900                         ptep = (void *)PHYS_TO_DMAP(p->phys_addr);
2901                         for (i = 0; i < 512; ++i) {
2902                                 if (ptep[i]) {
2903                                         kprintf("PGTBL %016jx@%d "
2904                                                 "not empty %016jx\n",
2905                                                 ptepindex, i, ptep[i]);
2906                                 }
2907                         }
2908                 }
2909 #endif
2910                 vm_page_unwire(p, 0);
2911                 vm_page_flag_clear(p, PG_MAPPED | PG_WRITEABLE);
2912                 vm_page_free(p);
2913         } else if (destroy == 2) {
2914                 /*
2915                  * Normal page, remove from pmap and leave the underlying
2916                  * page untouched.
2917                  */
2918                 pmap_remove_pv_page(pv);
2919                 pv_free(pv, pvp);
2920                 pv = NULL;              /* safety */
2921         }
2922
2923         /*
2924          * If we acquired pvp ourselves then we are responsible for
2925          * recursively deleting it.
2926          */
2927         if (pvp && gotpvp) {
2928                 /*
2929                  * Recursively destroy higher-level page tables.
2930                  *
2931                  * This is optional.  If we do not, they will still
2932                  * be destroyed when the process exits.
2933                  *
2934                  * NOTE: Do not destroy pv_entry's with extra hold refs,
2935                  *       a caller may have unlocked it and intends to
2936                  *       continue to use it.
2937                  */
2938                 if (pmap_dynamic_delete &&
2939                     pvp->pv_m &&
2940                     pvp->pv_m->wire_count == 1 &&
2941                     (pvp->pv_hold & PV_HOLD_MASK) == 2 &&
2942                     pvp->pv_pindex != pmap_pml4_pindex()) {
2943                         if (pmap_dynamic_delete == 2)
2944                                 kprintf("A %jd %08x\n", pvp->pv_pindex, pvp->pv_hold);
2945                         if (pmap != &kernel_pmap) {
2946                                 pmap_remove_pv_pte(pvp, NULL, bulk, 1);
2947                                 pvp = NULL;     /* safety */
2948                         } else {
2949                                 kprintf("Attempt to remove kernel_pmap pindex "
2950                                         "%jd\n", pvp->pv_pindex);
2951                                 pv_put(pvp);
2952                         }
2953                 } else {
2954                         pv_put(pvp);
2955                 }
2956         }
2957 }
2958
2959 /*
2960  * Remove the vm_page association to a pv.  The pv must be locked.
2961  */
2962 static
2963 vm_page_t
2964 pmap_remove_pv_page(pv_entry_t pv)
2965 {
2966         vm_page_t m;
2967
2968         m = pv->pv_m;
2969         vm_page_spin_lock(m);
2970         KKASSERT(m && m == pv->pv_m);
2971         pv->pv_m = NULL;
2972         TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2973         pmap_page_stats_deleting(m);
2974         /*
2975         if (m->object)
2976                 atomic_add_int(&m->object->agg_pv_list_count, -1);
2977         */
2978         if (TAILQ_EMPTY(&m->md.pv_list))
2979                 vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2980         vm_page_spin_unlock(m);
2981
2982         return(m);
2983 }
2984
2985 /*
2986  * Grow the number of kernel page table entries, if needed.
2987  *
2988  * This routine is always called to validate any address space
2989  * beyond KERNBASE (for kldloads).  kernel_vm_end only governs the address
2990  * space below KERNBASE.
2991  *
2992  * kernel_map must be locked exclusively by the caller.
2993  */
2994 void
2995 pmap_growkernel(vm_offset_t kstart, vm_offset_t kend)
2996 {
2997         vm_paddr_t paddr;
2998         vm_offset_t ptppaddr;
2999         vm_page_t nkpg;
3000         pd_entry_t *pt, newpt;
3001         pdp_entry_t newpd;
3002         int update_kernel_vm_end;
3003
3004         /*
3005          * bootstrap kernel_vm_end on first real VM use
3006          */
3007         if (kernel_vm_end == 0) {
3008                 kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
3009                 nkpt = 0;
3010                 while ((*pmap_pt(&kernel_pmap, kernel_vm_end) & kernel_pmap.pmap_bits[PG_V_IDX]) != 0) {
3011                         kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
3012                                         ~(PAGE_SIZE * NPTEPG - 1);
3013                         nkpt++;
3014                         if (kernel_vm_end - 1 >= kernel_map.max_offset) {
3015                                 kernel_vm_end = kernel_map.max_offset;
3016                                 break;                       
3017                         }
3018                 }
3019         }
3020
3021         /*
3022          * Fill in the gaps.  kernel_vm_end is only adjusted for ranges
3023          * below KERNBASE.  Ranges above KERNBASE are kldloaded and we
3024          * do not want to force-fill 128G worth of page tables.
3025          */
3026         if (kstart < KERNBASE) {
3027                 if (kstart > kernel_vm_end)
3028                         kstart = kernel_vm_end;
3029                 KKASSERT(kend <= KERNBASE);
3030                 update_kernel_vm_end = 1;
3031         } else {
3032                 update_kernel_vm_end = 0;
3033         }
3034
3035         kstart = rounddown2(kstart, PAGE_SIZE * NPTEPG);
3036         kend = roundup2(kend, PAGE_SIZE * NPTEPG);
3037
3038         if (kend - 1 >= kernel_map.max_offset)
3039                 kend = kernel_map.max_offset;
3040
3041         while (kstart < kend) {
3042                 pt = pmap_pt(&kernel_pmap, kstart);
3043                 if (pt == NULL) {
3044                         /* We need a new PD entry */
3045                         nkpg = vm_page_alloc(NULL, mycpu->gd_rand_incr++,
3046                                              VM_ALLOC_NORMAL |
3047                                              VM_ALLOC_SYSTEM |
3048                                              VM_ALLOC_INTERRUPT);
3049                         if (nkpg == NULL) {
3050                                 panic("pmap_growkernel: no memory to grow "
3051                                       "kernel");
3052                         }
3053                         paddr = VM_PAGE_TO_PHYS(nkpg);
3054                         pmap_zero_page(paddr);
3055                         newpd = (pdp_entry_t)
3056                             (paddr |
3057                             kernel_pmap.pmap_bits[PG_V_IDX] |
3058                             kernel_pmap.pmap_bits[PG_RW_IDX] |
3059                             kernel_pmap.pmap_bits[PG_A_IDX] |
3060                             kernel_pmap.pmap_bits[PG_M_IDX]);
3061                         *pmap_pd(&kernel_pmap, kstart) = newpd;
3062                         continue; /* try again */
3063                 }
3064                 if ((*pt & kernel_pmap.pmap_bits[PG_V_IDX]) != 0) {
3065                         kstart = (kstart + PAGE_SIZE * NPTEPG) &
3066                                  ~(PAGE_SIZE * NPTEPG - 1);
3067                         if (kstart - 1 >= kernel_map.max_offset) {
3068                                 kstart = kernel_map.max_offset;
3069                                 break;                       
3070                         }
3071                         continue;
3072                 }
3073
3074                 /*
3075                  * We need a new PT
3076                  *
3077                  * This index is bogus, but out of the way
3078                  */
3079                 nkpg = vm_page_alloc(NULL, mycpu->gd_rand_incr++,
3080                                      VM_ALLOC_NORMAL |
3081                                      VM_ALLOC_SYSTEM |
3082                                      VM_ALLOC_INTERRUPT);
3083                 if (nkpg == NULL)
3084                         panic("pmap_growkernel: no memory to grow kernel");
3085
3086                 vm_page_wire(nkpg);
3087                 ptppaddr = VM_PAGE_TO_PHYS(nkpg);
3088                 pmap_zero_page(ptppaddr);
3089                 newpt = (pd_entry_t)(ptppaddr |
3090                                      kernel_pmap.pmap_bits[PG_V_IDX] |
3091                                      kernel_pmap.pmap_bits[PG_RW_IDX] |
3092                                      kernel_pmap.pmap_bits[PG_A_IDX] |
3093                                      kernel_pmap.pmap_bits[PG_M_IDX]);
3094                 atomic_swap_long(pmap_pt(&kernel_pmap, kstart), newpt);
3095
3096                 kstart = (kstart + PAGE_SIZE * NPTEPG) &
3097                           ~(PAGE_SIZE * NPTEPG - 1);
3098
3099                 if (kstart - 1 >= kernel_map.max_offset) {
3100                         kstart = kernel_map.max_offset;
3101                         break;                       
3102                 }
3103         }
3104
3105         /*
3106          * Only update kernel_vm_end for areas below KERNBASE.
3107          */
3108         if (update_kernel_vm_end && kernel_vm_end < kstart)
3109                 kernel_vm_end = kstart;
3110 }
3111
3112 /*
3113  *      Add a reference to the specified pmap.
3114  */
3115 void
3116 pmap_reference(pmap_t pmap)
3117 {
3118         if (pmap != NULL)
3119                 atomic_add_int(&pmap->pm_count, 1);
3120 }
3121
3122 /***************************************************
3123  * page management routines.
3124  ***************************************************/
3125
3126 /*
3127  * Hold a pv without locking it
3128  */
3129 static void
3130 pv_hold(pv_entry_t pv)
3131 {
3132         atomic_add_int(&pv->pv_hold, 1);
3133 }
3134
3135 /*
3136  * Hold a pv_entry, preventing its destruction.  TRUE is returned if the pv
3137  * was successfully locked, FALSE if it wasn't.  The caller must dispose of
3138  * the pv properly.
3139  *
3140  * Either the pmap->pm_spin or the related vm_page_spin (if traversing a
3141  * pv list via its page) must be held by the caller.
3142  */
3143 static int
3144 _pv_hold_try(pv_entry_t pv PMAP_DEBUG_DECL)
3145 {
3146         u_int count;
3147
3148         /*
3149          * Critical path shortcut expects pv to already have one ref
3150          * (for the pv->pv_pmap).
3151          */
3152         if (atomic_cmpset_int(&pv->pv_hold, 1, PV_HOLD_LOCKED | 2)) {
3153 #ifdef PMAP_DEBUG
3154                 pv->pv_func = func;
3155                 pv->pv_line = lineno;
3156 #endif
3157                 return TRUE;
3158         }
3159
3160         for (;;) {
3161                 count = pv->pv_hold;
3162                 cpu_ccfence();
3163                 if ((count & PV_HOLD_LOCKED) == 0) {
3164                         if (atomic_cmpset_int(&pv->pv_hold, count,
3165                                               (count + 1) | PV_HOLD_LOCKED)) {
3166 #ifdef PMAP_DEBUG
3167                                 pv->pv_func = func;
3168                                 pv->pv_line = lineno;
3169 #endif
3170                                 return TRUE;
3171                         }
3172                 } else {
3173                         if (atomic_cmpset_int(&pv->pv_hold, count, count + 1))
3174                                 return FALSE;
3175                 }
3176                 /* retry */
3177         }
3178 }
3179
3180 /*
3181  * Drop a previously held pv_entry which could not be locked, allowing its
3182  * destruction.
3183  *
3184  * Must not be called with a spinlock held as we might zfree() the pv if it
3185  * is no longer associated with a pmap and this was the last hold count.
3186  */
3187 static void
3188 pv_drop(pv_entry_t pv)
3189 {
3190         u_int count;
3191
3192         for (;;) {
3193                 count = pv->pv_hold;
3194                 cpu_ccfence();
3195                 KKASSERT((count & PV_HOLD_MASK) > 0);
3196                 KKASSERT((count & (PV_HOLD_LOCKED | PV_HOLD_MASK)) !=
3197                          (PV_HOLD_LOCKED | 1));
3198                 if (atomic_cmpset_int(&pv->pv_hold, count, count - 1)) {
3199                         if ((count & PV_HOLD_MASK) == 1) {
3200 #ifdef PMAP_DEBUG2
3201                                 if (pmap_enter_debug > 0) {
3202                                         --pmap_enter_debug;
3203                                         kprintf("pv_drop: free pv %p\n", pv);
3204                                 }
3205 #endif
3206                                 KKASSERT(count == 1);
3207                                 KKASSERT(pv->pv_pmap == NULL);
3208                                 zfree(pvzone, pv);
3209                         }
3210                         return;
3211                 }
3212                 /* retry */
3213         }
3214 }
3215
3216 /*
3217  * Find or allocate the requested PV entry, returning a locked, held pv.
3218  *
3219  * If (*isnew) is non-zero, the returned pv will have two hold counts, one
3220  * for the caller and one representing the pmap and vm_page association.
3221  *
3222  * If (*isnew) is zero, the returned pv will have only one hold count.
3223  *
3224  * Since both associations can only be adjusted while the pv is locked,
3225  * together they represent just one additional hold.
3226  */
3227 static
3228 pv_entry_t
3229 _pv_alloc(pmap_t pmap, vm_pindex_t pindex, int *isnew PMAP_DEBUG_DECL)
3230 {
3231         pv_entry_t pv;
3232         pv_entry_t pnew = NULL;
3233
3234         spin_lock(&pmap->pm_spin);
3235         for (;;) {
3236                 /*
3237                  * Shortcut cache
3238                  */
3239                 pv = pmap->pm_pvhint;
3240                 cpu_ccfence();
3241                 if (pv == NULL ||
3242                     pv->pv_pmap != pmap ||
3243                     pv->pv_pindex != pindex) {
3244                         pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot,
3245                                                         pindex);
3246                 }
3247                 if (pv == NULL) {
3248                         vm_pindex_t *pmark;
3249
3250                         /*
3251                          * We need to stage a new pv entry
3252                          */
3253                         if (pnew == NULL) {
3254                                 spin_unlock(&pmap->pm_spin);
3255                                 pnew = zalloc(pvzone);
3256                                 spin_lock(&pmap->pm_spin);
3257                                 continue;
3258                         }
3259
3260                         /*
3261                          * We need to block if someone is holding a
3262                          * placemarker.
3263                          */
3264                         pmark = pmap_placemarker_hash(pmap, pindex);
3265
3266                         if (((*pmark ^ pindex) & ~PM_PLACEMARK_WAKEUP) == 0) {
3267                                 atomic_set_long(pmark, PM_PLACEMARK_WAKEUP);
3268                                 ssleep(pmark, &pmap->pm_spin, 0, "pvplc", 0);
3269                                 continue;
3270                         }
3271
3272                         /*
3273                          * Setup the new entry
3274                          */
3275                         pnew->pv_pmap = pmap;
3276                         pnew->pv_pindex = pindex;
3277                         pnew->pv_hold = PV_HOLD_LOCKED | 2;
3278 #ifdef PMAP_DEBUG
3279                         pnew->pv_func = func;
3280                         pnew->pv_line = lineno;
3281 #endif
3282                         pv = pv_entry_rb_tree_RB_INSERT(&pmap->pm_pvroot, pnew);
3283                         atomic_add_long(&pmap->pm_stats.resident_count, 1);
3284                         spin_unlock(&pmap->pm_spin);
3285                         *isnew = 1;
3286
3287                         KKASSERT(pv == NULL);
3288
3289                         return(pnew);
3290                 }
3291
3292                 /*
3293                  * We have an entry, clean up any staged pv we had allocated,
3294                  * then block until we can lock the entry.
3295                  */
3296                 if (pnew) {
3297                         spin_unlock(&pmap->pm_spin);
3298                         zfree(pvzone, pnew);
3299                         pnew = NULL;
3300                         spin_lock(&pmap->pm_spin);
3301                         continue;
3302                 }
3303                 if (_pv_hold_try(pv PMAP_DEBUG_COPY)) {
3304                         spin_unlock(&pmap->pm_spin);
3305                 } else {
3306                         spin_unlock(&pmap->pm_spin);
3307                         _pv_lock(pv PMAP_DEBUG_COPY);
3308                 }
3309
3310                 /*
3311                  * Make sure the pv is still in good shape for return,
3312                  * otherwise retry.
3313                  */
3314                 if (pv->pv_pmap == pmap && pv->pv_pindex == pindex) {
3315                         *isnew = 0;
3316                         return(pv);
3317                 }
3318                 pv_put(pv);
3319                 spin_lock(&pmap->pm_spin);
3320         }
3321 }
3322
3323 /*
3324  * Find the requested PV entry, returning a locked+held pv or NULL
3325  */
3326 static
3327 pv_entry_t
3328 _pv_get(pmap_t pmap, vm_pindex_t pindex, vm_pindex_t **pmarkp PMAP_DEBUG_DECL)
3329 {
3330         pv_entry_t pv;
3331
3332         spin_lock(&pmap->pm_spin);
3333         for (;;) {
3334                 /*
3335                  * Shortcut cache
3336                  */
3337                 pv = pmap->pm_pvhint;
3338                 cpu_ccfence();
3339                 if (pv == NULL ||
3340                     pv->pv_pmap != pmap ||
3341                     pv->pv_pindex != pindex) {
3342                         pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot,
3343                                                         pindex);
3344                 }
3345                 if (pv == NULL) {
3346                         /*
3347                          * Block if there is a placemarker
3348                          */
3349                         vm_pindex_t *pmark;
3350
3351                         pmark = pmap_placemarker_hash(pmap, pindex);
3352
3353                         if ((pmarkp && *pmark != PM_NOPLACEMARK) ||
3354                             ((*pmark ^ pindex) & ~PM_PLACEMARK_WAKEUP) == 0) {
3355                                 atomic_set_long(pmark, PM_PLACEMARK_WAKEUP);
3356                                 ssleep(pmark, &pmap->pm_spin, 0, "pvpld", 0);
3357                                 continue;
3358                         }
3359                         if (pmarkp) {
3360                                 *pmark = pindex;
3361                                 *pmarkp = pmark;
3362                         }
3363                         spin_unlock(&pmap->pm_spin);
3364                         return NULL;
3365                 }
3366                 if (_pv_hold_try(pv PMAP_DEBUG_COPY)) {
3367                         spin_unlock(&pmap->pm_spin);
3368                 } else {
3369                         spin_unlock(&pmap->pm_spin);
3370                         _pv_lock(pv PMAP_DEBUG_COPY);
3371                 }
3372                 if (pv->pv_pmap == pmap && pv->pv_pindex == pindex) {
3373                         pv_cache(pv, pindex);
3374                         return(pv);
3375                 }
3376                 pv_put(pv);
3377                 spin_lock(&pmap->pm_spin);
3378         }
3379 }
3380
3381 /*
3382  * Lookup, hold, and attempt to lock (pmap,pindex).
3383  *
3384  * If the entry does not exist NULL is returned and *errorp is set to 0
3385  *
3386  * If the entry exists and could be successfully locked it is returned and
3387  * errorp is set to 0.
3388  *
3389  * If the entry exists but could NOT be successfully locked it is returned
3390  * held and *errorp is set to 1.
3391  *
3392  * If the entry is placemarked by someone else NULL is returned and *errorp
3393  * is set to 1.
3394  */
3395 static
3396 pv_entry_t
3397 pv_get_try(pmap_t pmap, vm_pindex_t pindex, vm_pindex_t **pmarkp, int *errorp)
3398 {
3399         pv_entry_t pv;
3400
3401         spin_lock_shared(&pmap->pm_spin);
3402
3403         pv = pmap->pm_pvhint;
3404         cpu_ccfence();
3405         if (pv == NULL ||
3406             pv->pv_pmap != pmap ||
3407             pv->pv_pindex != pindex) {
3408                 pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, pindex);
3409         }
3410
3411         if (pv == NULL) {
3412                 vm_pindex_t *pmark;
3413
3414                 pmark = pmap_placemarker_hash(pmap, pindex);
3415
3416                 if (((*pmark ^ pindex) & ~PM_PLACEMARK_WAKEUP) == 0) {
3417                         *errorp = 1;
3418                 } else if (pmarkp &&
3419                            atomic_cmpset_long(pmark, PM_NOPLACEMARK, pindex)) {
3420                         *errorp = 0;
3421                 } else {
3422                         /*
3423                          * Can't set a placemark with a NULL pmarkp, return
3424                          * an error.
3425                          */
3426                         *errorp = 1;
3427                 }
3428                 if (pmarkp)
3429                         *pmarkp = pmark;
3430                 spin_unlock_shared(&pmap->pm_spin);
3431
3432                 return NULL;
3433         }
3434         if (pv_hold_try(pv)) {
3435                 pv_cache(pv, pindex);
3436                 spin_unlock_shared(&pmap->pm_spin);
3437                 *errorp = 0;
3438                 KKASSERT(pv->pv_pmap == pmap && pv->pv_pindex == pindex);
3439                 return(pv);     /* lock succeeded */
3440         }
3441         spin_unlock_shared(&pmap->pm_spin);
3442         *errorp = 1;
3443         return (pv);            /* lock failed */
3444 }
3445
3446 /*
3447  * Lock a held pv, keeping the hold count
3448  */
3449 static
3450 void
3451 _pv_lock(pv_entry_t pv PMAP_DEBUG_DECL)
3452 {
3453         u_int count;
3454
3455         for (;;) {
3456                 count = pv->pv_hold;
3457                 cpu_ccfence();
3458                 if ((count & PV_HOLD_LOCKED) == 0) {
3459                         if (atomic_cmpset_int(&pv->pv_hold, count,
3460                                               count | PV_HOLD_LOCKED)) {
3461 #ifdef PMAP_DEBUG
3462                                 pv->pv_func = func;
3463                                 pv->pv_line = lineno;
3464 #endif
3465                                 return;
3466                         }
3467                         continue;
3468                 }
3469                 tsleep_interlock(pv, 0);
3470                 if (atomic_cmpset_int(&pv->pv_hold, count,
3471                                       count | PV_HOLD_WAITING)) {
3472 #ifdef PMAP_DEBUG
3473                         kprintf("pv waiting on %s:%d\n",
3474                                         pv->pv_func, pv->pv_line);
3475 #endif
3476                         tsleep(pv, PINTERLOCKED, "pvwait", hz);
3477                 }
3478                 /* retry */
3479         }
3480 }
3481
3482 /*
3483  * Unlock a held and locked pv, keeping the hold count.
3484  */
3485 static
3486 void
3487 pv_unlock(pv_entry_t pv)
3488 {
3489         u_int count;
3490
3491         for (;;) {
3492                 count = pv->pv_hold;
3493                 cpu_ccfence();
3494                 KKASSERT((count & (PV_HOLD_LOCKED | PV_HOLD_MASK)) >=
3495                          (PV_HOLD_LOCKED | 1));
3496                 if (atomic_cmpset_int(&pv->pv_hold, count,
3497                                       count &
3498                                       ~(PV_HOLD_LOCKED | PV_HOLD_WAITING))) {
3499                         if (count & PV_HOLD_WAITING)
3500                                 wakeup(pv);
3501                         break;
3502                 }
3503         }
3504 }
3505
3506 /*
3507  * Unlock and drop a pv.  If the pv is no longer associated with a pmap
3508  * and the hold count drops to zero we will free it.
3509  *
3510  * Caller should not hold any spin locks.  We are protected from hold races
3511  * by virtue of holds only occuring only with a pmap_spin or vm_page_spin
3512  * lock held.  A pv cannot be located otherwise.
3513  */
3514 static
3515 void
3516 pv_put(pv_entry_t pv)
3517 {
3518 #ifdef PMAP_DEBUG2
3519         if (pmap_enter_debug > 0) {
3520                 --pmap_enter_debug;
3521                 kprintf("pv_put pv=%p hold=%08x\n", pv, pv->pv_hold);
3522         }
3523 #endif
3524
3525         /*
3526          * Fast - shortcut most common condition
3527          */
3528         if (atomic_cmpset_int(&pv->pv_hold, PV_HOLD_LOCKED | 2, 1))
3529                 return;
3530
3531         /*
3532          * Slow
3533          */
3534         pv_unlock(pv);
3535         pv_drop(pv);
3536 }
3537
3538 /*
3539  * Remove the pmap association from a pv, require that pv_m already be removed,
3540  * then unlock and drop the pv.  Any pte operations must have already been
3541  * completed.  This call may result in a last-drop which will physically free
3542  * the pv.
3543  *
3544  * Removing the pmap association entails an additional drop.
3545  *
3546  * pv must be exclusively locked on call and will be disposed of on return.
3547  */
3548 static
3549 void
3550 pv_free(pv_entry_t pv, pv_entry_t pvp)
3551 {
3552         pmap_t pmap;
3553
3554         KKASSERT(pv->pv_m == NULL);
3555         KKASSERT((pv->pv_hold & PV_HOLD_MASK) >= 2);
3556         if ((pmap = pv->pv_pmap) != NULL) {
3557                 spin_lock(&pmap->pm_spin);
3558                 KKASSERT(pv->pv_pmap == pmap);
3559                 if (pmap->pm_pvhint == pv)
3560                         pmap->pm_pvhint = NULL;
3561                 pv_entry_rb_tree_RB_REMOVE(&pmap->pm_pvroot, pv);
3562                 atomic_add_long(&pmap->pm_stats.resident_count, -1);
3563                 pv->pv_pmap = NULL;
3564                 pv->pv_pindex = 0;
3565                 spin_unlock(&pmap->pm_spin);
3566
3567                 /*
3568                  * Try to shortcut three atomic ops, otherwise fall through
3569                  * and do it normally.  Drop two refs and the lock all in
3570                  * one go.
3571                  */
3572                 if (atomic_cmpset_int(&pv->pv_hold, PV_HOLD_LOCKED | 2, 0)) {
3573 #ifdef PMAP_DEBUG2
3574                         if (pmap_enter_debug > 0) {
3575                                 --pmap_enter_debug;
3576                                 kprintf("pv_free: free pv %p\n", pv);
3577                         }
3578 #endif
3579                         zfree(pvzone, pv);
3580                         if (pvp)
3581                                 vm_page_unwire_quick(pvp->pv_m);
3582                         return;
3583                 }
3584                 pv_drop(pv);    /* ref for pv_pmap */
3585                 if (pvp)
3586                         vm_page_unwire_quick(pvp->pv_m);
3587         }
3588         pv_put(pv);
3589 }
3590
3591 /*
3592  * This routine is very drastic, but can save the system
3593  * in a pinch.
3594  */
3595 void
3596 pmap_collect(void)
3597 {
3598         int i;
3599         vm_page_t m;
3600         static int warningdone=0;
3601
3602         if (pmap_pagedaemon_waken == 0)
3603                 return;
3604         pmap_pagedaemon_waken = 0;
3605         if (warningdone < 5) {
3606                 kprintf("pmap_collect: collecting pv entries -- "
3607                         "suggest increasing PMAP_SHPGPERPROC\n");
3608                 warningdone++;
3609         }
3610
3611         for (i = 0; i < vm_page_array_size; i++) {
3612                 m = &vm_page_array[i];
3613                 if (m->wire_count || m->hold_count)
3614                         continue;
3615                 if (vm_page_busy_try(m, TRUE) == 0) {
3616                         if (m->wire_count == 0 && m->hold_count == 0) {
3617                                 pmap_remove_all(m);
3618                         }
3619                         vm_page_wakeup(m);
3620                 }
3621         }
3622 }
3623
3624 /*
3625  * Scan the pmap for active page table entries and issue a callback.
3626  * The callback must dispose of pte_pv, whos PTE entry is at *ptep in
3627  * its parent page table.
3628  *
3629  * pte_pv will be NULL if the page or page table is unmanaged.
3630  * pt_pv will point to the page table page containing the pte for the page.
3631  *
3632  * NOTE! If we come across an unmanaged page TABLE (verses an unmanaged page),
3633  *       we pass a NULL pte_pv and we pass a pt_pv pointing to the passed
3634  *       process pmap's PD and page to the callback function.  This can be
3635  *       confusing because the pt_pv is really a pd_pv, and the target page
3636  *       table page is simply aliased by the pmap and not owned by it.
3637  *
3638  * It is assumed that the start and end are properly rounded to the page size.
3639  *
3640  * It is assumed that PD pages and above are managed and thus in the RB tree,
3641  * allowing us to use RB_SCAN from the PD pages down for ranged scans.
3642  */
3643 struct pmap_scan_info {
3644         struct pmap *pmap;
3645         vm_offset_t sva;
3646         vm_offset_t eva;
3647         vm_pindex_t sva_pd_pindex;
3648         vm_pindex_t eva_pd_pindex;
3649         void (*func)(pmap_t, struct pmap_scan_info *,
3650                      pv_entry_t, vm_pindex_t *, pv_entry_t,
3651                      int, vm_offset_t,
3652                      pt_entry_t *, void *);
3653         void *arg;
3654         pmap_inval_bulk_t bulk_core;
3655         pmap_inval_bulk_t *bulk;
3656         int count;
3657         int stop;
3658 };
3659
3660 static int pmap_scan_cmp(pv_entry_t pv, void *data);
3661 static int pmap_scan_callback(pv_entry_t pv, void *data);
3662
3663 static void
3664 pmap_scan(struct pmap_scan_info *info, int smp_inval)
3665 {
3666         struct pmap *pmap = info->pmap;
3667         pv_entry_t pd_pv;       /* A page directory PV */
3668         pv_entry_t pt_pv;       /* A page table PV */
3669         pv_entry_t pte_pv;      /* A page table entry PV */
3670         vm_pindex_t *pte_placemark;
3671         vm_pindex_t *pt_placemark;
3672         pt_entry_t *ptep;
3673         pt_entry_t oldpte;
3674         struct pv_entry dummy_pv;
3675
3676         info->stop = 0;
3677         if (pmap == NULL)
3678                 return;
3679         if (smp_inval) {
3680                 info->bulk = &info->bulk_core;
3681                 pmap_inval_bulk_init(&info->bulk_core, pmap);
3682         } else {
3683                 info->bulk = NULL;
3684         }
3685
3686         /*
3687          * Hold the token for stability; if the pmap is empty we have nothing
3688          * to do.
3689          */
3690 #if 0
3691         if (pmap->pm_stats.resident_count == 0) {
3692                 return;
3693         }
3694 #endif
3695
3696         info->count = 0;
3697
3698         /*
3699          * Special handling for scanning one page, which is a very common
3700          * operation (it is?).
3701          *
3702          * NOTE: Locks must be ordered bottom-up. pte,pt,pd,pdp,pml4
3703          */
3704         if (info->sva + PAGE_SIZE == info->eva) {
3705                 if (info->sva >= VM_MAX_USER_ADDRESS) {
3706                         /*
3707                          * Kernel mappings do not track wire counts on
3708                          * page table pages and only maintain pd_pv and
3709                          * pte_pv levels so pmap_scan() works.
3710                          */
3711                         pt_pv = NULL;
3712                         pte_pv = pv_get(pmap, pmap_pte_pindex(info->sva),
3713                                         &pte_placemark);
3714                         ptep = vtopte(info->sva);
3715                 } else {
3716                         /*
3717                          * User pages which are unmanaged will not have a
3718                          * pte_pv.  User page table pages which are unmanaged
3719                          * (shared from elsewhere) will also not have a pt_pv.
3720                          * The func() callback will pass both pte_pv and pt_pv
3721                          * as NULL in that case.
3722                          *
3723                          * We hold pte_placemark across the operation for
3724                          * unmanaged pages.
3725                          *
3726                          * WARNING!  We must hold pt_placemark across the
3727                          *           *ptep test to prevent misintepreting
3728                          *           a non-zero *ptep as a shared page
3729                          *           table page.  Hold it across the function
3730                          *           callback as well for SMP safety.
3731                          */
3732                         pte_pv = pv_get(pmap, pmap_pte_pindex(info->sva),
3733                                         &pte_placemark);
3734                         pt_pv = pv_get(pmap, pmap_pt_pindex(info->sva),
3735                                         &pt_placemark);
3736                         if (pt_pv == NULL) {
3737                                 KKASSERT(pte_pv == NULL);
3738                                 pd_pv = pv_get(pmap,
3739                                                pmap_pd_pindex(info->sva),
3740                                                NULL);
3741                                 if (pd_pv) {
3742                                         ptep = pv_pte_lookup(pd_pv,
3743                                                     pmap_pt_index(info->sva));
3744                                         if (*ptep) {
3745                                                 info->func(pmap, info,
3746                                                      NULL, pt_placemark,
3747                                                      pd_pv, 1,
3748                                                      info->sva, ptep,
3749                                                      info->arg);
3750                                         } else {
3751                                                 pv_placemarker_wakeup(pmap,
3752                                                                   pt_placemark);
3753                                         }
3754                                         pv_put(pd_pv);
3755                                 } else {
3756                                         pv_placemarker_wakeup(pmap,
3757                                                               pt_placemark);
3758                                 }
3759                                 pv_placemarker_wakeup(pmap, pte_placemark);
3760                                 goto fast_skip;
3761                         }
3762                         ptep = pv_pte_lookup(pt_pv, pmap_pte_index(info->sva));
3763                 }
3764
3765                 /*
3766                  * NOTE: *ptep can't be ripped out from under us if we hold
3767                  *       pte_pv (or pte_placemark) locked, but bits can
3768                  *       change.
3769                  */
3770                 oldpte = *ptep;
3771                 cpu_ccfence();
3772                 if (oldpte == 0) {
3773                         KKASSERT(pte_pv == NULL);
3774                         pv_placemarker_wakeup(pmap, pte_placemark);
3775                 } else if (pte_pv) {
3776                         KASSERT((oldpte & (pmap->pmap_bits[PG_MANAGED_IDX] |
3777                                            pmap->pmap_bits[PG_V_IDX])) ==
3778                                 (pmap->pmap_bits[PG_MANAGED_IDX] |
3779                                  pmap->pmap_bits[PG_V_IDX]),
3780                             ("badA *ptep %016lx/%016lx sva %016lx pte_pv %p",
3781                             *ptep, oldpte, info->sva, pte_pv));
3782                         info->func(pmap, info, pte_pv, NULL, pt_pv, 0,
3783                                    info->sva, ptep, info->arg);
3784                 } else {
3785                         KASSERT((oldpte & (pmap->pmap_bits[PG_MANAGED_IDX] |
3786                                            pmap->pmap_bits[PG_V_IDX])) ==
3787                             pmap->pmap_bits[PG_V_IDX],
3788                             ("badB *ptep %016lx/%016lx sva %016lx pte_pv NULL",
3789                             *ptep, oldpte, info->sva));
3790                         info->func(pmap, info, NULL, pte_placemark, pt_pv, 0,
3791                                    info->sva, ptep, info->arg);
3792                 }
3793                 if (pt_pv)
3794                         pv_put(pt_pv);
3795 fast_skip:
3796                 pmap_inval_bulk_flush(info->bulk);
3797                 return;
3798         }
3799
3800         /*
3801          * Nominal scan case, RB_SCAN() for PD pages and iterate from
3802          * there.
3803          */
3804         info->sva_pd_pindex = pmap_pd_pindex(info->sva);
3805         info->eva_pd_pindex = pmap_pd_pindex(info->eva + NBPDP - 1);
3806
3807         if (info->sva >= VM_MAX_USER_ADDRESS) {
3808                 /*
3809                  * The kernel does not currently maintain any pv_entry's for
3810                  * higher-level page tables.
3811                  */
3812                 bzero(&dummy_pv, sizeof(dummy_pv));
3813                 dummy_pv.pv_pindex = info->sva_pd_pindex;
3814                 spin_lock(&pmap->pm_spin);
3815                 while (dummy_pv.pv_pindex < info->eva_pd_pindex) {
3816                         pmap_scan_callback(&dummy_pv, info);
3817                         ++dummy_pv.pv_pindex;
3818                 }
3819                 spin_unlock(&pmap->pm_spin);
3820         } else {
3821                 /*
3822                  * User page tables maintain local PML4, PDP, and PD
3823                  * pv_entry's at the very least.  PT pv's might be
3824                  * unmanaged and thus not exist.  PTE pv's might be
3825                  * unmanaged and thus not exist.
3826                  */
3827                 spin_lock(&pmap->pm_spin);
3828                 pv_entry_rb_tree_RB_SCAN(&pmap->pm_pvroot, pmap_scan_cmp,
3829                                          pmap_scan_callback, info);
3830                 spin_unlock(&pmap->pm_spin);
3831         }
3832         pmap_inval_bulk_flush(info->bulk);
3833 }
3834
3835 /*
3836  * WARNING! pmap->pm_spin held
3837  */
3838 static int
3839 pmap_scan_cmp(pv_entry_t pv, void *data)
3840 {
3841         struct pmap_scan_info *info = data;
3842         if (pv->pv_pindex < info->sva_pd_pindex)
3843                 return(-1);
3844         if (pv->pv_pindex >= info->eva_pd_pindex)
3845                 return(1);
3846         return(0);
3847 }
3848
3849 /*
3850  * pmap_scan() by PDs
3851  *
3852  * WARNING! pmap->pm_spin held
3853  */
3854 static int
3855 pmap_scan_callback(pv_entry_t pv, void *data)
3856 {
3857         struct pmap_scan_info *info = data;
3858         struct pmap *pmap = info->pmap;
3859         pv_entry_t pd_pv;       /* A page directory PV */
3860         pv_entry_t pt_pv;       /* A page table PV */
3861         vm_pindex_t *pt_placemark;
3862         pt_entry_t *ptep;
3863         pt_entry_t oldpte;
3864         vm_offset_t sva;
3865         vm_offset_t eva;
3866         vm_offset_t va_next;
3867         vm_pindex_t pd_pindex;
3868         int error;
3869
3870         /*
3871          * Stop if requested
3872          */
3873         if (info->stop)
3874                 return -1;
3875
3876         /*
3877          * Pull the PD pindex from the pv before releasing the spinlock.
3878          *
3879          * WARNING: pv is faked for kernel pmap scans.
3880          */
3881         pd_pindex = pv->pv_pindex;
3882         spin_unlock(&pmap->pm_spin);
3883         pv = NULL;      /* invalid after spinlock unlocked */
3884
3885         /*
3886          * Calculate the page range within the PD.  SIMPLE pmaps are
3887          * direct-mapped for the entire 2^64 address space.  Normal pmaps
3888          * reflect the user and kernel address space which requires
3889          * cannonicalization w/regards to converting pd_pindex's back
3890          * into addresses.
3891          */
3892         sva = (pd_pindex - pmap_pd_pindex(0)) << PDPSHIFT;
3893         if ((pmap->pm_flags & PMAP_FLAG_SIMPLE) == 0 &&
3894             (sva & PML4_SIGNMASK)) {
3895                 sva |= PML4_SIGNMASK;
3896         }
3897         eva = sva + NBPDP;      /* can overflow */
3898         if (sva < info->sva)
3899                 sva = info->sva;
3900         if (eva < info->sva || eva > info->eva)
3901                 eva = info->eva;
3902
3903         /*
3904          * NOTE: kernel mappings do not track page table pages, only
3905          *       terminal pages.
3906          *
3907          * NOTE: Locks must be ordered bottom-up. pte,pt,pd,pdp,pml4.
3908          *       However, for the scan to be efficient we try to
3909          *       cache items top-down.
3910          */
3911         pd_pv = NULL;
3912         pt_pv = NULL;
3913
3914         for (; sva < eva; sva = va_next) {
3915                 if (info->stop)
3916                         break;
3917                 if (sva >= VM_MAX_USER_ADDRESS) {
3918                         if (pt_pv) {
3919                                 pv_put(pt_pv);
3920                                 pt_pv = NULL;
3921                         }
3922                         goto kernel_skip;
3923                 }
3924
3925                 /*
3926                  * PD cache, scan shortcut if it doesn't exist.
3927                  */
3928                 if (pd_pv == NULL) {
3929                         pd_pv = pv_get(pmap, pmap_pd_pindex(sva), NULL);
3930                 } else if (pd_pv->pv_pmap != pmap ||
3931                            pd_pv->pv_pindex != pmap_pd_pindex(sva)) {
3932                         pv_put(pd_pv);
3933                         pd_pv = pv_get(pmap, pmap_pd_pindex(sva), NULL);
3934                 }
3935                 if (pd_pv == NULL) {
3936                         va_next = (sva + NBPDP) & ~PDPMASK;
3937                         if (va_next < sva)
3938                                 va_next = eva;
3939                         continue;
3940                 }
3941
3942                 /*
3943                  * PT cache
3944                  */
3945                 if (pt_pv && (pt_pv->pv_pmap != pmap ||
3946                               pt_pv->pv_pindex != pmap_pt_pindex(sva))) {
3947                         pv_put(pt_pv);
3948                         pt_pv = NULL;
3949                 }
3950                 if (pt_pv == NULL) {
3951                         pt_pv = pv_get_try(pmap, pmap_pt_pindex(sva),
3952                                            &pt_placemark, &error);
3953                         if (error) {
3954                                 pv_put(pd_pv);  /* lock order */
3955                                 pd_pv = NULL;
3956                                 if (pt_pv) {
3957                                         pv_lock(pt_pv);
3958                                         pv_put(pt_pv);
3959                                         pt_pv = NULL;
3960                                 } else {
3961                                         pv_placemarker_wait(pmap, pt_placemark);
3962                                 }
3963                                 va_next = sva;
3964                                 continue;
3965                         }
3966                         /* may have to re-check later if pt_pv is NULL here */
3967                 }
3968
3969                 /*
3970                  * If pt_pv is NULL we either have an shared page table
3971                  * page and must issue a callback specific to that case,
3972                  * or there is no page table page.
3973                  *
3974                  * Either way we can skip the page table page.
3975                  *
3976                  * WARNING! pt_pv can also be NULL due to a pv creation
3977                  *          race where we find it to be NULL and then
3978                  *          later see a pte_pv.  But its possible the pt_pv
3979                  *          got created inbetween the two operations, so
3980                  *          we must check.
3981                  */
3982                 if (pt_pv == NULL) {
3983                         /*
3984                          * Possible unmanaged (shared from another pmap)
3985                          * page table page.
3986                          *
3987                          * WARNING!  We must hold pt_placemark across the
3988                          *           *ptep test to prevent misintepreting
3989                          *           a non-zero *ptep as a shared page
3990                          *           table page.  Hold it across the function
3991                          *           callback as well for SMP safety.
3992                          */
3993                         ptep = pv_pte_lookup(pd_pv, pmap_pt_index(sva));
3994                         if (*ptep & pmap->pmap_bits[PG_V_IDX]) {
3995                                 info->func(pmap, info, NULL, pt_placemark,
3996                                            pd_pv, 1,
3997                                            sva, ptep, info->arg);
3998                         } else {
3999                                 pv_placemarker_wakeup(pmap, pt_placemark);
4000                         }
4001
4002                         /*
4003                          * Done, move to next page table page.
4004                          */
4005                         va_next = (sva + NBPDR) & ~PDRMASK;
4006                         if (va_next < sva)
4007                                 va_next = eva;
4008                         continue;
4009                 }
4010
4011                 /*
4012                  * From this point in the loop testing pt_pv for non-NULL
4013                  * means we are in UVM, else if it is NULL we are in KVM.
4014                  *
4015                  * Limit our scan to either the end of the va represented
4016                  * by the current page table page, or to the end of the
4017                  * range being removed.
4018                  */
4019 kernel_skip:
4020                 va_next = (sva + NBPDR) & ~PDRMASK;
4021                 if (va_next < sva)
4022                         va_next = eva;
4023                 if (va_next > eva)
4024                         va_next = eva;
4025
4026                 /*
4027                  * Scan the page table for pages.  Some pages may not be
4028                  * managed (might not have a pv_entry).
4029                  *
4030                  * There is no page table management for kernel pages so
4031                  * pt_pv will be NULL in that case, but otherwise pt_pv
4032                  * is non-NULL, locked, and referenced.
4033                  */
4034
4035                 /*
4036                  * At this point a non-NULL pt_pv means a UVA, and a NULL
4037                  * pt_pv means a KVA.
4038                  */
4039                 if (pt_pv)
4040                         ptep = pv_pte_lookup(pt_pv, pmap_pte_index(sva));
4041                 else
4042                         ptep = vtopte(sva);
4043
4044                 while (sva < va_next) {
4045                         pv_entry_t pte_pv;
4046                         vm_pindex_t *pte_placemark;
4047
4048                         /*
4049                          * Yield every 64 pages, stop if requested.
4050                          */
4051                         if ((++info->count & 63) == 0)
4052                                 lwkt_user_yield();
4053                         if (info->stop)
4054                                 break;
4055
4056                         /*
4057                          * We can shortcut our scan if *ptep == 0.  This is
4058                          * an unlocked check.
4059                          */
4060                         if (*ptep == 0) {
4061                                 sva += PAGE_SIZE;
4062                                 ++ptep;
4063                                 continue;
4064                         }
4065
4066                         /*
4067                          * Acquire the related pte_pv, if any.  If *ptep == 0
4068                          * the related pte_pv should not exist, but if *ptep
4069                          * is not zero the pte_pv may or may not exist (e.g.
4070                          * will not exist for an unmanaged page).
4071                          *
4072                          * However a multitude of races are possible here
4073                          * so if we cannot lock definite state we clean out
4074                          * our cache and break the inner while() loop to
4075                          * force a loop up to the top of the for().
4076                          *
4077                          * XXX unlock/relock pd_pv, pt_pv, and re-test their
4078                          *     validity instead of looping up?
4079                          */
4080                         pte_pv = pv_get_try(pmap, pmap_pte_pindex(sva),
4081                                             &pte_placemark, &error);
4082                         if (error) {
4083                                 pv_put(pd_pv);          /* lock order */
4084                                 pd_pv = NULL;
4085                                 if (pt_pv) {
4086                                         pv_put(pt_pv);  /* lock order */
4087                                         pt_pv = NULL;
4088                                 }
4089                                 if (pte_pv) {           /* block */
4090                                         pv_lock(pte_pv);
4091                                         pv_put(pte_pv);
4092                                         pte_pv = NULL;
4093                                 } else {
4094                                         pv_placemarker_wait(pmap,
4095                                                         pte_placemark);
4096                                 }
4097                                 va_next = sva;          /* retry */
4098                                 break;
4099                         }
4100
4101                         /*
4102                          * Ok, if *ptep == 0 we had better NOT have a pte_pv.
4103                          */
4104                         oldpte = *ptep;
4105                         if (oldpte == 0) {
4106                                 if (pte_pv) {
4107                                         kprintf("Unexpected non-NULL pte_pv "
4108                                                 "%p pt_pv %p "
4109                                                 "*ptep = %016lx/%016lx\n",
4110                                                 pte_pv, pt_pv, *ptep, oldpte);
4111                                         panic("Unexpected non-NULL pte_pv");
4112                                 }
4113                                 pv_placemarker_wakeup(pmap, pte_placemark);
4114                                 sva += PAGE_SIZE;
4115                                 ++ptep;
4116                                 continue;
4117                         }
4118
4119                         /*
4120                          * We can't hold pd_pv across the callback (because
4121                          * we don't pass it to the callback and the callback
4122                          * might deadlock)
4123                          */
4124                         if (pd_pv) {
4125                                 vm_page_wire_quick(pd_pv->pv_m);
4126                                 pv_unlock(pd_pv);
4127                         }
4128
4129                         /*
4130                          * Ready for the callback.  The locked pte_pv (if any)
4131                          * is consumed by the callback.  pte_pv will exist if
4132                          * the page is managed, and will not exist if it
4133                          * isn't.
4134                          */
4135                         if (pte_pv) {
4136                                 KASSERT((oldpte & (pmap->pmap_bits[PG_MANAGED_IDX] | pmap->pmap_bits[PG_V_IDX])) ==
4137                                     (pmap->pmap_bits[PG_MANAGED_IDX] | pmap->pmap_bits[PG_V_IDX]),
4138                                     ("badC *ptep %016lx/%016lx sva %016lx "
4139                                     "pte_pv %p ",
4140                                     *ptep, oldpte, sva, pte_pv));
4141                                 /*
4142                                  * We must unlock pd_pv across the callback
4143                                  * to avoid deadlocks on any recursive
4144                                  * disposal.  Re-check that it still exists
4145                                  * after re-locking.
4146                                  *
4147                                  * Call target disposes of pte_pv and may
4148                                  * destroy but will not dispose of pt_pv.
4149                                  */
4150                                 info->func(pmap, info, pte_pv, NULL,
4151                                            pt_pv, 0,
4152                                            sva, ptep, info->arg);
4153                         } else {
4154                                 /*
4155                                  * We must unlock pd_pv across the callback
4156                                  * to avoid deadlocks on any recursive
4157                                  * disposal.  Re-check that it still exists
4158                                  * after re-locking.
4159                                  *
4160                                  * Call target disposes of pte_pv and may
4161                                  * destroy but will not dispose of pt_pv.
4162                                  */
4163                                 KASSERT((oldpte & (pmap->pmap_bits[PG_MANAGED_IDX] | pmap->pmap_bits[PG_V_IDX])) ==
4164                                     pmap->pmap_bits[PG_V_IDX],
4165                                     ("badD *ptep %016lx/%016lx sva %016lx "
4166                                     "pte_pv NULL ",
4167                                      *ptep, oldpte, sva));
4168
4169                                 info->func(pmap, info, NULL, pte_placemark,
4170                                            pt_pv, 0,
4171                                            sva, ptep, info->arg);
4172                         }
4173                         if (pd_pv) {
4174                                 pv_lock(pd_pv);
4175                                 vm_page_unwire_quick(pd_pv->pv_m);
4176                                 if (pd_pv->pv_pmap == NULL) {
4177                                         va_next = sva;          /* retry */
4178                                         break;
4179                                 }
4180                         }
4181                         pte_pv = NULL;
4182                         sva += PAGE_SIZE;
4183                         ++ptep;
4184                 }
4185         }
4186         if (pd_pv) {
4187                 pv_put(pd_pv);
4188                 pd_pv = NULL;
4189         }
4190         if (pt_pv) {
4191                 pv_put(pt_pv);
4192                 pt_pv = NULL;
4193         }
4194         if ((++info->count & 7) == 0)
4195                 lwkt_user_yield();
4196
4197         /*
4198          * Relock before returning.
4199          */
4200         spin_lock(&pmap->pm_spin);
4201         return (0);
4202 }
4203
4204 void
4205 pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
4206 {
4207         struct pmap_scan_info info;
4208
4209         info.pmap = pmap;
4210         info.sva = sva;
4211         info.eva = eva;
4212         info.func = pmap_remove_callback;
4213         info.arg = NULL;
4214         pmap_scan(&info, 1);
4215 }
4216
4217 static void
4218 pmap_remove_noinval(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
4219 {
4220         struct pmap_scan_info info;
4221
4222         info.pmap = pmap;
4223         info.sva = sva;
4224         info.eva = eva;
4225         info.func = pmap_remove_callback;
4226         info.arg = NULL;
4227         pmap_scan(&info, 0);
4228 }
4229
4230 static void
4231 pmap_remove_callback(pmap_t pmap, struct pmap_scan_info *info,
4232                      pv_entry_t pte_pv, vm_pindex_t *pte_placemark,
4233                      pv_entry_t pt_pv, int sharept,
4234                      vm_offset_t va, pt_entry_t *ptep, void *arg __unused)
4235 {
4236         pt_entry_t pte;
4237
4238         if (pte_pv) {
4239                 /*
4240                  * This will also drop pt_pv's wire_count. Note that
4241                  * terminal pages are not wired based on mmu presence.
4242                  *
4243                  * NOTE: If this is the kernel_pmap, pt_pv can be NULL.
4244                  */
4245                 pmap_remove_pv_pte(pte_pv, pt_pv, info->bulk, 2);
4246                 pte_pv = NULL;  /* safety */
4247
4248                 /*
4249                  * Recursively destroy higher-level page tables.
4250                  *
4251                  * This is optional.  If we do not, they will still
4252                  * be destroyed when the process exits.
4253                  *
4254                  * NOTE: Do not destroy pv_entry's with extra hold refs,
4255                  *       a caller may have unlocked it and intends to
4256                  *       continue to use it.
4257                  */
4258                 if (pmap_dynamic_delete &&
4259                     pt_pv &&
4260                     pt_pv->pv_m &&
4261                     pt_pv->pv_m->wire_count == 1 &&
4262                     (pt_pv->pv_hold & PV_HOLD_MASK) == 2 &&
4263                     pt_pv->pv_pindex != pmap_pml4_pindex()) {
4264                         if (pmap_dynamic_delete == 2)
4265                                 kprintf("B %jd %08x\n", pt_pv->pv_pindex, pt_pv->pv_hold);
4266                         pv_hold(pt_pv); /* extra hold */
4267                         pmap_remove_pv_pte(pt_pv, NULL, info->bulk, 1);
4268                         pv_lock(pt_pv); /* prior extra hold + relock */
4269                 }
4270         } else if (sharept == 0) {
4271                 /*
4272                  * Unmanaged page table (pt, pd, or pdp. Not pte).
4273                  *
4274                  * pt_pv's wire_count is still bumped by unmanaged pages
4275                  * so we must decrement it manually.
4276                  *
4277                  * We have to unwire the target page table page.
4278                  *
4279                  * It is unclear how we can invalidate a segment so we
4280                  * invalidate -1 which invlidates the tlb.
4281                  */
4282                 pte = pmap_inval_bulk(info->bulk, (vm_offset_t)-1, ptep, 0);
4283                 if (pte & pmap->pmap_bits[PG_W_IDX])
4284                         atomic_add_long(&pmap->pm_stats.wired_count, -1);
4285                 atomic_add_long(&pmap->pm_stats.resident_count, -1);
4286                 if (vm_page_unwire_quick(pt_pv->pv_m))
4287                         panic("pmap_remove: insufficient wirecount");
4288                 pv_placemarker_wakeup(pmap, pte_placemark);
4289         } else {
4290                 /*
4291                  * Unmanaged page table (pt, pd, or pdp. Not pte) for
4292                  * a shared page table.
4293                  *
4294                  * pt_pv is actually the pd_pv for our pmap (not the shared
4295                  * object pmap).
4296                  *
4297                  * We have to unwire the target page table page and we
4298                  * have to unwire our page directory page.
4299                  *
4300                  * It is unclear how we can invalidate a segment so we
4301                  * invalidate -1 which invlidates the tlb.
4302                  */
4303                 pte = pmap_inval_bulk(info->bulk, (vm_offset_t)-1, ptep, 0);
4304                 atomic_add_long(&pmap->pm_stats.resident_count, -1);
4305                 KKASSERT((pte & pmap->pmap_bits[PG_DEVICE_IDX]) == 0);
4306                 if (vm_page_unwire_quick(PHYS_TO_VM_PAGE(pte & PG_FRAME)))
4307                         panic("pmap_remove: shared pgtable1 bad wirecount");
4308                 if (vm_page_unwire_quick(pt_pv->pv_m))
4309                         panic("pmap_remove: shared pgtable2 bad wirecount");
4310                 pv_placemarker_wakeup(pmap, pte_placemark);
4311         }
4312 }
4313
4314 /*
4315  * Removes this physical page from all physical maps in which it resides.
4316  * Reflects back modify bits to the pager.
4317  *
4318  * This routine may not be called from an interrupt.
4319  */
4320 static
4321 void
4322 pmap_remove_all(vm_page_t m)
4323 {
4324         pv_entry_t pv;
4325         pmap_inval_bulk_t bulk;
4326
4327         if (!pmap_initialized /* || (m->flags & PG_FICTITIOUS)*/)
4328                 return;
4329
4330         vm_page_spin_lock(m);
4331         while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
4332                 KKASSERT(pv->pv_m == m);
4333                 if (pv_hold_try(pv)) {
4334                         vm_page_spin_unlock(m);
4335                 } else {
4336                         vm_page_spin_unlock(m);
4337                         pv_lock(pv);
4338                 }
4339                 if (pv->pv_pmap == NULL || pv->pv_m != m) {
4340                         pv_put(pv);
4341                         vm_page_spin_lock(m);
4342                         continue;
4343                 }
4344
4345                 /*
4346                  * Holding no spinlocks, pv is locked.
4347                  */
4348                 pmap_inval_bulk_init(&bulk, pv->pv_pmap);
4349                 pmap_remove_pv_pte(pv, NULL, &bulk, 2);
4350                 pv = NULL;      /* safety */
4351                 pmap_inval_bulk_flush(&bulk);
4352                 vm_page_spin_lock(m);
4353         }
4354         KKASSERT((m->flags & (PG_MAPPED|PG_WRITEABLE)) == 0);
4355         vm_page_spin_unlock(m);
4356 }
4357
4358 /*
4359  * Removes the page from a particular pmap
4360  */
4361 void
4362 pmap_remove_specific(pmap_t pmap, vm_page_t m)
4363 {
4364         pv_entry_t pv;
4365         pmap_inval_bulk_t bulk;
4366
4367         if (!pmap_initialized)
4368                 return;
4369
4370 again:
4371         vm_page_spin_lock(m);
4372         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4373                 if (pv->pv_pmap != pmap)
4374                         continue;
4375                 KKASSERT(pv->pv_m == m);
4376                 if (pv_hold_try(pv)) {
4377                         vm_page_spin_unlock(m);
4378                 } else {
4379                         vm_page_spin_unlock(m);
4380                         pv_lock(pv);
4381                 }
4382                 if (pv->pv_pmap != pmap || pv->pv_m != m) {
4383                         pv_put(pv);
4384                         goto again;
4385                 }
4386
4387                 /*
4388                  * Holding no spinlocks, pv is locked.
4389                  */
4390                 pmap_inval_bulk_init(&bulk, pv->pv_pmap);
4391                 pmap_remove_pv_pte(pv, NULL, &bulk, 2);
4392                 pv = NULL;      /* safety */
4393                 pmap_inval_bulk_flush(&bulk);
4394                 goto again;
4395         }
4396         vm_page_spin_unlock(m);
4397 }
4398
4399 /*
4400  * Set the physical protection on the specified range of this map
4401  * as requested.  This function is typically only used for debug watchpoints
4402  * and COW pages.
4403  *
4404  * This function may not be called from an interrupt if the map is
4405  * not the kernel_pmap.
4406  *
4407  * NOTE!  For shared page table pages we just unmap the page.
4408  */
4409 void
4410 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
4411 {
4412         struct pmap_scan_info info;
4413         /* JG review for NX */
4414
4415         if (pmap == NULL)
4416                 return;
4417         if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
4418                 pmap_remove(pmap, sva, eva);
4419                 return;
4420         }
4421         if (prot & VM_PROT_WRITE)
4422                 return;
4423         info.pmap = pmap;
4424         info.sva = sva;
4425         info.eva = eva;
4426         info.func = pmap_protect_callback;
4427         info.arg = &prot;
4428         pmap_scan(&info, 1);
4429 }
4430
4431 static
4432 void
4433 pmap_protect_callback(pmap_t pmap, struct pmap_scan_info *info,
4434                       pv_entry_t pte_pv, vm_pindex_t *pte_placemark,
4435                       pv_entry_t pt_pv, int sharept,
4436                       vm_offset_t va, pt_entry_t *ptep, void *arg __unused)
4437 {
4438         pt_entry_t pbits;
4439         pt_entry_t cbits;
4440         pt_entry_t pte;
4441         vm_page_t m;
4442
4443 again:
4444         pbits = *ptep;
4445         cbits = pbits;
4446         if (pte_pv) {
4447                 m = NULL;
4448                 if (pbits & pmap->pmap_bits[PG_A_IDX]) {
4449                         if ((pbits & pmap->pmap_bits[PG_DEVICE_IDX]) == 0) {
4450                                 m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
4451                                 KKASSERT(m == pte_pv->pv_m);
4452                                 vm_page_flag_set(m, PG_REFERENCED);
4453                         }
4454                         cbits &= ~pmap->pmap_bits[PG_A_IDX];
4455                 }
4456                 if (pbits & pmap->pmap_bits[PG_M_IDX]) {
4457                         if (pmap_track_modified(pte_pv->pv_pindex)) {
4458                                 if ((pbits & pmap->pmap_bits[PG_DEVICE_IDX]) == 0) {
4459                                         if (m == NULL) {
4460                                                 m = PHYS_TO_VM_PAGE(pbits &
4461                                                                     PG_FRAME);
4462                                         }
4463                                         vm_page_dirty(m);
4464                                 }
4465                                 cbits &= ~pmap->pmap_bits[PG_M_IDX];
4466                         }
4467                 }
4468         } else if (sharept) {
4469                 /*
4470                  * Unmanaged page table, pt_pv is actually the pd_pv
4471                  * for our pmap (not the object's shared pmap).
4472                  *
4473                  * When asked to protect something in a shared page table
4474                  * page we just unmap the page table page.  We have to
4475                  * invalidate the tlb in this situation.
4476                  *
4477                  * XXX Warning, shared page tables will not be used for
4478                  * OBJT_DEVICE or OBJT_MGTDEVICE (PG_FICTITIOUS) mappings
4479                  * so PHYS_TO_VM_PAGE() should be safe here.
4480                  */
4481                 pte = pmap_inval_smp(pmap, (vm_offset_t)-1, 1, ptep, 0);
4482                 if (vm_page_unwire_quick(PHYS_TO_VM_PAGE(pte & PG_FRAME)))
4483                         panic("pmap_protect: pgtable1 pg bad wirecount");
4484                 if (vm_page_unwire_quick(pt_pv->pv_m))
4485                         panic("pmap_protect: pgtable2 pg bad wirecount");
4486                 ptep = NULL;
4487         }
4488         /* else unmanaged page, adjust bits, no wire changes */
4489
4490         if (ptep) {
4491                 cbits &= ~pmap->pmap_bits[PG_RW_IDX];
4492 #ifdef PMAP_DEBUG2
4493                 if (pmap_enter_debug > 0) {
4494                         --pmap_enter_debug;
4495                         kprintf("pmap_protect va=%lx ptep=%p pte_pv=%p "
4496                                 "pt_pv=%p cbits=%08lx\n",
4497                                 va, ptep, pte_pv,
4498                                 pt_pv, cbits
4499                         );
4500                 }
4501 #endif
4502                 if (pbits != cbits) {
4503                         if (!pmap_inval_smp_cmpset(pmap, (vm_offset_t)-1,
4504                                                    ptep, pbits, cbits)) {
4505                                 goto again;
4506                         }
4507                 }
4508         }
4509         if (pte_pv)
4510                 pv_put(pte_pv);
4511         else
4512                 pv_placemarker_wakeup(pmap, pte_placemark);
4513 }
4514
4515 /*
4516  * Insert the vm_page (m) at the virtual address (va), replacing any prior
4517  * mapping at that address.  Set protection and wiring as requested.
4518  *
4519  * If entry is non-NULL we check to see if the SEG_SIZE optimization is
4520  * possible.  If it is we enter the page into the appropriate shared pmap
4521  * hanging off the related VM object instead of the passed pmap, then we
4522  * share the page table page from the VM object's pmap into the current pmap.
4523  *
4524  * NOTE: This routine MUST insert the page into the pmap now, it cannot
4525  *       lazy-evaluate.
4526  */
4527 void
4528 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
4529            boolean_t wired, vm_map_entry_t entry)
4530 {
4531         pv_entry_t pt_pv;       /* page table */
4532         pv_entry_t pte_pv;      /* page table entry */
4533         vm_pindex_t *pte_placemark;
4534         pt_entry_t *ptep;
4535         vm_paddr_t opa;
4536         pt_entry_t origpte, newpte;
4537         vm_paddr_t pa;
4538
4539         if (pmap == NULL)
4540                 return;
4541         va = trunc_page(va);
4542 #ifdef PMAP_DIAGNOSTIC
4543         if (va >= KvaEnd)
4544                 panic("pmap_enter: toobig");
4545         if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
4546                 panic("pmap_enter: invalid to pmap_enter page table "
4547                       "pages (va: 0x%lx)", va);
4548 #endif
4549         if (va < UPT_MAX_ADDRESS && pmap == &kernel_pmap) {
4550                 kprintf("Warning: pmap_enter called on UVA with "
4551                         "kernel_pmap\n");
4552 #ifdef DDB
4553                 db_print_backtrace();
4554 #endif
4555         }
4556         if (va >= UPT_MAX_ADDRESS && pmap != &kernel_pmap) {
4557                 kprintf("Warning: pmap_enter called on KVA without"
4558                         "kernel_pmap\n");
4559 #ifdef DDB
4560                 db_print_backtrace();
4561 #endif
4562         }
4563
4564         /*
4565          * Get locked PV entries for our new page table entry (pte_pv)
4566          * and for its parent page table (pt_pv).  We need the parent
4567          * so we can resolve the location of the ptep.
4568          *
4569          * Only hardware MMU actions can modify the ptep out from
4570          * under us.
4571          *
4572          * if (m) is fictitious or unmanaged we do not create a managing
4573          * pte_pv for it.  Any pre-existing page's management state must
4574          * match (avoiding code complexity).
4575          *
4576          * If the pmap is still being initialized we assume existing
4577          * page tables.
4578          *
4579          * Kernel mapppings do not track page table pages (i.e. pt_pv).
4580          */
4581         if (pmap_initialized == FALSE) {
4582                 pte_pv = NULL;
4583                 pt_pv = NULL;
4584                 pte_placemark = NULL;
4585                 ptep = vtopte(va);
4586                 origpte = *ptep;
4587         } else if (m->flags & (/*PG_FICTITIOUS |*/ PG_UNMANAGED)) { /* XXX */
4588                 pte_pv = pv_get(pmap, pmap_pte_pindex(va), &pte_placemark);
4589                 KKASSERT(pte_pv == NULL);
4590                 if (va >= VM_MAX_USER_ADDRESS) {
4591                         pt_pv = NULL;
4592                         ptep = vtopte(va);
4593                 } else {
4594                         pt_pv = pmap_allocpte_seg(pmap, pmap_pt_pindex(va),
4595                                                   NULL, entry, va);
4596                         ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
4597                 }
4598                 origpte = *ptep;
4599                 cpu_ccfence();
4600                 KASSERT(origpte == 0 ||
4601                          (origpte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0,
4602                          ("Invalid PTE 0x%016jx @ 0x%016jx\n", origpte, va));
4603         } else {
4604                 if (va >= VM_MAX_USER_ADDRESS) {
4605                         /*
4606                          * Kernel map, pv_entry-tracked.
4607                          */
4608                         pt_pv = NULL;
4609                         pte_pv = pmap_allocpte(pmap, pmap_pte_pindex(va), NULL);
4610                         ptep = vtopte(va);
4611                 } else {
4612                         /*
4613                          * User map
4614                          */
4615                         pte_pv = pmap_allocpte_seg(pmap, pmap_pte_pindex(va),
4616                                                    &pt_pv, entry, va);
4617                         ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
4618                 }
4619                 pte_placemark = NULL;
4620                 origpte = *ptep;
4621                 cpu_ccfence();
4622                 KASSERT(origpte == 0 ||
4623                          (origpte & pmap->pmap_bits[PG_MANAGED_IDX]),
4624                          ("Invalid PTE 0x%016jx @ 0x%016jx\n", origpte, va));
4625         }
4626
4627         pa = VM_PAGE_TO_PHYS(m);
4628         opa = origpte & PG_FRAME;
4629
4630         newpte = (pt_entry_t)(pa | pte_prot(pmap, prot) |
4631                  pmap->pmap_bits[PG_V_IDX] | pmap->pmap_bits[PG_A_IDX]);
4632         if (wired)
4633                 newpte |= pmap->pmap_bits[PG_W_IDX];
4634         if (va < VM_MAX_USER_ADDRESS)
4635                 newpte |= pmap->pmap_bits[PG_U_IDX];
4636         if (pte_pv)
4637                 newpte |= pmap->pmap_bits[PG_MANAGED_IDX];
4638 //      if (pmap == &kernel_pmap)
4639 //              newpte |= pgeflag;
4640         newpte |= pmap->pmap_cache_bits[m->pat_mode];
4641         if (m->flags & PG_FICTITIOUS)
4642                 newpte |= pmap->pmap_bits[PG_DEVICE_IDX];
4643
4644         /*
4645          * It is possible for multiple faults to occur in threaded
4646          * environments, the existing pte might be correct.
4647          */
4648         if (((origpte ^ newpte) & ~(pt_entry_t)(pmap->pmap_bits[PG_M_IDX] |
4649             pmap->pmap_bits[PG_A_IDX])) == 0)
4650                 goto done;
4651
4652         /*
4653          * Ok, either the address changed or the protection or wiring
4654          * changed.
4655          *
4656          * Clear the current entry, interlocking the removal.  For managed
4657          * pte's this will also flush the modified state to the vm_page.
4658          * Atomic ops are mandatory in order to ensure that PG_M events are
4659          * not lost during any transition.
4660          *
4661          * WARNING: The caller has busied the new page but not the original
4662          *          vm_page which we are trying to replace.  Because we hold
4663          *          the pte_pv lock, but have not busied the page, PG bits
4664          *          can be cleared out from under us.
4665          */
4666         if (opa) {
4667                 if (pte_pv) {
4668                         /*
4669                          * NOTE: pt_pv won't exist for a kernel page
4670                          *       (managed or otherwise).
4671                          *
4672                          * NOTE: We are reusing the pte_pv so we do not
4673                          *       destroy it in pmap_remove_pv_pte().
4674                          */
4675                         if (prot & VM_PROT_NOSYNC) {
4676                                 pmap_remove_pv_pte(pte_pv, pt_pv, NULL, 0);
4677                         } else {
4678                                 pmap_inval_bulk_t bulk;
4679
4680                                 pmap_inval_bulk_init(&bulk, pmap);
4681                                 pmap_remove_pv_pte(pte_pv, pt_pv, &bulk, 0);
4682                                 pmap_inval_bulk_flush(&bulk);
4683                         }
4684                         if (pte_pv->pv_m)
4685                                 pmap_remove_pv_page(pte_pv);
4686                 } else if (prot & VM_PROT_NOSYNC) {
4687                         /*
4688                          * Unmanaged page, NOSYNC (no mmu sync) requested.
4689                          *
4690                          * Leave wire count on PT page intact.
4691                          */
4692                         (void)pte_load_clear(ptep);
4693                         cpu_invlpg((void *)va);
4694                         atomic_add_long(&pmap->pm_stats.resident_count, -1);
4695                 } else {
4696                         /*
4697                          * Unmanaged page, normal enter.
4698                          *
4699                          * Leave wire count on PT page intact.
4700                          */
4701                         pmap_inval_smp(pmap, va, 1, ptep, 0);
4702                         atomic_add_long(&pmap->pm_stats.resident_count, -1);
4703                 }
4704                 KKASSERT(*ptep == 0);
4705         }
4706
4707 #ifdef PMAP_DEBUG2
4708         if (pmap_enter_debug > 0) {
4709                 --pmap_enter_debug;
4710                 kprintf("pmap_enter: va=%lx m=%p origpte=%lx newpte=%lx ptep=%p"
4711                         " pte_pv=%p pt_pv=%p opa=%lx prot=%02x\n",
4712                         va, m,
4713                         origpte, newpte, ptep,
4714                         pte_pv, pt_pv, opa, prot);
4715         }
4716 #endif
4717
4718         if (pte_pv) {
4719                 /*
4720                  * Enter on the PV list if part of our managed memory.
4721                  * Wiring of the PT page is already handled.
4722                  */
4723                 KKASSERT(pte_pv->pv_m == NULL);
4724                 vm_page_spin_lock(m);
4725                 pte_pv->pv_m = m;
4726                 pmap_page_stats_adding(m);
4727                 TAILQ_INSERT_TAIL(&m->md.pv_list, pte_pv, pv_list);
4728                 vm_page_flag_set(m, PG_MAPPED);
4729                 vm_page_spin_unlock(m);
4730         } else if (pt_pv && opa == 0) {
4731                 /*
4732                  * We have to adjust the wire count on the PT page ourselves
4733                  * for unmanaged entries.  If opa was non-zero we retained
4734                  * the existing wire count from the removal.
4735                  */
4736                 vm_page_wire_quick(pt_pv->pv_m);
4737         }
4738
4739         /*
4740          * Kernel VMAs (pt_pv == NULL) require pmap invalidation interlocks.
4741          *
4742          * User VMAs do not because those will be zero->non-zero, so no
4743          * stale entries to worry about at this point.
4744          *
4745          * For KVM there appear to still be issues.  Theoretically we
4746          * should be able to scrap the interlocks entirely but we
4747          * get crashes.
4748          */
4749         if ((prot & VM_PROT_NOSYNC) == 0 && pt_pv == NULL) {
4750                 pmap_inval_smp(pmap, va, 1, ptep, newpte);
4751         } else {
4752                 *(volatile pt_entry_t *)ptep = newpte;
4753                 if (pt_pv == NULL)
4754                         cpu_invlpg((void *)va);
4755         }
4756
4757         if (wired) {
4758                 if (pte_pv) {
4759                         atomic_add_long(&pte_pv->pv_pmap->pm_stats.wired_count,
4760                                         1);
4761                 } else {
4762                         atomic_add_long(&pmap->pm_stats.wired_count, 1);
4763                 }
4764         }
4765         if (newpte & pmap->pmap_bits[PG_RW_IDX])
4766                 vm_page_flag_set(m, PG_WRITEABLE);
4767
4768         /*
4769          * Unmanaged pages need manual resident_count tracking.
4770          */
4771         if (pte_pv == NULL && pt_pv) {
4772                 atomic_add_long(&pt_pv->pv_pmap->pm_stats.resident_count, 1);
4773         }
4774
4775         /*
4776          * Cleanup
4777          */
4778 done:
4779         KKASSERT((newpte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0 ||
4780                  (m->flags & PG_MAPPED));
4781
4782         /*
4783          * Cleanup the pv entry, allowing other accessors.
4784          */
4785         if (pte_pv)
4786                 pv_put(pte_pv);
4787         else if (pte_placemark)
4788                 pv_placemarker_wakeup(pmap, pte_placemark);
4789
4790         if (pt_pv)
4791                 pv_put(pt_pv);
4792 }
4793
4794 /*
4795  * This code works like pmap_enter() but assumes VM_PROT_READ and not-wired.
4796  * This code also assumes that the pmap has no pre-existing entry for this
4797  * VA.
4798  *
4799  * This code currently may only be used on user pmaps, not kernel_pmap.
4800  */
4801 void
4802 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m)
4803 {
4804         pmap_enter(pmap, va, m, VM_PROT_READ, FALSE, NULL);
4805 }
4806
4807 /*
4808  * Make a temporary mapping for a physical address.  This is only intended
4809  * to be used for panic dumps.
4810  *
4811  * The caller is responsible for calling smp_invltlb().
4812  */
4813 void *
4814 pmap_kenter_temporary(vm_paddr_t pa, long i)
4815 {
4816         pmap_kenter_quick((vm_offset_t)crashdumpmap + (i * PAGE_SIZE), pa);
4817         return ((void *)crashdumpmap);
4818 }
4819
4820 #define MAX_INIT_PT (96)
4821
4822 /*
4823  * This routine preloads the ptes for a given object into the specified pmap.
4824  * This eliminates the blast of soft faults on process startup and
4825  * immediately after an mmap.
4826  */
4827 static int pmap_object_init_pt_callback(vm_page_t p, void *data);
4828
4829 void
4830 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_prot_t prot,
4831                     vm_object_t object, vm_pindex_t pindex,
4832                     vm_size_t size, int limit)
4833 {
4834         struct rb_vm_page_scan_info info;
4835         struct lwp *lp;
4836         vm_size_t psize;
4837
4838         /*
4839          * We can't preinit if read access isn't set or there is no pmap
4840          * or object.
4841          */
4842         if ((prot & VM_PROT_READ) == 0 || pmap == NULL || object == NULL)
4843                 return;
4844
4845         /*
4846          * We can't preinit if the pmap is not the current pmap
4847          */
4848         lp = curthread->td_lwp;
4849         if (lp == NULL || pmap != vmspace_pmap(lp->lwp_vmspace))
4850                 return;
4851
4852         /*
4853          * Misc additional checks
4854          */
4855         psize = x86_64_btop(size);
4856
4857         if ((object->type != OBJT_VNODE) ||
4858                 ((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
4859                         (object->resident_page_count > MAX_INIT_PT))) {
4860                 return;
4861         }
4862
4863         if (pindex + psize > object->size) {
4864                 if (object->size < pindex)
4865                         return;           
4866                 psize = object->size - pindex;
4867         }
4868
4869         if (psize == 0)
4870                 return;
4871
4872         /*
4873          * If everything is segment-aligned do not pre-init here.  Instead
4874          * allow the normal vm_fault path to pass a segment hint to
4875          * pmap_enter() which will then use an object-referenced shared
4876          * page table page.
4877          */
4878         if ((addr & SEG_MASK) == 0 &&
4879             (ctob(psize) & SEG_MASK) == 0 &&
4880             (ctob(pindex) & SEG_MASK) == 0) {
4881                 return;
4882         }
4883
4884         /*
4885          * Use a red-black scan to traverse the requested range and load
4886          * any valid pages found into the pmap.
4887          *
4888          * We cannot safely scan the object's memq without holding the
4889          * object token.
4890          */
4891         info.start_pindex = pindex;
4892         info.end_pindex = pindex + psize - 1;
4893         info.limit = limit;
4894         info.mpte = NULL;
4895         info.addr = addr;
4896         info.pmap = pmap;
4897
4898         vm_object_hold_shared(object);
4899         vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
4900                                 pmap_object_init_pt_callback, &info);
4901         vm_object_drop(object);
4902 }
4903
4904 static
4905 int
4906 pmap_object_init_pt_callback(vm_page_t p, void *data)
4907 {
4908         struct rb_vm_page_scan_info *info = data;
4909         vm_pindex_t rel_index;
4910
4911         /*
4912          * don't allow an madvise to blow away our really
4913          * free pages allocating pv entries.
4914          */
4915         if ((info->limit & MAP_PREFAULT_MADVISE) &&
4916                 vmstats.v_free_count < vmstats.v_free_reserved) {
4917                     return(-1);
4918         }
4919
4920         /*
4921          * Ignore list markers and ignore pages we cannot instantly
4922          * busy (while holding the object token).
4923          */
4924         if (p->flags & PG_MARKER)
4925                 return 0;
4926         if (vm_page_busy_try(p, TRUE))
4927                 return 0;
4928         if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
4929             (p->flags & PG_FICTITIOUS) == 0) {
4930                 if ((p->queue - p->pc) == PQ_CACHE)
4931                         vm_page_deactivate(p);
4932                 rel_index = p->pindex - info->start_pindex;
4933                 pmap_enter_quick(info->pmap,
4934                                  info->addr + x86_64_ptob(rel_index), p);
4935         }
4936         vm_page_wakeup(p);
4937         lwkt_yield();
4938         return(0);
4939 }
4940
4941 /*
4942  * Return TRUE if the pmap is in shape to trivially pre-fault the specified
4943  * address.
4944  *
4945  * Returns FALSE if it would be non-trivial or if a pte is already loaded
4946  * into the slot.
4947  *
4948  * XXX This is safe only because page table pages are not freed.
4949  */
4950 int
4951 pmap_prefault_ok(pmap_t pmap, vm_offset_t addr)
4952 {
4953         pt_entry_t *pte;
4954
4955         /*spin_lock(&pmap->pm_spin);*/
4956         if ((pte = pmap_pte(pmap, addr)) != NULL) {
4957                 if (*pte & pmap->pmap_bits[PG_V_IDX]) {
4958                         /*spin_unlock(&pmap->pm_spin);*/
4959                         return FALSE;
4960                 }
4961         }
4962         /*spin_unlock(&pmap->pm_spin);*/
4963         return TRUE;
4964 }
4965
4966 /*
4967  * Change the wiring attribute for a pmap/va pair.  The mapping must already
4968  * exist in the pmap.  The mapping may or may not be managed.  The wiring in
4969  * the page is not changed, the page is returned so the caller can adjust
4970  * its wiring (the page is not locked in any way).
4971  *
4972  * Wiring is not a hardware characteristic so there is no need to invalidate
4973  * TLB.  However, in an SMP environment we must use a locked bus cycle to
4974  * update the pte (if we are not using the pmap_inval_*() API that is)...
4975  * it's ok to do this for simple wiring changes.
4976  */
4977 vm_page_t
4978 pmap_unwire(pmap_t pmap, vm_offset_t va)
4979 {
4980         pt_entry_t *ptep;
4981         pv_entry_t pt_pv;
4982         vm_paddr_t pa;
4983         vm_page_t m;
4984
4985         if (pmap == NULL)
4986                 return NULL;
4987
4988         /*
4989          * Assume elements in the kernel pmap are stable
4990          */
4991         if (pmap == &kernel_pmap) {
4992                 if (pmap_pt(pmap, va) == 0)
4993                         return NULL;
4994                 ptep = pmap_pte_quick(pmap, va);
4995
4996                 if (pmap_pte_w(pmap, ptep))
4997                         atomic_add_long(&pmap->pm_stats.wired_count,-1);
4998                 atomic_clear_long(ptep, pmap->pmap_bits[PG_W_IDX]);
4999                 pa = *ptep & PG_FRAME;
5000                 m = PHYS_TO_VM_PAGE(pa);
5001         } else {
5002                 /*
5003                  * We can only [un]wire pmap-local pages (we cannot wire
5004                  * shared pages)
5005                  */
5006                 pt_pv = pv_get(pmap, pmap_pt_pindex(va), NULL);
5007                 if (pt_pv == NULL)
5008                         return NULL;
5009
5010                 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
5011                 if ((*ptep & pmap->pmap_bits[PG_V_IDX]) == 0) {
5012                         pv_put(pt_pv);
5013                         return NULL;
5014                 }
5015
5016                 if (pmap_pte_w(pmap, ptep)) {
5017                         atomic_add_long(&pt_pv->pv_pmap->pm_stats.wired_count,
5018                                         -1);
5019                 }
5020                 /* XXX else return NULL so caller doesn't unwire m ? */
5021
5022                 atomic_clear_long(ptep, pmap->pmap_bits[PG_W_IDX]);
5023
5024                 pa = *ptep & PG_FRAME;
5025                 m = PHYS_TO_VM_PAGE(pa);        /* held by wired count */
5026                 pv_put(pt_pv);
5027         }
5028         return m;
5029 }
5030
5031 /*
5032  * Copy the range specified by src_addr/len from the source map to
5033  * the range dst_addr/len in the destination map.
5034  *
5035  * This routine is only advisory and need not do anything.
5036  */
5037 void
5038 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, 
5039           vm_size_t len, vm_offset_t src_addr)
5040 {
5041 }       
5042
5043 /*
5044  * pmap_zero_page:
5045  *
5046  *      Zero the specified physical page.
5047  *
5048  *      This function may be called from an interrupt and no locking is
5049  *      required.
5050  */
5051 void
5052 pmap_zero_page(vm_paddr_t phys)
5053 {
5054         vm_offset_t va = PHYS_TO_DMAP(phys);
5055
5056         pagezero((void *)va);
5057 }
5058
5059 /*
5060  * pmap_zero_page:
5061  *
5062  *      Zero part of a physical page by mapping it into memory and clearing
5063  *      its contents with bzero.
5064  *
5065  *      off and size may not cover an area beyond a single hardware page.
5066  */
5067 void
5068 pmap_zero_page_area(vm_paddr_t phys, int off, int size)
5069 {
5070         vm_offset_t virt = PHYS_TO_DMAP(phys);
5071
5072         bzero((char *)virt + off, size);
5073 }
5074
5075 /*
5076  * pmap_copy_page:
5077  *
5078  *      Copy the physical page from the source PA to the target PA.
5079  *      This function may be called from an interrupt.  No locking
5080  *      is required.
5081  */
5082 void
5083 pmap_copy_page(vm_paddr_t src, vm_paddr_t dst)
5084 {
5085         vm_offset_t src_virt, dst_virt;
5086
5087         src_virt = PHYS_TO_DMAP(src);
5088         dst_virt = PHYS_TO_DMAP(dst);
5089         bcopy((void *)src_virt, (void *)dst_virt, PAGE_SIZE);
5090 }
5091
5092 /*
5093  * pmap_copy_page_frag:
5094  *
5095  *      Copy the physical page from the source PA to the target PA.
5096  *      This function may be called from an interrupt.  No locking
5097  *      is required.
5098  */
5099 void
5100 pmap_copy_page_frag(vm_paddr_t src, vm_paddr_t dst, size_t bytes)
5101 {
5102         vm_offset_t src_virt, dst_virt;
5103
5104         src_virt = PHYS_TO_DMAP(src);
5105         dst_virt = PHYS_TO_DMAP(dst);
5106
5107         bcopy((char *)src_virt + (src & PAGE_MASK),
5108               (char *)dst_virt + (dst & PAGE_MASK),
5109               bytes);
5110 }
5111
5112 /*
5113  * Returns true if the pmap's pv is one of the first 16 pvs linked to from
5114  * this page.  This count may be changed upwards or downwards in the future;
5115  * it is only necessary that true be returned for a small subset of pmaps
5116  * for proper page aging.
5117  */
5118 boolean_t
5119 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
5120 {
5121         pv_entry_t pv;
5122         int loops = 0;
5123
5124         if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
5125                 return FALSE;
5126
5127         vm_page_spin_lock(m);
5128         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
5129                 if (pv->pv_pmap == pmap) {
5130                         vm_page_spin_unlock(m);
5131                         return TRUE;
5132                 }
5133                 loops++;
5134                 if (loops >= 16)
5135                         break;
5136         }
5137         vm_page_spin_unlock(m);
5138         return (FALSE);
5139 }
5140
5141 /*
5142  * Remove all pages from specified address space this aids process exit
5143  * speeds.  Also, this code may be special cased for the current process
5144  * only.
5145  */
5146 void
5147 pmap_remove_pages(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
5148 {
5149         pmap_remove_noinval(pmap, sva, eva);
5150         cpu_invltlb();
5151 }
5152
5153 /*
5154  * pmap_testbit tests bits in pte's note that the testbit/clearbit
5155  * routines are inline, and a lot of things compile-time evaluate.
5156  */
5157 static
5158 boolean_t
5159 pmap_testbit(vm_page_t m, int bit)
5160 {
5161         pv_entry_t pv;
5162         pt_entry_t *pte;
5163         pmap_t pmap;
5164
5165         if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
5166                 return FALSE;
5167
5168         if (TAILQ_FIRST(&m->md.pv_list) == NULL)
5169                 return FALSE;
5170         vm_page_spin_lock(m);
5171         if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
5172                 vm_page_spin_unlock(m);
5173                 return FALSE;
5174         }
5175
5176         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
5177
5178 #if defined(PMAP_DIAGNOSTIC)
5179                 if (pv->pv_pmap == NULL) {
5180                         kprintf("Null pmap (tb) at pindex: %"PRIu64"\n",
5181                             pv->pv_pindex);
5182                         continue;
5183                 }
5184 #endif
5185                 pmap = pv->pv_pmap;
5186
5187                 /*
5188                  * If the bit being tested is the modified bit, then
5189                  * mark clean_map and ptes as never
5190                  * modified.
5191                  *
5192                  * WARNING!  Because we do not lock the pv, *pte can be in a
5193                  *           state of flux.  Despite this the value of *pte
5194                  *           will still be related to the vm_page in some way
5195                  *           because the pv cannot be destroyed as long as we
5196                  *           hold the vm_page spin lock.
5197                  */
5198                 if (bit == PG_A_IDX || bit == PG_M_IDX) {
5199                                 //& (pmap->pmap_bits[PG_A_IDX] | pmap->pmap_bits[PG_M_IDX])) {
5200                         if (!pmap_track_modified(pv->pv_pindex))
5201                                 continue;
5202                 }
5203
5204                 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
5205                 if (*pte & pmap->pmap_bits[bit]) {
5206                         vm_page_spin_unlock(m);
5207                         return TRUE;
5208                 }
5209         }
5210         vm_page_spin_unlock(m);
5211         return (FALSE);
5212 }
5213
5214 /*
5215  * This routine is used to modify bits in ptes.  Only one bit should be
5216  * specified.  PG_RW requires special handling.
5217  *
5218  * Caller must NOT hold any spin locks
5219  */
5220 static __inline
5221 void
5222 pmap_clearbit(vm_page_t m, int bit_index)
5223 {
5224         pv_entry_t pv;
5225         pt_entry_t *pte;
5226         pt_entry_t pbits;
5227         pmap_t pmap;
5228
5229         if (bit_index == PG_RW_IDX)
5230                 vm_page_flag_clear(m, PG_WRITEABLE);
5231         if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
5232                 return;
5233         }
5234
5235         /*
5236          * PG_M or PG_A case
5237          *
5238          * Loop over all current mappings setting/clearing as appropos If
5239          * setting RO do we need to clear the VAC?
5240          *
5241          * NOTE: When clearing PG_M we could also (not implemented) drop
5242          *       through to the PG_RW code and clear PG_RW too, forcing
5243          *       a fault on write to redetect PG_M for virtual kernels, but
5244          *       it isn't necessary since virtual kernels invalidate the
5245          *       pte when they clear the VPTE_M bit in their virtual page
5246          *       tables.
5247          *
5248          * NOTE: Does not re-dirty the page when clearing only PG_M.
5249          *
5250          * NOTE: Because we do not lock the pv, *pte can be in a state of
5251          *       flux.  Despite this the value of *pte is still somewhat
5252          *       related while we hold the vm_page spin lock.
5253          *
5254          *       *pte can be zero due to this race.  Since we are clearing
5255          *       bits we basically do no harm when this race  ccurs.
5256          */
5257         if (bit_index != PG_RW_IDX) {
5258                 vm_page_spin_lock(m);
5259                 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
5260 #if defined(PMAP_DIAGNOSTIC)
5261                         if (pv->pv_pmap == NULL) {
5262                                 kprintf("Null pmap (cb) at pindex: %"PRIu64"\n",
5263                                     pv->pv_pindex);
5264                                 continue;
5265                         }
5266 #endif
5267                         pmap = pv->pv_pmap;
5268                         pte = pmap_pte_quick(pv->pv_pmap,
5269                                              pv->pv_pindex << PAGE_SHIFT);
5270                         pbits = *pte;
5271                         if (pbits & pmap->pmap_bits[bit_index])
5272                                 atomic_clear_long(pte, pmap->pmap_bits[bit_index]);
5273                 }
5274                 vm_page_spin_unlock(m);
5275                 return;
5276         }
5277
5278         /*
5279          * Clear PG_RW.  Also clears PG_M and marks the page dirty if PG_M
5280          * was set.
5281          */
5282 restart:
5283         vm_page_spin_lock(m);
5284         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
5285                 /*
5286                  * don't write protect pager mappings
5287                  */
5288                 if (!pmap_track_modified(pv->pv_pindex))
5289                         continue;
5290
5291 #if defined(PMAP_DIAGNOSTIC)
5292                 if (pv->pv_pmap == NULL) {
5293                         kprintf("Null pmap (cb) at pindex: %"PRIu64"\n",
5294                             pv->pv_pindex);
5295                         continue;
5296                 }
5297 #endif
5298                 pmap = pv->pv_pmap;
5299                 /*
5300                  * Skip pages which do not have PG_RW set.
5301                  */
5302                 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
5303                 if ((*pte & pmap->pmap_bits[PG_RW_IDX]) == 0)
5304                         continue;
5305
5306                 /*
5307                  * Lock the PV
5308                  */
5309                 if (pv_hold_try(pv)) {
5310                         vm_page_spin_unlock(m);
5311                 } else {
5312                         vm_page_spin_unlock(m);
5313                         pv_lock(pv);    /* held, now do a blocking lock */
5314                 }
5315                 if (pv->pv_pmap != pmap || pv->pv_m != m) {
5316                         pv_put(pv);     /* and release */
5317                         goto restart;   /* anything could have happened */
5318                 }
5319                 KKASSERT(pv->pv_pmap == pmap);
5320                 for (;;) {
5321                         pt_entry_t nbits;
5322
5323                         pbits = *pte;
5324                         cpu_ccfence();
5325                         nbits = pbits & ~(pmap->pmap_bits[PG_RW_IDX] |
5326                                           pmap->pmap_bits[PG_M_IDX]);
5327                         if (pmap_inval_smp_cmpset(pmap,
5328                                      ((vm_offset_t)pv->pv_pindex << PAGE_SHIFT),
5329                                      pte, pbits, nbits)) {
5330                                 break;
5331                         }
5332                         cpu_pause();
5333                 }
5334                 vm_page_spin_lock(m);
5335
5336                 /*
5337                  * If PG_M was found to be set while we were clearing PG_RW
5338                  * we also clear PG_M (done above) and mark the page dirty.
5339                  * Callers expect this behavior.
5340                  */
5341                 if (pbits & pmap->pmap_bits[PG_M_IDX])
5342                         vm_page_dirty(m);
5343                 pv_put(pv);
5344         }
5345         vm_page_spin_unlock(m);
5346 }
5347
5348 /*
5349  * Lower the permission for all mappings to a given page.
5350  *
5351  * Page must be busied by caller.  Because page is busied by caller this
5352  * should not be able to race a pmap_enter().
5353  */
5354 void
5355 pmap_page_protect(vm_page_t m, vm_prot_t prot)
5356 {
5357         /* JG NX support? */
5358         if ((prot & VM_PROT_WRITE) == 0) {
5359                 if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
5360                         /*
5361                          * NOTE: pmap_clearbit(.. PG_RW) also clears
5362                          *       the PG_WRITEABLE flag in (m).
5363                          */
5364                         pmap_clearbit(m, PG_RW_IDX);
5365                 } else {
5366                         pmap_remove_all(m);
5367                 }
5368         }
5369 }
5370
5371 vm_paddr_t
5372 pmap_phys_address(vm_pindex_t ppn)
5373 {
5374         return (x86_64_ptob(ppn));
5375 }
5376
5377 /*
5378  * Return a count of reference bits for a page, clearing those bits.
5379  * It is not necessary for every reference bit to be cleared, but it
5380  * is necessary that 0 only be returned when there are truly no
5381  * reference bits set.
5382  *
5383  * XXX: The exact number of bits to check and clear is a matter that
5384  * should be tested and standardized at some point in the future for
5385  * optimal aging of shared pages.
5386  *
5387  * This routine may not block.
5388  */
5389 int
5390 pmap_ts_referenced(vm_page_t m)
5391 {
5392         pv_entry_t pv;
5393         pt_entry_t *pte;
5394         pmap_t pmap;
5395         int rtval = 0;
5396
5397         if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
5398                 return (rtval);
5399
5400         vm_page_spin_lock(m);
5401         TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
5402                 if (!pmap_track_modified(pv->pv_pindex))
5403                         continue;
5404                 pmap = pv->pv_pmap;
5405                 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
5406                 if (pte && (*pte & pmap->pmap_bits[PG_A_IDX])) {
5407                         atomic_clear_long(pte, pmap->pmap_bits[PG_A_IDX]);
5408                         rtval++;
5409                         if (rtval > 4)
5410                                 break;
5411                 }
5412         }
5413         vm_page_spin_unlock(m);
5414         return (rtval);
5415 }
5416
5417 /*
5418  *      pmap_is_modified:
5419  *
5420  *      Return whether or not the specified physical page was modified
5421  *      in any physical maps.
5422  */
5423 boolean_t
5424 pmap_is_modified(vm_page_t m)
5425 {
5426         boolean_t res;
5427
5428         res = pmap_testbit(m, PG_M_IDX);
5429         return (res);
5430 }
5431
5432 /*
5433  *      Clear the modify bits on the specified physical page.
5434  */
5435 void
5436 pmap_clear_modify(vm_page_t m)
5437 {
5438         pmap_clearbit(m, PG_M_IDX);
5439 }
5440
5441 /*
5442  *      pmap_clear_reference:
5443  *
5444  *      Clear the reference bit on the specified physical page.
5445  */
5446 void
5447 pmap_clear_reference(vm_page_t m)
5448 {
5449         pmap_clearbit(m, PG_A_IDX);
5450 }
5451
5452 /*
5453  * Miscellaneous support routines follow
5454  */
5455
5456 static
5457 void
5458 i386_protection_init(void)
5459 {
5460         int *kp, prot;
5461
5462         /* JG NX support may go here; No VM_PROT_EXECUTE ==> set NX bit  */
5463         kp = protection_codes;
5464         for (prot = 0; prot < PROTECTION_CODES_SIZE; prot++) {
5465                 switch (prot) {
5466                 case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
5467                         /*
5468                          * Read access is also 0. There isn't any execute bit,
5469                          * so just make it readable.
5470                          */
5471                 case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
5472                 case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
5473                 case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
5474                         *kp++ = 0;
5475                         break;
5476                 case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
5477                 case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
5478                 case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
5479                 case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
5480                         *kp++ = pmap_bits_default[PG_RW_IDX];
5481                         break;
5482                 }
5483         }
5484 }
5485
5486 /*
5487  * Map a set of physical memory pages into the kernel virtual
5488  * address space. Return a pointer to where it is mapped. This
5489  * routine is intended to be used for mapping device memory,
5490  * NOT real memory.
5491  *
5492  * NOTE: We can't use pgeflag unless we invalidate the pages one at
5493  *       a time.
5494  *
5495  * NOTE: The PAT attributes {WRITE_BACK, WRITE_THROUGH, UNCACHED, UNCACHEABLE}
5496  *       work whether the cpu supports PAT or not.  The remaining PAT
5497  *       attributes {WRITE_PROTECTED, WRITE_COMBINING} only work if the cpu
5498  *       supports PAT.
5499  */
5500 void *
5501 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
5502 {
5503         return(pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
5504 }
5505
5506 void *
5507 pmap_mapdev_uncacheable(vm_paddr_t pa, vm_size_t size)
5508 {
5509         return(pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
5510 }
5511
5512 void *
5513 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
5514 {
5515         return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
5516 }
5517
5518 /*
5519  * Map a set of physical memory pages into the kernel virtual
5520  * address space. Return a pointer to where it is mapped. This
5521  * routine is intended to be used for mapping device memory,
5522  * NOT real memory.
5523  */
5524 void *
5525 pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
5526 {
5527         vm_offset_t va, tmpva, offset;
5528         pt_entry_t *pte;
5529         vm_size_t tmpsize;
5530
5531         offset = pa & PAGE_MASK;
5532         size = roundup(offset + size, PAGE_SIZE);
5533
5534         va = kmem_alloc_nofault(&kernel_map, size, VM_SUBSYS_MAPDEV, PAGE_SIZE);
5535         if (va == 0)
5536                 panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
5537
5538         pa = pa & ~PAGE_MASK;
5539         for (tmpva = va, tmpsize = size; tmpsize > 0;) {
5540                 pte = vtopte(tmpva);
5541                 *pte = pa |
5542                     kernel_pmap.pmap_bits[PG_RW_IDX] |
5543                     kernel_pmap.pmap_bits[PG_V_IDX] | /* pgeflag | */
5544                     kernel_pmap.pmap_cache_bits[mode];
5545                 tmpsize -= PAGE_SIZE;
5546                 tmpva += PAGE_SIZE;
5547                 pa += PAGE_SIZE;
5548         }
5549         pmap_invalidate_range(&kernel_pmap, va, va + size);
5550         pmap_invalidate_cache_range(va, va + size);
5551
5552         return ((void *)(va + offset));
5553 }
5554
5555 void
5556 pmap_unmapdev(vm_offset_t va, vm_size_t size)
5557 {
5558         vm_offset_t base, offset;
5559
5560         base = va & ~PAGE_MASK;
5561         offset = va & PAGE_MASK;
5562         size = roundup(offset + size, PAGE_SIZE);
5563         pmap_qremove(va, size >> PAGE_SHIFT);
5564         kmem_free(&kernel_map, base, size);
5565 }
5566
5567 /*
5568  * Sets the memory attribute for the specified page.
5569  */
5570 void
5571 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
5572 {
5573
5574     m->pat_mode = ma;
5575
5576     /*
5577      * If "m" is a normal page, update its direct mapping.  This update
5578      * can be relied upon to perform any cache operations that are
5579      * required for data coherence.
5580      */
5581     if ((m->flags & PG_FICTITIOUS) == 0)
5582         pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), 1, m->pat_mode);
5583 }
5584
5585 /*
5586  * Change the PAT attribute on an existing kernel memory map.  Caller
5587  * must ensure that the virtual memory in question is not accessed
5588  * during the adjustment.
5589  */
5590 void
5591 pmap_change_attr(vm_offset_t va, vm_size_t count, int mode)
5592 {
5593         pt_entry_t *pte;
5594         vm_offset_t base;
5595         int changed = 0;
5596
5597         if (va == 0)
5598                 panic("pmap_change_attr: va is NULL");
5599         base = trunc_page(va);
5600
5601         while (count) {
5602                 pte = vtopte(va);
5603                 *pte = (*pte & ~(pt_entry_t)(kernel_pmap.pmap_cache_mask)) |
5604                        kernel_pmap.pmap_cache_bits[mode];
5605                 --count;
5606                 va += PAGE_SIZE;
5607         }
5608
5609         changed = 1;    /* XXX: not optimal */
5610
5611         /*
5612          * Flush CPU caches if required to make sure any data isn't cached that
5613          * shouldn't be, etc.
5614          */
5615         if (changed) {
5616                 pmap_invalidate_range(&kernel_pmap, base, va);
5617                 pmap_invalidate_cache_range(base, va);
5618         }
5619 }
5620
5621 /*
5622  * perform the pmap work for mincore
5623  */
5624 int
5625 pmap_mincore(pmap_t pmap, vm_offset_t addr)
5626 {
5627         pt_entry_t *ptep, pte;
5628         vm_page_t m;
5629         int val = 0;
5630         
5631         ptep = pmap_pte(pmap, addr);
5632
5633         if (ptep && (pte = *ptep) != 0) {
5634                 vm_offset_t pa;
5635
5636                 val = MINCORE_INCORE;
5637                 if ((pte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0)
5638                         goto done;
5639
5640                 pa = pte & PG_FRAME;
5641
5642                 if (pte & pmap->pmap_bits[PG_DEVICE_IDX])
5643                         m = NULL;
5644                 else
5645                         m = PHYS_TO_VM_PAGE(pa);
5646
5647                 /*
5648                  * Modified by us
5649                  */
5650                 if (pte & pmap->pmap_bits[PG_M_IDX])
5651                         val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
5652                 /*
5653                  * Modified by someone
5654                  */
5655                 else if (m && (m->dirty || pmap_is_modified(m)))
5656                         val |= MINCORE_MODIFIED_OTHER;
5657                 /*
5658                  * Referenced by us
5659                  */
5660                 if (pte & pmap->pmap_bits[PG_A_IDX])
5661                         val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
5662
5663                 /*
5664                  * Referenced by someone
5665                  */
5666                 else if (m && ((m->flags & PG_REFERENCED) ||
5667                                 pmap_ts_referenced(m))) {
5668                         val |= MINCORE_REFERENCED_OTHER;
5669                         vm_page_flag_set(m, PG_REFERENCED);
5670                 }
5671         } 
5672 done:
5673
5674         return val;
5675 }
5676
5677 /*
5678  * Replace p->p_vmspace with a new one.  If adjrefs is non-zero the new
5679  * vmspace will be ref'd and the old one will be deref'd.
5680  *
5681  * The vmspace for all lwps associated with the process will be adjusted
5682  * and cr3 will be reloaded if any lwp is the current lwp.
5683  *
5684  * The process must hold the vmspace->vm_map.token for oldvm and newvm
5685  */
5686 void
5687 pmap_replacevm(struct proc *p, struct vmspace *newvm, int adjrefs)
5688 {
5689         struct vmspace *oldvm;
5690         struct lwp *lp;
5691
5692         oldvm = p->p_vmspace;
5693         if (oldvm != newvm) {
5694                 if (adjrefs)
5695                         vmspace_ref(newvm);
5696                 p->p_vmspace = newvm;
5697                 KKASSERT(p->p_nthreads == 1);
5698                 lp = RB_ROOT(&p->p_lwp_tree);
5699                 pmap_setlwpvm(lp, newvm);
5700                 if (adjrefs)
5701                         vmspace_rel(oldvm);
5702         }
5703 }
5704
5705 /*
5706  * Set the vmspace for a LWP.  The vmspace is almost universally set the
5707  * same as the process vmspace, but virtual kernels need to swap out contexts
5708  * on a per-lwp basis.
5709  *
5710  * Caller does not necessarily hold any vmspace tokens.  Caller must control
5711  * the lwp (typically be in the context of the lwp).  We use a critical
5712  * section to protect against statclock and hardclock (statistics collection).
5713  */
5714 void
5715 pmap_setlwpvm(struct lwp *lp, struct vmspace *newvm)
5716 {
5717         struct vmspace *oldvm;
5718         struct pmap *pmap;
5719
5720         oldvm = lp->lwp_vmspace;
5721
5722         if (oldvm != newvm) {
5723                 crit_enter();
5724                 lp->lwp_vmspace = newvm;
5725                 if (curthread->td_lwp == lp) {
5726                         pmap = vmspace_pmap(newvm);
5727                         ATOMIC_CPUMASK_ORBIT(pmap->pm_active, mycpu->gd_cpuid);
5728                         if (pmap->pm_active_lock & CPULOCK_EXCL)
5729                                 pmap_interlock_wait(newvm);
5730 #if defined(SWTCH_OPTIM_STATS)
5731                         tlb_flush_count++;
5732 #endif
5733                         if (pmap->pmap_bits[TYPE_IDX] == REGULAR_PMAP) {
5734                                 curthread->td_pcb->pcb_cr3 = vtophys(pmap->pm_pml4);
5735                         } else if (pmap->pmap_bits[TYPE_IDX] == EPT_PMAP) {
5736                                 curthread->td_pcb->pcb_cr3 = KPML4phys;
5737                         } else {
5738                                 panic("pmap_setlwpvm: unknown pmap type\n");
5739                         }
5740                         load_cr3(curthread->td_pcb->pcb_cr3);
5741                         pmap = vmspace_pmap(oldvm);
5742                         ATOMIC_CPUMASK_NANDBIT(pmap->pm_active,
5743                                                mycpu->gd_cpuid);
5744                 }
5745                 crit_exit();
5746         }
5747 }
5748
5749 /*
5750  * Called when switching to a locked pmap, used to interlock against pmaps
5751  * undergoing modifications to prevent us from activating the MMU for the
5752  * target pmap until all such modifications have completed.  We have to do
5753  * this because the thread making the modifications has already set up its
5754  * SMP synchronization mask.
5755  *
5756  * This function cannot sleep!
5757  *
5758  * No requirements.
5759  */
5760 void
5761 pmap_interlock_wait(struct vmspace *vm)
5762 {
5763         struct pmap *pmap = &vm->vm_pmap;
5764
5765         if (pmap->pm_active_lock & CPULOCK_EXCL) {
5766                 crit_enter();
5767                 KKASSERT(curthread->td_critcount >= 2);
5768                 DEBUG_PUSH_INFO("pmap_interlock_wait");
5769                 while (pmap->pm_active_lock & CPULOCK_EXCL) {
5770                         cpu_ccfence();
5771                         lwkt_process_ipiq();
5772                 }
5773                 DEBUG_POP_INFO();
5774                 crit_exit();
5775         }
5776 }
5777
5778 vm_offset_t
5779 pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
5780 {
5781
5782         if ((obj == NULL) || (size < NBPDR) ||
5783             ((obj->type != OBJT_DEVICE) && (obj->type != OBJT_MGTDEVICE))) {
5784                 return addr;
5785         }
5786
5787         addr = roundup2(addr, NBPDR);
5788         return addr;
5789 }
5790
5791 /*
5792  * Used by kmalloc/kfree, page already exists at va
5793  */
5794 vm_page_t
5795 pmap_kvtom(vm_offset_t va)
5796 {
5797         pt_entry_t *ptep = vtopte(va);
5798
5799         KKASSERT((*ptep & kernel_pmap.pmap_bits[PG_DEVICE_IDX]) == 0);
5800         return(PHYS_TO_VM_PAGE(*ptep & PG_FRAME));
5801 }
5802
5803 /*
5804  * Initialize machine-specific shared page directory support.  This
5805  * is executed when a VM object is created.
5806  */
5807 void
5808 pmap_object_init(vm_object_t object)
5809 {
5810         object->md.pmap_rw = NULL;
5811         object->md.pmap_ro = NULL;
5812 }
5813
5814 /*
5815  * Clean up machine-specific shared page directory support.  This
5816  * is executed when a VM object is destroyed.
5817  */
5818 void
5819 pmap_object_free(vm_object_t object)
5820 {
5821         pmap_t pmap;
5822
5823         if ((pmap = object->md.pmap_rw) != NULL) {
5824                 object->md.pmap_rw = NULL;
5825                 pmap_remove_noinval(pmap,
5826                                   VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
5827                 CPUMASK_ASSZERO(pmap->pm_active);
5828                 pmap_release(pmap);
5829                 pmap_puninit(pmap);
5830                 kfree(pmap, M_OBJPMAP);
5831         }
5832         if ((pmap = object->md.pmap_ro) != NULL) {
5833                 object->md.pmap_ro = NULL;
5834                 pmap_remove_noinval(pmap,
5835                                   VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
5836                 CPUMASK_ASSZERO(pmap->pm_active);
5837                 pmap_release(pmap);
5838                 pmap_puninit(pmap);
5839                 kfree(pmap, M_OBJPMAP);
5840         }
5841 }
5842
5843 /*
5844  * pmap_pgscan_callback - Used by pmap_pgscan to acquire the related
5845  * VM page and issue a pginfo->callback.
5846  *
5847  * We are expected to dispose of any non-NULL pte_pv.
5848  */
5849 static
5850 void
5851 pmap_pgscan_callback(pmap_t pmap, struct pmap_scan_info *info,
5852                       pv_entry_t pte_pv, vm_pindex_t *pte_placemark,
5853                       pv_entry_t pt_pv, int sharept,
5854                       vm_offset_t va, pt_entry_t *ptep, void *arg)
5855 {
5856         struct pmap_pgscan_info *pginfo = arg;
5857         vm_page_t m;
5858
5859         if (pte_pv) {
5860                 /*
5861                  * Try to busy the page while we hold the pte_pv locked.
5862                  */
5863                 m = PHYS_TO_VM_PAGE(*ptep & PG_FRAME);
5864                 if (vm_page_busy_try(m, TRUE) == 0) {
5865                         if (m == PHYS_TO_VM_PAGE(*ptep & PG_FRAME)) {
5866                                 /*
5867                                  * The callback is issued with the pte_pv
5868                                  * unlocked and put away, and the pt_pv
5869                                  * unlocked.
5870                                  */
5871                                 pv_put(pte_pv);
5872                                 if (pt_pv) {
5873                                         vm_page_wire_quick(pt_pv->pv_m);
5874                                         pv_unlock(pt_pv);
5875                                 }
5876                                 if (pginfo->callback(pginfo, va, m) < 0)
5877                                         info->stop = 1;
5878                                 if (pt_pv) {
5879                                         pv_lock(pt_pv);
5880                                         vm_page_unwire_quick(pt_pv->pv_m);
5881                                 }
5882                         } else {
5883                                 vm_page_wakeup(m);
5884                                 pv_put(pte_pv);
5885                         }
5886                 } else {
5887                         ++pginfo->busycount;
5888                         pv_put(pte_pv);
5889                 }
5890         } else if (sharept) {
5891                 /* shared page table */
5892                 pv_placemarker_wakeup(pmap, pte_placemark);
5893         } else {
5894                 /* else unmanaged page */
5895                 pv_placemarker_wakeup(pmap, pte_placemark);
5896         }
5897 }
5898
5899 void
5900 pmap_pgscan(struct pmap_pgscan_info *pginfo)
5901 {
5902         struct pmap_scan_info info;
5903
5904         pginfo->offset = pginfo->beg_addr;
5905         info.pmap = pginfo->pmap;
5906         info.sva = pginfo->beg_addr;
5907         info.eva = pginfo->end_addr;
5908         info.func = pmap_pgscan_callback;
5909         info.arg = pginfo;
5910         pmap_scan(&info, 0);
5911         if (info.stop == 0)
5912                 pginfo->offset = pginfo->end_addr;
5913 }
5914
5915 /*
5916  * Wait for a placemarker that we do not own to clear.  The placemarker
5917  * in question is not necessary set to the pindex we want, we may have
5918  * to wait on the element because we want to reserve it ourselves.
5919  */
5920 static
5921 void
5922 pv_placemarker_wait(pmap_t pmap, vm_pindex_t *pmark)
5923 {
5924         spin_lock(&pmap->pm_spin);
5925         if (*pmark != PM_NOPLACEMARK) {
5926                 atomic_set_long(pmark, PM_PLACEMARK_WAKEUP);
5927                 ssleep(pmark, &pmap->pm_spin, 0, "pvplw", 0);
5928         }
5929         spin_unlock(&pmap->pm_spin);
5930 }
5931
5932 /*
5933  * Wakeup a placemarker that we own.  Replace the entry with
5934  * PM_NOPLACEMARK and issue a wakeup() if necessary.
5935  */
5936 static
5937 void
5938 pv_placemarker_wakeup(pmap_t pmap, vm_pindex_t *pmark)
5939 {
5940         vm_pindex_t pindex;
5941
5942         spin_lock(&pmap->pm_spin);
5943         pindex = atomic_swap_long(pmark, PM_NOPLACEMARK);
5944         spin_unlock(&pmap->pm_spin);
5945         KKASSERT(pindex != PM_NOPLACEMARK);
5946         if (pindex & PM_PLACEMARK_WAKEUP)
5947                 wakeup(pmark);
5948 }