drm/i915: Use iounmap() everywhere
[dragonfly.git] / sys / dev / drm / i915 / i915_gem_gtt.c
1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25
26 #include <linux/seq_file.h>
27 #include <drm/drmP.h>
28 #include <drm/i915_drm.h>
29 #include "i915_drv.h"
30 #include "i915_vgpu.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33
34 #include <linux/bitmap.h>
35 #include <linux/highmem.h>
36
37 /**
38  * DOC: Global GTT views
39  *
40  * Background and previous state
41  *
42  * Historically objects could exists (be bound) in global GTT space only as
43  * singular instances with a view representing all of the object's backing pages
44  * in a linear fashion. This view will be called a normal view.
45  *
46  * To support multiple views of the same object, where the number of mapped
47  * pages is not equal to the backing store, or where the layout of the pages
48  * is not linear, concept of a GGTT view was added.
49  *
50  * One example of an alternative view is a stereo display driven by a single
51  * image. In this case we would have a framebuffer looking like this
52  * (2x2 pages):
53  *
54  *    12
55  *    34
56  *
57  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
58  * rendering. In contrast, fed to the display engine would be an alternative
59  * view which could look something like this:
60  *
61  *   1212
62  *   3434
63  *
64  * In this example both the size and layout of pages in the alternative view is
65  * different from the normal view.
66  *
67  * Implementation and usage
68  *
69  * GGTT views are implemented using VMAs and are distinguished via enum
70  * i915_ggtt_view_type and struct i915_ggtt_view.
71  *
72  * A new flavour of core GEM functions which work with GGTT bound objects were
73  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
74  * renaming  in large amounts of code. They take the struct i915_ggtt_view
75  * parameter encapsulating all metadata required to implement a view.
76  *
77  * As a helper for callers which are only interested in the normal view,
78  * globally const i915_ggtt_view_normal singleton instance exists. All old core
79  * GEM API functions, the ones not taking the view parameter, are operating on,
80  * or with the normal GGTT view.
81  *
82  * Code wanting to add or use a new GGTT view needs to:
83  *
84  * 1. Add a new enum with a suitable name.
85  * 2. Extend the metadata in the i915_ggtt_view structure if required.
86  * 3. Add support to i915_get_vma_pages().
87  *
88  * New views are required to build a scatter-gather table from within the
89  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
90  * exists for the lifetime of an VMA.
91  *
92  * Core API is designed to have copy semantics which means that passed in
93  * struct i915_ggtt_view does not need to be persistent (left around after
94  * calling the core API functions).
95  *
96  */
97
98 static int
99 i915_get_ggtt_vma_pages(struct i915_vma *vma);
100
101 const struct i915_ggtt_view i915_ggtt_view_normal;
102 const struct i915_ggtt_view i915_ggtt_view_rotated = {
103         .type = I915_GGTT_VIEW_ROTATED
104 };
105
106 static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
107 {
108         bool has_aliasing_ppgtt;
109         bool has_full_ppgtt;
110
111         has_aliasing_ppgtt = INTEL_INFO(dev)->gen >= 6;
112         has_full_ppgtt = INTEL_INFO(dev)->gen >= 7;
113
114         if (intel_vgpu_active(dev))
115                 has_full_ppgtt = false; /* emulation is too hard */
116
117         /*
118          * We don't allow disabling PPGTT for gen9+ as it's a requirement for
119          * execlists, the sole mechanism available to submit work.
120          */
121         if (INTEL_INFO(dev)->gen < 9 &&
122             (enable_ppgtt == 0 || !has_aliasing_ppgtt))
123                 return 0;
124
125         if (enable_ppgtt == 1)
126                 return 1;
127
128         if (enable_ppgtt == 2 && has_full_ppgtt)
129                 return 2;
130
131 #ifdef CONFIG_INTEL_IOMMU
132         /* Disable ppgtt on SNB if VT-d is on. */
133         if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
134                 DRM_INFO("Disabling PPGTT because VT-d is on\n");
135                 return 0;
136         }
137 #endif
138
139         /* Early VLV doesn't have this */
140         if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
141             dev->pdev->revision < 0xb) {
142                 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
143                 return 0;
144         }
145
146         if (INTEL_INFO(dev)->gen >= 8 && i915.enable_execlists)
147                 return 2;
148         else
149                 return has_aliasing_ppgtt ? 1 : 0;
150 }
151
152 static int ppgtt_bind_vma(struct i915_vma *vma,
153                           enum i915_cache_level cache_level,
154                           u32 unused)
155 {
156         u32 pte_flags = 0;
157         const unsigned int num_entries = vma->obj->base.size >> PAGE_SHIFT;
158
159         /* Currently applicable only to VLV */
160         if (vma->obj->gt_ro)
161                 pte_flags |= PTE_READ_ONLY;
162
163         vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
164                                 num_entries,
165                                 cache_level, pte_flags);
166
167         return 0;
168 }
169
170 static void ppgtt_unbind_vma(struct i915_vma *vma)
171 {
172         vma->vm->clear_range(vma->vm,
173                              vma->node.start,
174                              vma->obj->base.size,
175                              true);
176 }
177
178 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
179                                   enum i915_cache_level level,
180                                   bool valid)
181 {
182         gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
183         pte |= addr;
184
185         switch (level) {
186         case I915_CACHE_NONE:
187                 pte |= PPAT_UNCACHED_INDEX;
188                 break;
189         case I915_CACHE_WT:
190                 pte |= PPAT_DISPLAY_ELLC_INDEX;
191                 break;
192         default:
193                 pte |= PPAT_CACHED_INDEX;
194                 break;
195         }
196
197         return pte;
198 }
199
200 static gen8_pde_t gen8_pde_encode(struct drm_device *dev,
201                                   dma_addr_t addr,
202                                   enum i915_cache_level level)
203 {
204         gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
205         pde |= addr;
206         if (level != I915_CACHE_NONE)
207                 pde |= PPAT_CACHED_PDE_INDEX;
208         else
209                 pde |= PPAT_UNCACHED_INDEX;
210         return pde;
211 }
212
213 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
214                                  enum i915_cache_level level,
215                                  bool valid, u32 unused)
216 {
217         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
218         pte |= GEN6_PTE_ADDR_ENCODE(addr);
219
220         switch (level) {
221         case I915_CACHE_L3_LLC:
222         case I915_CACHE_LLC:
223                 pte |= GEN6_PTE_CACHE_LLC;
224                 break;
225         case I915_CACHE_NONE:
226                 pte |= GEN6_PTE_UNCACHED;
227                 break;
228         default:
229                 MISSING_CASE(level);
230         }
231
232         return pte;
233 }
234
235 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
236                                  enum i915_cache_level level,
237                                  bool valid, u32 unused)
238 {
239         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
240         pte |= GEN6_PTE_ADDR_ENCODE(addr);
241
242         switch (level) {
243         case I915_CACHE_L3_LLC:
244                 pte |= GEN7_PTE_CACHE_L3_LLC;
245                 break;
246         case I915_CACHE_LLC:
247                 pte |= GEN6_PTE_CACHE_LLC;
248                 break;
249         case I915_CACHE_NONE:
250                 pte |= GEN6_PTE_UNCACHED;
251                 break;
252         default:
253                 MISSING_CASE(level);
254         }
255
256         return pte;
257 }
258
259 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
260                                  enum i915_cache_level level,
261                                  bool valid, u32 flags)
262 {
263         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
264         pte |= GEN6_PTE_ADDR_ENCODE(addr);
265
266         if (!(flags & PTE_READ_ONLY))
267                 pte |= BYT_PTE_WRITEABLE;
268
269         if (level != I915_CACHE_NONE)
270                 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
271
272         return pte;
273 }
274
275 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
276                                  enum i915_cache_level level,
277                                  bool valid, u32 unused)
278 {
279         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
280         pte |= HSW_PTE_ADDR_ENCODE(addr);
281
282         if (level != I915_CACHE_NONE)
283                 pte |= HSW_WB_LLC_AGE3;
284
285         return pte;
286 }
287
288 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
289                                   enum i915_cache_level level,
290                                   bool valid, u32 unused)
291 {
292         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
293         pte |= HSW_PTE_ADDR_ENCODE(addr);
294
295         switch (level) {
296         case I915_CACHE_NONE:
297                 break;
298         case I915_CACHE_WT:
299                 pte |= HSW_WT_ELLC_LLC_AGE3;
300                 break;
301         default:
302                 pte |= HSW_WB_ELLC_LLC_AGE3;
303                 break;
304         }
305
306         return pte;
307 }
308
309 #define i915_dma_unmap_single(px, dev) \
310         __i915_dma_unmap_single((px)->daddr, dev)
311
312 static void __i915_dma_unmap_single(dma_addr_t daddr,
313                                     struct drm_device *dev)
314 {
315 #if 0
316         struct device *device = &dev->pdev->dev;
317
318         dma_unmap_page(device, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
319 #endif
320 }
321
322 /**
323  * i915_dma_map_single() - Create a dma mapping for a page table/dir/etc.
324  * @px: Page table/dir/etc to get a DMA map for
325  * @dev:        drm device
326  *
327  * Page table allocations are unified across all gens. They always require a
328  * single 4k allocation, as well as a DMA mapping. If we keep the structs
329  * symmetric here, the simple macro covers us for every page table type.
330  *
331  * Return: 0 if success.
332  */
333 #define i915_dma_map_single(px, dev) \
334         i915_dma_map_page_single((px)->page, (dev), &(px)->daddr)
335
336 static int i915_dma_map_page_single(struct vm_page *page,
337                                     struct drm_device *dev,
338                                     dma_addr_t *daddr)
339 {
340         struct device *device = dev->pdev->dev;
341
342         *daddr = dma_map_page(device, page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
343         if (dma_mapping_error(device, *daddr))
344                 return -ENOMEM;
345
346         return 0;
347 }
348
349 static void unmap_and_free_pt(struct i915_page_table *pt,
350                                struct drm_device *dev)
351 {
352         if (WARN_ON(!pt->page))
353                 return;
354
355         i915_dma_unmap_single(pt, dev);
356         __free_page(pt->page);
357         kfree(pt->used_ptes);
358         kfree(pt);
359 }
360
361 static void gen8_initialize_pt(struct i915_address_space *vm,
362                                struct i915_page_table *pt)
363 {
364         gen8_pte_t *pt_vaddr, scratch_pte;
365         int i;
366
367         pt_vaddr = kmap_atomic(pt->page);
368         scratch_pte = gen8_pte_encode(vm->scratch.addr,
369                                       I915_CACHE_LLC, true);
370
371         for (i = 0; i < GEN8_PTES; i++)
372                 pt_vaddr[i] = scratch_pte;
373
374         if (!HAS_LLC(vm->dev))
375                 drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
376         kunmap_atomic(pt_vaddr);
377 }
378
379 static struct i915_page_table *alloc_pt_single(struct drm_device *dev)
380 {
381         struct i915_page_table *pt;
382         const size_t count = INTEL_INFO(dev)->gen >= 8 ?
383                 GEN8_PTES : GEN6_PTES;
384         int ret = -ENOMEM;
385
386         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
387         if (!pt)
388                 return ERR_PTR(-ENOMEM);
389
390         pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
391                                 GFP_KERNEL);
392
393         if (!pt->used_ptes)
394                 goto fail_bitmap;
395
396         pt->page = alloc_page(GFP_KERNEL);
397         if (!pt->page)
398                 goto fail_page;
399
400         ret = i915_dma_map_single(pt, dev);
401         if (ret)
402                 goto fail_dma;
403
404         return pt;
405
406 fail_dma:
407         __free_page(pt->page);
408 fail_page:
409         kfree(pt->used_ptes);
410 fail_bitmap:
411         kfree(pt);
412
413         return ERR_PTR(ret);
414 }
415
416 /**
417  * alloc_pt_range() - Allocate a multiple page tables
418  * @pd:         The page directory which will have at least @count entries
419  *              available to point to the allocated page tables.
420  * @pde:        First page directory entry for which we are allocating.
421  * @count:      Number of pages to allocate.
422  * @dev:        DRM device.
423  *
424  * Allocates multiple page table pages and sets the appropriate entries in the
425  * page table structure within the page directory. Function cleans up after
426  * itself on any failures.
427  *
428  * Return: 0 if allocation succeeded.
429  */
430 static int alloc_pt_range(struct i915_page_directory *pd, uint16_t pde, size_t count,
431                           struct drm_device *dev)
432 {
433         int i, ret;
434
435         /* 512 is the max page tables per page_directory on any platform. */
436         if (WARN_ON(pde + count > I915_PDES))
437                 return -EINVAL;
438
439         for (i = pde; i < pde + count; i++) {
440                 struct i915_page_table *pt = alloc_pt_single(dev);
441
442                 if (IS_ERR(pt)) {
443                         ret = PTR_ERR(pt);
444                         goto err_out;
445                 }
446                 WARN(pd->page_table[i],
447                      "Leaking page directory entry %d (%p)\n",
448                      i, pd->page_table[i]);
449                 pd->page_table[i] = pt;
450         }
451
452         return 0;
453
454 err_out:
455         while (i-- > pde)
456                 unmap_and_free_pt(pd->page_table[i], dev);
457         return ret;
458 }
459
460 static void unmap_and_free_pd(struct i915_page_directory *pd,
461                               struct drm_device *dev)
462 {
463         if (pd->page) {
464                 i915_dma_unmap_single(pd, dev);
465                 __free_page(pd->page);
466                 kfree(pd->used_pdes);
467                 kfree(pd);
468         }
469 }
470
471 static struct i915_page_directory *alloc_pd_single(struct drm_device *dev)
472 {
473         struct i915_page_directory *pd;
474         int ret = -ENOMEM;
475
476         pd = kzalloc(sizeof(*pd), GFP_KERNEL);
477         if (!pd)
478                 return ERR_PTR(-ENOMEM);
479
480         pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
481                                 sizeof(*pd->used_pdes), GFP_KERNEL);
482         if (!pd->used_pdes)
483                 goto free_pd;
484
485         pd->page = alloc_page(GFP_KERNEL);
486         if (!pd->page)
487                 goto free_bitmap;
488
489         ret = i915_dma_map_single(pd, dev);
490         if (ret)
491                 goto free_page;
492
493         return pd;
494
495 free_page:
496         __free_page(pd->page);
497 free_bitmap:
498         kfree(pd->used_pdes);
499 free_pd:
500         kfree(pd);
501
502         return ERR_PTR(ret);
503 }
504
505 /* Broadwell Page Directory Pointer Descriptors */
506 static int gen8_write_pdp(struct intel_engine_cs *ring,
507                           unsigned entry,
508                           dma_addr_t addr)
509 {
510         int ret;
511
512         BUG_ON(entry >= 4);
513
514         ret = intel_ring_begin(ring, 6);
515         if (ret)
516                 return ret;
517
518         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
519         intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
520         intel_ring_emit(ring, upper_32_bits(addr));
521         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
522         intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
523         intel_ring_emit(ring, lower_32_bits(addr));
524         intel_ring_advance(ring);
525
526         return 0;
527 }
528
529 static int gen8_mm_switch(struct i915_hw_ppgtt *ppgtt,
530                           struct intel_engine_cs *ring)
531 {
532         int i, ret;
533
534         for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
535                 struct i915_page_directory *pd = ppgtt->pdp.page_directory[i];
536                 dma_addr_t pd_daddr = pd ? pd->daddr : ppgtt->scratch_pd->daddr;
537                 /* The page directory might be NULL, but we need to clear out
538                  * whatever the previous context might have used. */
539                 ret = gen8_write_pdp(ring, i, pd_daddr);
540                 if (ret)
541                         return ret;
542         }
543
544         return 0;
545 }
546
547 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
548                                    uint64_t start,
549                                    uint64_t length,
550                                    bool use_scratch)
551 {
552         struct i915_hw_ppgtt *ppgtt =
553                 container_of(vm, struct i915_hw_ppgtt, base);
554         gen8_pte_t *pt_vaddr, scratch_pte;
555         unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
556         unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
557         unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
558         unsigned num_entries = length >> PAGE_SHIFT;
559         unsigned last_pte, i;
560
561         scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
562                                       I915_CACHE_LLC, use_scratch);
563
564         while (num_entries) {
565                 struct i915_page_directory *pd;
566                 struct i915_page_table *pt;
567                 struct vm_page *page_table;
568
569                 if (WARN_ON(!ppgtt->pdp.page_directory[pdpe]))
570                         break;
571
572                 pd = ppgtt->pdp.page_directory[pdpe];
573
574                 if (WARN_ON(!pd->page_table[pde]))
575                         break;
576
577                 pt = pd->page_table[pde];
578
579                 if (WARN_ON(!pt->page))
580                         break;
581
582                 page_table = pt->page;
583
584                 last_pte = pte + num_entries;
585                 if (last_pte > GEN8_PTES)
586                         last_pte = GEN8_PTES;
587
588                 pt_vaddr = kmap_atomic(page_table);
589
590                 for (i = pte; i < last_pte; i++) {
591                         pt_vaddr[i] = scratch_pte;
592                         num_entries--;
593                 }
594
595                 if (!HAS_LLC(ppgtt->base.dev))
596                         drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
597                 kunmap_atomic(pt_vaddr);
598
599                 pte = 0;
600                 if (++pde == I915_PDES) {
601                         pdpe++;
602                         pde = 0;
603                 }
604         }
605 }
606
607 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
608                                       vm_page_t *pages,
609                                       uint64_t start,
610                                       unsigned int num_entries,
611                                       enum i915_cache_level cache_level, u32 unused)
612 {
613         struct i915_hw_ppgtt *ppgtt =
614                 container_of(vm, struct i915_hw_ppgtt, base);
615         gen8_pte_t *pt_vaddr;
616         unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
617         unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
618         unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
619         int i;
620
621         pt_vaddr = NULL;
622
623         for (i=0;i<num_entries;i++) {
624                 if (WARN_ON(pdpe >= GEN8_LEGACY_PDPES))
625                         break;
626
627                 if (pt_vaddr == NULL) {
628                         struct i915_page_directory *pd = ppgtt->pdp.page_directory[pdpe];
629                         struct i915_page_table *pt = pd->page_table[pde];
630                         struct vm_page *page_table = pt->page;
631
632                         pt_vaddr = kmap_atomic(page_table);
633                 }
634
635                 pt_vaddr[pte] =
636                         gen8_pte_encode(VM_PAGE_TO_PHYS(pages[i]),
637                                         cache_level, true);
638                 if (++pte == GEN8_PTES) {
639                         if (!HAS_LLC(ppgtt->base.dev))
640                                 drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
641                         kunmap_atomic(pt_vaddr);
642                         pt_vaddr = NULL;
643                         if (++pde == I915_PDES) {
644                                 pdpe++;
645                                 pde = 0;
646                         }
647                         pte = 0;
648                 }
649         }
650         if (pt_vaddr) {
651                 if (!HAS_LLC(ppgtt->base.dev))
652                         drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
653                 kunmap_atomic(pt_vaddr);
654         }
655 }
656
657 static void __gen8_do_map_pt(gen8_pde_t * const pde,
658                              struct i915_page_table *pt,
659                              struct drm_device *dev)
660 {
661         gen8_pde_t entry =
662                 gen8_pde_encode(dev, pt->daddr, I915_CACHE_LLC);
663         *pde = entry;
664 }
665
666 static void gen8_initialize_pd(struct i915_address_space *vm,
667                                struct i915_page_directory *pd)
668 {
669         struct i915_hw_ppgtt *ppgtt =
670                         container_of(vm, struct i915_hw_ppgtt, base);
671         gen8_pde_t *page_directory;
672         struct i915_page_table *pt;
673         int i;
674
675         page_directory = kmap_atomic(pd->page);
676         pt = ppgtt->scratch_pt;
677         for (i = 0; i < I915_PDES; i++)
678                 /* Map the PDE to the page table */
679                 __gen8_do_map_pt(page_directory + i, pt, vm->dev);
680
681         if (!HAS_LLC(vm->dev))
682                 drm_clflush_virt_range(page_directory, PAGE_SIZE);
683         kunmap_atomic(page_directory);
684 }
685
686 static void gen8_free_page_tables(struct i915_page_directory *pd, struct drm_device *dev)
687 {
688         int i;
689
690         if (!pd->page)
691                 return;
692
693         for_each_set_bit(i, pd->used_pdes, I915_PDES) {
694                 if (WARN_ON(!pd->page_table[i]))
695                         continue;
696
697                 unmap_and_free_pt(pd->page_table[i], dev);
698                 pd->page_table[i] = NULL;
699         }
700 }
701
702 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
703 {
704         struct i915_hw_ppgtt *ppgtt =
705                 container_of(vm, struct i915_hw_ppgtt, base);
706         int i;
707
708         for_each_set_bit(i, ppgtt->pdp.used_pdpes, GEN8_LEGACY_PDPES) {
709                 if (WARN_ON(!ppgtt->pdp.page_directory[i]))
710                         continue;
711
712                 gen8_free_page_tables(ppgtt->pdp.page_directory[i], ppgtt->base.dev);
713                 unmap_and_free_pd(ppgtt->pdp.page_directory[i], ppgtt->base.dev);
714         }
715
716         unmap_and_free_pd(ppgtt->scratch_pd, ppgtt->base.dev);
717         unmap_and_free_pt(ppgtt->scratch_pt, ppgtt->base.dev);
718 }
719
720 /**
721  * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
722  * @ppgtt:      Master ppgtt structure.
723  * @pd:         Page directory for this address range.
724  * @start:      Starting virtual address to begin allocations.
725  * @length      Size of the allocations.
726  * @new_pts:    Bitmap set by function with new allocations. Likely used by the
727  *              caller to free on error.
728  *
729  * Allocate the required number of page tables. Extremely similar to
730  * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
731  * the page directory boundary (instead of the page directory pointer). That
732  * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
733  * possible, and likely that the caller will need to use multiple calls of this
734  * function to achieve the appropriate allocation.
735  *
736  * Return: 0 if success; negative error code otherwise.
737  */
738 static int gen8_ppgtt_alloc_pagetabs(struct i915_hw_ppgtt *ppgtt,
739                                      struct i915_page_directory *pd,
740                                      uint64_t start,
741                                      uint64_t length,
742                                      unsigned long *new_pts)
743 {
744         struct drm_device *dev = ppgtt->base.dev;
745         struct i915_page_table *pt;
746         uint64_t temp;
747         uint32_t pde;
748
749         gen8_for_each_pde(pt, pd, start, length, temp, pde) {
750                 /* Don't reallocate page tables */
751                 if (pt) {
752                         /* Scratch is never allocated this way */
753                         WARN_ON(pt == ppgtt->scratch_pt);
754                         continue;
755                 }
756
757                 pt = alloc_pt_single(dev);
758                 if (IS_ERR(pt))
759                         goto unwind_out;
760
761                 gen8_initialize_pt(&ppgtt->base, pt);
762                 pd->page_table[pde] = pt;
763                 set_bit(pde, new_pts);
764         }
765
766         return 0;
767
768 unwind_out:
769         for_each_set_bit(pde, new_pts, I915_PDES)
770                 unmap_and_free_pt(pd->page_table[pde], dev);
771
772         return -ENOMEM;
773 }
774
775 /**
776  * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
777  * @ppgtt:      Master ppgtt structure.
778  * @pdp:        Page directory pointer for this address range.
779  * @start:      Starting virtual address to begin allocations.
780  * @length      Size of the allocations.
781  * @new_pds     Bitmap set by function with new allocations. Likely used by the
782  *              caller to free on error.
783  *
784  * Allocate the required number of page directories starting at the pde index of
785  * @start, and ending at the pde index @start + @length. This function will skip
786  * over already allocated page directories within the range, and only allocate
787  * new ones, setting the appropriate pointer within the pdp as well as the
788  * correct position in the bitmap @new_pds.
789  *
790  * The function will only allocate the pages within the range for a give page
791  * directory pointer. In other words, if @start + @length straddles a virtually
792  * addressed PDP boundary (512GB for 4k pages), there will be more allocations
793  * required by the caller, This is not currently possible, and the BUG in the
794  * code will prevent it.
795  *
796  * Return: 0 if success; negative error code otherwise.
797  */
798 static int gen8_ppgtt_alloc_page_directories(struct i915_hw_ppgtt *ppgtt,
799                                      struct i915_page_directory_pointer *pdp,
800                                      uint64_t start,
801                                      uint64_t length,
802                                      unsigned long *new_pds)
803 {
804         struct drm_device *dev = ppgtt->base.dev;
805         struct i915_page_directory *pd;
806         uint64_t temp;
807         uint32_t pdpe;
808
809         WARN_ON(!bitmap_empty(new_pds, GEN8_LEGACY_PDPES));
810
811         /* FIXME: upper bound must not overflow 32 bits  */
812         WARN_ON((start + length) > (1ULL << 32));
813
814         gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
815                 if (pd)
816                         continue;
817
818                 pd = alloc_pd_single(dev);
819                 if (IS_ERR(pd))
820                         goto unwind_out;
821
822                 gen8_initialize_pd(&ppgtt->base, pd);
823                 pdp->page_directory[pdpe] = pd;
824                 set_bit(pdpe, new_pds);
825         }
826
827         return 0;
828
829 unwind_out:
830         for_each_set_bit(pdpe, new_pds, GEN8_LEGACY_PDPES)
831                 unmap_and_free_pd(pdp->page_directory[pdpe], dev);
832
833         return -ENOMEM;
834 }
835
836 static void
837 free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long **new_pts)
838 {
839         int i;
840
841         for (i = 0; i < GEN8_LEGACY_PDPES; i++)
842                 kfree(new_pts[i]);
843         kfree(new_pts);
844         kfree(new_pds);
845 }
846
847 /* Fills in the page directory bitmap, and the array of page tables bitmap. Both
848  * of these are based on the number of PDPEs in the system.
849  */
850 static
851 int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
852                                          unsigned long ***new_pts)
853 {
854         int i;
855         unsigned long *pds;
856         unsigned long **pts;
857
858         pds = kcalloc(BITS_TO_LONGS(GEN8_LEGACY_PDPES), sizeof(unsigned long), GFP_KERNEL);
859         if (!pds)
860                 return -ENOMEM;
861
862         pts = kcalloc(GEN8_LEGACY_PDPES, sizeof(unsigned long *), GFP_KERNEL);
863         if (!pts) {
864                 kfree(pds);
865                 return -ENOMEM;
866         }
867
868         for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
869                 pts[i] = kcalloc(BITS_TO_LONGS(I915_PDES),
870                                  sizeof(unsigned long), GFP_KERNEL);
871                 if (!pts[i])
872                         goto err_out;
873         }
874
875         *new_pds = pds;
876         *new_pts = pts;
877
878         return 0;
879
880 err_out:
881         free_gen8_temp_bitmaps(pds, pts);
882         return -ENOMEM;
883 }
884
885 static int gen8_alloc_va_range(struct i915_address_space *vm,
886                                uint64_t start,
887                                uint64_t length)
888 {
889         struct i915_hw_ppgtt *ppgtt =
890                 container_of(vm, struct i915_hw_ppgtt, base);
891         unsigned long *new_page_dirs, **new_page_tables;
892         struct i915_page_directory *pd;
893         const uint64_t orig_start = start;
894         const uint64_t orig_length = length;
895         uint64_t temp;
896         uint32_t pdpe;
897         int ret;
898
899         /* Wrap is never okay since we can only represent 48b, and we don't
900          * actually use the other side of the canonical address space.
901          */
902         if (WARN_ON(start + length < start))
903                 return -ERANGE;
904
905         ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables);
906         if (ret)
907                 return ret;
908
909         /* Do the allocations first so we can easily bail out */
910         ret = gen8_ppgtt_alloc_page_directories(ppgtt, &ppgtt->pdp, start, length,
911                                         new_page_dirs);
912         if (ret) {
913                 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
914                 return ret;
915         }
916
917         /* For every page directory referenced, allocate page tables */
918         gen8_for_each_pdpe(pd, &ppgtt->pdp, start, length, temp, pdpe) {
919                 ret = gen8_ppgtt_alloc_pagetabs(ppgtt, pd, start, length,
920                                                 new_page_tables[pdpe]);
921                 if (ret)
922                         goto err_out;
923         }
924
925         start = orig_start;
926         length = orig_length;
927
928         /* Allocations have completed successfully, so set the bitmaps, and do
929          * the mappings. */
930         gen8_for_each_pdpe(pd, &ppgtt->pdp, start, length, temp, pdpe) {
931                 gen8_pde_t *const page_directory = kmap_atomic(pd->page);
932                 struct i915_page_table *pt;
933                 uint64_t pd_len = gen8_clamp_pd(start, length);
934                 uint64_t pd_start = start;
935                 uint32_t pde;
936
937                 /* Every pd should be allocated, we just did that above. */
938                 WARN_ON(!pd);
939
940                 gen8_for_each_pde(pt, pd, pd_start, pd_len, temp, pde) {
941                         /* Same reasoning as pd */
942                         WARN_ON(!pt);
943                         WARN_ON(!pd_len);
944                         WARN_ON(!gen8_pte_count(pd_start, pd_len));
945
946                         /* Set our used ptes within the page table */
947                         bitmap_set(pt->used_ptes,
948                                    gen8_pte_index(pd_start),
949                                    gen8_pte_count(pd_start, pd_len));
950
951                         /* Our pde is now pointing to the pagetable, pt */
952                         set_bit(pde, pd->used_pdes);
953
954                         /* Map the PDE to the page table */
955                         __gen8_do_map_pt(page_directory + pde, pt, vm->dev);
956
957                         /* NB: We haven't yet mapped ptes to pages. At this
958                          * point we're still relying on insert_entries() */
959                 }
960
961                 if (!HAS_LLC(vm->dev))
962                         drm_clflush_virt_range(page_directory, PAGE_SIZE);
963
964                 kunmap_atomic(page_directory);
965
966                 set_bit(pdpe, ppgtt->pdp.used_pdpes);
967         }
968
969         free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
970         return 0;
971
972 err_out:
973         while (pdpe--) {
974                 for_each_set_bit(temp, new_page_tables[pdpe], I915_PDES)
975                         unmap_and_free_pt(ppgtt->pdp.page_directory[pdpe]->page_table[temp], vm->dev);
976         }
977
978         for_each_set_bit(pdpe, new_page_dirs, GEN8_LEGACY_PDPES)
979                 unmap_and_free_pd(ppgtt->pdp.page_directory[pdpe], vm->dev);
980
981         free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
982         return ret;
983 }
984
985 /*
986  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
987  * with a net effect resembling a 2-level page table in normal x86 terms. Each
988  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
989  * space.
990  *
991  */
992 static int gen8_ppgtt_init_common(struct i915_hw_ppgtt *ppgtt, uint64_t size)
993 {
994         ppgtt->scratch_pt = alloc_pt_single(ppgtt->base.dev);
995         if (IS_ERR(ppgtt->scratch_pt))
996                 return PTR_ERR(ppgtt->scratch_pt);
997
998         ppgtt->scratch_pd = alloc_pd_single(ppgtt->base.dev);
999         if (IS_ERR(ppgtt->scratch_pd))
1000                 return PTR_ERR(ppgtt->scratch_pd);
1001
1002         gen8_initialize_pt(&ppgtt->base, ppgtt->scratch_pt);
1003         gen8_initialize_pd(&ppgtt->base, ppgtt->scratch_pd);
1004
1005         ppgtt->base.start = 0;
1006         ppgtt->base.total = size;
1007         ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1008         ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
1009         ppgtt->base.clear_range = gen8_ppgtt_clear_range;
1010         ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1011         ppgtt->base.bind_vma = ppgtt_bind_vma;
1012
1013         ppgtt->switch_mm = gen8_mm_switch;
1014
1015         return 0;
1016 }
1017
1018 static int gen8_aliasing_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1019 {
1020         struct drm_device *dev = ppgtt->base.dev;
1021         struct drm_i915_private *dev_priv = dev->dev_private;
1022         uint64_t start = 0, size = dev_priv->gtt.base.total;
1023         int ret;
1024
1025         ret = gen8_ppgtt_init_common(ppgtt, dev_priv->gtt.base.total);
1026         if (ret)
1027                 return ret;
1028
1029         /* Aliasing PPGTT has to always work and be mapped because of the way we
1030          * use RESTORE_INHIBIT in the context switch. This will be fixed
1031          * eventually. */
1032         ret = gen8_alloc_va_range(&ppgtt->base, start, size);
1033         if (ret) {
1034                 unmap_and_free_pd(ppgtt->scratch_pd, ppgtt->base.dev);
1035                 unmap_and_free_pt(ppgtt->scratch_pt, ppgtt->base.dev);
1036                 return ret;
1037         }
1038
1039         ppgtt->base.allocate_va_range = NULL;
1040         ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->base.total, true);
1041
1042         return 0;
1043 }
1044
1045 /*
1046  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1047  * with a net effect resembling a 2-level page table in normal x86 terms. Each
1048  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1049  * space.
1050  *
1051  */
1052 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1053 {
1054         ppgtt->scratch_pt = alloc_pt_single(ppgtt->base.dev);
1055         if (IS_ERR(ppgtt->scratch_pt))
1056                 return PTR_ERR(ppgtt->scratch_pt);
1057
1058         ppgtt->scratch_pd = alloc_pd_single(ppgtt->base.dev);
1059         if (IS_ERR(ppgtt->scratch_pd))
1060                 return PTR_ERR(ppgtt->scratch_pd);
1061
1062         gen8_initialize_pt(&ppgtt->base, ppgtt->scratch_pt);
1063         gen8_initialize_pd(&ppgtt->base, ppgtt->scratch_pd);
1064
1065         ppgtt->base.start = 0;
1066         ppgtt->base.total = 1ULL << 32;
1067 #define CONFIG_X86_32 0
1068         if (IS_ENABLED(CONFIG_X86_32))
1069                 /* While we have a proliferation of size_t variables
1070                  * we cannot represent the full ppgtt size on 32bit,
1071                  * so limit it to the same size as the GGTT (currently
1072                  * 2GiB).
1073                  */
1074                 ppgtt->base.total = to_i915(ppgtt->base.dev)->gtt.base.total;
1075         ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1076         ppgtt->base.allocate_va_range = gen8_alloc_va_range;
1077         ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
1078         ppgtt->base.clear_range = gen8_ppgtt_clear_range;
1079         ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1080         ppgtt->base.bind_vma = ppgtt_bind_vma;
1081
1082         ppgtt->switch_mm = gen8_mm_switch;
1083
1084         return 0;
1085 }
1086
1087 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1088 {
1089         struct i915_address_space *vm = &ppgtt->base;
1090         struct i915_page_table *unused;
1091         gen6_pte_t scratch_pte;
1092         uint32_t pd_entry;
1093         uint32_t  pte, pde, temp;
1094         uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
1095
1096         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0);
1097
1098         gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde) {
1099                 u32 expected;
1100                 gen6_pte_t *pt_vaddr;
1101                 dma_addr_t pt_addr = ppgtt->pd.page_table[pde]->daddr;
1102                 pd_entry = readl(ppgtt->pd_addr + pde);
1103                 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1104
1105                 if (pd_entry != expected)
1106                         seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1107                                    pde,
1108                                    pd_entry,
1109                                    expected);
1110                 seq_printf(m, "\tPDE: %x\n", pd_entry);
1111
1112                 pt_vaddr = kmap_atomic(ppgtt->pd.page_table[pde]->page);
1113                 for (pte = 0; pte < GEN6_PTES; pte+=4) {
1114                         unsigned long va =
1115                                 (pde * PAGE_SIZE * GEN6_PTES) +
1116                                 (pte * PAGE_SIZE);
1117                         int i;
1118                         bool found = false;
1119                         for (i = 0; i < 4; i++)
1120                                 if (pt_vaddr[pte + i] != scratch_pte)
1121                                         found = true;
1122                         if (!found)
1123                                 continue;
1124
1125                         seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1126                         for (i = 0; i < 4; i++) {
1127                                 if (pt_vaddr[pte + i] != scratch_pte)
1128                                         seq_printf(m, " %08x", pt_vaddr[pte + i]);
1129                                 else
1130                                         seq_puts(m, "  SCRATCH ");
1131                         }
1132                         seq_puts(m, "\n");
1133                 }
1134                 kunmap_atomic(pt_vaddr);
1135         }
1136 }
1137
1138 /* Write pde (index) from the page directory @pd to the page table @pt */
1139 static void gen6_write_pde(struct i915_page_directory *pd,
1140                             const int pde, struct i915_page_table *pt)
1141 {
1142         /* Caller needs to make sure the write completes if necessary */
1143         struct i915_hw_ppgtt *ppgtt =
1144                 container_of(pd, struct i915_hw_ppgtt, pd);
1145         u32 pd_entry;
1146
1147         pd_entry = GEN6_PDE_ADDR_ENCODE(pt->daddr);
1148         pd_entry |= GEN6_PDE_VALID;
1149
1150         writel(pd_entry, ppgtt->pd_addr + pde);
1151 }
1152
1153 /* Write all the page tables found in the ppgtt structure to incrementing page
1154  * directories. */
1155 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
1156                                   struct i915_page_directory *pd,
1157                                   uint32_t start, uint32_t length)
1158 {
1159         struct i915_page_table *pt;
1160         uint32_t pde, temp;
1161
1162         gen6_for_each_pde(pt, pd, start, length, temp, pde)
1163                 gen6_write_pde(pd, pde, pt);
1164
1165         /* Make sure write is complete before other code can use this page
1166          * table. Also require for WC mapped PTEs */
1167         readl(dev_priv->gtt.gsm);
1168 }
1169
1170 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1171 {
1172         BUG_ON(ppgtt->pd.pd_offset & 0x3f);
1173
1174         return (ppgtt->pd.pd_offset / 64) << 16;
1175 }
1176
1177 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1178                          struct intel_engine_cs *ring)
1179 {
1180         int ret;
1181
1182         /* NB: TLBs must be flushed and invalidated before a switch */
1183         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1184         if (ret)
1185                 return ret;
1186
1187         ret = intel_ring_begin(ring, 6);
1188         if (ret)
1189                 return ret;
1190
1191         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1192         intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
1193         intel_ring_emit(ring, PP_DIR_DCLV_2G);
1194         intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
1195         intel_ring_emit(ring, get_pd_offset(ppgtt));
1196         intel_ring_emit(ring, MI_NOOP);
1197         intel_ring_advance(ring);
1198
1199         return 0;
1200 }
1201
1202 static int vgpu_mm_switch(struct i915_hw_ppgtt *ppgtt,
1203                           struct intel_engine_cs *ring)
1204 {
1205         struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
1206
1207         I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1208         I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1209         return 0;
1210 }
1211
1212 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1213                           struct intel_engine_cs *ring)
1214 {
1215         int ret;
1216
1217         /* NB: TLBs must be flushed and invalidated before a switch */
1218         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1219         if (ret)
1220                 return ret;
1221
1222         ret = intel_ring_begin(ring, 6);
1223         if (ret)
1224                 return ret;
1225
1226         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1227         intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
1228         intel_ring_emit(ring, PP_DIR_DCLV_2G);
1229         intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
1230         intel_ring_emit(ring, get_pd_offset(ppgtt));
1231         intel_ring_emit(ring, MI_NOOP);
1232         intel_ring_advance(ring);
1233
1234         /* XXX: RCS is the only one to auto invalidate the TLBs? */
1235         if (ring->id != RCS) {
1236                 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1237                 if (ret)
1238                         return ret;
1239         }
1240
1241         return 0;
1242 }
1243
1244 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1245                           struct intel_engine_cs *ring)
1246 {
1247         struct drm_device *dev = ppgtt->base.dev;
1248         struct drm_i915_private *dev_priv = dev->dev_private;
1249
1250
1251         I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1252         I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1253
1254         POSTING_READ(RING_PP_DIR_DCLV(ring));
1255
1256         return 0;
1257 }
1258
1259 static void gen8_ppgtt_enable(struct drm_device *dev)
1260 {
1261         struct drm_i915_private *dev_priv = dev->dev_private;
1262         struct intel_engine_cs *ring;
1263         int j;
1264
1265         for_each_ring(ring, dev_priv, j) {
1266                 I915_WRITE(RING_MODE_GEN7(ring),
1267                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1268         }
1269 }
1270
1271 static void gen7_ppgtt_enable(struct drm_device *dev)
1272 {
1273         struct drm_i915_private *dev_priv = dev->dev_private;
1274         struct intel_engine_cs *ring;
1275         uint32_t ecochk, ecobits;
1276         int i;
1277
1278         ecobits = I915_READ(GAC_ECO_BITS);
1279         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1280
1281         ecochk = I915_READ(GAM_ECOCHK);
1282         if (IS_HASWELL(dev)) {
1283                 ecochk |= ECOCHK_PPGTT_WB_HSW;
1284         } else {
1285                 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1286                 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1287         }
1288         I915_WRITE(GAM_ECOCHK, ecochk);
1289
1290         for_each_ring(ring, dev_priv, i) {
1291                 /* GFX_MODE is per-ring on gen7+ */
1292                 I915_WRITE(RING_MODE_GEN7(ring),
1293                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1294         }
1295 }
1296
1297 static void gen6_ppgtt_enable(struct drm_device *dev)
1298 {
1299         struct drm_i915_private *dev_priv = dev->dev_private;
1300         uint32_t ecochk, gab_ctl, ecobits;
1301
1302         ecobits = I915_READ(GAC_ECO_BITS);
1303         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1304                    ECOBITS_PPGTT_CACHE64B);
1305
1306         gab_ctl = I915_READ(GAB_CTL);
1307         I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1308
1309         ecochk = I915_READ(GAM_ECOCHK);
1310         I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1311
1312         I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1313 }
1314
1315 /* PPGTT support for Sandybdrige/Gen6 and later */
1316 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1317                                    uint64_t start,
1318                                    uint64_t length,
1319                                    bool use_scratch)
1320 {
1321         struct i915_hw_ppgtt *ppgtt =
1322                 container_of(vm, struct i915_hw_ppgtt, base);
1323         gen6_pte_t *pt_vaddr, scratch_pte;
1324         unsigned first_entry = start >> PAGE_SHIFT;
1325         unsigned num_entries = length >> PAGE_SHIFT;
1326         unsigned act_pt = first_entry / GEN6_PTES;
1327         unsigned first_pte = first_entry % GEN6_PTES;
1328         unsigned last_pte, i;
1329
1330         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0);
1331
1332         while (num_entries) {
1333                 last_pte = first_pte + num_entries;
1334                 if (last_pte > GEN6_PTES)
1335                         last_pte = GEN6_PTES;
1336
1337                 pt_vaddr = kmap_atomic(ppgtt->pd.page_table[act_pt]->page);
1338
1339                 for (i = first_pte; i < last_pte; i++)
1340                         pt_vaddr[i] = scratch_pte;
1341
1342                 kunmap_atomic(pt_vaddr);
1343
1344                 num_entries -= last_pte - first_pte;
1345                 first_pte = 0;
1346                 act_pt++;
1347         }
1348 }
1349
1350 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1351                                       vm_page_t *pages,
1352                                       uint64_t start,
1353                                       unsigned num_entries,
1354                                       enum i915_cache_level cache_level, u32 flags)
1355 {
1356         struct i915_hw_ppgtt *ppgtt =
1357                 container_of(vm, struct i915_hw_ppgtt, base);
1358         gen6_pte_t *pt_vaddr;
1359         unsigned first_entry = start >> PAGE_SHIFT;
1360         unsigned act_pt = first_entry / GEN6_PTES;
1361         unsigned act_pte = first_entry % GEN6_PTES;
1362
1363         pt_vaddr = NULL;
1364         for (int i=0;i<num_entries;i++) {
1365                 if (pt_vaddr == NULL)
1366                         pt_vaddr = kmap_atomic(ppgtt->pd.page_table[act_pt]->page);
1367
1368                 pt_vaddr[act_pte] =
1369                         vm->pte_encode(VM_PAGE_TO_PHYS(pages[i]),
1370                                        cache_level, true, flags);
1371
1372                 if (++act_pte == GEN6_PTES) {
1373                         kunmap_atomic(pt_vaddr);
1374                         pt_vaddr = NULL;
1375                         act_pt++;
1376                         act_pte = 0;
1377                 }
1378         }
1379         if (pt_vaddr)
1380                 kunmap_atomic(pt_vaddr);
1381 }
1382
1383 /* PDE TLBs are a pain invalidate pre GEN8. It requires a context reload. If we
1384  * are switching between contexts with the same LRCA, we also must do a force
1385  * restore.
1386  */
1387 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
1388 {
1389         /* If current vm != vm, */
1390         ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
1391 }
1392
1393 static void gen6_initialize_pt(struct i915_address_space *vm,
1394                 struct i915_page_table *pt)
1395 {
1396         gen6_pte_t *pt_vaddr, scratch_pte;
1397         int i;
1398
1399         WARN_ON(vm->scratch.addr == 0);
1400
1401         scratch_pte = vm->pte_encode(vm->scratch.addr,
1402                         I915_CACHE_LLC, true, 0);
1403
1404         pt_vaddr = kmap_atomic(pt->page);
1405
1406         for (i = 0; i < GEN6_PTES; i++)
1407                 pt_vaddr[i] = scratch_pte;
1408
1409         kunmap_atomic(pt_vaddr);
1410 }
1411
1412 static int gen6_alloc_va_range(struct i915_address_space *vm,
1413                                uint64_t start, uint64_t length)
1414 {
1415         DECLARE_BITMAP(new_page_tables, I915_PDES);
1416         struct drm_device *dev = vm->dev;
1417         struct drm_i915_private *dev_priv = dev->dev_private;
1418         struct i915_hw_ppgtt *ppgtt =
1419                                 container_of(vm, struct i915_hw_ppgtt, base);
1420         struct i915_page_table *pt;
1421         const uint32_t start_save = start, length_save = length;
1422         uint32_t pde, temp;
1423         int ret;
1424
1425         WARN_ON(upper_32_bits(start));
1426
1427         bitmap_zero(new_page_tables, I915_PDES);
1428
1429         /* The allocation is done in two stages so that we can bail out with
1430          * minimal amount of pain. The first stage finds new page tables that
1431          * need allocation. The second stage marks use ptes within the page
1432          * tables.
1433          */
1434         gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1435                 if (pt != ppgtt->scratch_pt) {
1436                         WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1437                         continue;
1438                 }
1439
1440                 /* We've already allocated a page table */
1441                 WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1442
1443                 pt = alloc_pt_single(dev);
1444                 if (IS_ERR(pt)) {
1445                         ret = PTR_ERR(pt);
1446                         goto unwind_out;
1447                 }
1448
1449                 gen6_initialize_pt(vm, pt);
1450
1451                 ppgtt->pd.page_table[pde] = pt;
1452                 set_bit(pde, new_page_tables);
1453                 trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1454         }
1455
1456         start = start_save;
1457         length = length_save;
1458
1459         gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1460                 DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1461
1462                 bitmap_zero(tmp_bitmap, GEN6_PTES);
1463                 bitmap_set(tmp_bitmap, gen6_pte_index(start),
1464                            gen6_pte_count(start, length));
1465
1466                 if (test_and_clear_bit(pde, new_page_tables))
1467                         gen6_write_pde(&ppgtt->pd, pde, pt);
1468
1469                 trace_i915_page_table_entry_map(vm, pde, pt,
1470                                          gen6_pte_index(start),
1471                                          gen6_pte_count(start, length),
1472                                          GEN6_PTES);
1473                 bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1474                                 GEN6_PTES);
1475         }
1476
1477         WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1478
1479         /* Make sure write is complete before other code can use this page
1480          * table. Also require for WC mapped PTEs */
1481         readl(dev_priv->gtt.gsm);
1482
1483         mark_tlbs_dirty(ppgtt);
1484         return 0;
1485
1486 unwind_out:
1487         for_each_set_bit(pde, new_page_tables, I915_PDES) {
1488                 struct i915_page_table *pt = ppgtt->pd.page_table[pde];
1489
1490                 ppgtt->pd.page_table[pde] = ppgtt->scratch_pt;
1491                 unmap_and_free_pt(pt, vm->dev);
1492         }
1493
1494         mark_tlbs_dirty(ppgtt);
1495         return ret;
1496 }
1497
1498 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1499 {
1500         struct i915_hw_ppgtt *ppgtt =
1501                 container_of(vm, struct i915_hw_ppgtt, base);
1502         struct i915_page_table *pt;
1503         uint32_t pde;
1504
1505
1506         drm_mm_remove_node(&ppgtt->node);
1507
1508         gen6_for_all_pdes(pt, ppgtt, pde) {
1509                 if (pt != ppgtt->scratch_pt)
1510                         unmap_and_free_pt(pt, ppgtt->base.dev);
1511         }
1512
1513         unmap_and_free_pt(ppgtt->scratch_pt, ppgtt->base.dev);
1514         unmap_and_free_pd(&ppgtt->pd, ppgtt->base.dev);
1515 }
1516
1517 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1518 {
1519         struct drm_device *dev = ppgtt->base.dev;
1520         struct drm_i915_private *dev_priv = dev->dev_private;
1521         bool retried = false;
1522         int ret;
1523
1524         /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1525          * allocator works in address space sizes, so it's multiplied by page
1526          * size. We allocate at the top of the GTT to avoid fragmentation.
1527          */
1528         BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
1529         ppgtt->scratch_pt = alloc_pt_single(ppgtt->base.dev);
1530         if (IS_ERR(ppgtt->scratch_pt))
1531                 return PTR_ERR(ppgtt->scratch_pt);
1532
1533         gen6_initialize_pt(&ppgtt->base, ppgtt->scratch_pt);
1534
1535 alloc:
1536         ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
1537                                                   &ppgtt->node, GEN6_PD_SIZE,
1538                                                   GEN6_PD_ALIGN, 0,
1539                                                   0, dev_priv->gtt.base.total,
1540                                                   DRM_MM_TOPDOWN);
1541         if (ret == -ENOSPC && !retried) {
1542                 ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
1543                                                GEN6_PD_SIZE, GEN6_PD_ALIGN,
1544                                                I915_CACHE_NONE,
1545                                                0, dev_priv->gtt.base.total,
1546                                                0);
1547                 if (ret)
1548                         goto err_out;
1549
1550                 retried = true;
1551                 goto alloc;
1552         }
1553
1554         if (ret)
1555                 goto err_out;
1556
1557
1558         if (ppgtt->node.start < dev_priv->gtt.mappable_end)
1559                 DRM_DEBUG("Forced to use aperture for PDEs\n");
1560
1561         return 0;
1562
1563 err_out:
1564         unmap_and_free_pt(ppgtt->scratch_pt, ppgtt->base.dev);
1565         return ret;
1566 }
1567
1568 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
1569 {
1570         return gen6_ppgtt_allocate_page_directories(ppgtt);
1571 }
1572
1573 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
1574                                   uint64_t start, uint64_t length)
1575 {
1576         struct i915_page_table *unused;
1577         uint32_t pde, temp;
1578
1579         gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde)
1580                 ppgtt->pd.page_table[pde] = ppgtt->scratch_pt;
1581 }
1582
1583 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt, bool aliasing)
1584 {
1585         struct drm_device *dev = ppgtt->base.dev;
1586         struct drm_i915_private *dev_priv = dev->dev_private;
1587         int ret;
1588
1589         ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
1590         if (IS_GEN6(dev)) {
1591                 ppgtt->switch_mm = gen6_mm_switch;
1592         } else if (IS_HASWELL(dev)) {
1593                 ppgtt->switch_mm = hsw_mm_switch;
1594         } else if (IS_GEN7(dev)) {
1595                 ppgtt->switch_mm = gen7_mm_switch;
1596         } else
1597                 BUG();
1598
1599         if (intel_vgpu_active(dev))
1600                 ppgtt->switch_mm = vgpu_mm_switch;
1601
1602         ret = gen6_ppgtt_alloc(ppgtt);
1603         if (ret)
1604                 return ret;
1605
1606         if (aliasing) {
1607                 /* preallocate all pts */
1608                 ret = alloc_pt_range(&ppgtt->pd, 0, I915_PDES,
1609                                 ppgtt->base.dev);
1610
1611                 if (ret) {
1612                         gen6_ppgtt_cleanup(&ppgtt->base);
1613                         return ret;
1614                 }
1615         }
1616
1617         ppgtt->base.allocate_va_range = aliasing ? NULL : gen6_alloc_va_range;
1618         ppgtt->base.clear_range = gen6_ppgtt_clear_range;
1619         ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
1620         ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1621         ppgtt->base.bind_vma = ppgtt_bind_vma;
1622         ppgtt->base.cleanup = gen6_ppgtt_cleanup;
1623         ppgtt->base.start = 0;
1624         ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
1625         ppgtt->debug_dump = gen6_dump_ppgtt;
1626
1627         ppgtt->pd.pd_offset =
1628                 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
1629
1630         ppgtt->pd_addr = (gen6_pte_t __iomem *)dev_priv->gtt.gsm +
1631                 ppgtt->pd.pd_offset / sizeof(gen6_pte_t);
1632
1633         if (aliasing)
1634                 ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->base.total, true);
1635         else
1636                 gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
1637
1638         gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
1639
1640         DRM_DEBUG_DRIVER("Allocated pde space (%ldM) at GTT entry: %lx\n",
1641                          ppgtt->node.size >> 20,
1642                          ppgtt->node.start / PAGE_SIZE);
1643
1644         DRM_DEBUG("Adding PPGTT at offset %x\n",
1645                   ppgtt->pd.pd_offset << 10);
1646
1647         return 0;
1648 }
1649
1650 static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt,
1651                 bool aliasing)
1652 {
1653         struct drm_i915_private *dev_priv = dev->dev_private;
1654
1655         ppgtt->base.dev = dev;
1656         ppgtt->base.scratch = dev_priv->gtt.base.scratch;
1657
1658         if (INTEL_INFO(dev)->gen < 8)
1659                 return gen6_ppgtt_init(ppgtt, aliasing);
1660         else if (aliasing)
1661                 return gen8_aliasing_ppgtt_init(ppgtt);
1662         else
1663                 return gen8_ppgtt_init(ppgtt);
1664 }
1665 int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
1666 {
1667         struct drm_i915_private *dev_priv = dev->dev_private;
1668         int ret = 0;
1669
1670         ret = __hw_ppgtt_init(dev, ppgtt, false);
1671         if (ret == 0) {
1672                 kref_init(&ppgtt->ref);
1673                 drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
1674                             ppgtt->base.total);
1675                 i915_init_vm(dev_priv, &ppgtt->base);
1676         }
1677
1678         return ret;
1679 }
1680
1681 int i915_ppgtt_init_hw(struct drm_device *dev)
1682 {
1683         struct drm_i915_private *dev_priv = dev->dev_private;
1684         struct intel_engine_cs *ring;
1685         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
1686         int i, ret = 0;
1687
1688         /* In the case of execlists, PPGTT is enabled by the context descriptor
1689          * and the PDPs are contained within the context itself.  We don't
1690          * need to do anything here. */
1691         if (i915.enable_execlists)
1692                 return 0;
1693
1694         if (!USES_PPGTT(dev))
1695                 return 0;
1696
1697         if (IS_GEN6(dev))
1698                 gen6_ppgtt_enable(dev);
1699         else if (IS_GEN7(dev))
1700                 gen7_ppgtt_enable(dev);
1701         else if (INTEL_INFO(dev)->gen >= 8)
1702                 gen8_ppgtt_enable(dev);
1703         else
1704                 MISSING_CASE(INTEL_INFO(dev)->gen);
1705
1706         if (ppgtt) {
1707                 for_each_ring(ring, dev_priv, i) {
1708                         ret = ppgtt->switch_mm(ppgtt, ring);
1709                         if (ret != 0)
1710                                 return ret;
1711                 }
1712         }
1713
1714         return ret;
1715 }
1716 struct i915_hw_ppgtt *
1717 i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv)
1718 {
1719         struct i915_hw_ppgtt *ppgtt;
1720         int ret;
1721
1722         ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1723         if (!ppgtt)
1724                 return ERR_PTR(-ENOMEM);
1725
1726         ret = i915_ppgtt_init(dev, ppgtt);
1727         if (ret) {
1728                 kfree(ppgtt);
1729                 return ERR_PTR(ret);
1730         }
1731
1732         ppgtt->file_priv = fpriv;
1733
1734         trace_i915_ppgtt_create(&ppgtt->base);
1735
1736         return ppgtt;
1737 }
1738
1739 void  i915_ppgtt_release(struct kref *kref)
1740 {
1741         struct i915_hw_ppgtt *ppgtt =
1742                 container_of(kref, struct i915_hw_ppgtt, ref);
1743
1744         trace_i915_ppgtt_release(&ppgtt->base);
1745
1746         /* vmas should already be unbound */
1747         WARN_ON(!list_empty(&ppgtt->base.active_list));
1748         WARN_ON(!list_empty(&ppgtt->base.inactive_list));
1749
1750         list_del(&ppgtt->base.global_link);
1751         drm_mm_takedown(&ppgtt->base.mm);
1752
1753         ppgtt->base.cleanup(&ppgtt->base);
1754         kfree(ppgtt);
1755 }
1756
1757 extern int intel_iommu_gfx_mapped;
1758 /* Certain Gen5 chipsets require require idling the GPU before
1759  * unmapping anything from the GTT when VT-d is enabled.
1760  */
1761 static bool needs_idle_maps(struct drm_device *dev)
1762 {
1763 #ifdef CONFIG_INTEL_IOMMU
1764         /* Query intel_iommu to see if we need the workaround. Presumably that
1765          * was loaded first.
1766          */
1767         if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
1768                 return true;
1769 #endif
1770         return false;
1771 }
1772
1773 static bool do_idling(struct drm_i915_private *dev_priv)
1774 {
1775         bool ret = dev_priv->mm.interruptible;
1776
1777         if (unlikely(dev_priv->gtt.do_idle_maps)) {
1778                 dev_priv->mm.interruptible = false;
1779                 if (i915_gpu_idle(dev_priv->dev)) {
1780                         DRM_ERROR("Couldn't idle GPU\n");
1781                         /* Wait a bit, in hopes it avoids the hang */
1782                         udelay(10);
1783                 }
1784         }
1785
1786         return ret;
1787 }
1788
1789 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
1790 {
1791         if (unlikely(dev_priv->gtt.do_idle_maps))
1792                 dev_priv->mm.interruptible = interruptible;
1793 }
1794
1795 void i915_check_and_clear_faults(struct drm_device *dev)
1796 {
1797         struct drm_i915_private *dev_priv = dev->dev_private;
1798         struct intel_engine_cs *ring;
1799         int i;
1800
1801         if (INTEL_INFO(dev)->gen < 6)
1802                 return;
1803
1804         for_each_ring(ring, dev_priv, i) {
1805                 u32 fault_reg;
1806                 fault_reg = I915_READ(RING_FAULT_REG(ring));
1807                 if (fault_reg & RING_FAULT_VALID) {
1808 #if 0
1809                         DRM_DEBUG_DRIVER("Unexpected fault\n"
1810                                          "\tAddr: 0x%08lx\n"
1811                                          "\tAddress space: %s\n"
1812                                          "\tSource ID: %d\n"
1813                                          "\tType: %d\n",
1814                                          fault_reg & PAGE_MASK,
1815                                          fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
1816                                          RING_FAULT_SRCID(fault_reg),
1817                                          RING_FAULT_FAULT_TYPE(fault_reg));
1818 #endif
1819                         I915_WRITE(RING_FAULT_REG(ring),
1820                                    fault_reg & ~RING_FAULT_VALID);
1821                 }
1822         }
1823         POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
1824 }
1825
1826 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
1827 {
1828         if (INTEL_INFO(dev_priv->dev)->gen < 6) {
1829                 intel_gtt_chipset_flush();
1830         } else {
1831                 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1832                 POSTING_READ(GFX_FLSH_CNTL_GEN6);
1833         }
1834 }
1835
1836 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
1837 {
1838         struct drm_i915_private *dev_priv = dev->dev_private;
1839
1840         /* Don't bother messing with faults pre GEN6 as we have little
1841          * documentation supporting that it's a good idea.
1842          */
1843         if (INTEL_INFO(dev)->gen < 6)
1844                 return;
1845
1846         i915_check_and_clear_faults(dev);
1847
1848         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1849                                        dev_priv->gtt.base.start,
1850                                        dev_priv->gtt.base.total,
1851                                        true);
1852
1853         i915_ggtt_flush(dev_priv);
1854 }
1855
1856 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
1857 {
1858 #if 0
1859         if (!dma_map_sg(&obj->base.dev->pdev->dev,
1860                         obj->pages->sgl, obj->pages->nents,
1861                         PCI_DMA_BIDIRECTIONAL))
1862                 return -ENOSPC;
1863 #endif
1864
1865         return 0;
1866 }
1867
1868 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
1869 {
1870 #if 0
1871         writeq(pte, addr);
1872 #else
1873         iowrite32((u32)pte, addr);
1874         iowrite32(pte >> 32, addr + 4);
1875 #endif
1876 }
1877
1878 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
1879                                      vm_page_t *pages,
1880                                      uint64_t start,
1881                                      unsigned int num_entries,
1882                                      enum i915_cache_level level, u32 unused)
1883 {
1884         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1885         unsigned first_entry = start >> PAGE_SHIFT;
1886         gen8_pte_t __iomem *gtt_entries =
1887                 (gen8_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1888         int i = 0;
1889         dma_addr_t addr = 0;
1890
1891         for (i=0;i<num_entries;i++) {
1892                 addr = VM_PAGE_TO_PHYS(pages[i]);
1893                 gen8_set_pte(&gtt_entries[i],
1894                              gen8_pte_encode(addr, level, true));
1895         }
1896
1897         /*
1898          * XXX: This serves as a posting read to make sure that the PTE has
1899          * actually been updated. There is some concern that even though
1900          * registers and PTEs are within the same BAR that they are potentially
1901          * of NUMA access patterns. Therefore, even with the way we assume
1902          * hardware should work, we must keep this posting read for paranoia.
1903          */
1904         if (i != 0)
1905                 WARN_ON(readq(&gtt_entries[i-1])
1906                         != gen8_pte_encode(addr, level, true));
1907
1908         /* This next bit makes the above posting read even more important. We
1909          * want to flush the TLBs only after we're certain all the PTE updates
1910          * have finished.
1911          */
1912         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1913         POSTING_READ(GFX_FLSH_CNTL_GEN6);
1914 }
1915
1916 /*
1917  * Binds an object into the global gtt with the specified cache level. The object
1918  * will be accessible to the GPU via commands whose operands reference offsets
1919  * within the global GTT as well as accessible by the GPU through the GMADR
1920  * mapped BAR (dev_priv->mm.gtt->gtt).
1921  */
1922 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
1923                                      vm_page_t *pages,
1924                                      uint64_t start,
1925                                      unsigned int num_entries,
1926                                      enum i915_cache_level level, u32 flags)
1927 {
1928         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1929         unsigned first_entry = start >> PAGE_SHIFT;
1930         gen6_pte_t __iomem *gtt_entries =
1931                 (gen6_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1932         int i = 0;
1933         dma_addr_t addr = 0; /* shut up gcc */
1934
1935         for (i = 0; i < num_entries; i++) {
1936                 addr = VM_PAGE_TO_PHYS(pages[i]);
1937                 iowrite32(vm->pte_encode(addr, level, true, flags), &gtt_entries[i]);
1938         }
1939
1940         /* XXX: This serves as a posting read to make sure that the PTE has
1941          * actually been updated. There is some concern that even though
1942          * registers and PTEs are within the same BAR that they are potentially
1943          * of NUMA access patterns. Therefore, even with the way we assume
1944          * hardware should work, we must keep this posting read for paranoia.
1945          */
1946         if (i != 0) {
1947                 unsigned long gtt = readl(&gtt_entries[i-1]);
1948                 WARN_ON(gtt != vm->pte_encode(addr, level, true, flags));
1949         }
1950
1951         /* This next bit makes the above posting read even more important. We
1952          * want to flush the TLBs only after we're certain all the PTE updates
1953          * have finished.
1954          */
1955         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1956         POSTING_READ(GFX_FLSH_CNTL_GEN6);
1957 }
1958
1959 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
1960                                   uint64_t start,
1961                                   uint64_t length,
1962                                   bool use_scratch)
1963 {
1964         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1965         unsigned first_entry = start >> PAGE_SHIFT;
1966         unsigned num_entries = length >> PAGE_SHIFT;
1967         gen8_pte_t scratch_pte, __iomem *gtt_base =
1968                 (gen8_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1969         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1970         int i;
1971
1972         if (WARN(num_entries > max_entries,
1973                  "First entry = %d; Num entries = %d (max=%d)\n",
1974                  first_entry, num_entries, max_entries))
1975                 num_entries = max_entries;
1976
1977         scratch_pte = gen8_pte_encode(vm->scratch.addr,
1978                                       I915_CACHE_LLC,
1979                                       use_scratch);
1980         for (i = 0; i < num_entries; i++)
1981                 gen8_set_pte(&gtt_base[i], scratch_pte);
1982         readl(gtt_base);
1983 }
1984
1985 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
1986                                   uint64_t start,
1987                                   uint64_t length,
1988                                   bool use_scratch)
1989 {
1990         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1991         unsigned first_entry = start >> PAGE_SHIFT;
1992         unsigned num_entries = length >> PAGE_SHIFT;
1993         gen6_pte_t scratch_pte, __iomem *gtt_base =
1994                 (gen6_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1995         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1996         int i;
1997
1998         if (WARN(num_entries > max_entries,
1999                  "First entry = %d; Num entries = %d (max=%d)\n",
2000                  first_entry, num_entries, max_entries))
2001                 num_entries = max_entries;
2002
2003         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch, 0);
2004
2005         for (i = 0; i < num_entries; i++)
2006                 iowrite32(scratch_pte, &gtt_base[i]);
2007         readl(gtt_base);
2008 }
2009
2010 static int i915_ggtt_bind_vma(struct i915_vma *vma,
2011                               enum i915_cache_level cache_level,
2012                               u32 unused)
2013 {
2014         const unsigned long entry = vma->node.start >> PAGE_SHIFT;
2015         const unsigned int num_entries = vma->obj->base.size >> PAGE_SHIFT;
2016         unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2017                 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2018
2019         BUG_ON(!i915_is_ggtt(vma->vm));
2020         intel_gtt_insert_pages(entry, num_entries, vma->ggtt_view.pages, flags);
2021
2022         vma->bound |= GLOBAL_BIND;
2023         return 0;
2024 }
2025
2026 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2027                                   uint64_t start,
2028                                   uint64_t length,
2029                                   bool unused)
2030 {
2031         unsigned first_entry = start >> PAGE_SHIFT;
2032         unsigned num_entries = length >> PAGE_SHIFT;
2033         intel_gtt_clear_range(first_entry, num_entries);
2034 }
2035
2036 static void i915_ggtt_unbind_vma(struct i915_vma *vma)
2037 {
2038         const unsigned int first = vma->node.start >> PAGE_SHIFT;
2039         const unsigned int size = vma->obj->base.size >> PAGE_SHIFT;
2040
2041         BUG_ON(!i915_is_ggtt(vma->vm));
2042         intel_gtt_clear_range(first, size);
2043 }
2044
2045 static int ggtt_bind_vma(struct i915_vma *vma,
2046                          enum i915_cache_level cache_level,
2047                          u32 flags)
2048 {
2049         struct drm_device *dev = vma->vm->dev;
2050         struct drm_i915_private *dev_priv = dev->dev_private;
2051         struct drm_i915_gem_object *obj = vma->obj;
2052         struct vm_page **pages = obj->pages;
2053         u32 pte_flags = 0;
2054
2055         /* Currently applicable only to VLV */
2056         if (obj->gt_ro)
2057                 pte_flags |= PTE_READ_ONLY;
2058
2059         if (i915_is_ggtt(vma->vm))
2060                 pages = vma->ggtt_view.pages;
2061
2062         if (!dev_priv->mm.aliasing_ppgtt || flags & GLOBAL_BIND) {
2063                 vma->vm->insert_entries(vma->vm, pages,
2064                                         vma->node.start,
2065                                         obj->base.size >> PAGE_SHIFT,
2066                                         cache_level, pte_flags);
2067
2068                 /* Note the inconsistency here is due to absence of the
2069                  * aliasing ppgtt on gen4 and earlier. Though we always
2070                  * request PIN_USER for execbuffer (translated to LOCAL_BIND),
2071                  * without the appgtt, we cannot honour that request and so
2072                  * must substitute it with a global binding. Since we do this
2073                  * behind the upper layers back, we need to explicitly set
2074                  * the bound flag ourselves.
2075                  */
2076                 vma->bound |= GLOBAL_BIND;
2077
2078         }
2079
2080         if (dev_priv->mm.aliasing_ppgtt && flags & LOCAL_BIND) {
2081                 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
2082                 appgtt->base.insert_entries(&appgtt->base, pages,
2083                                             vma->node.start,
2084                                             obj->base.size >> PAGE_SHIFT,
2085                                             cache_level, pte_flags);
2086         }
2087
2088         return 0;
2089 }
2090
2091 static void ggtt_unbind_vma(struct i915_vma *vma)
2092 {
2093         struct drm_device *dev = vma->vm->dev;
2094         struct drm_i915_private *dev_priv = dev->dev_private;
2095         struct drm_i915_gem_object *obj = vma->obj;
2096         const uint64_t size = min_t(uint64_t,
2097                                     obj->base.size,
2098                                     vma->node.size);
2099
2100         if (vma->bound & GLOBAL_BIND) {
2101                 vma->vm->clear_range(vma->vm,
2102                                      vma->node.start,
2103                                      size,
2104                                      true);
2105         }
2106
2107         if (dev_priv->mm.aliasing_ppgtt && vma->bound & LOCAL_BIND) {
2108                 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
2109
2110                 appgtt->base.clear_range(&appgtt->base,
2111                                          vma->node.start,
2112                                          size,
2113                                          true);
2114         }
2115 }
2116
2117 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
2118 {
2119         struct drm_device *dev = obj->base.dev;
2120         struct drm_i915_private *dev_priv = dev->dev_private;
2121         bool interruptible;
2122
2123         interruptible = do_idling(dev_priv);
2124
2125 #if 0
2126         dma_unmap_sg(&dev->pdev->dev, obj->pages->sgl, obj->pages->nents,
2127                      PCI_DMA_BIDIRECTIONAL);
2128 #endif
2129
2130         undo_idling(dev_priv, interruptible);
2131 }
2132
2133 static void i915_gtt_color_adjust(struct drm_mm_node *node,
2134                                   unsigned long color,
2135                                   u64 *start,
2136                                   u64 *end)
2137 {
2138         if (node->color != color)
2139                 *start += 4096;
2140
2141         if (!list_empty(&node->node_list)) {
2142                 node = list_entry(node->node_list.next,
2143                                   struct drm_mm_node,
2144                                   node_list);
2145                 if (node->allocated && node->color != color)
2146                         *end -= 4096;
2147         }
2148 }
2149
2150 static int i915_gem_setup_global_gtt(struct drm_device *dev,
2151                                      unsigned long start,
2152                                      unsigned long mappable_end,
2153                                      unsigned long end)
2154 {
2155         /* Let GEM Manage all of the aperture.
2156          *
2157          * However, leave one page at the end still bound to the scratch page.
2158          * There are a number of places where the hardware apparently prefetches
2159          * past the end of the object, and we've seen multiple hangs with the
2160          * GPU head pointer stuck in a batchbuffer bound at the last page of the
2161          * aperture.  One page should be enough to keep any prefetching inside
2162          * of the aperture.
2163          */
2164         struct drm_i915_private *dev_priv = dev->dev_private;
2165         struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
2166         unsigned long mappable;
2167         int error;
2168         struct drm_mm_node *entry;
2169         struct drm_i915_gem_object *obj;
2170         unsigned long hole_start, hole_end;
2171         int ret;
2172
2173         kprintf("MAPPABLE_END VS END %016jx %016jx\n", mappable_end, end);
2174         tsleep(&mappable_end, 0, "DELAY", hz); /* for kprintf */
2175         /*BUG_ON(mappable_end > end);*/
2176
2177         mappable = min(end, mappable_end) - start;
2178
2179         /* Subtract the guard page ... */
2180         drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
2181
2182         dev_priv->gtt.base.start = start;
2183         dev_priv->gtt.base.total = end - start;
2184
2185         if (intel_vgpu_active(dev)) {
2186                 ret = intel_vgt_balloon(dev);
2187                 if (ret)
2188                         return ret;
2189         }
2190
2191         if (!HAS_LLC(dev))
2192                 dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
2193
2194         /* Mark any preallocated objects as occupied */
2195         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2196                 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
2197
2198                 DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
2199                               i915_gem_obj_ggtt_offset(obj), obj->base.size);
2200
2201                 WARN_ON(i915_gem_obj_ggtt_bound(obj));
2202                 ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
2203                 if (ret) {
2204                         DRM_DEBUG_KMS("Reservation failed: %i\n", ret);
2205                         return ret;
2206                 }
2207                 vma->bound |= GLOBAL_BIND;
2208         }
2209
2210         /* Clear any non-preallocated blocks */
2211         drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
2212                 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2213                               hole_start, hole_end);
2214                 ggtt_vm->clear_range(ggtt_vm, hole_start,
2215                                      hole_end - hole_start, true);
2216         }
2217
2218 #ifdef __DragonFly__
2219         device_printf(dev->dev,
2220             "taking over the fictitious range 0x%lx-0x%lx\n",
2221             dev_priv->gtt.mappable_base + start, dev_priv->gtt.mappable_base + start + mappable);
2222         error = -vm_phys_fictitious_reg_range(dev_priv->gtt.mappable_base + start,
2223             dev_priv->gtt.mappable_base + start + mappable, VM_MEMATTR_WRITE_COMBINING);
2224 #endif
2225
2226         /* And finally clear the reserved guard page */
2227         ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
2228
2229         if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) {
2230                 struct i915_hw_ppgtt *ppgtt;
2231
2232                 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2233                 if (!ppgtt)
2234                         return -ENOMEM;
2235
2236                 ret = __hw_ppgtt_init(dev, ppgtt, true);
2237                 if (ret) {
2238                         ppgtt->base.cleanup(&ppgtt->base);
2239                         kfree(ppgtt);
2240                         return ret;
2241                 }
2242
2243                 dev_priv->mm.aliasing_ppgtt = ppgtt;
2244         }
2245
2246         return 0;
2247 }
2248
2249 void i915_gem_init_global_gtt(struct drm_device *dev)
2250 {
2251         struct drm_i915_private *dev_priv = dev->dev_private;
2252         unsigned long gtt_size, mappable_size;
2253
2254         gtt_size = dev_priv->gtt.base.total;
2255         mappable_size = dev_priv->gtt.mappable_end;
2256
2257         i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
2258 }
2259
2260 void i915_global_gtt_cleanup(struct drm_device *dev)
2261 {
2262         struct drm_i915_private *dev_priv = dev->dev_private;
2263         struct i915_address_space *vm = &dev_priv->gtt.base;
2264
2265         if (dev_priv->mm.aliasing_ppgtt) {
2266                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2267
2268                 ppgtt->base.cleanup(&ppgtt->base);
2269         }
2270
2271         if (drm_mm_initialized(&vm->mm)) {
2272                 if (intel_vgpu_active(dev))
2273                         intel_vgt_deballoon();
2274
2275                 drm_mm_takedown(&vm->mm);
2276                 list_del(&vm->global_link);
2277         }
2278
2279         vm->cleanup(vm);
2280 }
2281
2282 static int setup_scratch_page(struct drm_device *dev)
2283 {
2284         struct drm_i915_private *dev_priv = dev->dev_private;
2285         struct vm_page *page;
2286         dma_addr_t dma_addr;
2287
2288         page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
2289         if (page == NULL)
2290                 return -ENOMEM;
2291         set_pages_uc(page, 1);
2292
2293 #ifdef CONFIG_INTEL_IOMMU
2294         dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
2295                                 PCI_DMA_BIDIRECTIONAL);
2296         if (pci_dma_mapping_error(dev->pdev, dma_addr))
2297                 return -EINVAL;
2298 #else
2299         dma_addr = page_to_phys(page);
2300 #endif
2301         dev_priv->gtt.base.scratch.page = page;
2302         dev_priv->gtt.base.scratch.addr = dma_addr;
2303
2304         return 0;
2305 }
2306
2307 static void teardown_scratch_page(struct drm_device *dev)
2308 {
2309         struct drm_i915_private *dev_priv = dev->dev_private;
2310         struct vm_page *page = dev_priv->gtt.base.scratch.page;
2311
2312         set_pages_wb(page, 1);
2313         pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
2314                        PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
2315         __free_page(page);
2316 }
2317
2318 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2319 {
2320         snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2321         snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2322         return snb_gmch_ctl << 20;
2323 }
2324
2325 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2326 {
2327         bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2328         bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2329         if (bdw_gmch_ctl)
2330                 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2331
2332 #ifdef CONFIG_X86_32
2333         /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2334         if (bdw_gmch_ctl > 4)
2335                 bdw_gmch_ctl = 4;
2336 #endif
2337
2338         return bdw_gmch_ctl << 20;
2339 }
2340
2341 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2342 {
2343         gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2344         gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2345
2346         if (gmch_ctrl)
2347                 return 1 << (20 + gmch_ctrl);
2348
2349         return 0;
2350 }
2351
2352 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2353 {
2354         snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2355         snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2356         return snb_gmch_ctl << 25; /* 32 MB units */
2357 }
2358
2359 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2360 {
2361         bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2362         bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2363         return bdw_gmch_ctl << 25; /* 32 MB units */
2364 }
2365
2366 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2367 {
2368         gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2369         gmch_ctrl &= SNB_GMCH_GMS_MASK;
2370
2371         /*
2372          * 0x0  to 0x10: 32MB increments starting at 0MB
2373          * 0x11 to 0x16: 4MB increments starting at 8MB
2374          * 0x17 to 0x1d: 4MB increments start at 36MB
2375          */
2376         if (gmch_ctrl < 0x11)
2377                 return gmch_ctrl << 25;
2378         else if (gmch_ctrl < 0x17)
2379                 return (gmch_ctrl - 0x11 + 2) << 22;
2380         else
2381                 return (gmch_ctrl - 0x17 + 9) << 22;
2382 }
2383
2384 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2385 {
2386         gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2387         gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2388
2389         if (gen9_gmch_ctl < 0xf0)
2390                 return gen9_gmch_ctl << 25; /* 32 MB units */
2391         else
2392                 /* 4MB increments starting at 0xf0 for 4MB */
2393                 return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2394 }
2395
2396 static int ggtt_probe_common(struct drm_device *dev,
2397                              size_t gtt_size)
2398 {
2399         struct drm_i915_private *dev_priv = dev->dev_private;
2400         phys_addr_t gtt_phys_addr;
2401         int ret;
2402
2403         /* For Modern GENs the PTEs and register space are split in the BAR */
2404         gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
2405                 (pci_resource_len(dev->pdev, 0) / 2);
2406
2407         /*
2408          * On BXT writes larger than 64 bit to the GTT pagetable range will be
2409          * dropped. For WC mappings in general we have 64 byte burst writes
2410          * when the WC buffer is flushed, so we can't use it, but have to
2411          * resort to an uncached mapping. The WC issue is easily caught by the
2412          * readback check when writing GTT PTE entries.
2413          */
2414         if (IS_BROXTON(dev))
2415                 dev_priv->gtt.gsm = ioremap_nocache(gtt_phys_addr, gtt_size);
2416         else
2417                 dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
2418         if (!dev_priv->gtt.gsm) {
2419                 DRM_ERROR("Failed to map the gtt page table\n");
2420                 return -ENOMEM;
2421         }
2422
2423         ret = setup_scratch_page(dev);
2424         if (ret) {
2425                 DRM_ERROR("Scratch setup failed\n");
2426                 /* iounmap will also get called at remove, but meh */
2427                 iounmap(dev_priv->gtt.gsm);
2428         }
2429
2430         return ret;
2431 }
2432
2433 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2434  * bits. When using advanced contexts each context stores its own PAT, but
2435  * writing this data shouldn't be harmful even in those cases. */
2436 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2437 {
2438         uint64_t pat;
2439
2440         pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
2441               GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2442               GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2443               GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
2444               GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2445               GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2446               GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2447               GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2448
2449         if (!USES_PPGTT(dev_priv->dev))
2450                 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2451                  * so RTL will always use the value corresponding to
2452                  * pat_sel = 000".
2453                  * So let's disable cache for GGTT to avoid screen corruptions.
2454                  * MOCS still can be used though.
2455                  * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2456                  * before this patch, i.e. the same uncached + snooping access
2457                  * like on gen6/7 seems to be in effect.
2458                  * - So this just fixes blitter/render access. Again it looks
2459                  * like it's not just uncached access, but uncached + snooping.
2460                  * So we can still hold onto all our assumptions wrt cpu
2461                  * clflushing on LLC machines.
2462                  */
2463                 pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2464
2465         /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2466          * write would work. */
2467         I915_WRITE(GEN8_PRIVATE_PAT, pat);
2468         I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
2469 }
2470
2471 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2472 {
2473         uint64_t pat;
2474
2475         /*
2476          * Map WB on BDW to snooped on CHV.
2477          *
2478          * Only the snoop bit has meaning for CHV, the rest is
2479          * ignored.
2480          *
2481          * The hardware will never snoop for certain types of accesses:
2482          * - CPU GTT (GMADR->GGTT->no snoop->memory)
2483          * - PPGTT page tables
2484          * - some other special cycles
2485          *
2486          * As with BDW, we also need to consider the following for GT accesses:
2487          * "For GGTT, there is NO pat_sel[2:0] from the entry,
2488          * so RTL will always use the value corresponding to
2489          * pat_sel = 000".
2490          * Which means we must set the snoop bit in PAT entry 0
2491          * in order to keep the global status page working.
2492          */
2493         pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
2494               GEN8_PPAT(1, 0) |
2495               GEN8_PPAT(2, 0) |
2496               GEN8_PPAT(3, 0) |
2497               GEN8_PPAT(4, CHV_PPAT_SNOOP) |
2498               GEN8_PPAT(5, CHV_PPAT_SNOOP) |
2499               GEN8_PPAT(6, CHV_PPAT_SNOOP) |
2500               GEN8_PPAT(7, CHV_PPAT_SNOOP);
2501
2502         I915_WRITE(GEN8_PRIVATE_PAT, pat);
2503         I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
2504 }
2505
2506 static int gen8_gmch_probe(struct drm_device *dev,
2507                            size_t *gtt_total,
2508                            size_t *stolen,
2509                            phys_addr_t *mappable_base,
2510                            unsigned long *mappable_end)
2511 {
2512         struct drm_i915_private *dev_priv = dev->dev_private;
2513         unsigned int gtt_size;
2514         u16 snb_gmch_ctl;
2515         int ret;
2516
2517         /* TODO: We're not aware of mappable constraints on gen8 yet */
2518         *mappable_base = pci_resource_start(dev->pdev, 2);
2519         *mappable_end = pci_resource_len(dev->pdev, 2);
2520
2521 #if 0
2522         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
2523                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
2524 #endif
2525
2526         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2527
2528         if (INTEL_INFO(dev)->gen >= 9) {
2529                 *stolen = gen9_get_stolen_size(snb_gmch_ctl);
2530                 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
2531         } else if (IS_CHERRYVIEW(dev)) {
2532                 *stolen = chv_get_stolen_size(snb_gmch_ctl);
2533                 gtt_size = chv_get_total_gtt_size(snb_gmch_ctl);
2534         } else {
2535                 *stolen = gen8_get_stolen_size(snb_gmch_ctl);
2536                 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
2537         }
2538
2539         *gtt_total = (gtt_size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
2540
2541         if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
2542                 chv_setup_private_ppat(dev_priv);
2543         else
2544                 bdw_setup_private_ppat(dev_priv);
2545
2546         ret = ggtt_probe_common(dev, gtt_size);
2547
2548         dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
2549         dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
2550         dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
2551         dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
2552
2553         return ret;
2554 }
2555
2556 static int gen6_gmch_probe(struct drm_device *dev,
2557                            size_t *gtt_total,
2558                            size_t *stolen,
2559                            phys_addr_t *mappable_base,
2560                            unsigned long *mappable_end)
2561 {
2562         struct drm_i915_private *dev_priv = dev->dev_private;
2563         unsigned int gtt_size;
2564         u16 snb_gmch_ctl;
2565         int ret;
2566
2567         *mappable_base = pci_resource_start(dev->pdev, 2);
2568         *mappable_end = pci_resource_len(dev->pdev, 2);
2569
2570         /* 64/512MB is the current min/max we actually know of, but this is just
2571          * a coarse sanity check.
2572          */
2573         if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
2574                 DRM_ERROR("Unknown GMADR size (%lx)\n",
2575                           dev_priv->gtt.mappable_end);
2576                 return -ENXIO;
2577         }
2578
2579 #if 0
2580         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
2581                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
2582 #endif
2583         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2584
2585         *stolen = gen6_get_stolen_size(snb_gmch_ctl);
2586
2587         gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
2588         *gtt_total = (gtt_size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
2589
2590         ret = ggtt_probe_common(dev, gtt_size);
2591
2592         dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
2593         dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
2594         dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
2595         dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
2596
2597         return ret;
2598 }
2599
2600 static void gen6_gmch_remove(struct i915_address_space *vm)
2601 {
2602         struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
2603
2604         iounmap(gtt->gsm);
2605         teardown_scratch_page(vm->dev);
2606 }
2607
2608 static int i915_gmch_probe(struct drm_device *dev,
2609                            size_t *gtt_total,
2610                            size_t *stolen,
2611                            phys_addr_t *mappable_base,
2612                            unsigned long *mappable_end)
2613 {
2614         struct drm_i915_private *dev_priv = dev->dev_private;
2615 #if 0
2616         int ret;
2617
2618         ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
2619         if (!ret) {
2620                 DRM_ERROR("failed to set up gmch\n");
2621                 return -EIO;
2622         }
2623 #endif
2624
2625         intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
2626
2627         dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
2628         dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
2629         dev_priv->gtt.base.bind_vma = i915_ggtt_bind_vma;
2630         dev_priv->gtt.base.unbind_vma = i915_ggtt_unbind_vma;
2631
2632         if (unlikely(dev_priv->gtt.do_idle_maps))
2633                 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
2634
2635         return 0;
2636 }
2637
2638 static void i915_gmch_remove(struct i915_address_space *vm)
2639 {
2640         intel_gmch_remove();
2641 }
2642
2643 int i915_gem_gtt_init(struct drm_device *dev)
2644 {
2645         struct drm_i915_private *dev_priv = dev->dev_private;
2646         struct i915_gtt *gtt = &dev_priv->gtt;
2647         int ret;
2648
2649         if (INTEL_INFO(dev)->gen <= 5) {
2650                 gtt->gtt_probe = i915_gmch_probe;
2651                 gtt->base.cleanup = i915_gmch_remove;
2652         } else if (INTEL_INFO(dev)->gen < 8) {
2653                 gtt->gtt_probe = gen6_gmch_probe;
2654                 gtt->base.cleanup = gen6_gmch_remove;
2655                 if (IS_HASWELL(dev) && dev_priv->ellc_size)
2656                         gtt->base.pte_encode = iris_pte_encode;
2657                 else if (IS_HASWELL(dev))
2658                         gtt->base.pte_encode = hsw_pte_encode;
2659                 else if (IS_VALLEYVIEW(dev))
2660                         gtt->base.pte_encode = byt_pte_encode;
2661                 else if (INTEL_INFO(dev)->gen >= 7)
2662                         gtt->base.pte_encode = ivb_pte_encode;
2663                 else
2664                         gtt->base.pte_encode = snb_pte_encode;
2665         } else {
2666                 dev_priv->gtt.gtt_probe = gen8_gmch_probe;
2667                 dev_priv->gtt.base.cleanup = gen6_gmch_remove;
2668         }
2669
2670         ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
2671                              &gtt->mappable_base, &gtt->mappable_end);
2672         if (ret)
2673                 return ret;
2674
2675         gtt->base.dev = dev;
2676
2677         /* GMADR is the PCI mmio aperture into the global GTT. */
2678         DRM_INFO("Memory usable by graphics device = %zdM\n",
2679                  gtt->base.total >> 20);
2680         DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
2681         DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
2682 #ifdef CONFIG_INTEL_IOMMU
2683         if (intel_iommu_gfx_mapped)
2684                 DRM_INFO("VT-d active for gfx access\n");
2685 #endif
2686         /*
2687          * i915.enable_ppgtt is read-only, so do an early pass to validate the
2688          * user's requested state against the hardware/driver capabilities.  We
2689          * do this now so that we can print out any log messages once rather
2690          * than every time we check intel_enable_ppgtt().
2691          */
2692         i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
2693         DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
2694
2695         return 0;
2696 }
2697
2698 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
2699 {
2700         struct drm_i915_private *dev_priv = dev->dev_private;
2701         struct drm_i915_gem_object *obj;
2702         struct i915_address_space *vm;
2703         struct i915_vma *vma;
2704         bool flush;
2705
2706         i915_check_and_clear_faults(dev);
2707
2708         /* First fill our portion of the GTT with scratch pages */
2709         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
2710                                        dev_priv->gtt.base.start,
2711                                        dev_priv->gtt.base.total,
2712                                        true);
2713
2714         /* Cache flush objects bound into GGTT and rebind them. */
2715         vm = &dev_priv->gtt.base;
2716         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2717                 flush = false;
2718                 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2719                         if (vma->vm != vm)
2720                                 continue;
2721
2722                         WARN_ON(i915_vma_bind(vma, obj->cache_level,
2723                                               PIN_UPDATE));
2724
2725                         flush = true;
2726                 }
2727
2728                 if (flush)
2729                         i915_gem_clflush_object(obj, obj->pin_display);
2730         }
2731
2732         if (INTEL_INFO(dev)->gen >= 8) {
2733                 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
2734                         chv_setup_private_ppat(dev_priv);
2735                 else
2736                         bdw_setup_private_ppat(dev_priv);
2737
2738                 return;
2739         }
2740
2741         if (USES_PPGTT(dev)) {
2742                 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2743                         /* TODO: Perhaps it shouldn't be gen6 specific */
2744
2745                         struct i915_hw_ppgtt *ppgtt =
2746                                         container_of(vm, struct i915_hw_ppgtt,
2747                                                      base);
2748
2749                         if (i915_is_ggtt(vm))
2750                                 ppgtt = dev_priv->mm.aliasing_ppgtt;
2751
2752                         gen6_write_page_range(dev_priv, &ppgtt->pd,
2753                                               0, ppgtt->base.total);
2754                 }
2755         }
2756
2757         i915_ggtt_flush(dev_priv);
2758 }
2759
2760 static struct i915_vma *
2761 __i915_gem_vma_create(struct drm_i915_gem_object *obj,
2762                       struct i915_address_space *vm,
2763                       const struct i915_ggtt_view *ggtt_view)
2764 {
2765         struct i915_vma *vma;
2766
2767         if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
2768                 return ERR_PTR(-EINVAL);
2769         vma = kzalloc(sizeof(*vma), GFP_KERNEL);
2770         if (vma == NULL)
2771                 return ERR_PTR(-ENOMEM);
2772
2773         INIT_LIST_HEAD(&vma->vma_link);
2774         INIT_LIST_HEAD(&vma->mm_list);
2775         INIT_LIST_HEAD(&vma->exec_list);
2776         vma->vm = vm;
2777         vma->obj = obj;
2778
2779         if (i915_is_ggtt(vm))
2780                 vma->ggtt_view = *ggtt_view;
2781
2782         list_add_tail(&vma->vma_link, &obj->vma_list);
2783         if (!i915_is_ggtt(vm))
2784                 i915_ppgtt_get(i915_vm_to_ppgtt(vm));
2785
2786         return vma;
2787 }
2788
2789 struct i915_vma *
2790 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
2791                                   struct i915_address_space *vm)
2792 {
2793         struct i915_vma *vma;
2794
2795         vma = i915_gem_obj_to_vma(obj, vm);
2796         if (!vma)
2797                 vma = __i915_gem_vma_create(obj, vm,
2798                                             i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL);
2799
2800         return vma;
2801 }
2802
2803 struct i915_vma *
2804 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
2805                                        const struct i915_ggtt_view *view)
2806 {
2807         struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
2808         struct i915_vma *vma;
2809
2810         if (WARN_ON(!view))
2811                 return ERR_PTR(-EINVAL);
2812
2813         vma = i915_gem_obj_to_ggtt_view(obj, view);
2814
2815         if (IS_ERR(vma))
2816                 return vma;
2817
2818         if (!vma)
2819                 vma = __i915_gem_vma_create(obj, ggtt, view);
2820
2821         return vma;
2822
2823 }
2824
2825 #if 0
2826 static void
2827 rotate_pages(dma_addr_t *in, unsigned int width, unsigned int height,
2828              struct sg_table *st)
2829 {
2830         unsigned int column, row;
2831         unsigned int src_idx;
2832         struct scatterlist *sg = st->sgl;
2833
2834         st->nents = 0;
2835
2836         for (column = 0; column < width; column++) {
2837                 src_idx = width * (height - 1) + column;
2838                 for (row = 0; row < height; row++) {
2839                         st->nents++;
2840                         /* We don't need the pages, but need to initialize
2841                          * the entries so the sg list can be happily traversed.
2842                          * The only thing we need are DMA addresses.
2843                          */
2844                         sg_set_page(sg, NULL, PAGE_SIZE, 0);
2845                         sg_dma_address(sg) = in[src_idx];
2846                         sg_dma_len(sg) = PAGE_SIZE;
2847                         sg = sg_next(sg);
2848                         src_idx -= width;
2849                 }
2850         }
2851 }
2852
2853 static struct sg_table *
2854 intel_rotate_fb_obj_pages(struct i915_ggtt_view *ggtt_view,
2855                           struct drm_i915_gem_object *obj)
2856 {
2857         struct drm_device *dev = obj->base.dev;
2858         struct intel_rotation_info *rot_info = &ggtt_view->rotation_info;
2859         unsigned long size, pages, rot_pages;
2860         struct sg_page_iter sg_iter;
2861         unsigned long i;
2862         dma_addr_t *page_addr_list;
2863         struct sg_table *st;
2864         unsigned int tile_pitch, tile_height;
2865         unsigned int width_pages, height_pages;
2866         int ret = -ENOMEM;
2867
2868         pages = obj->base.size / PAGE_SIZE;
2869
2870         /* Calculate tiling geometry. */
2871         tile_height = intel_tile_height(dev, rot_info->pixel_format,
2872                                         rot_info->fb_modifier);
2873         tile_pitch = PAGE_SIZE / tile_height;
2874         width_pages = DIV_ROUND_UP(rot_info->pitch, tile_pitch);
2875         height_pages = DIV_ROUND_UP(rot_info->height, tile_height);
2876         rot_pages = width_pages * height_pages;
2877         size = rot_pages * PAGE_SIZE;
2878
2879         /* Allocate a temporary list of source pages for random access. */
2880         page_addr_list = drm_malloc_ab(pages, sizeof(dma_addr_t));
2881         if (!page_addr_list)
2882                 return ERR_PTR(ret);
2883
2884         /* Allocate target SG list. */
2885         st = kmalloc(sizeof(*st), GFP_KERNEL);
2886         if (!st)
2887                 goto err_st_alloc;
2888
2889         ret = sg_alloc_table(st, rot_pages, GFP_KERNEL);
2890         if (ret)
2891                 goto err_sg_alloc;
2892
2893         /* Populate source page list from the object. */
2894         i = 0;
2895         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2896                 page_addr_list[i] = sg_page_iter_dma_address(&sg_iter);
2897                 i++;
2898         }
2899
2900         /* Rotate the pages. */
2901         rotate_pages(page_addr_list, width_pages, height_pages, st);
2902
2903         DRM_DEBUG_KMS(
2904                       "Created rotated page mapping for object size %lu (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %lu pages).\n",
2905                       size, rot_info->pitch, rot_info->height,
2906                       rot_info->pixel_format, width_pages, height_pages,
2907                       rot_pages);
2908
2909         drm_free_large(page_addr_list);
2910
2911         return st;
2912
2913 err_sg_alloc:
2914         kfree(st);
2915 err_st_alloc:
2916         drm_free_large(page_addr_list);
2917
2918         DRM_DEBUG_KMS(
2919                       "Failed to create rotated mapping for object size %lu! (%d) (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %lu pages)\n",
2920                       size, ret, rot_info->pitch, rot_info->height,
2921                       rot_info->pixel_format, width_pages, height_pages,
2922                       rot_pages);
2923         return ERR_PTR(ret);
2924 }
2925
2926 static struct sg_table *
2927 intel_partial_pages(const struct i915_ggtt_view *view,
2928                     struct drm_i915_gem_object *obj)
2929 {
2930         struct sg_table *st;
2931         struct scatterlist *sg;
2932         struct sg_page_iter obj_sg_iter;
2933         int ret = -ENOMEM;
2934
2935         st = kmalloc(sizeof(*st), GFP_KERNEL);
2936         if (!st)
2937                 goto err_st_alloc;
2938
2939         ret = sg_alloc_table(st, view->params.partial.size, GFP_KERNEL);
2940         if (ret)
2941                 goto err_sg_alloc;
2942
2943         sg = st->sgl;
2944         st->nents = 0;
2945         for_each_sg_page(obj->pages->sgl, &obj_sg_iter, obj->pages->nents,
2946                 view->params.partial.offset)
2947         {
2948                 if (st->nents >= view->params.partial.size)
2949                         break;
2950
2951                 sg_set_page(sg, NULL, PAGE_SIZE, 0);
2952                 sg_dma_address(sg) = sg_page_iter_dma_address(&obj_sg_iter);
2953                 sg_dma_len(sg) = PAGE_SIZE;
2954
2955                 sg = sg_next(sg);
2956                 st->nents++;
2957         }
2958
2959         return st;
2960
2961 err_sg_alloc:
2962         kfree(st);
2963 err_st_alloc:
2964         return ERR_PTR(ret);
2965 }
2966 #endif
2967
2968 static int
2969 i915_get_ggtt_vma_pages(struct i915_vma *vma)
2970 {
2971         int ret = 0;
2972
2973         if (vma->ggtt_view.pages)
2974                 return 0;
2975
2976         if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
2977                 vma->ggtt_view.pages = vma->obj->pages;
2978 #if 0
2979         else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
2980                 vma->ggtt_view.pages =
2981                         intel_rotate_fb_obj_pages(&vma->ggtt_view, vma->obj);
2982         else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
2983                 vma->ggtt_view.pages =
2984                         intel_partial_pages(&vma->ggtt_view, vma->obj);
2985 #endif
2986         else
2987                 WARN_ONCE(1, "GGTT view %u not implemented!\n",
2988                           vma->ggtt_view.type);
2989
2990         if (!vma->ggtt_view.pages) {
2991                 DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
2992                           vma->ggtt_view.type);
2993                 ret = -EINVAL;
2994         } else if (IS_ERR(vma->ggtt_view.pages)) {
2995                 ret = PTR_ERR(vma->ggtt_view.pages);
2996                 vma->ggtt_view.pages = NULL;
2997                 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
2998                           vma->ggtt_view.type, ret);
2999         }
3000
3001         return ret;
3002 }
3003
3004 /**
3005  * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
3006  * @vma: VMA to map
3007  * @cache_level: mapping cache level
3008  * @flags: flags like global or local mapping
3009  *
3010  * DMA addresses are taken from the scatter-gather table of this object (or of
3011  * this VMA in case of non-default GGTT views) and PTE entries set up.
3012  * Note that DMA addresses are also the only part of the SG table we care about.
3013  */
3014 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
3015                   u32 flags)
3016 {
3017         int ret;
3018         u32 bind_flags;
3019
3020         if (WARN_ON(flags == 0))
3021                 return -EINVAL;
3022
3023         if (vma->vm->allocate_va_range) {
3024                 trace_i915_va_alloc(vma->vm, vma->node.start,
3025                                     vma->node.size,
3026                                     VM_TO_TRACE_NAME(vma->vm));
3027
3028                 ret = vma->vm->allocate_va_range(vma->vm,
3029                                                  vma->node.start,
3030                                                  vma->node.size);
3031                 if (ret)
3032                         return ret;
3033         }
3034
3035         if (i915_is_ggtt(vma->vm)) {
3036                 ret = i915_get_ggtt_vma_pages(vma);
3037                 if (ret)
3038                         return 0;
3039         }
3040
3041         bind_flags = 0;
3042         if (flags & PIN_GLOBAL)
3043                 bind_flags |= GLOBAL_BIND;
3044         if (flags & PIN_USER)
3045                 bind_flags |= LOCAL_BIND;
3046
3047         if (flags & PIN_UPDATE)
3048                 bind_flags |= vma->bound;
3049         else
3050                 bind_flags &= ~vma->bound;
3051
3052         if (bind_flags == 0)
3053                 return 0;
3054
3055         if (vma->bound == 0 && vma->vm->allocate_va_range) {
3056                 trace_i915_va_alloc(vma->vm,
3057                                     vma->node.start,
3058                                     vma->node.size,
3059                                     VM_TO_TRACE_NAME(vma->vm));
3060
3061                 ret = vma->vm->allocate_va_range(vma->vm,
3062                                                  vma->node.start,
3063                                                  vma->node.size);
3064                 if (ret)
3065                         return ret;
3066         }
3067
3068         ret = vma->vm->bind_vma(vma, cache_level, bind_flags);
3069         if (ret)
3070                 return ret;
3071
3072         vma->bound |= bind_flags;
3073
3074         return 0;
3075 }
3076
3077 /**
3078  * i915_ggtt_view_size - Get the size of a GGTT view.
3079  * @obj: Object the view is of.
3080  * @view: The view in question.
3081  *
3082  * @return The size of the GGTT view in bytes.
3083  */
3084 size_t
3085 i915_ggtt_view_size(struct drm_i915_gem_object *obj,
3086                     const struct i915_ggtt_view *view)
3087 {
3088         if (view->type == I915_GGTT_VIEW_NORMAL ||
3089             view->type == I915_GGTT_VIEW_ROTATED) {
3090                 return obj->base.size;
3091         } else if (view->type == I915_GGTT_VIEW_PARTIAL) {
3092                 return view->params.partial.size << PAGE_SHIFT;
3093         } else {
3094                 WARN_ONCE(1, "GGTT view %u not implemented!\n", view->type);
3095                 return obj->base.size;
3096         }
3097 }