drm/i915: Use kzalloc()
[dragonfly.git] / sys / dev / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include "i915_drv.h"
29 #include "intel_drv.h"
30 #include <linux/module.h>
31 #include <machine/clock.h>
32
33 #define FORCEWAKE_ACK_TIMEOUT_MS 2
34
35 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
36  * framebuffer contents in-memory, aiming at reducing the required bandwidth
37  * during in-memory transfers and, therefore, reduce the power packet.
38  *
39  * The benefits of FBC are mostly visible with solid backgrounds and
40  * variation-less patterns.
41  *
42  * FBC-related functionality can be enabled by the means of the
43  * i915.i915_enable_fbc parameter
44  */
45
46 static bool intel_crtc_active(struct drm_crtc *crtc)
47 {
48         /* Be paranoid as we can arrive here with only partial
49          * state retrieved from the hardware during setup.
50          */
51         return to_intel_crtc(crtc)->active && crtc->fb && crtc->mode.clock;
52 }
53
54 static void i8xx_disable_fbc(struct drm_device *dev)
55 {
56         struct drm_i915_private *dev_priv = dev->dev_private;
57         u32 fbc_ctl;
58
59         /* Disable compression */
60         fbc_ctl = I915_READ(FBC_CONTROL);
61         if ((fbc_ctl & FBC_CTL_EN) == 0)
62                 return;
63
64         fbc_ctl &= ~FBC_CTL_EN;
65         I915_WRITE(FBC_CONTROL, fbc_ctl);
66
67         /* Wait for compressing bit to clear */
68         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
69                 DRM_DEBUG_KMS("FBC idle timed out\n");
70                 return;
71         }
72
73         DRM_DEBUG_KMS("disabled FBC\n");
74 }
75
76 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
77 {
78         struct drm_device *dev = crtc->dev;
79         struct drm_i915_private *dev_priv = dev->dev_private;
80         struct drm_framebuffer *fb = crtc->fb;
81         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
82         struct drm_i915_gem_object *obj = intel_fb->obj;
83         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
84         int cfb_pitch;
85         int plane, i;
86         u32 fbc_ctl, fbc_ctl2;
87
88         cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
89         if (fb->pitches[0] < cfb_pitch)
90                 cfb_pitch = fb->pitches[0];
91
92         /* FBC_CTL wants 64B units */
93         cfb_pitch = (cfb_pitch / 64) - 1;
94         plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
95
96         /* Clear old tags */
97         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
98                 I915_WRITE(FBC_TAG + (i * 4), 0);
99
100         /* Set it up... */
101         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
102         fbc_ctl2 |= plane;
103         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
104         I915_WRITE(FBC_FENCE_OFF, crtc->y);
105
106         /* enable it... */
107         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
108         if (IS_I945GM(dev))
109                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
110         fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
111         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
112         fbc_ctl |= obj->fence_reg;
113         I915_WRITE(FBC_CONTROL, fbc_ctl);
114
115         DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
116                       cfb_pitch, crtc->y, intel_crtc->plane);
117 }
118
119 static bool i8xx_fbc_enabled(struct drm_device *dev)
120 {
121         struct drm_i915_private *dev_priv = dev->dev_private;
122
123         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
124 }
125
126 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
127 {
128         struct drm_device *dev = crtc->dev;
129         struct drm_i915_private *dev_priv = dev->dev_private;
130         struct drm_framebuffer *fb = crtc->fb;
131         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
132         struct drm_i915_gem_object *obj = intel_fb->obj;
133         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
134         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
135         unsigned long stall_watermark = 200;
136         u32 dpfc_ctl;
137
138         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
139         dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
140         I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
141
142         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
143                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
144                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
145         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
146
147         /* enable it... */
148         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
149
150         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
151 }
152
153 static void g4x_disable_fbc(struct drm_device *dev)
154 {
155         struct drm_i915_private *dev_priv = dev->dev_private;
156         u32 dpfc_ctl;
157
158         /* Disable compression */
159         dpfc_ctl = I915_READ(DPFC_CONTROL);
160         if (dpfc_ctl & DPFC_CTL_EN) {
161                 dpfc_ctl &= ~DPFC_CTL_EN;
162                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
163
164                 DRM_DEBUG_KMS("disabled FBC\n");
165         }
166 }
167
168 static bool g4x_fbc_enabled(struct drm_device *dev)
169 {
170         struct drm_i915_private *dev_priv = dev->dev_private;
171
172         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
173 }
174
175 static void sandybridge_blit_fbc_update(struct drm_device *dev)
176 {
177         struct drm_i915_private *dev_priv = dev->dev_private;
178         u32 blt_ecoskpd;
179
180         /* Make sure blitter notifies FBC of writes */
181         gen6_gt_force_wake_get(dev_priv);
182         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
183         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
184                 GEN6_BLITTER_LOCK_SHIFT;
185         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
186         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
187         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
188         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
189                          GEN6_BLITTER_LOCK_SHIFT);
190         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
191         POSTING_READ(GEN6_BLITTER_ECOSKPD);
192         gen6_gt_force_wake_put(dev_priv);
193 }
194
195 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
196 {
197         struct drm_device *dev = crtc->dev;
198         struct drm_i915_private *dev_priv = dev->dev_private;
199         struct drm_framebuffer *fb = crtc->fb;
200         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
201         struct drm_i915_gem_object *obj = intel_fb->obj;
202         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
203         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
204         unsigned long stall_watermark = 200;
205         u32 dpfc_ctl;
206
207         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
208         dpfc_ctl &= DPFC_RESERVED;
209         dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
210         /* Set persistent mode for front-buffer rendering, ala X. */
211         dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
212         dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
213         I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
214
215         I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
216                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
217                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
218         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
219         I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
220         /* enable it... */
221         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
222
223         if (IS_GEN6(dev)) {
224                 I915_WRITE(SNB_DPFC_CTL_SA,
225                            SNB_CPU_FENCE_ENABLE | obj->fence_reg);
226                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
227                 sandybridge_blit_fbc_update(dev);
228         }
229
230         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
231 }
232
233 static void ironlake_disable_fbc(struct drm_device *dev)
234 {
235         struct drm_i915_private *dev_priv = dev->dev_private;
236         u32 dpfc_ctl;
237
238         /* Disable compression */
239         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
240         if (dpfc_ctl & DPFC_CTL_EN) {
241                 dpfc_ctl &= ~DPFC_CTL_EN;
242                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
243
244                 DRM_DEBUG_KMS("disabled FBC\n");
245         }
246 }
247
248 static bool ironlake_fbc_enabled(struct drm_device *dev)
249 {
250         struct drm_i915_private *dev_priv = dev->dev_private;
251
252         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
253 }
254
255 bool intel_fbc_enabled(struct drm_device *dev)
256 {
257         struct drm_i915_private *dev_priv = dev->dev_private;
258
259         if (!dev_priv->display.fbc_enabled)
260                 return false;
261
262         return dev_priv->display.fbc_enabled(dev);
263 }
264
265 static void intel_fbc_work_fn(struct work_struct *__work)
266 {
267         struct intel_fbc_work *work =
268                 container_of(to_delayed_work(__work),
269                              struct intel_fbc_work, work);
270         struct drm_device *dev = work->crtc->dev;
271         struct drm_i915_private *dev_priv = dev->dev_private;
272
273         mutex_lock(&dev->struct_mutex);
274         if (work == dev_priv->fbc_work) {
275                 /* Double check that we haven't switched fb without cancelling
276                  * the prior work.
277                  */
278                 if (work->crtc->fb == work->fb) {
279                         dev_priv->display.enable_fbc(work->crtc,
280                                                      work->interval);
281
282                         dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
283                         dev_priv->cfb_fb = work->crtc->fb->base.id;
284                         dev_priv->cfb_y = work->crtc->y;
285                 }
286
287                 dev_priv->fbc_work = NULL;
288         }
289         mutex_unlock(&dev->struct_mutex);
290
291         kfree(work);
292 }
293
294 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
295 {
296         if (dev_priv->fbc_work == NULL)
297                 return;
298
299         DRM_DEBUG_KMS("cancelling pending FBC enable\n");
300
301         /* Synchronisation is provided by struct_mutex and checking of
302          * dev_priv->fbc_work, so we can perform the cancellation
303          * entirely asynchronously.
304          */
305         if (cancel_delayed_work(&dev_priv->fbc_work->work))
306                 /* tasklet was killed before being run, clean up */
307                 kfree(dev_priv->fbc_work);
308
309         /* Mark the work as no longer wanted so that if it does
310          * wake-up (because the work was already running and waiting
311          * for our mutex), it will discover that is no longer
312          * necessary to run.
313          */
314         dev_priv->fbc_work = NULL;
315 }
316
317 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
318 {
319         struct intel_fbc_work *work;
320         struct drm_device *dev = crtc->dev;
321         struct drm_i915_private *dev_priv = dev->dev_private;
322
323         if (!dev_priv->display.enable_fbc)
324                 return;
325
326         intel_cancel_fbc_work(dev_priv);
327
328         work = kzalloc(sizeof *work, GFP_KERNEL);
329         if (work == NULL) {
330                 dev_priv->display.enable_fbc(crtc, interval);
331                 return;
332         }
333
334         work->crtc = crtc;
335         work->fb = crtc->fb;
336         work->interval = interval;
337         INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
338
339         dev_priv->fbc_work = work;
340
341         DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
342
343         /* Delay the actual enabling to let pageflipping cease and the
344          * display to settle before starting the compression. Note that
345          * this delay also serves a second purpose: it allows for a
346          * vblank to pass after disabling the FBC before we attempt
347          * to modify the control registers.
348          *
349          * A more complicated solution would involve tracking vblanks
350          * following the termination of the page-flipping sequence
351          * and indeed performing the enable as a co-routine and not
352          * waiting synchronously upon the vblank.
353          */
354         schedule_delayed_work(&work->work, msecs_to_jiffies(50));
355 }
356
357 void intel_disable_fbc(struct drm_device *dev)
358 {
359         struct drm_i915_private *dev_priv = dev->dev_private;
360
361         intel_cancel_fbc_work(dev_priv);
362
363         if (!dev_priv->display.disable_fbc)
364                 return;
365
366         dev_priv->display.disable_fbc(dev);
367         dev_priv->cfb_plane = -1;
368 }
369
370 /**
371  * intel_update_fbc - enable/disable FBC as needed
372  * @dev: the drm_device
373  *
374  * Set up the framebuffer compression hardware at mode set time.  We
375  * enable it if possible:
376  *   - plane A only (on pre-965)
377  *   - no pixel mulitply/line duplication
378  *   - no alpha buffer discard
379  *   - no dual wide
380  *   - framebuffer <= 2048 in width, 1536 in height
381  *
382  * We can't assume that any compression will take place (worst case),
383  * so the compressed buffer has to be the same size as the uncompressed
384  * one.  It also must reside (along with the line length buffer) in
385  * stolen memory.
386  *
387  * We need to enable/disable FBC on a global basis.
388  */
389 void intel_update_fbc(struct drm_device *dev)
390 {
391         struct drm_i915_private *dev_priv = dev->dev_private;
392         struct drm_crtc *crtc = NULL, *tmp_crtc;
393         struct intel_crtc *intel_crtc;
394         struct drm_framebuffer *fb;
395         struct intel_framebuffer *intel_fb;
396         struct drm_i915_gem_object *obj;
397         int enable_fbc;
398
399         if (!i915_powersave)
400                 return;
401
402         if (!I915_HAS_FBC(dev))
403                 return;
404
405         /*
406          * If FBC is already on, we just have to verify that we can
407          * keep it that way...
408          * Need to disable if:
409          *   - more than one pipe is active
410          *   - changing FBC params (stride, fence, mode)
411          *   - new fb is too large to fit in compressed buffer
412          *   - going to an unsupported config (interlace, pixel multiply, etc.)
413          */
414         list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
415                 if (intel_crtc_active(tmp_crtc) &&
416                     !to_intel_crtc(tmp_crtc)->primary_disabled) {
417                         if (crtc) {
418                                 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
419                                 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
420                                 goto out_disable;
421                         }
422                         crtc = tmp_crtc;
423                 }
424         }
425
426         if (!crtc || crtc->fb == NULL) {
427                 DRM_DEBUG_KMS("no output, disabling\n");
428                 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
429                 goto out_disable;
430         }
431
432         intel_crtc = to_intel_crtc(crtc);
433         fb = crtc->fb;
434         intel_fb = to_intel_framebuffer(fb);
435         obj = intel_fb->obj;
436
437         enable_fbc = i915_enable_fbc;
438         if (enable_fbc < 0) {
439                 DRM_DEBUG_KMS("fbc set to per-chip default\n");
440                 enable_fbc = 1;
441                 if (INTEL_INFO(dev)->gen <= 6)
442                         enable_fbc = 0;
443         }
444         if (!enable_fbc) {
445                 DRM_DEBUG_KMS("fbc disabled per module param\n");
446                 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
447                 goto out_disable;
448         }
449         if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
450             (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
451                 DRM_DEBUG_KMS("mode incompatible with compression, "
452                               "disabling\n");
453                 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
454                 goto out_disable;
455         }
456         if ((crtc->mode.hdisplay > 2048) ||
457             (crtc->mode.vdisplay > 1536)) {
458                 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
459                 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
460                 goto out_disable;
461         }
462         if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
463                 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
464                 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
465                 goto out_disable;
466         }
467
468         /* The use of a CPU fence is mandatory in order to detect writes
469          * by the CPU to the scanout and trigger updates to the FBC.
470          */
471         if (obj->tiling_mode != I915_TILING_X ||
472             obj->fence_reg == I915_FENCE_REG_NONE) {
473                 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
474                 dev_priv->no_fbc_reason = FBC_NOT_TILED;
475                 goto out_disable;
476         }
477
478 #ifdef DDB
479         /* If the kernel debugger is active, always disable compression */
480         if (db_active)
481                 goto out_disable;
482 #endif
483
484         if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
485                 DRM_INFO("not enough stolen space for compressed buffer (need %zd bytes), disabling\n", intel_fb->obj->base.size);
486                 DRM_INFO("hint: you may be able to increase stolen memory size in the BIOS to avoid this\n");
487                 DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
488                 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
489                 goto out_disable;
490         }
491
492         /* If the scanout has not changed, don't modify the FBC settings.
493          * Note that we make the fundamental assumption that the fb->obj
494          * cannot be unpinned (and have its GTT offset and fence revoked)
495          * without first being decoupled from the scanout and FBC disabled.
496          */
497         if (dev_priv->cfb_plane == intel_crtc->plane &&
498             dev_priv->cfb_fb == fb->base.id &&
499             dev_priv->cfb_y == crtc->y)
500                 return;
501
502         if (intel_fbc_enabled(dev)) {
503                 /* We update FBC along two paths, after changing fb/crtc
504                  * configuration (modeswitching) and after page-flipping
505                  * finishes. For the latter, we know that not only did
506                  * we disable the FBC at the start of the page-flip
507                  * sequence, but also more than one vblank has passed.
508                  *
509                  * For the former case of modeswitching, it is possible
510                  * to switch between two FBC valid configurations
511                  * instantaneously so we do need to disable the FBC
512                  * before we can modify its control registers. We also
513                  * have to wait for the next vblank for that to take
514                  * effect. However, since we delay enabling FBC we can
515                  * assume that a vblank has passed since disabling and
516                  * that we can safely alter the registers in the deferred
517                  * callback.
518                  *
519                  * In the scenario that we go from a valid to invalid
520                  * and then back to valid FBC configuration we have
521                  * no strict enforcement that a vblank occurred since
522                  * disabling the FBC. However, along all current pipe
523                  * disabling paths we do need to wait for a vblank at
524                  * some point. And we wait before enabling FBC anyway.
525                  */
526                 DRM_DEBUG_KMS("disabling active FBC for update\n");
527                 intel_disable_fbc(dev);
528         }
529
530         intel_enable_fbc(crtc, 500);
531         return;
532
533 out_disable:
534         /* Multiple disables should be harmless */
535         if (intel_fbc_enabled(dev)) {
536                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
537                 intel_disable_fbc(dev);
538         }
539         i915_gem_stolen_cleanup_compression(dev);
540 }
541
542 static void i915_pineview_get_mem_freq(struct drm_device *dev)
543 {
544         drm_i915_private_t *dev_priv = dev->dev_private;
545         u32 tmp;
546
547         tmp = I915_READ(CLKCFG);
548
549         switch (tmp & CLKCFG_FSB_MASK) {
550         case CLKCFG_FSB_533:
551                 dev_priv->fsb_freq = 533; /* 133*4 */
552                 break;
553         case CLKCFG_FSB_800:
554                 dev_priv->fsb_freq = 800; /* 200*4 */
555                 break;
556         case CLKCFG_FSB_667:
557                 dev_priv->fsb_freq =  667; /* 167*4 */
558                 break;
559         case CLKCFG_FSB_400:
560                 dev_priv->fsb_freq = 400; /* 100*4 */
561                 break;
562         }
563
564         switch (tmp & CLKCFG_MEM_MASK) {
565         case CLKCFG_MEM_533:
566                 dev_priv->mem_freq = 533;
567                 break;
568         case CLKCFG_MEM_667:
569                 dev_priv->mem_freq = 667;
570                 break;
571         case CLKCFG_MEM_800:
572                 dev_priv->mem_freq = 800;
573                 break;
574         }
575
576         /* detect pineview DDR3 setting */
577         tmp = I915_READ(CSHRDDR3CTL);
578         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
579 }
580
581 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
582 {
583         drm_i915_private_t *dev_priv = dev->dev_private;
584         u16 ddrpll, csipll;
585
586         ddrpll = I915_READ16(DDRMPLL1);
587         csipll = I915_READ16(CSIPLL0);
588
589         switch (ddrpll & 0xff) {
590         case 0xc:
591                 dev_priv->mem_freq = 800;
592                 break;
593         case 0x10:
594                 dev_priv->mem_freq = 1066;
595                 break;
596         case 0x14:
597                 dev_priv->mem_freq = 1333;
598                 break;
599         case 0x18:
600                 dev_priv->mem_freq = 1600;
601                 break;
602         default:
603                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
604                                  ddrpll & 0xff);
605                 dev_priv->mem_freq = 0;
606                 break;
607         }
608
609         dev_priv->ips.r_t = dev_priv->mem_freq;
610
611         switch (csipll & 0x3ff) {
612         case 0x00c:
613                 dev_priv->fsb_freq = 3200;
614                 break;
615         case 0x00e:
616                 dev_priv->fsb_freq = 3733;
617                 break;
618         case 0x010:
619                 dev_priv->fsb_freq = 4266;
620                 break;
621         case 0x012:
622                 dev_priv->fsb_freq = 4800;
623                 break;
624         case 0x014:
625                 dev_priv->fsb_freq = 5333;
626                 break;
627         case 0x016:
628                 dev_priv->fsb_freq = 5866;
629                 break;
630         case 0x018:
631                 dev_priv->fsb_freq = 6400;
632                 break;
633         default:
634                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
635                                  csipll & 0x3ff);
636                 dev_priv->fsb_freq = 0;
637                 break;
638         }
639
640         if (dev_priv->fsb_freq == 3200) {
641                 dev_priv->ips.c_m = 0;
642         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
643                 dev_priv->ips.c_m = 1;
644         } else {
645                 dev_priv->ips.c_m = 2;
646         }
647 }
648
649 static const struct cxsr_latency cxsr_latency_table[] = {
650         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
651         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
652         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
653         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
654         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
655
656         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
657         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
658         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
659         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
660         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
661
662         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
663         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
664         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
665         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
666         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
667
668         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
669         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
670         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
671         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
672         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
673
674         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
675         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
676         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
677         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
678         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
679
680         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
681         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
682         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
683         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
684         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
685 };
686
687 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
688                                                          int is_ddr3,
689                                                          int fsb,
690                                                          int mem)
691 {
692         const struct cxsr_latency *latency;
693         int i;
694
695         if (fsb == 0 || mem == 0)
696                 return NULL;
697
698         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
699                 latency = &cxsr_latency_table[i];
700                 if (is_desktop == latency->is_desktop &&
701                     is_ddr3 == latency->is_ddr3 &&
702                     fsb == latency->fsb_freq && mem == latency->mem_freq)
703                         return latency;
704         }
705
706         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
707
708         return NULL;
709 }
710
711 static void pineview_disable_cxsr(struct drm_device *dev)
712 {
713         struct drm_i915_private *dev_priv = dev->dev_private;
714
715         /* deactivate cxsr */
716         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
717 }
718
719 /*
720  * Latency for FIFO fetches is dependent on several factors:
721  *   - memory configuration (speed, channels)
722  *   - chipset
723  *   - current MCH state
724  * It can be fairly high in some situations, so here we assume a fairly
725  * pessimal value.  It's a tradeoff between extra memory fetches (if we
726  * set this value too high, the FIFO will fetch frequently to stay full)
727  * and power consumption (set it too low to save power and we might see
728  * FIFO underruns and display "flicker").
729  *
730  * A value of 5us seems to be a good balance; safe for very low end
731  * platforms but not overly aggressive on lower latency configs.
732  */
733 static const int latency_ns = 5000;
734
735 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
736 {
737         struct drm_i915_private *dev_priv = dev->dev_private;
738         uint32_t dsparb = I915_READ(DSPARB);
739         int size;
740
741         size = dsparb & 0x7f;
742         if (plane)
743                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
744
745         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
746                       plane ? "B" : "A", size);
747
748         return size;
749 }
750
751 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
752 {
753         struct drm_i915_private *dev_priv = dev->dev_private;
754         uint32_t dsparb = I915_READ(DSPARB);
755         int size;
756
757         size = dsparb & 0x1ff;
758         if (plane)
759                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
760         size >>= 1; /* Convert to cachelines */
761
762         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
763                       plane ? "B" : "A", size);
764
765         return size;
766 }
767
768 static int i845_get_fifo_size(struct drm_device *dev, int plane)
769 {
770         struct drm_i915_private *dev_priv = dev->dev_private;
771         uint32_t dsparb = I915_READ(DSPARB);
772         int size;
773
774         size = dsparb & 0x7f;
775         size >>= 2; /* Convert to cachelines */
776
777         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
778                       plane ? "B" : "A",
779                       size);
780
781         return size;
782 }
783
784 static int i830_get_fifo_size(struct drm_device *dev, int plane)
785 {
786         struct drm_i915_private *dev_priv = dev->dev_private;
787         uint32_t dsparb = I915_READ(DSPARB);
788         int size;
789
790         size = dsparb & 0x7f;
791         size >>= 1; /* Convert to cachelines */
792
793         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
794                       plane ? "B" : "A", size);
795
796         return size;
797 }
798
799 /* Pineview has different values for various configs */
800 static const struct intel_watermark_params pineview_display_wm = {
801         PINEVIEW_DISPLAY_FIFO,
802         PINEVIEW_MAX_WM,
803         PINEVIEW_DFT_WM,
804         PINEVIEW_GUARD_WM,
805         PINEVIEW_FIFO_LINE_SIZE
806 };
807 static const struct intel_watermark_params pineview_display_hplloff_wm = {
808         PINEVIEW_DISPLAY_FIFO,
809         PINEVIEW_MAX_WM,
810         PINEVIEW_DFT_HPLLOFF_WM,
811         PINEVIEW_GUARD_WM,
812         PINEVIEW_FIFO_LINE_SIZE
813 };
814 static const struct intel_watermark_params pineview_cursor_wm = {
815         PINEVIEW_CURSOR_FIFO,
816         PINEVIEW_CURSOR_MAX_WM,
817         PINEVIEW_CURSOR_DFT_WM,
818         PINEVIEW_CURSOR_GUARD_WM,
819         PINEVIEW_FIFO_LINE_SIZE,
820 };
821 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
822         PINEVIEW_CURSOR_FIFO,
823         PINEVIEW_CURSOR_MAX_WM,
824         PINEVIEW_CURSOR_DFT_WM,
825         PINEVIEW_CURSOR_GUARD_WM,
826         PINEVIEW_FIFO_LINE_SIZE
827 };
828 static const struct intel_watermark_params g4x_wm_info = {
829         G4X_FIFO_SIZE,
830         G4X_MAX_WM,
831         G4X_MAX_WM,
832         2,
833         G4X_FIFO_LINE_SIZE,
834 };
835 static const struct intel_watermark_params g4x_cursor_wm_info = {
836         I965_CURSOR_FIFO,
837         I965_CURSOR_MAX_WM,
838         I965_CURSOR_DFT_WM,
839         2,
840         G4X_FIFO_LINE_SIZE,
841 };
842 static const struct intel_watermark_params valleyview_wm_info = {
843         VALLEYVIEW_FIFO_SIZE,
844         VALLEYVIEW_MAX_WM,
845         VALLEYVIEW_MAX_WM,
846         2,
847         G4X_FIFO_LINE_SIZE,
848 };
849 static const struct intel_watermark_params valleyview_cursor_wm_info = {
850         I965_CURSOR_FIFO,
851         VALLEYVIEW_CURSOR_MAX_WM,
852         I965_CURSOR_DFT_WM,
853         2,
854         G4X_FIFO_LINE_SIZE,
855 };
856 static const struct intel_watermark_params i965_cursor_wm_info = {
857         I965_CURSOR_FIFO,
858         I965_CURSOR_MAX_WM,
859         I965_CURSOR_DFT_WM,
860         2,
861         I915_FIFO_LINE_SIZE,
862 };
863 static const struct intel_watermark_params i945_wm_info = {
864         I945_FIFO_SIZE,
865         I915_MAX_WM,
866         1,
867         2,
868         I915_FIFO_LINE_SIZE
869 };
870 static const struct intel_watermark_params i915_wm_info = {
871         I915_FIFO_SIZE,
872         I915_MAX_WM,
873         1,
874         2,
875         I915_FIFO_LINE_SIZE
876 };
877 static const struct intel_watermark_params i855_wm_info = {
878         I855GM_FIFO_SIZE,
879         I915_MAX_WM,
880         1,
881         2,
882         I830_FIFO_LINE_SIZE
883 };
884 static const struct intel_watermark_params i830_wm_info = {
885         I830_FIFO_SIZE,
886         I915_MAX_WM,
887         1,
888         2,
889         I830_FIFO_LINE_SIZE
890 };
891
892 static const struct intel_watermark_params ironlake_display_wm_info = {
893         ILK_DISPLAY_FIFO,
894         ILK_DISPLAY_MAXWM,
895         ILK_DISPLAY_DFTWM,
896         2,
897         ILK_FIFO_LINE_SIZE
898 };
899 static const struct intel_watermark_params ironlake_cursor_wm_info = {
900         ILK_CURSOR_FIFO,
901         ILK_CURSOR_MAXWM,
902         ILK_CURSOR_DFTWM,
903         2,
904         ILK_FIFO_LINE_SIZE
905 };
906 static const struct intel_watermark_params ironlake_display_srwm_info = {
907         ILK_DISPLAY_SR_FIFO,
908         ILK_DISPLAY_MAX_SRWM,
909         ILK_DISPLAY_DFT_SRWM,
910         2,
911         ILK_FIFO_LINE_SIZE
912 };
913 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
914         ILK_CURSOR_SR_FIFO,
915         ILK_CURSOR_MAX_SRWM,
916         ILK_CURSOR_DFT_SRWM,
917         2,
918         ILK_FIFO_LINE_SIZE
919 };
920
921 static const struct intel_watermark_params sandybridge_display_wm_info = {
922         SNB_DISPLAY_FIFO,
923         SNB_DISPLAY_MAXWM,
924         SNB_DISPLAY_DFTWM,
925         2,
926         SNB_FIFO_LINE_SIZE
927 };
928 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
929         SNB_CURSOR_FIFO,
930         SNB_CURSOR_MAXWM,
931         SNB_CURSOR_DFTWM,
932         2,
933         SNB_FIFO_LINE_SIZE
934 };
935 static const struct intel_watermark_params sandybridge_display_srwm_info = {
936         SNB_DISPLAY_SR_FIFO,
937         SNB_DISPLAY_MAX_SRWM,
938         SNB_DISPLAY_DFT_SRWM,
939         2,
940         SNB_FIFO_LINE_SIZE
941 };
942 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
943         SNB_CURSOR_SR_FIFO,
944         SNB_CURSOR_MAX_SRWM,
945         SNB_CURSOR_DFT_SRWM,
946         2,
947         SNB_FIFO_LINE_SIZE
948 };
949
950
951 /**
952  * intel_calculate_wm - calculate watermark level
953  * @clock_in_khz: pixel clock
954  * @wm: chip FIFO params
955  * @pixel_size: display pixel size
956  * @latency_ns: memory latency for the platform
957  *
958  * Calculate the watermark level (the level at which the display plane will
959  * start fetching from memory again).  Each chip has a different display
960  * FIFO size and allocation, so the caller needs to figure that out and pass
961  * in the correct intel_watermark_params structure.
962  *
963  * As the pixel clock runs, the FIFO will be drained at a rate that depends
964  * on the pixel size.  When it reaches the watermark level, it'll start
965  * fetching FIFO line sized based chunks from memory until the FIFO fills
966  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
967  * will occur, and a display engine hang could result.
968  */
969 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
970                                         const struct intel_watermark_params *wm,
971                                         int fifo_size,
972                                         int pixel_size,
973                                         unsigned long latency_ns)
974 {
975         long entries_required, wm_size;
976
977         /*
978          * Note: we need to make sure we don't overflow for various clock &
979          * latency values.
980          * clocks go from a few thousand to several hundred thousand.
981          * latency is usually a few thousand
982          */
983         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
984                 1000;
985         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
986
987         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
988
989         wm_size = fifo_size - (entries_required + wm->guard_size);
990
991         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
992
993         /* Don't promote wm_size to unsigned... */
994         if (wm_size > (long)wm->max_wm)
995                 wm_size = wm->max_wm;
996         if (wm_size <= 0)
997                 wm_size = wm->default_wm;
998         return wm_size;
999 }
1000
1001 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1002 {
1003         struct drm_crtc *crtc, *enabled = NULL;
1004
1005         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1006                 if (intel_crtc_active(crtc)) {
1007                         if (enabled)
1008                                 return NULL;
1009                         enabled = crtc;
1010                 }
1011         }
1012
1013         return enabled;
1014 }
1015
1016 static void pineview_update_wm(struct drm_device *dev)
1017 {
1018         struct drm_i915_private *dev_priv = dev->dev_private;
1019         struct drm_crtc *crtc;
1020         const struct cxsr_latency *latency;
1021         u32 reg;
1022         unsigned long wm;
1023
1024         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1025                                          dev_priv->fsb_freq, dev_priv->mem_freq);
1026         if (!latency) {
1027                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1028                 pineview_disable_cxsr(dev);
1029                 return;
1030         }
1031
1032         crtc = single_enabled_crtc(dev);
1033         if (crtc) {
1034                 int clock = crtc->mode.clock;
1035                 int pixel_size = crtc->fb->bits_per_pixel / 8;
1036
1037                 /* Display SR */
1038                 wm = intel_calculate_wm(clock, &pineview_display_wm,
1039                                         pineview_display_wm.fifo_size,
1040                                         pixel_size, latency->display_sr);
1041                 reg = I915_READ(DSPFW1);
1042                 reg &= ~DSPFW_SR_MASK;
1043                 reg |= wm << DSPFW_SR_SHIFT;
1044                 I915_WRITE(DSPFW1, reg);
1045                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1046
1047                 /* cursor SR */
1048                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1049                                         pineview_display_wm.fifo_size,
1050                                         pixel_size, latency->cursor_sr);
1051                 reg = I915_READ(DSPFW3);
1052                 reg &= ~DSPFW_CURSOR_SR_MASK;
1053                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1054                 I915_WRITE(DSPFW3, reg);
1055
1056                 /* Display HPLL off SR */
1057                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1058                                         pineview_display_hplloff_wm.fifo_size,
1059                                         pixel_size, latency->display_hpll_disable);
1060                 reg = I915_READ(DSPFW3);
1061                 reg &= ~DSPFW_HPLL_SR_MASK;
1062                 reg |= wm & DSPFW_HPLL_SR_MASK;
1063                 I915_WRITE(DSPFW3, reg);
1064
1065                 /* cursor HPLL off SR */
1066                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1067                                         pineview_display_hplloff_wm.fifo_size,
1068                                         pixel_size, latency->cursor_hpll_disable);
1069                 reg = I915_READ(DSPFW3);
1070                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1071                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1072                 I915_WRITE(DSPFW3, reg);
1073                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1074
1075                 /* activate cxsr */
1076                 I915_WRITE(DSPFW3,
1077                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1078                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1079         } else {
1080                 pineview_disable_cxsr(dev);
1081                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1082         }
1083 }
1084
1085 static bool g4x_compute_wm0(struct drm_device *dev,
1086                             int plane,
1087                             const struct intel_watermark_params *display,
1088                             int display_latency_ns,
1089                             const struct intel_watermark_params *cursor,
1090                             int cursor_latency_ns,
1091                             int *plane_wm,
1092                             int *cursor_wm)
1093 {
1094         struct drm_crtc *crtc;
1095         int htotal, hdisplay, clock, pixel_size;
1096         int line_time_us, line_count;
1097         int entries, tlb_miss;
1098
1099         crtc = intel_get_crtc_for_plane(dev, plane);
1100         if (!intel_crtc_active(crtc)) {
1101                 *cursor_wm = cursor->guard_size;
1102                 *plane_wm = display->guard_size;
1103                 return false;
1104         }
1105
1106         htotal = crtc->mode.htotal;
1107         hdisplay = crtc->mode.hdisplay;
1108         clock = crtc->mode.clock;
1109         pixel_size = crtc->fb->bits_per_pixel / 8;
1110
1111         /* Use the small buffer method to calculate plane watermark */
1112         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1113         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1114         if (tlb_miss > 0)
1115                 entries += tlb_miss;
1116         entries = DIV_ROUND_UP(entries, display->cacheline_size);
1117         *plane_wm = entries + display->guard_size;
1118         if (*plane_wm > (int)display->max_wm)
1119                 *plane_wm = display->max_wm;
1120
1121         /* Use the large buffer method to calculate cursor watermark */
1122         line_time_us = ((htotal * 1000) / clock);
1123         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1124         entries = line_count * 64 * pixel_size;
1125         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1126         if (tlb_miss > 0)
1127                 entries += tlb_miss;
1128         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1129         *cursor_wm = entries + cursor->guard_size;
1130         if (*cursor_wm > (int)cursor->max_wm)
1131                 *cursor_wm = (int)cursor->max_wm;
1132
1133         return true;
1134 }
1135
1136 /*
1137  * Check the wm result.
1138  *
1139  * If any calculated watermark values is larger than the maximum value that
1140  * can be programmed into the associated watermark register, that watermark
1141  * must be disabled.
1142  */
1143 static bool g4x_check_srwm(struct drm_device *dev,
1144                            int display_wm, int cursor_wm,
1145                            const struct intel_watermark_params *display,
1146                            const struct intel_watermark_params *cursor)
1147 {
1148         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1149                       display_wm, cursor_wm);
1150
1151         if (display_wm > display->max_wm) {
1152                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1153                               display_wm, display->max_wm);
1154                 return false;
1155         }
1156
1157         if (cursor_wm > cursor->max_wm) {
1158                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1159                               cursor_wm, cursor->max_wm);
1160                 return false;
1161         }
1162
1163         if (!(display_wm || cursor_wm)) {
1164                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1165                 return false;
1166         }
1167
1168         return true;
1169 }
1170
1171 static bool g4x_compute_srwm(struct drm_device *dev,
1172                              int plane,
1173                              int latency_ns,
1174                              const struct intel_watermark_params *display,
1175                              const struct intel_watermark_params *cursor,
1176                              int *display_wm, int *cursor_wm)
1177 {
1178         struct drm_crtc *crtc;
1179         int hdisplay, htotal, pixel_size, clock;
1180         unsigned long line_time_us;
1181         int line_count, line_size;
1182         int small, large;
1183         int entries;
1184
1185         if (!latency_ns) {
1186                 *display_wm = *cursor_wm = 0;
1187                 return false;
1188         }
1189
1190         crtc = intel_get_crtc_for_plane(dev, plane);
1191         hdisplay = crtc->mode.hdisplay;
1192         htotal = crtc->mode.htotal;
1193         clock = crtc->mode.clock;
1194         pixel_size = crtc->fb->bits_per_pixel / 8;
1195
1196         line_time_us = (htotal * 1000) / clock;
1197         line_count = (latency_ns / line_time_us + 1000) / 1000;
1198         line_size = hdisplay * pixel_size;
1199
1200         /* Use the minimum of the small and large buffer method for primary */
1201         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1202         large = line_count * line_size;
1203
1204         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1205         *display_wm = entries + display->guard_size;
1206
1207         /* calculate the self-refresh watermark for display cursor */
1208         entries = line_count * pixel_size * 64;
1209         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1210         *cursor_wm = entries + cursor->guard_size;
1211
1212         return g4x_check_srwm(dev,
1213                               *display_wm, *cursor_wm,
1214                               display, cursor);
1215 }
1216
1217 static bool vlv_compute_drain_latency(struct drm_device *dev,
1218                                      int plane,
1219                                      int *plane_prec_mult,
1220                                      int *plane_dl,
1221                                      int *cursor_prec_mult,
1222                                      int *cursor_dl)
1223 {
1224         struct drm_crtc *crtc;
1225         int clock, pixel_size;
1226         int entries;
1227
1228         crtc = intel_get_crtc_for_plane(dev, plane);
1229         if (!intel_crtc_active(crtc))
1230                 return false;
1231
1232         clock = crtc->mode.clock;       /* VESA DOT Clock */
1233         pixel_size = crtc->fb->bits_per_pixel / 8;      /* BPP */
1234
1235         entries = (clock / 1000) * pixel_size;
1236         *plane_prec_mult = (entries > 256) ?
1237                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1238         *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1239                                                      pixel_size);
1240
1241         entries = (clock / 1000) * 4;   /* BPP is always 4 for cursor */
1242         *cursor_prec_mult = (entries > 256) ?
1243                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1244         *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1245
1246         return true;
1247 }
1248
1249 /*
1250  * Update drain latency registers of memory arbiter
1251  *
1252  * Valleyview SoC has a new memory arbiter and needs drain latency registers
1253  * to be programmed. Each plane has a drain latency multiplier and a drain
1254  * latency value.
1255  */
1256
1257 static void vlv_update_drain_latency(struct drm_device *dev)
1258 {
1259         struct drm_i915_private *dev_priv = dev->dev_private;
1260         int planea_prec, planea_dl, planeb_prec, planeb_dl;
1261         int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1262         int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1263                                                         either 16 or 32 */
1264
1265         /* For plane A, Cursor A */
1266         if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1267                                       &cursor_prec_mult, &cursora_dl)) {
1268                 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1269                         DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1270                 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1271                         DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1272
1273                 I915_WRITE(VLV_DDL1, cursora_prec |
1274                                 (cursora_dl << DDL_CURSORA_SHIFT) |
1275                                 planea_prec | planea_dl);
1276         }
1277
1278         /* For plane B, Cursor B */
1279         if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1280                                       &cursor_prec_mult, &cursorb_dl)) {
1281                 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1282                         DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1283                 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1284                         DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1285
1286                 I915_WRITE(VLV_DDL2, cursorb_prec |
1287                                 (cursorb_dl << DDL_CURSORB_SHIFT) |
1288                                 planeb_prec | planeb_dl);
1289         }
1290 }
1291
1292 #define single_plane_enabled(mask) is_power_of_2(mask)
1293
1294 static void valleyview_update_wm(struct drm_device *dev)
1295 {
1296         static const int sr_latency_ns = 12000;
1297         struct drm_i915_private *dev_priv = dev->dev_private;
1298         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1299         int plane_sr, cursor_sr;
1300         int ignore_plane_sr, ignore_cursor_sr;
1301         unsigned int enabled = 0;
1302
1303         vlv_update_drain_latency(dev);
1304
1305         if (g4x_compute_wm0(dev, PIPE_A,
1306                             &valleyview_wm_info, latency_ns,
1307                             &valleyview_cursor_wm_info, latency_ns,
1308                             &planea_wm, &cursora_wm))
1309                 enabled |= 1 << PIPE_A;
1310
1311         if (g4x_compute_wm0(dev, PIPE_B,
1312                             &valleyview_wm_info, latency_ns,
1313                             &valleyview_cursor_wm_info, latency_ns,
1314                             &planeb_wm, &cursorb_wm))
1315                 enabled |= 1 << PIPE_B;
1316
1317         if (single_plane_enabled(enabled) &&
1318             g4x_compute_srwm(dev, ffs(enabled) - 1,
1319                              sr_latency_ns,
1320                              &valleyview_wm_info,
1321                              &valleyview_cursor_wm_info,
1322                              &plane_sr, &ignore_cursor_sr) &&
1323             g4x_compute_srwm(dev, ffs(enabled) - 1,
1324                              2*sr_latency_ns,
1325                              &valleyview_wm_info,
1326                              &valleyview_cursor_wm_info,
1327                              &ignore_plane_sr, &cursor_sr)) {
1328                 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1329         } else {
1330                 I915_WRITE(FW_BLC_SELF_VLV,
1331                            I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1332                 plane_sr = cursor_sr = 0;
1333         }
1334
1335         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1336                       planea_wm, cursora_wm,
1337                       planeb_wm, cursorb_wm,
1338                       plane_sr, cursor_sr);
1339
1340         I915_WRITE(DSPFW1,
1341                    (plane_sr << DSPFW_SR_SHIFT) |
1342                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1343                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1344                    planea_wm);
1345         I915_WRITE(DSPFW2,
1346                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1347                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1348         I915_WRITE(DSPFW3,
1349                    (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1350                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1351 }
1352
1353 static void g4x_update_wm(struct drm_device *dev)
1354 {
1355         static const int sr_latency_ns = 12000;
1356         struct drm_i915_private *dev_priv = dev->dev_private;
1357         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1358         int plane_sr, cursor_sr;
1359         unsigned int enabled = 0;
1360
1361         if (g4x_compute_wm0(dev, PIPE_A,
1362                             &g4x_wm_info, latency_ns,
1363                             &g4x_cursor_wm_info, latency_ns,
1364                             &planea_wm, &cursora_wm))
1365                 enabled |= 1 << PIPE_A;
1366
1367         if (g4x_compute_wm0(dev, PIPE_B,
1368                             &g4x_wm_info, latency_ns,
1369                             &g4x_cursor_wm_info, latency_ns,
1370                             &planeb_wm, &cursorb_wm))
1371                 enabled |= 1 << PIPE_B;
1372
1373         if (single_plane_enabled(enabled) &&
1374             g4x_compute_srwm(dev, ffs(enabled) - 1,
1375                              sr_latency_ns,
1376                              &g4x_wm_info,
1377                              &g4x_cursor_wm_info,
1378                              &plane_sr, &cursor_sr)) {
1379                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1380         } else {
1381                 I915_WRITE(FW_BLC_SELF,
1382                            I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1383                 plane_sr = cursor_sr = 0;
1384         }
1385
1386         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1387                       planea_wm, cursora_wm,
1388                       planeb_wm, cursorb_wm,
1389                       plane_sr, cursor_sr);
1390
1391         I915_WRITE(DSPFW1,
1392                    (plane_sr << DSPFW_SR_SHIFT) |
1393                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1394                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1395                    planea_wm);
1396         I915_WRITE(DSPFW2,
1397                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1398                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1399         /* HPLL off in SR has some issues on G4x... disable it */
1400         I915_WRITE(DSPFW3,
1401                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1402                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1403 }
1404
1405 static void i965_update_wm(struct drm_device *dev)
1406 {
1407         struct drm_i915_private *dev_priv = dev->dev_private;
1408         struct drm_crtc *crtc;
1409         int srwm = 1;
1410         int cursor_sr = 16;
1411
1412         /* Calc sr entries for one plane configs */
1413         crtc = single_enabled_crtc(dev);
1414         if (crtc) {
1415                 /* self-refresh has much higher latency */
1416                 static const int sr_latency_ns = 12000;
1417                 int clock = crtc->mode.clock;
1418                 int htotal = crtc->mode.htotal;
1419                 int hdisplay = crtc->mode.hdisplay;
1420                 int pixel_size = crtc->fb->bits_per_pixel / 8;
1421                 unsigned long line_time_us;
1422                 int entries;
1423
1424                 line_time_us = ((htotal * 1000) / clock);
1425
1426                 /* Use ns/us then divide to preserve precision */
1427                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1428                         pixel_size * hdisplay;
1429                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1430                 srwm = I965_FIFO_SIZE - entries;
1431                 if (srwm < 0)
1432                         srwm = 1;
1433                 srwm &= 0x1ff;
1434                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1435                               entries, srwm);
1436
1437                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1438                         pixel_size * 64;
1439                 entries = DIV_ROUND_UP(entries,
1440                                           i965_cursor_wm_info.cacheline_size);
1441                 cursor_sr = i965_cursor_wm_info.fifo_size -
1442                         (entries + i965_cursor_wm_info.guard_size);
1443
1444                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1445                         cursor_sr = i965_cursor_wm_info.max_wm;
1446
1447                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1448                               "cursor %d\n", srwm, cursor_sr);
1449
1450                 if (IS_CRESTLINE(dev))
1451                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1452         } else {
1453                 /* Turn off self refresh if both pipes are enabled */
1454                 if (IS_CRESTLINE(dev))
1455                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1456                                    & ~FW_BLC_SELF_EN);
1457         }
1458
1459         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1460                       srwm);
1461
1462         /* 965 has limitations... */
1463         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1464                    (8 << 16) | (8 << 8) | (8 << 0));
1465         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1466         /* update cursor SR watermark */
1467         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1468 }
1469
1470 static void i9xx_update_wm(struct drm_device *dev)
1471 {
1472         struct drm_i915_private *dev_priv = dev->dev_private;
1473         const struct intel_watermark_params *wm_info;
1474         uint32_t fwater_lo;
1475         uint32_t fwater_hi;
1476         int cwm, srwm = 1;
1477         int fifo_size;
1478         int planea_wm, planeb_wm;
1479         struct drm_crtc *crtc, *enabled = NULL;
1480
1481         if (IS_I945GM(dev))
1482                 wm_info = &i945_wm_info;
1483         else if (!IS_GEN2(dev))
1484                 wm_info = &i915_wm_info;
1485         else
1486                 wm_info = &i855_wm_info;
1487
1488         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1489         crtc = intel_get_crtc_for_plane(dev, 0);
1490         if (intel_crtc_active(crtc)) {
1491                 int cpp = crtc->fb->bits_per_pixel / 8;
1492                 if (IS_GEN2(dev))
1493                         cpp = 4;
1494
1495                 planea_wm = intel_calculate_wm(crtc->mode.clock,
1496                                                wm_info, fifo_size, cpp,
1497                                                latency_ns);
1498                 enabled = crtc;
1499         } else
1500                 planea_wm = fifo_size - wm_info->guard_size;
1501
1502         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1503         crtc = intel_get_crtc_for_plane(dev, 1);
1504         if (intel_crtc_active(crtc)) {
1505                 int cpp = crtc->fb->bits_per_pixel / 8;
1506                 if (IS_GEN2(dev))
1507                         cpp = 4;
1508
1509                 planeb_wm = intel_calculate_wm(crtc->mode.clock,
1510                                                wm_info, fifo_size, cpp,
1511                                                latency_ns);
1512                 if (enabled == NULL)
1513                         enabled = crtc;
1514                 else
1515                         enabled = NULL;
1516         } else
1517                 planeb_wm = fifo_size - wm_info->guard_size;
1518
1519         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1520
1521         /*
1522          * Overlay gets an aggressive default since video jitter is bad.
1523          */
1524         cwm = 2;
1525
1526         /* Play safe and disable self-refresh before adjusting watermarks. */
1527         if (IS_I945G(dev) || IS_I945GM(dev))
1528                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1529         else if (IS_I915GM(dev))
1530                 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1531
1532         /* Calc sr entries for one plane configs */
1533         if (HAS_FW_BLC(dev) && enabled) {
1534                 /* self-refresh has much higher latency */
1535                 static const int sr_latency_ns = 6000;
1536                 int clock = enabled->mode.clock;
1537                 int htotal = enabled->mode.htotal;
1538                 int hdisplay = enabled->mode.hdisplay;
1539                 int pixel_size = enabled->fb->bits_per_pixel / 8;
1540                 unsigned long line_time_us;
1541                 int entries;
1542
1543                 line_time_us = (htotal * 1000) / clock;
1544
1545                 /* Use ns/us then divide to preserve precision */
1546                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1547                         pixel_size * hdisplay;
1548                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1549                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1550                 srwm = wm_info->fifo_size - entries;
1551                 if (srwm < 0)
1552                         srwm = 1;
1553
1554                 if (IS_I945G(dev) || IS_I945GM(dev))
1555                         I915_WRITE(FW_BLC_SELF,
1556                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1557                 else if (IS_I915GM(dev))
1558                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1559         }
1560
1561         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1562                       planea_wm, planeb_wm, cwm, srwm);
1563
1564         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1565         fwater_hi = (cwm & 0x1f);
1566
1567         /* Set request length to 8 cachelines per fetch */
1568         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1569         fwater_hi = fwater_hi | (1 << 8);
1570
1571         I915_WRITE(FW_BLC, fwater_lo);
1572         I915_WRITE(FW_BLC2, fwater_hi);
1573
1574         if (HAS_FW_BLC(dev)) {
1575                 if (enabled) {
1576                         if (IS_I945G(dev) || IS_I945GM(dev))
1577                                 I915_WRITE(FW_BLC_SELF,
1578                                            FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1579                         else if (IS_I915GM(dev))
1580                                 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1581                         DRM_DEBUG_KMS("memory self refresh enabled\n");
1582                 } else
1583                         DRM_DEBUG_KMS("memory self refresh disabled\n");
1584         }
1585 }
1586
1587 static void i830_update_wm(struct drm_device *dev)
1588 {
1589         struct drm_i915_private *dev_priv = dev->dev_private;
1590         struct drm_crtc *crtc;
1591         uint32_t fwater_lo;
1592         int planea_wm;
1593
1594         crtc = single_enabled_crtc(dev);
1595         if (crtc == NULL)
1596                 return;
1597
1598         planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
1599                                        dev_priv->display.get_fifo_size(dev, 0),
1600                                        4, latency_ns);
1601         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1602         fwater_lo |= (3<<8) | planea_wm;
1603
1604         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1605
1606         I915_WRITE(FW_BLC, fwater_lo);
1607 }
1608
1609 #define ILK_LP0_PLANE_LATENCY           700
1610 #define ILK_LP0_CURSOR_LATENCY          1300
1611
1612 /*
1613  * Check the wm result.
1614  *
1615  * If any calculated watermark values is larger than the maximum value that
1616  * can be programmed into the associated watermark register, that watermark
1617  * must be disabled.
1618  */
1619 static bool ironlake_check_srwm(struct drm_device *dev, int level,
1620                                 int fbc_wm, int display_wm, int cursor_wm,
1621                                 const struct intel_watermark_params *display,
1622                                 const struct intel_watermark_params *cursor)
1623 {
1624         struct drm_i915_private *dev_priv = dev->dev_private;
1625
1626         DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
1627                       " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
1628
1629         if (fbc_wm > SNB_FBC_MAX_SRWM) {
1630                 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
1631                               fbc_wm, SNB_FBC_MAX_SRWM, level);
1632
1633                 /* fbc has it's own way to disable FBC WM */
1634                 I915_WRITE(DISP_ARB_CTL,
1635                            I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
1636                 return false;
1637         }
1638
1639         if (display_wm > display->max_wm) {
1640                 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
1641                               display_wm, SNB_DISPLAY_MAX_SRWM, level);
1642                 return false;
1643         }
1644
1645         if (cursor_wm > cursor->max_wm) {
1646                 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
1647                               cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1648                 return false;
1649         }
1650
1651         if (!(fbc_wm || display_wm || cursor_wm)) {
1652                 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
1653                 return false;
1654         }
1655
1656         return true;
1657 }
1658
1659 /*
1660  * Compute watermark values of WM[1-3],
1661  */
1662 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
1663                                   int latency_ns,
1664                                   const struct intel_watermark_params *display,
1665                                   const struct intel_watermark_params *cursor,
1666                                   int *fbc_wm, int *display_wm, int *cursor_wm)
1667 {
1668         struct drm_crtc *crtc;
1669         unsigned long line_time_us;
1670         int hdisplay, htotal, pixel_size, clock;
1671         int line_count, line_size;
1672         int small, large;
1673         int entries;
1674
1675         if (!latency_ns) {
1676                 *fbc_wm = *display_wm = *cursor_wm = 0;
1677                 return false;
1678         }
1679
1680         crtc = intel_get_crtc_for_plane(dev, plane);
1681         hdisplay = crtc->mode.hdisplay;
1682         htotal = crtc->mode.htotal;
1683         clock = crtc->mode.clock;
1684         pixel_size = crtc->fb->bits_per_pixel / 8;
1685
1686         line_time_us = (htotal * 1000) / clock;
1687         line_count = (latency_ns / line_time_us + 1000) / 1000;
1688         line_size = hdisplay * pixel_size;
1689
1690         /* Use the minimum of the small and large buffer method for primary */
1691         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1692         large = line_count * line_size;
1693
1694         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1695         *display_wm = entries + display->guard_size;
1696
1697         /*
1698          * Spec says:
1699          * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
1700          */
1701         *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
1702
1703         /* calculate the self-refresh watermark for display cursor */
1704         entries = line_count * pixel_size * 64;
1705         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1706         *cursor_wm = entries + cursor->guard_size;
1707
1708         return ironlake_check_srwm(dev, level,
1709                                    *fbc_wm, *display_wm, *cursor_wm,
1710                                    display, cursor);
1711 }
1712
1713 static void ironlake_update_wm(struct drm_device *dev)
1714 {
1715         struct drm_i915_private *dev_priv = dev->dev_private;
1716         int fbc_wm, plane_wm, cursor_wm;
1717         unsigned int enabled;
1718
1719         enabled = 0;
1720         if (g4x_compute_wm0(dev, PIPE_A,
1721                             &ironlake_display_wm_info,
1722                             ILK_LP0_PLANE_LATENCY,
1723                             &ironlake_cursor_wm_info,
1724                             ILK_LP0_CURSOR_LATENCY,
1725                             &plane_wm, &cursor_wm)) {
1726                 I915_WRITE(WM0_PIPEA_ILK,
1727                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1728                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1729                               " plane %d, " "cursor: %d\n",
1730                               plane_wm, cursor_wm);
1731                 enabled |= 1 << PIPE_A;
1732         }
1733
1734         if (g4x_compute_wm0(dev, PIPE_B,
1735                             &ironlake_display_wm_info,
1736                             ILK_LP0_PLANE_LATENCY,
1737                             &ironlake_cursor_wm_info,
1738                             ILK_LP0_CURSOR_LATENCY,
1739                             &plane_wm, &cursor_wm)) {
1740                 I915_WRITE(WM0_PIPEB_ILK,
1741                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1742                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1743                               " plane %d, cursor: %d\n",
1744                               plane_wm, cursor_wm);
1745                 enabled |= 1 << PIPE_B;
1746         }
1747
1748         /*
1749          * Calculate and update the self-refresh watermark only when one
1750          * display plane is used.
1751          */
1752         I915_WRITE(WM3_LP_ILK, 0);
1753         I915_WRITE(WM2_LP_ILK, 0);
1754         I915_WRITE(WM1_LP_ILK, 0);
1755
1756         if (!single_plane_enabled(enabled))
1757                 return;
1758         enabled = ffs(enabled) - 1;
1759
1760         /* WM1 */
1761         if (!ironlake_compute_srwm(dev, 1, enabled,
1762                                    ILK_READ_WM1_LATENCY() * 500,
1763                                    &ironlake_display_srwm_info,
1764                                    &ironlake_cursor_srwm_info,
1765                                    &fbc_wm, &plane_wm, &cursor_wm))
1766                 return;
1767
1768         I915_WRITE(WM1_LP_ILK,
1769                    WM1_LP_SR_EN |
1770                    (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1771                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1772                    (plane_wm << WM1_LP_SR_SHIFT) |
1773                    cursor_wm);
1774
1775         /* WM2 */
1776         if (!ironlake_compute_srwm(dev, 2, enabled,
1777                                    ILK_READ_WM2_LATENCY() * 500,
1778                                    &ironlake_display_srwm_info,
1779                                    &ironlake_cursor_srwm_info,
1780                                    &fbc_wm, &plane_wm, &cursor_wm))
1781                 return;
1782
1783         I915_WRITE(WM2_LP_ILK,
1784                    WM2_LP_EN |
1785                    (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1786                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1787                    (plane_wm << WM1_LP_SR_SHIFT) |
1788                    cursor_wm);
1789
1790         /*
1791          * WM3 is unsupported on ILK, probably because we don't have latency
1792          * data for that power state
1793          */
1794 }
1795
1796 static void sandybridge_update_wm(struct drm_device *dev)
1797 {
1798         struct drm_i915_private *dev_priv = dev->dev_private;
1799         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
1800         u32 val;
1801         int fbc_wm, plane_wm, cursor_wm;
1802         unsigned int enabled;
1803
1804         enabled = 0;
1805         if (g4x_compute_wm0(dev, PIPE_A,
1806                             &sandybridge_display_wm_info, latency,
1807                             &sandybridge_cursor_wm_info, latency,
1808                             &plane_wm, &cursor_wm)) {
1809                 val = I915_READ(WM0_PIPEA_ILK);
1810                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1811                 I915_WRITE(WM0_PIPEA_ILK, val |
1812                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1813                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1814                               " plane %d, " "cursor: %d\n",
1815                               plane_wm, cursor_wm);
1816                 enabled |= 1 << PIPE_A;
1817         }
1818
1819         if (g4x_compute_wm0(dev, PIPE_B,
1820                             &sandybridge_display_wm_info, latency,
1821                             &sandybridge_cursor_wm_info, latency,
1822                             &plane_wm, &cursor_wm)) {
1823                 val = I915_READ(WM0_PIPEB_ILK);
1824                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1825                 I915_WRITE(WM0_PIPEB_ILK, val |
1826                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1827                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1828                               " plane %d, cursor: %d\n",
1829                               plane_wm, cursor_wm);
1830                 enabled |= 1 << PIPE_B;
1831         }
1832
1833         /*
1834          * Calculate and update the self-refresh watermark only when one
1835          * display plane is used.
1836          *
1837          * SNB support 3 levels of watermark.
1838          *
1839          * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1840          * and disabled in the descending order
1841          *
1842          */
1843         I915_WRITE(WM3_LP_ILK, 0);
1844         I915_WRITE(WM2_LP_ILK, 0);
1845         I915_WRITE(WM1_LP_ILK, 0);
1846
1847         if (!single_plane_enabled(enabled) ||
1848             dev_priv->sprite_scaling_enabled)
1849                 return;
1850         enabled = ffs(enabled) - 1;
1851
1852         /* WM1 */
1853         if (!ironlake_compute_srwm(dev, 1, enabled,
1854                                    SNB_READ_WM1_LATENCY() * 500,
1855                                    &sandybridge_display_srwm_info,
1856                                    &sandybridge_cursor_srwm_info,
1857                                    &fbc_wm, &plane_wm, &cursor_wm))
1858                 return;
1859
1860         I915_WRITE(WM1_LP_ILK,
1861                    WM1_LP_SR_EN |
1862                    (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1863                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1864                    (plane_wm << WM1_LP_SR_SHIFT) |
1865                    cursor_wm);
1866
1867         /* WM2 */
1868         if (!ironlake_compute_srwm(dev, 2, enabled,
1869                                    SNB_READ_WM2_LATENCY() * 500,
1870                                    &sandybridge_display_srwm_info,
1871                                    &sandybridge_cursor_srwm_info,
1872                                    &fbc_wm, &plane_wm, &cursor_wm))
1873                 return;
1874
1875         I915_WRITE(WM2_LP_ILK,
1876                    WM2_LP_EN |
1877                    (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1878                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1879                    (plane_wm << WM1_LP_SR_SHIFT) |
1880                    cursor_wm);
1881
1882         /* WM3 */
1883         if (!ironlake_compute_srwm(dev, 3, enabled,
1884                                    SNB_READ_WM3_LATENCY() * 500,
1885                                    &sandybridge_display_srwm_info,
1886                                    &sandybridge_cursor_srwm_info,
1887                                    &fbc_wm, &plane_wm, &cursor_wm))
1888                 return;
1889
1890         I915_WRITE(WM3_LP_ILK,
1891                    WM3_LP_EN |
1892                    (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1893                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1894                    (plane_wm << WM1_LP_SR_SHIFT) |
1895                    cursor_wm);
1896 }
1897
1898 static void ivybridge_update_wm(struct drm_device *dev)
1899 {
1900         struct drm_i915_private *dev_priv = dev->dev_private;
1901         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
1902         u32 val;
1903         int fbc_wm, plane_wm, cursor_wm;
1904         int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
1905         unsigned int enabled;
1906
1907         enabled = 0;
1908         if (g4x_compute_wm0(dev, PIPE_A,
1909                             &sandybridge_display_wm_info, latency,
1910                             &sandybridge_cursor_wm_info, latency,
1911                             &plane_wm, &cursor_wm)) {
1912                 val = I915_READ(WM0_PIPEA_ILK);
1913                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1914                 I915_WRITE(WM0_PIPEA_ILK, val |
1915                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1916                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1917                               " plane %d, " "cursor: %d\n",
1918                               plane_wm, cursor_wm);
1919                 enabled |= 1 << PIPE_A;
1920         }
1921
1922         if (g4x_compute_wm0(dev, PIPE_B,
1923                             &sandybridge_display_wm_info, latency,
1924                             &sandybridge_cursor_wm_info, latency,
1925                             &plane_wm, &cursor_wm)) {
1926                 val = I915_READ(WM0_PIPEB_ILK);
1927                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1928                 I915_WRITE(WM0_PIPEB_ILK, val |
1929                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1930                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1931                               " plane %d, cursor: %d\n",
1932                               plane_wm, cursor_wm);
1933                 enabled |= 1 << PIPE_B;
1934         }
1935
1936         if (g4x_compute_wm0(dev, PIPE_C,
1937                             &sandybridge_display_wm_info, latency,
1938                             &sandybridge_cursor_wm_info, latency,
1939                             &plane_wm, &cursor_wm)) {
1940                 val = I915_READ(WM0_PIPEC_IVB);
1941                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1942                 I915_WRITE(WM0_PIPEC_IVB, val |
1943                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1944                 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
1945                               " plane %d, cursor: %d\n",
1946                               plane_wm, cursor_wm);
1947                 enabled |= 1 << PIPE_C;
1948         }
1949
1950         /*
1951          * Calculate and update the self-refresh watermark only when one
1952          * display plane is used.
1953          *
1954          * SNB support 3 levels of watermark.
1955          *
1956          * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1957          * and disabled in the descending order
1958          *
1959          */
1960         I915_WRITE(WM3_LP_ILK, 0);
1961         I915_WRITE(WM2_LP_ILK, 0);
1962         I915_WRITE(WM1_LP_ILK, 0);
1963
1964         if (!single_plane_enabled(enabled) ||
1965             dev_priv->sprite_scaling_enabled)
1966                 return;
1967         enabled = ffs(enabled) - 1;
1968
1969         /* WM1 */
1970         if (!ironlake_compute_srwm(dev, 1, enabled,
1971                                    SNB_READ_WM1_LATENCY() * 500,
1972                                    &sandybridge_display_srwm_info,
1973                                    &sandybridge_cursor_srwm_info,
1974                                    &fbc_wm, &plane_wm, &cursor_wm))
1975                 return;
1976
1977         I915_WRITE(WM1_LP_ILK,
1978                    WM1_LP_SR_EN |
1979                    (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1980                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1981                    (plane_wm << WM1_LP_SR_SHIFT) |
1982                    cursor_wm);
1983
1984         /* WM2 */
1985         if (!ironlake_compute_srwm(dev, 2, enabled,
1986                                    SNB_READ_WM2_LATENCY() * 500,
1987                                    &sandybridge_display_srwm_info,
1988                                    &sandybridge_cursor_srwm_info,
1989                                    &fbc_wm, &plane_wm, &cursor_wm))
1990                 return;
1991
1992         I915_WRITE(WM2_LP_ILK,
1993                    WM2_LP_EN |
1994                    (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1995                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1996                    (plane_wm << WM1_LP_SR_SHIFT) |
1997                    cursor_wm);
1998
1999         /* WM3, note we have to correct the cursor latency */
2000         if (!ironlake_compute_srwm(dev, 3, enabled,
2001                                    SNB_READ_WM3_LATENCY() * 500,
2002                                    &sandybridge_display_srwm_info,
2003                                    &sandybridge_cursor_srwm_info,
2004                                    &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
2005             !ironlake_compute_srwm(dev, 3, enabled,
2006                                    2 * SNB_READ_WM3_LATENCY() * 500,
2007                                    &sandybridge_display_srwm_info,
2008                                    &sandybridge_cursor_srwm_info,
2009                                    &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
2010                 return;
2011
2012         I915_WRITE(WM3_LP_ILK,
2013                    WM3_LP_EN |
2014                    (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
2015                    (fbc_wm << WM1_LP_FBC_SHIFT) |
2016                    (plane_wm << WM1_LP_SR_SHIFT) |
2017                    cursor_wm);
2018 }
2019
2020 static void
2021 haswell_update_linetime_wm(struct drm_device *dev, int pipe,
2022                                  struct drm_display_mode *mode)
2023 {
2024         struct drm_i915_private *dev_priv = dev->dev_private;
2025         u32 temp;
2026
2027         temp = I915_READ(PIPE_WM_LINETIME(pipe));
2028         temp &= ~PIPE_WM_LINETIME_MASK;
2029
2030         /* The WM are computed with base on how long it takes to fill a single
2031          * row at the given clock rate, multiplied by 8.
2032          * */
2033         temp |= PIPE_WM_LINETIME_TIME(
2034                 ((mode->crtc_hdisplay * 1000) / mode->clock) * 8);
2035
2036         /* IPS watermarks are only used by pipe A, and are ignored by
2037          * pipes B and C.  They are calculated similarly to the common
2038          * linetime values, except that we are using CD clock frequency
2039          * in MHz instead of pixel rate for the division.
2040          *
2041          * This is a placeholder for the IPS watermark calculation code.
2042          */
2043
2044         I915_WRITE(PIPE_WM_LINETIME(pipe), temp);
2045 }
2046
2047 static bool
2048 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
2049                               uint32_t sprite_width, int pixel_size,
2050                               const struct intel_watermark_params *display,
2051                               int display_latency_ns, int *sprite_wm)
2052 {
2053         struct drm_crtc *crtc;
2054         int clock;
2055         int entries, tlb_miss;
2056
2057         crtc = intel_get_crtc_for_plane(dev, plane);
2058         if (!intel_crtc_active(crtc)) {
2059                 *sprite_wm = display->guard_size;
2060                 return false;
2061         }
2062
2063         clock = crtc->mode.clock;
2064
2065         /* Use the small buffer method to calculate the sprite watermark */
2066         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
2067         tlb_miss = display->fifo_size*display->cacheline_size -
2068                 sprite_width * 8;
2069         if (tlb_miss > 0)
2070                 entries += tlb_miss;
2071         entries = DIV_ROUND_UP(entries, display->cacheline_size);
2072         *sprite_wm = entries + display->guard_size;
2073         if (*sprite_wm > (int)display->max_wm)
2074                 *sprite_wm = display->max_wm;
2075
2076         return true;
2077 }
2078
2079 static bool
2080 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
2081                                 uint32_t sprite_width, int pixel_size,
2082                                 const struct intel_watermark_params *display,
2083                                 int latency_ns, int *sprite_wm)
2084 {
2085         struct drm_crtc *crtc;
2086         unsigned long line_time_us;
2087         int clock;
2088         int line_count, line_size;
2089         int small, large;
2090         int entries;
2091
2092         if (!latency_ns) {
2093                 *sprite_wm = 0;
2094                 return false;
2095         }
2096
2097         crtc = intel_get_crtc_for_plane(dev, plane);
2098         clock = crtc->mode.clock;
2099         if (!clock) {
2100                 *sprite_wm = 0;
2101                 return false;
2102         }
2103
2104         line_time_us = (sprite_width * 1000) / clock;
2105         if (!line_time_us) {
2106                 *sprite_wm = 0;
2107                 return false;
2108         }
2109
2110         line_count = (latency_ns / line_time_us + 1000) / 1000;
2111         line_size = sprite_width * pixel_size;
2112
2113         /* Use the minimum of the small and large buffer method for primary */
2114         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
2115         large = line_count * line_size;
2116
2117         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
2118         *sprite_wm = entries + display->guard_size;
2119
2120         return *sprite_wm > 0x3ff ? false : true;
2121 }
2122
2123 static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
2124                                          uint32_t sprite_width, int pixel_size)
2125 {
2126         struct drm_i915_private *dev_priv = dev->dev_private;
2127         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
2128         u32 val;
2129         int sprite_wm, reg;
2130         int ret;
2131
2132         switch (pipe) {
2133         case 0:
2134                 reg = WM0_PIPEA_ILK;
2135                 break;
2136         case 1:
2137                 reg = WM0_PIPEB_ILK;
2138                 break;
2139         case 2:
2140                 reg = WM0_PIPEC_IVB;
2141                 break;
2142         default:
2143                 return; /* bad pipe */
2144         }
2145
2146         ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
2147                                             &sandybridge_display_wm_info,
2148                                             latency, &sprite_wm);
2149         if (!ret) {
2150                 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
2151                               pipe);
2152                 return;
2153         }
2154
2155         val = I915_READ(reg);
2156         val &= ~WM0_PIPE_SPRITE_MASK;
2157         I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
2158         DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
2159
2160
2161         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2162                                               pixel_size,
2163                                               &sandybridge_display_srwm_info,
2164                                               SNB_READ_WM1_LATENCY() * 500,
2165                                               &sprite_wm);
2166         if (!ret) {
2167                 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
2168                               pipe);
2169                 return;
2170         }
2171         I915_WRITE(WM1S_LP_ILK, sprite_wm);
2172
2173         /* Only IVB has two more LP watermarks for sprite */
2174         if (!IS_IVYBRIDGE(dev))
2175                 return;
2176
2177         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2178                                               pixel_size,
2179                                               &sandybridge_display_srwm_info,
2180                                               SNB_READ_WM2_LATENCY() * 500,
2181                                               &sprite_wm);
2182         if (!ret) {
2183                 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
2184                               pipe);
2185                 return;
2186         }
2187         I915_WRITE(WM2S_LP_IVB, sprite_wm);
2188
2189         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2190                                               pixel_size,
2191                                               &sandybridge_display_srwm_info,
2192                                               SNB_READ_WM3_LATENCY() * 500,
2193                                               &sprite_wm);
2194         if (!ret) {
2195                 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
2196                               pipe);
2197                 return;
2198         }
2199         I915_WRITE(WM3S_LP_IVB, sprite_wm);
2200 }
2201
2202 /**
2203  * intel_update_watermarks - update FIFO watermark values based on current modes
2204  *
2205  * Calculate watermark values for the various WM regs based on current mode
2206  * and plane configuration.
2207  *
2208  * There are several cases to deal with here:
2209  *   - normal (i.e. non-self-refresh)
2210  *   - self-refresh (SR) mode
2211  *   - lines are large relative to FIFO size (buffer can hold up to 2)
2212  *   - lines are small relative to FIFO size (buffer can hold more than 2
2213  *     lines), so need to account for TLB latency
2214  *
2215  *   The normal calculation is:
2216  *     watermark = dotclock * bytes per pixel * latency
2217  *   where latency is platform & configuration dependent (we assume pessimal
2218  *   values here).
2219  *
2220  *   The SR calculation is:
2221  *     watermark = (trunc(latency/line time)+1) * surface width *
2222  *       bytes per pixel
2223  *   where
2224  *     line time = htotal / dotclock
2225  *     surface width = hdisplay for normal plane and 64 for cursor
2226  *   and latency is assumed to be high, as above.
2227  *
2228  * The final value programmed to the register should always be rounded up,
2229  * and include an extra 2 entries to account for clock crossings.
2230  *
2231  * We don't use the sprite, so we can ignore that.  And on Crestline we have
2232  * to set the non-SR watermarks to 8.
2233  */
2234 void intel_update_watermarks(struct drm_device *dev)
2235 {
2236         struct drm_i915_private *dev_priv = dev->dev_private;
2237
2238         if (dev_priv->display.update_wm)
2239                 dev_priv->display.update_wm(dev);
2240 }
2241
2242 void intel_update_linetime_watermarks(struct drm_device *dev,
2243                 int pipe, struct drm_display_mode *mode)
2244 {
2245         struct drm_i915_private *dev_priv = dev->dev_private;
2246
2247         if (dev_priv->display.update_linetime_wm)
2248                 dev_priv->display.update_linetime_wm(dev, pipe, mode);
2249 }
2250
2251 void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
2252                                     uint32_t sprite_width, int pixel_size)
2253 {
2254         struct drm_i915_private *dev_priv = dev->dev_private;
2255
2256         if (dev_priv->display.update_sprite_wm)
2257                 dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
2258                                                    pixel_size);
2259 }
2260
2261 static struct drm_i915_gem_object *
2262 intel_alloc_context_page(struct drm_device *dev)
2263 {
2264         struct drm_i915_gem_object *ctx;
2265         int ret;
2266
2267         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2268
2269         ctx = i915_gem_alloc_object(dev, 4096);
2270         if (!ctx) {
2271                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2272                 return NULL;
2273         }
2274
2275         ret = i915_gem_object_pin(ctx, 4096, true, false);
2276         if (ret) {
2277                 DRM_ERROR("failed to pin power context: %d\n", ret);
2278                 goto err_unref;
2279         }
2280
2281         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2282         if (ret) {
2283                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2284                 goto err_unpin;
2285         }
2286
2287         return ctx;
2288
2289 err_unpin:
2290         i915_gem_object_unpin(ctx);
2291 err_unref:
2292         drm_gem_object_unreference(&ctx->base);
2293         return NULL;
2294 }
2295
2296 /**
2297  * Lock protecting IPS related data structures
2298  */
2299 struct lock mchdev_lock;
2300 LOCK_SYSINIT(mchdev, &mchdev_lock, "mchdev", LK_CANRECURSE);
2301
2302 /* Global for IPS driver to get at the current i915 device. Protected by
2303  * mchdev_lock. */
2304 static struct drm_i915_private *i915_mch_dev;
2305
2306 bool ironlake_set_drps(struct drm_device *dev, u8 val)
2307 {
2308         struct drm_i915_private *dev_priv = dev->dev_private;
2309         u16 rgvswctl;
2310
2311         rgvswctl = I915_READ16(MEMSWCTL);
2312         if (rgvswctl & MEMCTL_CMD_STS) {
2313                 DRM_DEBUG("gpu busy, RCS change rejected\n");
2314                 return false; /* still busy with another command */
2315         }
2316
2317         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2318                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2319         I915_WRITE16(MEMSWCTL, rgvswctl);
2320         POSTING_READ16(MEMSWCTL);
2321
2322         rgvswctl |= MEMCTL_CMD_STS;
2323         I915_WRITE16(MEMSWCTL, rgvswctl);
2324
2325         return true;
2326 }
2327
2328 static void ironlake_enable_drps(struct drm_device *dev)
2329 {
2330         struct drm_i915_private *dev_priv = dev->dev_private;
2331         u32 rgvmodectl = I915_READ(MEMMODECTL);
2332         u8 fmax, fmin, fstart, vstart;
2333
2334         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
2335
2336         /* Enable temp reporting */
2337         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2338         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2339
2340         /* 100ms RC evaluation intervals */
2341         I915_WRITE(RCUPEI, 100000);
2342         I915_WRITE(RCDNEI, 100000);
2343
2344         /* Set max/min thresholds to 90ms and 80ms respectively */
2345         I915_WRITE(RCBMAXAVG, 90000);
2346         I915_WRITE(RCBMINAVG, 80000);
2347
2348         I915_WRITE(MEMIHYST, 1);
2349
2350         /* Set up min, max, and cur for interrupt handling */
2351         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2352         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2353         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2354                 MEMMODE_FSTART_SHIFT;
2355
2356         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2357                 PXVFREQ_PX_SHIFT;
2358
2359         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
2360         dev_priv->ips.fstart = fstart;
2361
2362         dev_priv->ips.max_delay = fstart;
2363         dev_priv->ips.min_delay = fmin;
2364         dev_priv->ips.cur_delay = fstart;
2365
2366         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2367                          fmax, fmin, fstart);
2368
2369         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2370
2371         /*
2372          * Interrupts will be enabled in ironlake_irq_postinstall
2373          */
2374
2375         I915_WRITE(VIDSTART, vstart);
2376         POSTING_READ(VIDSTART);
2377
2378         rgvmodectl |= MEMMODE_SWMODE_EN;
2379         I915_WRITE(MEMMODECTL, rgvmodectl);
2380
2381         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2382                 DRM_ERROR("stuck trying to change perf mode\n");
2383         mdelay(1);
2384
2385         ironlake_set_drps(dev, fstart);
2386
2387         dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2388                 I915_READ(0x112e0);
2389         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
2390         dev_priv->ips.last_count2 = I915_READ(0x112f4);
2391         getrawmonotonic(&dev_priv->ips.last_time2);
2392
2393         lockmgr(&mchdev_lock, LK_RELEASE);
2394 }
2395
2396 static void ironlake_disable_drps(struct drm_device *dev)
2397 {
2398         struct drm_i915_private *dev_priv = dev->dev_private;
2399         u16 rgvswctl;
2400
2401         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
2402
2403         rgvswctl = I915_READ16(MEMSWCTL);
2404
2405         /* Ack interrupts, disable EFC interrupt */
2406         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
2407         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
2408         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
2409         I915_WRITE(DEIIR, DE_PCU_EVENT);
2410         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
2411
2412         /* Go back to the starting frequency */
2413         ironlake_set_drps(dev, dev_priv->ips.fstart);
2414         mdelay(1);
2415         rgvswctl |= MEMCTL_CMD_STS;
2416         I915_WRITE(MEMSWCTL, rgvswctl);
2417         mdelay(1);
2418
2419         lockmgr(&mchdev_lock, LK_RELEASE);
2420 }
2421
2422 /* There's a funny hw issue where the hw returns all 0 when reading from
2423  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
2424  * ourselves, instead of doing a rmw cycle (which might result in us clearing
2425  * all limits and the gpu stuck at whatever frequency it is at atm).
2426  */
2427 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
2428 {
2429         u32 limits;
2430
2431         limits = 0;
2432
2433         if (*val >= dev_priv->rps.max_delay)
2434                 *val = dev_priv->rps.max_delay;
2435         limits |= dev_priv->rps.max_delay << 24;
2436
2437         /* Only set the down limit when we've reached the lowest level to avoid
2438          * getting more interrupts, otherwise leave this clear. This prevents a
2439          * race in the hw when coming out of rc6: There's a tiny window where
2440          * the hw runs at the minimal clock before selecting the desired
2441          * frequency, if the down threshold expires in that window we will not
2442          * receive a down interrupt. */
2443         if (*val <= dev_priv->rps.min_delay) {
2444                 *val = dev_priv->rps.min_delay;
2445                 limits |= dev_priv->rps.min_delay << 16;
2446         }
2447
2448         return limits;
2449 }
2450
2451 void gen6_set_rps(struct drm_device *dev, u8 val)
2452 {
2453         struct drm_i915_private *dev_priv = dev->dev_private;
2454         u32 limits = gen6_rps_limits(dev_priv, &val);
2455
2456         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
2457         WARN_ON(val > dev_priv->rps.max_delay);
2458         WARN_ON(val < dev_priv->rps.min_delay);
2459
2460         if (val == dev_priv->rps.cur_delay)
2461                 return;
2462
2463         if (IS_HASWELL(dev))
2464                 I915_WRITE(GEN6_RPNSWREQ,
2465                            HSW_FREQUENCY(val));
2466         else
2467                 I915_WRITE(GEN6_RPNSWREQ,
2468                            GEN6_FREQUENCY(val) |
2469                            GEN6_OFFSET(0) |
2470                            GEN6_AGGRESSIVE_TURBO);
2471
2472         /* Make sure we continue to get interrupts
2473          * until we hit the minimum or maximum frequencies.
2474          */
2475         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
2476
2477         POSTING_READ(GEN6_RPNSWREQ);
2478
2479         dev_priv->rps.cur_delay = val;
2480
2481         trace_intel_gpu_freq_change(val * 50);
2482 }
2483
2484 static void gen6_disable_rps(struct drm_device *dev)
2485 {
2486         struct drm_i915_private *dev_priv = dev->dev_private;
2487
2488         I915_WRITE(GEN6_RC_CONTROL, 0);
2489         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
2490         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
2491         I915_WRITE(GEN6_PMIER, 0);
2492         /* Complete PM interrupt masking here doesn't race with the rps work
2493          * item again unmasking PM interrupts because that is using a different
2494          * register (PMIMR) to mask PM interrupts. The only risk is in leaving
2495          * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
2496
2497         spin_lock(&dev_priv->rps.lock);
2498         dev_priv->rps.pm_iir = 0;
2499         spin_unlock(&dev_priv->rps.lock);
2500
2501         I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2502 }
2503
2504 int intel_enable_rc6(const struct drm_device *dev)
2505 {
2506         /* Respect the kernel parameter if it is set */
2507         if (i915_enable_rc6 >= 0)
2508                 return i915_enable_rc6;
2509
2510         /* Disable RC6 on Ironlake */
2511         if (INTEL_INFO(dev)->gen == 5)
2512                 return 0;
2513
2514         if (IS_HASWELL(dev)) {
2515                 DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
2516                 return INTEL_RC6_ENABLE;
2517         }
2518
2519         /* snb/ivb have more than one rc6 state. */
2520         if (INTEL_INFO(dev)->gen == 6) {
2521                 DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
2522                 return INTEL_RC6_ENABLE;
2523         }
2524
2525         DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
2526         return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
2527 }
2528
2529 static void gen6_enable_rps(struct drm_device *dev)
2530 {
2531         struct drm_i915_private *dev_priv = dev->dev_private;
2532         struct intel_ring_buffer *ring;
2533         u32 rp_state_cap;
2534         u32 gt_perf_status;
2535         u32 rc6vids, pcu_mbox, rc6_mask = 0;
2536         u32 gtfifodbg;
2537         int rc6_mode;
2538         int i, ret;
2539
2540         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
2541
2542         /* Here begins a magic sequence of register writes to enable
2543          * auto-downclocking.
2544          *
2545          * Perhaps there might be some value in exposing these to
2546          * userspace...
2547          */
2548         I915_WRITE(GEN6_RC_STATE, 0);
2549
2550         /* Clear the DBG now so we don't confuse earlier errors */
2551         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
2552                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
2553                 I915_WRITE(GTFIFODBG, gtfifodbg);
2554         }
2555
2556         gen6_gt_force_wake_get(dev_priv);
2557
2558         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
2559         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
2560
2561         /* In units of 50MHz */
2562         dev_priv->rps.hw_max = dev_priv->rps.max_delay = rp_state_cap & 0xff;
2563         dev_priv->rps.min_delay = (rp_state_cap & 0xff0000) >> 16;
2564         dev_priv->rps.cur_delay = 0;
2565
2566         /* disable the counters and set deterministic thresholds */
2567         I915_WRITE(GEN6_RC_CONTROL, 0);
2568
2569         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
2570         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
2571         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
2572         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
2573         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
2574
2575         for_each_ring(ring, dev_priv, i)
2576                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
2577
2578         I915_WRITE(GEN6_RC_SLEEP, 0);
2579         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
2580         I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
2581         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
2582         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
2583
2584         /* Check if we are enabling RC6 */
2585         rc6_mode = intel_enable_rc6(dev_priv->dev);
2586         if (rc6_mode & INTEL_RC6_ENABLE)
2587                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
2588
2589         /* We don't use those on Haswell */
2590         if (!IS_HASWELL(dev)) {
2591                 if (rc6_mode & INTEL_RC6p_ENABLE)
2592                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
2593
2594                 if (rc6_mode & INTEL_RC6pp_ENABLE)
2595                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
2596         }
2597
2598         DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
2599                         (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
2600                         (rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
2601                         (rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
2602
2603         I915_WRITE(GEN6_RC_CONTROL,
2604                    rc6_mask |
2605                    GEN6_RC_CTL_EI_MODE(1) |
2606                    GEN6_RC_CTL_HW_ENABLE);
2607
2608         if (IS_HASWELL(dev)) {
2609                 I915_WRITE(GEN6_RPNSWREQ,
2610                            HSW_FREQUENCY(10));
2611                 I915_WRITE(GEN6_RC_VIDEO_FREQ,
2612                            HSW_FREQUENCY(12));
2613         } else {
2614                 I915_WRITE(GEN6_RPNSWREQ,
2615                            GEN6_FREQUENCY(10) |
2616                            GEN6_OFFSET(0) |
2617                            GEN6_AGGRESSIVE_TURBO);
2618                 I915_WRITE(GEN6_RC_VIDEO_FREQ,
2619                            GEN6_FREQUENCY(12));
2620         }
2621
2622         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
2623         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
2624                    dev_priv->rps.max_delay << 24 |
2625                    dev_priv->rps.min_delay << 16);
2626
2627         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
2628         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
2629         I915_WRITE(GEN6_RP_UP_EI, 66000);
2630         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
2631
2632         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
2633         I915_WRITE(GEN6_RP_CONTROL,
2634                    GEN6_RP_MEDIA_TURBO |
2635                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
2636                    GEN6_RP_MEDIA_IS_GFX |
2637                    GEN6_RP_ENABLE |
2638                    GEN6_RP_UP_BUSY_AVG |
2639                    (IS_HASWELL(dev) ? GEN7_RP_DOWN_IDLE_AVG : GEN6_RP_DOWN_IDLE_CONT));
2640
2641         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
2642         if (!ret) {
2643                 pcu_mbox = 0;
2644                 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
2645                 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
2646                         DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
2647                                          (dev_priv->rps.max_delay & 0xff) * 50,
2648                                          (pcu_mbox & 0xff) * 50);
2649                         dev_priv->rps.hw_max = pcu_mbox & 0xff;
2650                 }
2651         } else {
2652                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
2653         }
2654
2655         gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8);
2656
2657         /* requires MSI enabled */
2658         I915_WRITE(GEN6_PMIER, GEN6_PM_DEFERRED_EVENTS);
2659         spin_lock(&dev_priv->rps.lock);
2660         WARN_ON(dev_priv->rps.pm_iir != 0);
2661         I915_WRITE(GEN6_PMIMR, 0);
2662         spin_unlock(&dev_priv->rps.lock);
2663         /* enable all PM interrupts */
2664         I915_WRITE(GEN6_PMINTRMSK, 0);
2665
2666         rc6vids = 0;
2667         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
2668         if (IS_GEN6(dev) && ret) {
2669                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
2670         } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
2671                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
2672                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
2673                 rc6vids &= 0xffff00;
2674                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
2675                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
2676                 if (ret)
2677                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
2678         }
2679
2680         gen6_gt_force_wake_put(dev_priv);
2681 }
2682
2683 static void gen6_update_ring_freq(struct drm_device *dev)
2684 {
2685         struct drm_i915_private *dev_priv = dev->dev_private;
2686         int min_freq = 15;
2687         unsigned int gpu_freq;
2688         unsigned int max_ia_freq, min_ring_freq;
2689         int scaling_factor = 180;
2690
2691         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
2692
2693 #if 0
2694         max_ia_freq = cpufreq_quick_get_max(0);
2695         /*
2696          * Default to measured freq if none found, PCU will ensure we don't go
2697          * over
2698          */
2699         if (!max_ia_freq)
2700                 max_ia_freq = tsc_khz;
2701 #else
2702         max_ia_freq = tsc_frequency / 1000;
2703 #endif
2704
2705         /* Convert from kHz to MHz */
2706         max_ia_freq /= 1000;
2707
2708         min_ring_freq = I915_READ(MCHBAR_MIRROR_BASE_SNB + DCLK);
2709         /* convert DDR frequency from units of 133.3MHz to bandwidth */
2710         min_ring_freq = (2 * 4 * min_ring_freq + 2) / 3;
2711
2712         /*
2713          * For each potential GPU frequency, load a ring frequency we'd like
2714          * to use for memory access.  We do this by specifying the IA frequency
2715          * the PCU should use as a reference to determine the ring frequency.
2716          */
2717         for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
2718              gpu_freq--) {
2719                 int diff = dev_priv->rps.max_delay - gpu_freq;
2720                 unsigned int ia_freq = 0, ring_freq = 0;
2721
2722                 if (IS_HASWELL(dev)) {
2723                         ring_freq = (gpu_freq * 5 + 3) / 4;
2724                         ring_freq = max(min_ring_freq, ring_freq);
2725                         /* leave ia_freq as the default, chosen by cpufreq */
2726                 } else {
2727                         /* On older processors, there is no separate ring
2728                          * clock domain, so in order to boost the bandwidth
2729                          * of the ring, we need to upclock the CPU (ia_freq).
2730                          *
2731                          * For GPU frequencies less than 750MHz,
2732                          * just use the lowest ring freq.
2733                          */
2734                         if (gpu_freq < min_freq)
2735                                 ia_freq = 800;
2736                         else
2737                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
2738                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
2739                 }
2740
2741                 sandybridge_pcode_write(dev_priv,
2742                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
2743                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
2744                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
2745                                         gpu_freq);
2746         }
2747 }
2748
2749 void ironlake_teardown_rc6(struct drm_device *dev)
2750 {
2751         struct drm_i915_private *dev_priv = dev->dev_private;
2752
2753         if (dev_priv->ips.renderctx) {
2754                 i915_gem_object_unpin(dev_priv->ips.renderctx);
2755                 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
2756                 dev_priv->ips.renderctx = NULL;
2757         }
2758
2759         if (dev_priv->ips.pwrctx) {
2760                 i915_gem_object_unpin(dev_priv->ips.pwrctx);
2761                 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
2762                 dev_priv->ips.pwrctx = NULL;
2763         }
2764 }
2765
2766 static void ironlake_disable_rc6(struct drm_device *dev)
2767 {
2768         struct drm_i915_private *dev_priv = dev->dev_private;
2769
2770         if (I915_READ(PWRCTXA)) {
2771                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
2772                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
2773                 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
2774                          50);
2775
2776                 I915_WRITE(PWRCTXA, 0);
2777                 POSTING_READ(PWRCTXA);
2778
2779                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2780                 POSTING_READ(RSTDBYCTL);
2781         }
2782 }
2783
2784 static int ironlake_setup_rc6(struct drm_device *dev)
2785 {
2786         struct drm_i915_private *dev_priv = dev->dev_private;
2787
2788         if (dev_priv->ips.renderctx == NULL)
2789                 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
2790         if (!dev_priv->ips.renderctx)
2791                 return -ENOMEM;
2792
2793         if (dev_priv->ips.pwrctx == NULL)
2794                 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
2795         if (!dev_priv->ips.pwrctx) {
2796                 ironlake_teardown_rc6(dev);
2797                 return -ENOMEM;
2798         }
2799
2800         return 0;
2801 }
2802
2803 static void ironlake_enable_rc6(struct drm_device *dev)
2804 {
2805         struct drm_i915_private *dev_priv = dev->dev_private;
2806         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
2807         bool was_interruptible;
2808         int ret;
2809
2810         /* rc6 disabled by default due to repeated reports of hanging during
2811          * boot and resume.
2812          */
2813         if (!intel_enable_rc6(dev))
2814                 return;
2815
2816         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2817
2818         ret = ironlake_setup_rc6(dev);
2819         if (ret)
2820                 return;
2821
2822         was_interruptible = dev_priv->mm.interruptible;
2823         dev_priv->mm.interruptible = false;
2824
2825         /*
2826          * GPU can automatically power down the render unit if given a page
2827          * to save state.
2828          */
2829         ret = intel_ring_begin(ring, 6);
2830         if (ret) {
2831                 ironlake_teardown_rc6(dev);
2832                 dev_priv->mm.interruptible = was_interruptible;
2833                 return;
2834         }
2835
2836         intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
2837         intel_ring_emit(ring, MI_SET_CONTEXT);
2838         intel_ring_emit(ring, dev_priv->ips.renderctx->gtt_offset |
2839                         MI_MM_SPACE_GTT |
2840                         MI_SAVE_EXT_STATE_EN |
2841                         MI_RESTORE_EXT_STATE_EN |
2842                         MI_RESTORE_INHIBIT);
2843         intel_ring_emit(ring, MI_SUSPEND_FLUSH);
2844         intel_ring_emit(ring, MI_NOOP);
2845         intel_ring_emit(ring, MI_FLUSH);
2846         intel_ring_advance(ring);
2847
2848         /*
2849          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
2850          * does an implicit flush, combined with MI_FLUSH above, it should be
2851          * safe to assume that renderctx is valid
2852          */
2853         ret = intel_ring_idle(ring);
2854         dev_priv->mm.interruptible = was_interruptible;
2855         if (ret) {
2856                 DRM_ERROR("failed to enable ironlake power savings\n");
2857                 ironlake_teardown_rc6(dev);
2858                 return;
2859         }
2860
2861         I915_WRITE(PWRCTXA, dev_priv->ips.pwrctx->gtt_offset | PWRCTX_EN);
2862         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2863 }
2864
2865 static unsigned long intel_pxfreq(u32 vidfreq)
2866 {
2867         unsigned long freq;
2868         int div = (vidfreq & 0x3f0000) >> 16;
2869         int post = (vidfreq & 0x3000) >> 12;
2870         int pre = (vidfreq & 0x7);
2871
2872         if (!pre)
2873                 return 0;
2874
2875         freq = ((div * 133333) / ((1<<post) * pre));
2876
2877         return freq;
2878 }
2879
2880 static const struct cparams {
2881         u16 i;
2882         u16 t;
2883         u16 m;
2884         u16 c;
2885 } cparams[] = {
2886         { 1, 1333, 301, 28664 },
2887         { 1, 1066, 294, 24460 },
2888         { 1, 800, 294, 25192 },
2889         { 0, 1333, 276, 27605 },
2890         { 0, 1066, 276, 27605 },
2891         { 0, 800, 231, 23784 },
2892 };
2893
2894 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
2895 {
2896         u64 total_count, diff, ret;
2897         u32 count1, count2, count3, m = 0, c = 0;
2898         unsigned long now = jiffies_to_msecs(jiffies), diff1;
2899         int i;
2900
2901         diff1 = now - dev_priv->ips.last_time1;
2902
2903         /* Prevent division-by-zero if we are asking too fast.
2904          * Also, we don't get interesting results if we are polling
2905          * faster than once in 10ms, so just return the saved value
2906          * in such cases.
2907          */
2908         if (diff1 <= 10)
2909                 return dev_priv->ips.chipset_power;
2910
2911         count1 = I915_READ(DMIEC);
2912         count2 = I915_READ(DDREC);
2913         count3 = I915_READ(CSIEC);
2914
2915         total_count = count1 + count2 + count3;
2916
2917         /* FIXME: handle per-counter overflow */
2918         if (total_count < dev_priv->ips.last_count1) {
2919                 diff = ~0UL - dev_priv->ips.last_count1;
2920                 diff += total_count;
2921         } else {
2922                 diff = total_count - dev_priv->ips.last_count1;
2923         }
2924
2925         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
2926                 if (cparams[i].i == dev_priv->ips.c_m &&
2927                     cparams[i].t == dev_priv->ips.r_t) {
2928                         m = cparams[i].m;
2929                         c = cparams[i].c;
2930                         break;
2931                 }
2932         }
2933
2934         diff = div_u64(diff, diff1);
2935         ret = ((m * diff) + c);
2936         ret = div_u64(ret, 10);
2937
2938         dev_priv->ips.last_count1 = total_count;
2939         dev_priv->ips.last_time1 = now;
2940
2941         dev_priv->ips.chipset_power = ret;
2942
2943         return ret;
2944 }
2945
2946 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
2947 {
2948         unsigned long val;
2949
2950         if (dev_priv->info->gen != 5)
2951                 return 0;
2952
2953         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
2954
2955         val = __i915_chipset_val(dev_priv);
2956
2957         lockmgr(&mchdev_lock, LK_RELEASE);
2958
2959         return val;
2960 }
2961
2962 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
2963 {
2964         unsigned long m, x, b;
2965         u32 tsfs;
2966
2967         tsfs = I915_READ(TSFS);
2968
2969         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
2970         x = I915_READ8(TR1);
2971
2972         b = tsfs & TSFS_INTR_MASK;
2973
2974         return ((m * x) / 127) - b;
2975 }
2976
2977 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
2978 {
2979         static const struct v_table {
2980                 u16 vd; /* in .1 mil */
2981                 u16 vm; /* in .1 mil */
2982         } v_table[] = {
2983                 { 0, 0, },
2984                 { 375, 0, },
2985                 { 500, 0, },
2986                 { 625, 0, },
2987                 { 750, 0, },
2988                 { 875, 0, },
2989                 { 1000, 0, },
2990                 { 1125, 0, },
2991                 { 4125, 3000, },
2992                 { 4125, 3000, },
2993                 { 4125, 3000, },
2994                 { 4125, 3000, },
2995                 { 4125, 3000, },
2996                 { 4125, 3000, },
2997                 { 4125, 3000, },
2998                 { 4125, 3000, },
2999                 { 4125, 3000, },
3000                 { 4125, 3000, },
3001                 { 4125, 3000, },
3002                 { 4125, 3000, },
3003                 { 4125, 3000, },
3004                 { 4125, 3000, },
3005                 { 4125, 3000, },
3006                 { 4125, 3000, },
3007                 { 4125, 3000, },
3008                 { 4125, 3000, },
3009                 { 4125, 3000, },
3010                 { 4125, 3000, },
3011                 { 4125, 3000, },
3012                 { 4125, 3000, },
3013                 { 4125, 3000, },
3014                 { 4125, 3000, },
3015                 { 4250, 3125, },
3016                 { 4375, 3250, },
3017                 { 4500, 3375, },
3018                 { 4625, 3500, },
3019                 { 4750, 3625, },
3020                 { 4875, 3750, },
3021                 { 5000, 3875, },
3022                 { 5125, 4000, },
3023                 { 5250, 4125, },
3024                 { 5375, 4250, },
3025                 { 5500, 4375, },
3026                 { 5625, 4500, },
3027                 { 5750, 4625, },
3028                 { 5875, 4750, },
3029                 { 6000, 4875, },
3030                 { 6125, 5000, },
3031                 { 6250, 5125, },
3032                 { 6375, 5250, },
3033                 { 6500, 5375, },
3034                 { 6625, 5500, },
3035                 { 6750, 5625, },
3036                 { 6875, 5750, },
3037                 { 7000, 5875, },
3038                 { 7125, 6000, },
3039                 { 7250, 6125, },
3040                 { 7375, 6250, },
3041                 { 7500, 6375, },
3042                 { 7625, 6500, },
3043                 { 7750, 6625, },
3044                 { 7875, 6750, },
3045                 { 8000, 6875, },
3046                 { 8125, 7000, },
3047                 { 8250, 7125, },
3048                 { 8375, 7250, },
3049                 { 8500, 7375, },
3050                 { 8625, 7500, },
3051                 { 8750, 7625, },
3052                 { 8875, 7750, },
3053                 { 9000, 7875, },
3054                 { 9125, 8000, },
3055                 { 9250, 8125, },
3056                 { 9375, 8250, },
3057                 { 9500, 8375, },
3058                 { 9625, 8500, },
3059                 { 9750, 8625, },
3060                 { 9875, 8750, },
3061                 { 10000, 8875, },
3062                 { 10125, 9000, },
3063                 { 10250, 9125, },
3064                 { 10375, 9250, },
3065                 { 10500, 9375, },
3066                 { 10625, 9500, },
3067                 { 10750, 9625, },
3068                 { 10875, 9750, },
3069                 { 11000, 9875, },
3070                 { 11125, 10000, },
3071                 { 11250, 10125, },
3072                 { 11375, 10250, },
3073                 { 11500, 10375, },
3074                 { 11625, 10500, },
3075                 { 11750, 10625, },
3076                 { 11875, 10750, },
3077                 { 12000, 10875, },
3078                 { 12125, 11000, },
3079                 { 12250, 11125, },
3080                 { 12375, 11250, },
3081                 { 12500, 11375, },
3082                 { 12625, 11500, },
3083                 { 12750, 11625, },
3084                 { 12875, 11750, },
3085                 { 13000, 11875, },
3086                 { 13125, 12000, },
3087                 { 13250, 12125, },
3088                 { 13375, 12250, },
3089                 { 13500, 12375, },
3090                 { 13625, 12500, },
3091                 { 13750, 12625, },
3092                 { 13875, 12750, },
3093                 { 14000, 12875, },
3094                 { 14125, 13000, },
3095                 { 14250, 13125, },
3096                 { 14375, 13250, },
3097                 { 14500, 13375, },
3098                 { 14625, 13500, },
3099                 { 14750, 13625, },
3100                 { 14875, 13750, },
3101                 { 15000, 13875, },
3102                 { 15125, 14000, },
3103                 { 15250, 14125, },
3104                 { 15375, 14250, },
3105                 { 15500, 14375, },
3106                 { 15625, 14500, },
3107                 { 15750, 14625, },
3108                 { 15875, 14750, },
3109                 { 16000, 14875, },
3110                 { 16125, 15000, },
3111         };
3112         if (dev_priv->info->is_mobile)
3113                 return v_table[pxvid].vm;
3114         else
3115                 return v_table[pxvid].vd;
3116 }
3117
3118 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
3119 {
3120         struct timespec now, diff1;
3121         u64 diff;
3122         unsigned long diffms;
3123         u32 count;
3124
3125         getrawmonotonic(&now);
3126         diff1 = timespec_sub(now, dev_priv->ips.last_time2);
3127
3128         /* Don't divide by 0 */
3129         diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
3130         if (!diffms)
3131                 return;
3132
3133         count = I915_READ(GFXEC);
3134
3135         if (count < dev_priv->ips.last_count2) {
3136                 diff = ~0UL - dev_priv->ips.last_count2;
3137                 diff += count;
3138         } else {
3139                 diff = count - dev_priv->ips.last_count2;
3140         }
3141
3142         dev_priv->ips.last_count2 = count;
3143         dev_priv->ips.last_time2 = now;
3144
3145         /* More magic constants... */
3146         diff = diff * 1181;
3147         diff = div_u64(diff, diffms * 10);
3148         dev_priv->ips.gfx_power = diff;
3149 }
3150
3151 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
3152 {
3153         if (dev_priv->info->gen != 5)
3154                 return;
3155
3156         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
3157
3158         __i915_update_gfx_val(dev_priv);
3159
3160         lockmgr(&mchdev_lock, LK_RELEASE);
3161 }
3162
3163 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
3164 {
3165         unsigned long t, corr, state1, corr2, state2;
3166         u32 pxvid, ext_v;
3167
3168         pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
3169         pxvid = (pxvid >> 24) & 0x7f;
3170         ext_v = pvid_to_extvid(dev_priv, pxvid);
3171
3172         state1 = ext_v;
3173
3174         t = i915_mch_val(dev_priv);
3175
3176         /* Revel in the empirically derived constants */
3177
3178         /* Correction factor in 1/100000 units */
3179         if (t > 80)
3180                 corr = ((t * 2349) + 135940);
3181         else if (t >= 50)
3182                 corr = ((t * 964) + 29317);
3183         else /* < 50 */
3184                 corr = ((t * 301) + 1004);
3185
3186         corr = corr * ((150142 * state1) / 10000 - 78642);
3187         corr /= 100000;
3188         corr2 = (corr * dev_priv->ips.corr);
3189
3190         state2 = (corr2 * state1) / 10000;
3191         state2 /= 100; /* convert to mW */
3192
3193         __i915_update_gfx_val(dev_priv);
3194
3195         return dev_priv->ips.gfx_power + state2;
3196 }
3197
3198 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
3199 {
3200         unsigned long val;
3201
3202         if (dev_priv->info->gen != 5)
3203                 return 0;
3204
3205         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
3206
3207         val = __i915_gfx_val(dev_priv);
3208
3209         lockmgr(&mchdev_lock, LK_RELEASE);
3210
3211         return val;
3212 }
3213
3214 /**
3215  * i915_read_mch_val - return value for IPS use
3216  *
3217  * Calculate and return a value for the IPS driver to use when deciding whether
3218  * we have thermal and power headroom to increase CPU or GPU power budget.
3219  */
3220 unsigned long i915_read_mch_val(void)
3221 {
3222         struct drm_i915_private *dev_priv;
3223         unsigned long chipset_val, graphics_val, ret = 0;
3224
3225         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
3226         if (!i915_mch_dev)
3227                 goto out_unlock;
3228         dev_priv = i915_mch_dev;
3229
3230         chipset_val = __i915_chipset_val(dev_priv);
3231         graphics_val = __i915_gfx_val(dev_priv);
3232
3233         ret = chipset_val + graphics_val;
3234
3235 out_unlock:
3236         lockmgr(&mchdev_lock, LK_RELEASE);
3237
3238         return ret;
3239 }
3240
3241 /**
3242  * i915_gpu_raise - raise GPU frequency limit
3243  *
3244  * Raise the limit; IPS indicates we have thermal headroom.
3245  */
3246 bool i915_gpu_raise(void)
3247 {
3248         struct drm_i915_private *dev_priv;
3249         bool ret = true;
3250
3251         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
3252         if (!i915_mch_dev) {
3253                 ret = false;
3254                 goto out_unlock;
3255         }
3256         dev_priv = i915_mch_dev;
3257
3258         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
3259                 dev_priv->ips.max_delay--;
3260
3261 out_unlock:
3262         lockmgr(&mchdev_lock, LK_RELEASE);
3263
3264         return ret;
3265 }
3266
3267 /**
3268  * i915_gpu_lower - lower GPU frequency limit
3269  *
3270  * IPS indicates we're close to a thermal limit, so throttle back the GPU
3271  * frequency maximum.
3272  */
3273 bool i915_gpu_lower(void)
3274 {
3275         struct drm_i915_private *dev_priv;
3276         bool ret = true;
3277
3278         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
3279         if (!i915_mch_dev) {
3280                 ret = false;
3281                 goto out_unlock;
3282         }
3283         dev_priv = i915_mch_dev;
3284
3285         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
3286                 dev_priv->ips.max_delay++;
3287
3288 out_unlock:
3289         lockmgr(&mchdev_lock, LK_RELEASE);
3290
3291         return ret;
3292 }
3293
3294 /**
3295  * i915_gpu_busy - indicate GPU business to IPS
3296  *
3297  * Tell the IPS driver whether or not the GPU is busy.
3298  */
3299 bool i915_gpu_busy(void)
3300 {
3301         struct drm_i915_private *dev_priv;
3302         struct intel_ring_buffer *ring;
3303         bool ret = false;
3304         int i;
3305
3306         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
3307         if (!i915_mch_dev)
3308                 goto out_unlock;
3309         dev_priv = i915_mch_dev;
3310
3311         for_each_ring(ring, dev_priv, i)
3312                 ret |= !list_empty(&ring->request_list);
3313
3314 out_unlock:
3315         lockmgr(&mchdev_lock, LK_RELEASE);
3316
3317         return ret;
3318 }
3319
3320 /**
3321  * i915_gpu_turbo_disable - disable graphics turbo
3322  *
3323  * Disable graphics turbo by resetting the max frequency and setting the
3324  * current frequency to the default.
3325  */
3326 bool i915_gpu_turbo_disable(void)
3327 {
3328         struct drm_i915_private *dev_priv;
3329         bool ret = true;
3330
3331         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
3332         if (!i915_mch_dev) {
3333                 ret = false;
3334                 goto out_unlock;
3335         }
3336         dev_priv = i915_mch_dev;
3337
3338         dev_priv->ips.max_delay = dev_priv->ips.fstart;
3339
3340         if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
3341                 ret = false;
3342
3343 out_unlock:
3344         lockmgr(&mchdev_lock, LK_RELEASE);
3345
3346         return ret;
3347 }
3348
3349 #if 0
3350 /**
3351  * Tells the intel_ips driver that the i915 driver is now loaded, if
3352  * IPS got loaded first.
3353  *
3354  * This awkward dance is so that neither module has to depend on the
3355  * other in order for IPS to do the appropriate communication of
3356  * GPU turbo limits to i915.
3357  */
3358 static void
3359 ips_ping_for_i915_load(void)
3360 {
3361         void (*link)(void);
3362
3363         link = symbol_get(ips_link_to_i915_driver);
3364         if (link) {
3365                 link();
3366                 symbol_put(ips_link_to_i915_driver);
3367         }
3368 }
3369 #endif
3370
3371 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
3372 {
3373         /* We only register the i915 ips part with intel-ips once everything is
3374          * set up, to avoid intel-ips sneaking in and reading bogus values. */
3375         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
3376         i915_mch_dev = dev_priv;
3377         lockmgr(&mchdev_lock, LK_RELEASE);
3378 }
3379
3380 void intel_gpu_ips_teardown(void)
3381 {
3382         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
3383         i915_mch_dev = NULL;
3384         lockmgr(&mchdev_lock, LK_RELEASE);
3385 }
3386 static void intel_init_emon(struct drm_device *dev)
3387 {
3388         struct drm_i915_private *dev_priv = dev->dev_private;
3389         u32 lcfuse;
3390         u8 pxw[16];
3391         int i;
3392
3393         /* Disable to program */
3394         I915_WRITE(ECR, 0);
3395         POSTING_READ(ECR);
3396
3397         /* Program energy weights for various events */
3398         I915_WRITE(SDEW, 0x15040d00);
3399         I915_WRITE(CSIEW0, 0x007f0000);
3400         I915_WRITE(CSIEW1, 0x1e220004);
3401         I915_WRITE(CSIEW2, 0x04000004);
3402
3403         for (i = 0; i < 5; i++)
3404                 I915_WRITE(PEW + (i * 4), 0);
3405         for (i = 0; i < 3; i++)
3406                 I915_WRITE(DEW + (i * 4), 0);
3407
3408         /* Program P-state weights to account for frequency power adjustment */
3409         for (i = 0; i < 16; i++) {
3410                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
3411                 unsigned long freq = intel_pxfreq(pxvidfreq);
3412                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
3413                         PXVFREQ_PX_SHIFT;
3414                 unsigned long val;
3415
3416                 val = vid * vid;
3417                 val *= (freq / 1000);
3418                 val *= 255;
3419                 val /= (127*127*900);
3420                 if (val > 0xff)
3421                         DRM_ERROR("bad pxval: %ld\n", val);
3422                 pxw[i] = val;
3423         }
3424         /* Render standby states get 0 weight */
3425         pxw[14] = 0;
3426         pxw[15] = 0;
3427
3428         for (i = 0; i < 4; i++) {
3429                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
3430                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
3431                 I915_WRITE(PXW + (i * 4), val);
3432         }
3433
3434         /* Adjust magic regs to magic values (more experimental results) */
3435         I915_WRITE(OGW0, 0);
3436         I915_WRITE(OGW1, 0);
3437         I915_WRITE(EG0, 0x00007f00);
3438         I915_WRITE(EG1, 0x0000000e);
3439         I915_WRITE(EG2, 0x000e0000);
3440         I915_WRITE(EG3, 0x68000300);
3441         I915_WRITE(EG4, 0x42000000);
3442         I915_WRITE(EG5, 0x00140031);
3443         I915_WRITE(EG6, 0);
3444         I915_WRITE(EG7, 0);
3445
3446         for (i = 0; i < 8; i++)
3447                 I915_WRITE(PXWL + (i * 4), 0);
3448
3449         /* Enable PMON + select events */
3450         I915_WRITE(ECR, 0x80000019);
3451
3452         lcfuse = I915_READ(LCFUSE02);
3453
3454         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
3455 }
3456
3457 void intel_disable_gt_powersave(struct drm_device *dev)
3458 {
3459         struct drm_i915_private *dev_priv = dev->dev_private;
3460
3461         if (IS_IRONLAKE_M(dev)) {
3462                 ironlake_disable_drps(dev);
3463                 ironlake_disable_rc6(dev);
3464         } else if (INTEL_INFO(dev)->gen >= 6 && !IS_VALLEYVIEW(dev)) {
3465                 cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
3466                 mutex_lock(&dev_priv->rps.hw_lock);
3467                 gen6_disable_rps(dev);
3468                 mutex_unlock(&dev_priv->rps.hw_lock);
3469         }
3470 }
3471
3472 static void intel_gen6_powersave_work(struct work_struct *work)
3473 {
3474         struct drm_i915_private *dev_priv =
3475                 container_of(work, struct drm_i915_private,
3476                              rps.delayed_resume_work.work);
3477         struct drm_device *dev = dev_priv->dev;
3478
3479         mutex_lock(&dev_priv->rps.hw_lock);
3480         gen6_enable_rps(dev);
3481         gen6_update_ring_freq(dev);
3482         mutex_unlock(&dev_priv->rps.hw_lock);
3483 }
3484
3485 void intel_enable_gt_powersave(struct drm_device *dev)
3486 {
3487         struct drm_i915_private *dev_priv = dev->dev_private;
3488
3489         if (IS_IRONLAKE_M(dev)) {
3490                 ironlake_enable_drps(dev);
3491                 ironlake_enable_rc6(dev);
3492                 intel_init_emon(dev);
3493         } else if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev)) {
3494                 /*
3495                  * PCU communication is slow and this doesn't need to be
3496                  * done at any specific time, so do this out of our fast path
3497                  * to make resume and init faster.
3498                  */
3499                 schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
3500                                       round_jiffies_up_relative(HZ));
3501         }
3502 }
3503
3504 static void ibx_init_clock_gating(struct drm_device *dev)
3505 {
3506         struct drm_i915_private *dev_priv = dev->dev_private;
3507
3508         /*
3509          * On Ibex Peak and Cougar Point, we need to disable clock
3510          * gating for the panel power sequencer or it will fail to
3511          * start up when no ports are active.
3512          */
3513         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3514 }
3515
3516 static void ironlake_init_clock_gating(struct drm_device *dev)
3517 {
3518         struct drm_i915_private *dev_priv = dev->dev_private;
3519         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
3520
3521         /* Required for FBC */
3522         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
3523                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
3524                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
3525
3526         I915_WRITE(PCH_3DCGDIS0,
3527                    MARIUNIT_CLOCK_GATE_DISABLE |
3528                    SVSMUNIT_CLOCK_GATE_DISABLE);
3529         I915_WRITE(PCH_3DCGDIS1,
3530                    VFMUNIT_CLOCK_GATE_DISABLE);
3531
3532         /*
3533          * According to the spec the following bits should be set in
3534          * order to enable memory self-refresh
3535          * The bit 22/21 of 0x42004
3536          * The bit 5 of 0x42020
3537          * The bit 15 of 0x45000
3538          */
3539         I915_WRITE(ILK_DISPLAY_CHICKEN2,
3540                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
3541                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
3542         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
3543         I915_WRITE(DISP_ARB_CTL,
3544                    (I915_READ(DISP_ARB_CTL) |
3545                     DISP_FBC_WM_DIS));
3546         I915_WRITE(WM3_LP_ILK, 0);
3547         I915_WRITE(WM2_LP_ILK, 0);
3548         I915_WRITE(WM1_LP_ILK, 0);
3549
3550         /*
3551          * Based on the document from hardware guys the following bits
3552          * should be set unconditionally in order to enable FBC.
3553          * The bit 22 of 0x42000
3554          * The bit 22 of 0x42004
3555          * The bit 7,8,9 of 0x42020.
3556          */
3557         if (IS_IRONLAKE_M(dev)) {
3558                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
3559                            I915_READ(ILK_DISPLAY_CHICKEN1) |
3560                            ILK_FBCQ_DIS);
3561                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
3562                            I915_READ(ILK_DISPLAY_CHICKEN2) |
3563                            ILK_DPARB_GATE);
3564         }
3565
3566         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
3567
3568         I915_WRITE(ILK_DISPLAY_CHICKEN2,
3569                    I915_READ(ILK_DISPLAY_CHICKEN2) |
3570                    ILK_ELPIN_409_SELECT);
3571         I915_WRITE(_3D_CHICKEN2,
3572                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
3573                    _3D_CHICKEN2_WM_READ_PIPELINED);
3574
3575         /* WaDisableRenderCachePipelinedFlush */
3576         I915_WRITE(CACHE_MODE_0,
3577                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
3578
3579         ibx_init_clock_gating(dev);
3580 }
3581
3582 static void cpt_init_clock_gating(struct drm_device *dev)
3583 {
3584         struct drm_i915_private *dev_priv = dev->dev_private;
3585         int pipe;
3586         uint32_t val;
3587
3588         /*
3589          * On Ibex Peak and Cougar Point, we need to disable clock
3590          * gating for the panel power sequencer or it will fail to
3591          * start up when no ports are active.
3592          */
3593         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3594         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
3595                    DPLS_EDP_PPS_FIX_DIS);
3596         /* The below fixes the weird display corruption, a few pixels shifted
3597          * downward, on (only) LVDS of some HP laptops with IVY.
3598          */
3599         for_each_pipe(pipe) {
3600                 val = I915_READ(TRANS_CHICKEN2(pipe));
3601                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
3602                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
3603                 if (dev_priv->fdi_rx_polarity_inverted)
3604                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
3605                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
3606                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
3607                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
3608                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
3609         }
3610         /* WADP0ClockGatingDisable */
3611         for_each_pipe(pipe) {
3612                 I915_WRITE(TRANS_CHICKEN1(pipe),
3613                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
3614         }
3615 }
3616
3617 static void gen6_check_mch_setup(struct drm_device *dev)
3618 {
3619         struct drm_i915_private *dev_priv = dev->dev_private;
3620         uint32_t tmp;
3621
3622         tmp = I915_READ(MCH_SSKPD);
3623         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
3624                 DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
3625                 DRM_INFO("This can cause pipe underruns and display issues.\n");
3626                 DRM_INFO("Please upgrade your BIOS to fix this.\n");
3627         }
3628 }
3629
3630 static void gen6_init_clock_gating(struct drm_device *dev)
3631 {
3632         struct drm_i915_private *dev_priv = dev->dev_private;
3633         int pipe;
3634         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
3635
3636         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
3637
3638         I915_WRITE(ILK_DISPLAY_CHICKEN2,
3639                    I915_READ(ILK_DISPLAY_CHICKEN2) |
3640                    ILK_ELPIN_409_SELECT);
3641
3642         /* WaDisableHiZPlanesWhenMSAAEnabled */
3643         I915_WRITE(_3D_CHICKEN,
3644                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
3645
3646         /* WaSetupGtModeTdRowDispatch */
3647         if (IS_SNB_GT1(dev))
3648                 I915_WRITE(GEN6_GT_MODE,
3649                            _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
3650
3651         I915_WRITE(WM3_LP_ILK, 0);
3652         I915_WRITE(WM2_LP_ILK, 0);
3653         I915_WRITE(WM1_LP_ILK, 0);
3654
3655         I915_WRITE(CACHE_MODE_0,
3656                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
3657
3658         I915_WRITE(GEN6_UCGCTL1,
3659                    I915_READ(GEN6_UCGCTL1) |
3660                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
3661                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
3662
3663         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3664          * gating disable must be set.  Failure to set it results in
3665          * flickering pixels due to Z write ordering failures after
3666          * some amount of runtime in the Mesa "fire" demo, and Unigine
3667          * Sanctuary and Tropics, and apparently anything else with
3668          * alpha test or pixel discard.
3669          *
3670          * According to the spec, bit 11 (RCCUNIT) must also be set,
3671          * but we didn't debug actual testcases to find it out.
3672          *
3673          * Also apply WaDisableVDSUnitClockGating and
3674          * WaDisableRCPBUnitClockGating.
3675          */
3676         I915_WRITE(GEN6_UCGCTL2,
3677                    GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
3678                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
3679                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3680
3681         /* Bspec says we need to always set all mask bits. */
3682         I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
3683                    _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
3684
3685         /*
3686          * According to the spec the following bits should be
3687          * set in order to enable memory self-refresh and fbc:
3688          * The bit21 and bit22 of 0x42000
3689          * The bit21 and bit22 of 0x42004
3690          * The bit5 and bit7 of 0x42020
3691          * The bit14 of 0x70180
3692          * The bit14 of 0x71180
3693          */
3694         I915_WRITE(ILK_DISPLAY_CHICKEN1,
3695                    I915_READ(ILK_DISPLAY_CHICKEN1) |
3696                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
3697         I915_WRITE(ILK_DISPLAY_CHICKEN2,
3698                    I915_READ(ILK_DISPLAY_CHICKEN2) |
3699                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
3700         I915_WRITE(ILK_DSPCLK_GATE_D,
3701                    I915_READ(ILK_DSPCLK_GATE_D) |
3702                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
3703                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
3704
3705         /* WaMbcDriverBootEnable */
3706         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3707                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
3708
3709         for_each_pipe(pipe) {
3710                 I915_WRITE(DSPCNTR(pipe),
3711                            I915_READ(DSPCNTR(pipe)) |
3712                            DISPPLANE_TRICKLE_FEED_DISABLE);
3713                 intel_flush_display_plane(dev_priv, pipe);
3714         }
3715
3716         /* The default value should be 0x200 according to docs, but the two
3717          * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
3718         I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
3719         I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
3720
3721         cpt_init_clock_gating(dev);
3722
3723         gen6_check_mch_setup(dev);
3724 }
3725
3726 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
3727 {
3728         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
3729
3730         reg &= ~GEN7_FF_SCHED_MASK;
3731         reg |= GEN7_FF_TS_SCHED_HW;
3732         reg |= GEN7_FF_VS_SCHED_HW;
3733         reg |= GEN7_FF_DS_SCHED_HW;
3734
3735         /* WaVSRefCountFullforceMissDisable */
3736         if (IS_HASWELL(dev_priv->dev))
3737                 reg &= ~GEN7_FF_VS_REF_CNT_FFME;
3738
3739         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
3740 }
3741
3742 static void lpt_init_clock_gating(struct drm_device *dev)
3743 {
3744         struct drm_i915_private *dev_priv = dev->dev_private;
3745
3746         /*
3747          * TODO: this bit should only be enabled when really needed, then
3748          * disabled when not needed anymore in order to save power.
3749          */
3750         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
3751                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
3752                            I915_READ(SOUTH_DSPCLK_GATE_D) |
3753                            PCH_LP_PARTITION_LEVEL_DISABLE);
3754 }
3755
3756 static void haswell_init_clock_gating(struct drm_device *dev)
3757 {
3758         struct drm_i915_private *dev_priv = dev->dev_private;
3759         int pipe;
3760
3761         I915_WRITE(WM3_LP_ILK, 0);
3762         I915_WRITE(WM2_LP_ILK, 0);
3763         I915_WRITE(WM1_LP_ILK, 0);
3764
3765         /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3766          * This implements the WaDisableRCZUnitClockGating workaround.
3767          */
3768         I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
3769
3770         /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3771         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3772                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3773
3774         /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3775         I915_WRITE(GEN7_L3CNTLREG1,
3776                         GEN7_WA_FOR_GEN7_L3_CONTROL);
3777         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
3778                         GEN7_WA_L3_CHICKEN_MODE);
3779
3780         /* This is required by WaCatErrorRejectionIssue */
3781         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3782                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3783                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3784
3785         for_each_pipe(pipe) {
3786                 I915_WRITE(DSPCNTR(pipe),
3787                            I915_READ(DSPCNTR(pipe)) |
3788                            DISPPLANE_TRICKLE_FEED_DISABLE);
3789                 intel_flush_display_plane(dev_priv, pipe);
3790         }
3791
3792         gen7_setup_fixed_func_scheduler(dev_priv);
3793
3794         /* WaDisable4x2SubspanOptimization */
3795         I915_WRITE(CACHE_MODE_1,
3796                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3797
3798         /* WaMbcDriverBootEnable */
3799         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3800                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
3801
3802         /* WaSwitchSolVfFArbitrationPriority */
3803         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
3804
3805         /* XXX: This is a workaround for early silicon revisions and should be
3806          * removed later.
3807          */
3808         I915_WRITE(WM_DBG,
3809                         I915_READ(WM_DBG) |
3810                         WM_DBG_DISALLOW_MULTIPLE_LP |
3811                         WM_DBG_DISALLOW_SPRITE |
3812                         WM_DBG_DISALLOW_MAXFIFO);
3813
3814         lpt_init_clock_gating(dev);
3815 }
3816
3817 static void ivybridge_init_clock_gating(struct drm_device *dev)
3818 {
3819         struct drm_i915_private *dev_priv = dev->dev_private;
3820         int pipe;
3821         uint32_t snpcr;
3822
3823         I915_WRITE(WM3_LP_ILK, 0);
3824         I915_WRITE(WM2_LP_ILK, 0);
3825         I915_WRITE(WM1_LP_ILK, 0);
3826
3827         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
3828
3829         /* WaDisableEarlyCull */
3830         I915_WRITE(_3D_CHICKEN3,
3831                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
3832
3833         /* WaDisableBackToBackFlipFix */
3834         I915_WRITE(IVB_CHICKEN3,
3835                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3836                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
3837
3838         /* WaDisablePSDDualDispatchEnable */
3839         if (IS_IVB_GT1(dev))
3840                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
3841                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3842         else
3843                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
3844                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3845
3846         /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3847         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3848                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3849
3850         /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3851         I915_WRITE(GEN7_L3CNTLREG1,
3852                         GEN7_WA_FOR_GEN7_L3_CONTROL);
3853         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
3854                    GEN7_WA_L3_CHICKEN_MODE);
3855         if (IS_IVB_GT1(dev))
3856                 I915_WRITE(GEN7_ROW_CHICKEN2,
3857                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3858         else
3859                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
3860                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3861
3862
3863         /* WaForceL3Serialization */
3864         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
3865                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
3866
3867         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3868          * gating disable must be set.  Failure to set it results in
3869          * flickering pixels due to Z write ordering failures after
3870          * some amount of runtime in the Mesa "fire" demo, and Unigine
3871          * Sanctuary and Tropics, and apparently anything else with
3872          * alpha test or pixel discard.
3873          *
3874          * According to the spec, bit 11 (RCCUNIT) must also be set,
3875          * but we didn't debug actual testcases to find it out.
3876          *
3877          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3878          * This implements the WaDisableRCZUnitClockGating workaround.
3879          */
3880         I915_WRITE(GEN6_UCGCTL2,
3881                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
3882                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3883
3884         /* This is required by WaCatErrorRejectionIssue */
3885         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3886                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3887                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3888
3889         for_each_pipe(pipe) {
3890                 I915_WRITE(DSPCNTR(pipe),
3891                            I915_READ(DSPCNTR(pipe)) |
3892                            DISPPLANE_TRICKLE_FEED_DISABLE);
3893                 intel_flush_display_plane(dev_priv, pipe);
3894         }
3895
3896         /* WaMbcDriverBootEnable */
3897         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3898                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
3899
3900         gen7_setup_fixed_func_scheduler(dev_priv);
3901
3902         /* WaDisable4x2SubspanOptimization */
3903         I915_WRITE(CACHE_MODE_1,
3904                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3905
3906         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
3907         snpcr &= ~GEN6_MBC_SNPCR_MASK;
3908         snpcr |= GEN6_MBC_SNPCR_MED;
3909         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
3910
3911         if (!HAS_PCH_NOP(dev))
3912                 cpt_init_clock_gating(dev);
3913
3914         gen6_check_mch_setup(dev);
3915 }
3916
3917 static void valleyview_init_clock_gating(struct drm_device *dev)
3918 {
3919         struct drm_i915_private *dev_priv = dev->dev_private;
3920         int pipe;
3921
3922         I915_WRITE(WM3_LP_ILK, 0);
3923         I915_WRITE(WM2_LP_ILK, 0);
3924         I915_WRITE(WM1_LP_ILK, 0);
3925
3926         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
3927
3928         /* WaDisableEarlyCull */
3929         I915_WRITE(_3D_CHICKEN3,
3930                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
3931
3932         /* WaDisableBackToBackFlipFix */
3933         I915_WRITE(IVB_CHICKEN3,
3934                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3935                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
3936
3937         /* WaDisablePSDDualDispatchEnable */
3938         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
3939                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
3940                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3941
3942         /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3943         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3944                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3945
3946         /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3947         I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
3948         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
3949
3950         /* WaForceL3Serialization */
3951         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
3952                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
3953
3954         /* WaDisableDopClockGating */
3955         I915_WRITE(GEN7_ROW_CHICKEN2,
3956                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3957
3958         /* WaForceL3Serialization */
3959         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
3960                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
3961
3962         /* This is required by WaCatErrorRejectionIssue */
3963         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3964                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3965                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3966
3967         /* WaMbcDriverBootEnable */
3968         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3969                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
3970
3971
3972         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3973          * gating disable must be set.  Failure to set it results in
3974          * flickering pixels due to Z write ordering failures after
3975          * some amount of runtime in the Mesa "fire" demo, and Unigine
3976          * Sanctuary and Tropics, and apparently anything else with
3977          * alpha test or pixel discard.
3978          *
3979          * According to the spec, bit 11 (RCCUNIT) must also be set,
3980          * but we didn't debug actual testcases to find it out.
3981          *
3982          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3983          * This implements the WaDisableRCZUnitClockGating workaround.
3984          *
3985          * Also apply WaDisableVDSUnitClockGating and
3986          * WaDisableRCPBUnitClockGating.
3987          */
3988         I915_WRITE(GEN6_UCGCTL2,
3989                    GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
3990                    GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
3991                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
3992                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
3993                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3994
3995         I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
3996
3997         for_each_pipe(pipe) {
3998                 I915_WRITE(DSPCNTR(pipe),
3999                            I915_READ(DSPCNTR(pipe)) |
4000                            DISPPLANE_TRICKLE_FEED_DISABLE);
4001                 intel_flush_display_plane(dev_priv, pipe);
4002         }
4003
4004         I915_WRITE(CACHE_MODE_1,
4005                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4006
4007         /*
4008          * WaDisableVLVClockGating_VBIIssue
4009          * Disable clock gating on th GCFG unit to prevent a delay
4010          * in the reporting of vblank events.
4011          */
4012         I915_WRITE(VLV_GUNIT_CLOCK_GATE, 0xffffffff);
4013
4014         /* Conservative clock gating settings for now */
4015         I915_WRITE(0x9400, 0xffffffff);
4016         I915_WRITE(0x9404, 0xffffffff);
4017         I915_WRITE(0x9408, 0xffffffff);
4018         I915_WRITE(0x940c, 0xffffffff);
4019         I915_WRITE(0x9410, 0xffffffff);
4020         I915_WRITE(0x9414, 0xffffffff);
4021         I915_WRITE(0x9418, 0xffffffff);
4022 }
4023
4024 static void g4x_init_clock_gating(struct drm_device *dev)
4025 {
4026         struct drm_i915_private *dev_priv = dev->dev_private;
4027         uint32_t dspclk_gate;
4028
4029         I915_WRITE(RENCLK_GATE_D1, 0);
4030         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
4031                    GS_UNIT_CLOCK_GATE_DISABLE |
4032                    CL_UNIT_CLOCK_GATE_DISABLE);
4033         I915_WRITE(RAMCLK_GATE_D, 0);
4034         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
4035                 OVRUNIT_CLOCK_GATE_DISABLE |
4036                 OVCUNIT_CLOCK_GATE_DISABLE;
4037         if (IS_GM45(dev))
4038                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
4039         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
4040
4041         /* WaDisableRenderCachePipelinedFlush */
4042         I915_WRITE(CACHE_MODE_0,
4043                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4044 }
4045
4046 static void crestline_init_clock_gating(struct drm_device *dev)
4047 {
4048         struct drm_i915_private *dev_priv = dev->dev_private;
4049
4050         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
4051         I915_WRITE(RENCLK_GATE_D2, 0);
4052         I915_WRITE(DSPCLK_GATE_D, 0);
4053         I915_WRITE(RAMCLK_GATE_D, 0);
4054         I915_WRITE16(DEUC, 0);
4055 }
4056
4057 static void broadwater_init_clock_gating(struct drm_device *dev)
4058 {
4059         struct drm_i915_private *dev_priv = dev->dev_private;
4060
4061         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
4062                    I965_RCC_CLOCK_GATE_DISABLE |
4063                    I965_RCPB_CLOCK_GATE_DISABLE |
4064                    I965_ISC_CLOCK_GATE_DISABLE |
4065                    I965_FBC_CLOCK_GATE_DISABLE);
4066         I915_WRITE(RENCLK_GATE_D2, 0);
4067 }
4068
4069 static void gen3_init_clock_gating(struct drm_device *dev)
4070 {
4071         struct drm_i915_private *dev_priv = dev->dev_private;
4072         u32 dstate = I915_READ(D_STATE);
4073
4074         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
4075                 DSTATE_DOT_CLOCK_GATING;
4076         I915_WRITE(D_STATE, dstate);
4077
4078         if (IS_PINEVIEW(dev))
4079                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
4080
4081         /* IIR "flip pending" means done if this bit is set */
4082         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
4083 }
4084
4085 static void i85x_init_clock_gating(struct drm_device *dev)
4086 {
4087         struct drm_i915_private *dev_priv = dev->dev_private;
4088
4089         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
4090 }
4091
4092 static void i830_init_clock_gating(struct drm_device *dev)
4093 {
4094         struct drm_i915_private *dev_priv = dev->dev_private;
4095
4096         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
4097 }
4098
4099 void intel_init_clock_gating(struct drm_device *dev)
4100 {
4101         struct drm_i915_private *dev_priv = dev->dev_private;
4102
4103         dev_priv->display.init_clock_gating(dev);
4104 }
4105
4106 /**
4107  * We should only use the power well if we explicitly asked the hardware to
4108  * enable it, so check if it's enabled and also check if we've requested it to
4109  * be enabled.
4110  */
4111 bool intel_using_power_well(struct drm_device *dev)
4112 {
4113         struct drm_i915_private *dev_priv = dev->dev_private;
4114
4115         if (IS_HASWELL(dev))
4116                 return I915_READ(HSW_PWR_WELL_DRIVER) ==
4117                        (HSW_PWR_WELL_ENABLE | HSW_PWR_WELL_STATE);
4118         else
4119                 return true;
4120 }
4121
4122 void intel_set_power_well(struct drm_device *dev, bool enable)
4123 {
4124         struct drm_i915_private *dev_priv = dev->dev_private;
4125         bool is_enabled, enable_requested;
4126         uint32_t tmp;
4127
4128         if (!HAS_POWER_WELL(dev))
4129                 return;
4130
4131         if (!i915_disable_power_well && !enable)
4132                 return;
4133
4134         tmp = I915_READ(HSW_PWR_WELL_DRIVER);
4135         is_enabled = tmp & HSW_PWR_WELL_STATE;
4136         enable_requested = tmp & HSW_PWR_WELL_ENABLE;
4137
4138         if (enable) {
4139                 if (!enable_requested)
4140                         I915_WRITE(HSW_PWR_WELL_DRIVER, HSW_PWR_WELL_ENABLE);
4141
4142                 if (!is_enabled) {
4143                         DRM_DEBUG_KMS("Enabling power well\n");
4144                         if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
4145                                       HSW_PWR_WELL_STATE), 20))
4146                                 DRM_ERROR("Timeout enabling power well\n");
4147                 }
4148         } else {
4149                 if (enable_requested) {
4150                         I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
4151                         DRM_DEBUG_KMS("Requesting to disable the power well\n");
4152                 }
4153         }
4154 }
4155
4156 /*
4157  * Starting with Haswell, we have a "Power Down Well" that can be turned off
4158  * when not needed anymore. We have 4 registers that can request the power well
4159  * to be enabled, and it will only be disabled if none of the registers is
4160  * requesting it to be enabled.
4161  */
4162 void intel_init_power_well(struct drm_device *dev)
4163 {
4164         struct drm_i915_private *dev_priv = dev->dev_private;
4165
4166         if (!HAS_POWER_WELL(dev))
4167                 return;
4168
4169         /* For now, we need the power well to be always enabled. */
4170         intel_set_power_well(dev, true);
4171
4172         /* We're taking over the BIOS, so clear any requests made by it since
4173          * the driver is in charge now. */
4174         if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE)
4175                 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
4176 }
4177
4178 /* Set up chip specific power management-related functions */
4179 void intel_init_pm(struct drm_device *dev)
4180 {
4181         struct drm_i915_private *dev_priv = dev->dev_private;
4182
4183         if (I915_HAS_FBC(dev)) {
4184                 if (HAS_PCH_SPLIT(dev)) {
4185                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
4186                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
4187                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
4188                 } else if (IS_GM45(dev)) {
4189                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
4190                         dev_priv->display.enable_fbc = g4x_enable_fbc;
4191                         dev_priv->display.disable_fbc = g4x_disable_fbc;
4192                 } else if (IS_CRESTLINE(dev)) {
4193                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
4194                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
4195                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
4196                 }
4197                 /* 855GM needs testing */
4198         }
4199
4200         /* For cxsr */
4201         if (IS_PINEVIEW(dev))
4202                 i915_pineview_get_mem_freq(dev);
4203         else if (IS_GEN5(dev))
4204                 i915_ironlake_get_mem_freq(dev);
4205
4206         /* For FIFO watermark updates */
4207         if (HAS_PCH_SPLIT(dev)) {
4208                 if (IS_GEN5(dev)) {
4209                         if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
4210                                 dev_priv->display.update_wm = ironlake_update_wm;
4211                         else {
4212                                 DRM_DEBUG_KMS("Failed to get proper latency. "
4213                                               "Disable CxSR\n");
4214                                 dev_priv->display.update_wm = NULL;
4215                         }
4216                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
4217                 } else if (IS_GEN6(dev)) {
4218                         if (SNB_READ_WM0_LATENCY()) {
4219                                 dev_priv->display.update_wm = sandybridge_update_wm;
4220                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4221                         } else {
4222                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
4223                                               "Disable CxSR\n");
4224                                 dev_priv->display.update_wm = NULL;
4225                         }
4226                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
4227                 } else if (IS_IVYBRIDGE(dev)) {
4228                         if (SNB_READ_WM0_LATENCY()) {
4229                                 dev_priv->display.update_wm = ivybridge_update_wm;
4230                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4231                         } else {
4232                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
4233                                               "Disable CxSR\n");
4234                                 dev_priv->display.update_wm = NULL;
4235                         }
4236                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
4237                 } else if (IS_HASWELL(dev)) {
4238                         if (SNB_READ_WM0_LATENCY()) {
4239                                 dev_priv->display.update_wm = sandybridge_update_wm;
4240                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4241                                 dev_priv->display.update_linetime_wm = haswell_update_linetime_wm;
4242                         } else {
4243                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
4244                                               "Disable CxSR\n");
4245                                 dev_priv->display.update_wm = NULL;
4246                         }
4247                         dev_priv->display.init_clock_gating = haswell_init_clock_gating;
4248                 } else
4249                         dev_priv->display.update_wm = NULL;
4250         } else if (IS_VALLEYVIEW(dev)) {
4251                 dev_priv->display.update_wm = valleyview_update_wm;
4252                 dev_priv->display.init_clock_gating =
4253                         valleyview_init_clock_gating;
4254         } else if (IS_PINEVIEW(dev)) {
4255                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
4256                                             dev_priv->is_ddr3,
4257                                             dev_priv->fsb_freq,
4258                                             dev_priv->mem_freq)) {
4259                         DRM_INFO("failed to find known CxSR latency "
4260                                  "(found ddr%s fsb freq %d, mem freq %d), "
4261                                  "disabling CxSR\n",
4262                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
4263                                  dev_priv->fsb_freq, dev_priv->mem_freq);
4264                         /* Disable CxSR and never update its watermark again */
4265                         pineview_disable_cxsr(dev);
4266                         dev_priv->display.update_wm = NULL;
4267                 } else
4268                         dev_priv->display.update_wm = pineview_update_wm;
4269                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
4270         } else if (IS_G4X(dev)) {
4271                 dev_priv->display.update_wm = g4x_update_wm;
4272                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
4273         } else if (IS_GEN4(dev)) {
4274                 dev_priv->display.update_wm = i965_update_wm;
4275                 if (IS_CRESTLINE(dev))
4276                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
4277                 else if (IS_BROADWATER(dev))
4278                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
4279         } else if (IS_GEN3(dev)) {
4280                 dev_priv->display.update_wm = i9xx_update_wm;
4281                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
4282                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
4283         } else if (IS_I865G(dev)) {
4284                 dev_priv->display.update_wm = i830_update_wm;
4285                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
4286                 dev_priv->display.get_fifo_size = i830_get_fifo_size;
4287         } else if (IS_I85X(dev)) {
4288                 dev_priv->display.update_wm = i9xx_update_wm;
4289                 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
4290                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
4291         } else {
4292                 dev_priv->display.update_wm = i830_update_wm;
4293                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
4294                 if (IS_845G(dev))
4295                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
4296                 else
4297                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
4298         }
4299 }
4300
4301 static void __gen6_gt_wait_for_thread_c0(struct drm_i915_private *dev_priv)
4302 {
4303         u32 gt_thread_status_mask;
4304
4305         if (IS_HASWELL(dev_priv->dev))
4306                 gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK_HSW;
4307         else
4308                 gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK;
4309
4310         /* w/a for a sporadic read returning 0 by waiting for the GT
4311          * thread to wake up.
4312          */
4313         if (wait_for_atomic_us((I915_READ_NOTRACE(GEN6_GT_THREAD_STATUS_REG) & gt_thread_status_mask) == 0, 500))
4314                 DRM_ERROR("GT thread status wait timed out\n");
4315 }
4316
4317 static void __gen6_gt_force_wake_reset(struct drm_i915_private *dev_priv)
4318 {
4319         I915_WRITE_NOTRACE(FORCEWAKE, 0);
4320         POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
4321 }
4322
4323 static void __gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
4324 {
4325         if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK) & 1) == 0,
4326                             FORCEWAKE_ACK_TIMEOUT_MS))
4327                 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4328
4329         I915_WRITE_NOTRACE(FORCEWAKE, 1);
4330         POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
4331
4332         if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK) & 1),
4333                             FORCEWAKE_ACK_TIMEOUT_MS))
4334                 DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4335
4336         __gen6_gt_wait_for_thread_c0(dev_priv);
4337 }
4338
4339 static void __gen6_gt_force_wake_mt_reset(struct drm_i915_private *dev_priv)
4340 {
4341         I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(0xffff));
4342         /* something from same cacheline, but !FORCEWAKE_MT */
4343         POSTING_READ(ECOBUS);
4344 }
4345
4346 static void __gen6_gt_force_wake_mt_get(struct drm_i915_private *dev_priv)
4347 {
4348         u32 forcewake_ack;
4349
4350         if (IS_HASWELL(dev_priv->dev))
4351                 forcewake_ack = FORCEWAKE_ACK_HSW;
4352         else
4353                 forcewake_ack = FORCEWAKE_MT_ACK;
4354
4355         if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & FORCEWAKE_KERNEL) == 0,
4356                             FORCEWAKE_ACK_TIMEOUT_MS))
4357                 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4358
4359         I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
4360         /* something from same cacheline, but !FORCEWAKE_MT */
4361         POSTING_READ(ECOBUS);
4362
4363         if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & FORCEWAKE_KERNEL),
4364                             FORCEWAKE_ACK_TIMEOUT_MS))
4365                 DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4366
4367         __gen6_gt_wait_for_thread_c0(dev_priv);
4368 }
4369
4370 /*
4371  * Generally this is called implicitly by the register read function. However,
4372  * if some sequence requires the GT to not power down then this function should
4373  * be called at the beginning of the sequence followed by a call to
4374  * gen6_gt_force_wake_put() at the end of the sequence.
4375  */
4376 void gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
4377 {
4378
4379         lockmgr(&dev_priv->gt_lock, LK_EXCLUSIVE);
4380         if (dev_priv->forcewake_count++ == 0)
4381                 dev_priv->gt.force_wake_get(dev_priv);
4382         lockmgr(&dev_priv->gt_lock, LK_RELEASE);
4383 }
4384
4385 void gen6_gt_check_fifodbg(struct drm_i915_private *dev_priv)
4386 {
4387         u32 gtfifodbg;
4388         gtfifodbg = I915_READ_NOTRACE(GTFIFODBG);
4389         if (WARN(gtfifodbg & GT_FIFO_CPU_ERROR_MASK,
4390              "MMIO read or write has been dropped %x\n", gtfifodbg))
4391                 I915_WRITE_NOTRACE(GTFIFODBG, GT_FIFO_CPU_ERROR_MASK);
4392 }
4393
4394 static void __gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
4395 {
4396         I915_WRITE_NOTRACE(FORCEWAKE, 0);
4397         /* something from same cacheline, but !FORCEWAKE */
4398         POSTING_READ(ECOBUS);
4399         gen6_gt_check_fifodbg(dev_priv);
4400 }
4401
4402 static void __gen6_gt_force_wake_mt_put(struct drm_i915_private *dev_priv)
4403 {
4404         I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
4405         /* something from same cacheline, but !FORCEWAKE_MT */
4406         POSTING_READ(ECOBUS);
4407         gen6_gt_check_fifodbg(dev_priv);
4408 }
4409
4410 /*
4411  * see gen6_gt_force_wake_get()
4412  */
4413 void gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
4414 {
4415         lockmgr(&dev_priv->gt_lock, LK_EXCLUSIVE);
4416         if (--dev_priv->forcewake_count == 0)
4417                 dev_priv->gt.force_wake_put(dev_priv);
4418         lockmgr(&dev_priv->gt_lock, LK_RELEASE);
4419 }
4420
4421 int __gen6_gt_wait_for_fifo(struct drm_i915_private *dev_priv)
4422 {
4423         int ret = 0;
4424
4425         if (dev_priv->gt_fifo_count < GT_FIFO_NUM_RESERVED_ENTRIES) {
4426                 int loop = 500;
4427                 u32 fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
4428                 while (fifo <= GT_FIFO_NUM_RESERVED_ENTRIES && loop--) {
4429                         udelay(10);
4430                         fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
4431                 }
4432                 if (WARN_ON(loop < 0 && fifo <= GT_FIFO_NUM_RESERVED_ENTRIES))
4433                         ++ret;
4434                 dev_priv->gt_fifo_count = fifo;
4435         }
4436         dev_priv->gt_fifo_count--;
4437
4438         return ret;
4439 }
4440
4441 static void vlv_force_wake_reset(struct drm_i915_private *dev_priv)
4442 {
4443         I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(0xffff));
4444         /* something from same cacheline, but !FORCEWAKE_VLV */
4445         POSTING_READ(FORCEWAKE_ACK_VLV);
4446 }
4447
4448 static void vlv_force_wake_get(struct drm_i915_private *dev_priv)
4449 {
4450         if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & FORCEWAKE_KERNEL) == 0,
4451                             FORCEWAKE_ACK_TIMEOUT_MS))
4452                 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4453
4454         I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
4455         I915_WRITE_NOTRACE(FORCEWAKE_MEDIA_VLV,
4456                            _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
4457
4458         if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & FORCEWAKE_KERNEL),
4459                             FORCEWAKE_ACK_TIMEOUT_MS))
4460                 DRM_ERROR("Timed out waiting for GT to ack forcewake request.\n");
4461
4462         if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_MEDIA_VLV) &
4463                              FORCEWAKE_KERNEL),
4464                             FORCEWAKE_ACK_TIMEOUT_MS))
4465                 DRM_ERROR("Timed out waiting for media to ack forcewake request.\n");
4466
4467         __gen6_gt_wait_for_thread_c0(dev_priv);
4468 }
4469
4470 static void vlv_force_wake_put(struct drm_i915_private *dev_priv)
4471 {
4472         I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
4473         I915_WRITE_NOTRACE(FORCEWAKE_MEDIA_VLV,
4474                            _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
4475         /* The below doubles as a POSTING_READ */
4476         gen6_gt_check_fifodbg(dev_priv);
4477 }
4478
4479 void intel_gt_reset(struct drm_device *dev)
4480 {
4481         struct drm_i915_private *dev_priv = dev->dev_private;
4482
4483         if (IS_VALLEYVIEW(dev)) {
4484                 vlv_force_wake_reset(dev_priv);
4485         } else if (INTEL_INFO(dev)->gen >= 6) {
4486                 __gen6_gt_force_wake_reset(dev_priv);
4487                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4488                         __gen6_gt_force_wake_mt_reset(dev_priv);
4489         }
4490 }
4491
4492 void intel_gt_init(struct drm_device *dev)
4493 {
4494         struct drm_i915_private *dev_priv = dev->dev_private;
4495
4496         lockinit(&dev_priv->gt_lock, "915gt", 0, LK_CANRECURSE);
4497
4498         intel_gt_reset(dev);
4499
4500         if (IS_VALLEYVIEW(dev)) {
4501                 dev_priv->gt.force_wake_get = vlv_force_wake_get;
4502                 dev_priv->gt.force_wake_put = vlv_force_wake_put;
4503         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
4504                 dev_priv->gt.force_wake_get = __gen6_gt_force_wake_mt_get;
4505                 dev_priv->gt.force_wake_put = __gen6_gt_force_wake_mt_put;
4506         } else if (IS_GEN6(dev)) {
4507                 dev_priv->gt.force_wake_get = __gen6_gt_force_wake_get;
4508                 dev_priv->gt.force_wake_put = __gen6_gt_force_wake_put;
4509         }
4510         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
4511                           intel_gen6_powersave_work);
4512 }
4513
4514 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
4515 {
4516         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4517
4518         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
4519                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
4520                 return -EAGAIN;
4521         }
4522
4523         I915_WRITE(GEN6_PCODE_DATA, *val);
4524         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
4525
4526         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
4527                      500)) {
4528                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
4529                 return -ETIMEDOUT;
4530         }
4531
4532         *val = I915_READ(GEN6_PCODE_DATA);
4533         I915_WRITE(GEN6_PCODE_DATA, 0);
4534
4535         return 0;
4536 }
4537
4538 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
4539 {
4540         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4541
4542         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
4543                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
4544                 return -EAGAIN;
4545         }
4546
4547         I915_WRITE(GEN6_PCODE_DATA, val);
4548         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
4549
4550         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
4551                      500)) {
4552                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
4553                 return -ETIMEDOUT;
4554         }
4555
4556         I915_WRITE(GEN6_PCODE_DATA, 0);
4557
4558         return 0;
4559 }
4560
4561 static int vlv_punit_rw(struct drm_i915_private *dev_priv, u8 opcode,
4562                         u8 addr, u32 *val)
4563 {
4564         u32 cmd, devfn, port, be, bar;
4565
4566         bar = 0;
4567         be = 0xf;
4568         port = IOSF_PORT_PUNIT;
4569         devfn = PCI_DEVFN(2, 0);
4570
4571         cmd = (devfn << IOSF_DEVFN_SHIFT) | (opcode << IOSF_OPCODE_SHIFT) |
4572                 (port << IOSF_PORT_SHIFT) | (be << IOSF_BYTE_ENABLES_SHIFT) |
4573                 (bar << IOSF_BAR_SHIFT);
4574
4575         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4576
4577         if (I915_READ(VLV_IOSF_DOORBELL_REQ) & IOSF_SB_BUSY) {
4578                 DRM_DEBUG_DRIVER("warning: pcode (%s) mailbox access failed\n",
4579                                  opcode == PUNIT_OPCODE_REG_READ ?
4580                                  "read" : "write");
4581                 return -EAGAIN;
4582         }
4583
4584         I915_WRITE(VLV_IOSF_ADDR, addr);
4585         if (opcode == PUNIT_OPCODE_REG_WRITE)
4586                 I915_WRITE(VLV_IOSF_DATA, *val);
4587         I915_WRITE(VLV_IOSF_DOORBELL_REQ, cmd);
4588
4589         if (wait_for((I915_READ(VLV_IOSF_DOORBELL_REQ) & IOSF_SB_BUSY) == 0,
4590                      500)) {
4591                 DRM_ERROR("timeout waiting for pcode %s (%d) to finish\n",
4592                           opcode == PUNIT_OPCODE_REG_READ ? "read" : "write",
4593                           addr);
4594                 return -ETIMEDOUT;
4595         }
4596
4597         if (opcode == PUNIT_OPCODE_REG_READ)
4598                 *val = I915_READ(VLV_IOSF_DATA);
4599         I915_WRITE(VLV_IOSF_DATA, 0);
4600
4601         return 0;
4602 }
4603
4604 int valleyview_punit_read(struct drm_i915_private *dev_priv, u8 addr, u32 *val)
4605 {
4606         return vlv_punit_rw(dev_priv, PUNIT_OPCODE_REG_READ, addr, val);
4607 }
4608
4609 int valleyview_punit_write(struct drm_i915_private *dev_priv, u8 addr, u32 val)
4610 {
4611         return vlv_punit_rw(dev_priv, PUNIT_OPCODE_REG_WRITE, addr, &val);
4612 }