1625f5218073faf17b664721608c51f25dc27aa9
[dragonfly.git] / sys / dev / netif / an / if_an.c
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *      Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *      This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/dev/an/if_an.c,v 1.2.2.13 2003/02/11 03:32:48 ambrisko Exp $
33  * $DragonFly: src/sys/dev/netif/an/if_an.c,v 1.28 2005/07/28 16:33:25 joerg Exp $
34  */
35
36 /*
37  * Aironet 4500/4800 802.11 PCMCIA/ISA/PCI driver for FreeBSD.
38  *
39  * Written by Bill Paul <wpaul@ctr.columbia.edu>
40  * Electrical Engineering Department
41  * Columbia University, New York City
42  */
43
44 /*
45  * The Aironet 4500/4800 series cards come in PCMCIA, ISA and PCI form.
46  * This driver supports all three device types (PCI devices are supported
47  * through an extra PCI shim: /sys/dev/an/if_an_pci.c). ISA devices can be
48  * supported either using hard-coded IO port/IRQ settings or via Plug
49  * and Play. The 4500 series devices support 1Mbps and 2Mbps data rates.
50  * The 4800 devices support 1, 2, 5.5 and 11Mbps rates.
51  *
52  * Like the WaveLAN/IEEE cards, the Aironet NICs are all essentially
53  * PCMCIA devices. The ISA and PCI cards are a combination of a PCMCIA
54  * device and a PCMCIA to ISA or PCMCIA to PCI adapter card. There are
55  * a couple of important differences though:
56  *
57  * - Lucent ISA card looks to the host like a PCMCIA controller with
58  *   a PCMCIA WaveLAN card inserted. This means that even desktop
59  *   machines need to be configured with PCMCIA support in order to
60  *   use WaveLAN/IEEE ISA cards. The Aironet cards on the other hand
61  *   actually look like normal ISA and PCI devices to the host, so
62  *   no PCMCIA controller support is needed
63  *
64  * The latter point results in a small gotcha. The Aironet PCMCIA
65  * cards can be configured for one of two operating modes depending
66  * on how the Vpp1 and Vpp2 programming voltages are set when the
67  * card is activated. In order to put the card in proper PCMCIA
68  * operation (where the CIS table is visible and the interface is
69  * programmed for PCMCIA operation), both Vpp1 and Vpp2 have to be
70  * set to 5 volts. FreeBSD by default doesn't set the Vpp voltages,
71  * which leaves the card in ISA/PCI mode, which prevents it from
72  * being activated as an PCMCIA device.
73  *
74  * Note that some PCMCIA controller software packages for Windows NT
75  * fail to set the voltages as well.
76  *
77  * The Aironet devices can operate in both station mode and access point
78  * mode. Typically, when programmed for station mode, the card can be set
79  * to automatically perform encapsulation/decapsulation of Ethernet II
80  * and 802.3 frames within 802.11 frames so that the host doesn't have
81  * to do it itself. This driver doesn't program the card that way: the
82  * driver handles all of the encapsulation/decapsulation itself.
83  */
84
85 #include "opt_inet.h"
86
87 #ifdef INET
88 #define ANCACHE                 /* enable signal strength cache */
89 #endif
90
91 #include <sys/param.h>
92 #include <sys/systm.h>
93 #include <sys/sockio.h>
94 #include <sys/mbuf.h>
95 #include <sys/kernel.h>
96 #include <sys/proc.h>
97 #include <sys/ucred.h>
98 #include <sys/socket.h>
99 #ifdef ANCACHE
100 #include <sys/syslog.h>
101 #endif
102 #include <sys/sysctl.h>
103 #include <sys/thread2.h>
104
105 #include <sys/module.h>
106 #include <sys/sysctl.h>
107 #include <sys/bus.h>
108 #include <machine/bus.h>
109 #include <sys/rman.h>
110 #include <machine/resource.h>
111 #include <sys/malloc.h>
112
113 #include <net/if.h>
114 #include <net/ifq_var.h>
115 #include <net/if_arp.h>
116 #include <net/ethernet.h>
117 #include <net/if_dl.h>
118 #include <net/if_types.h>
119 #include <net/if_media.h>
120 #include <netproto/802_11/ieee80211.h>
121 #include <netproto/802_11/ieee80211_ioctl.h>
122
123 #ifdef INET
124 #include <netinet/in.h>
125 #include <netinet/in_systm.h>
126 #include <netinet/in_var.h>
127 #include <netinet/ip.h>
128 #endif
129
130 #include <net/bpf.h>
131
132 #include <machine/md_var.h>
133
134 #include "if_aironet_ieee.h"
135 #include "if_anreg.h"
136
137 /* These are global because we need them in sys/pci/if_an_p.c. */
138 static void an_reset            (struct an_softc *);
139 static int an_init_mpi350_desc  (struct an_softc *);
140 static int an_ioctl             (struct ifnet *, u_long, caddr_t,
141                                         struct ucred *);
142 static void an_init             (void *);
143 static int an_init_tx_ring      (struct an_softc *);
144 static void an_start            (struct ifnet *);
145 static void an_watchdog         (struct ifnet *);
146 static void an_rxeof            (struct an_softc *);
147 static void an_txeof            (struct an_softc *, int);
148
149 static void an_promisc          (struct an_softc *, int);
150 static int an_cmd               (struct an_softc *, int, int);
151 static int an_cmd_struct        (struct an_softc *, struct an_command *,
152                                         struct an_reply *);
153 static int an_read_record       (struct an_softc *, struct an_ltv_gen *);
154 static int an_write_record      (struct an_softc *, struct an_ltv_gen *);
155 static int an_read_data         (struct an_softc *, int,
156                                         int, caddr_t, int);
157 static int an_write_data        (struct an_softc *, int,
158                                         int, caddr_t, int);
159 static int an_seek              (struct an_softc *, int, int, int);
160 static int an_alloc_nicmem      (struct an_softc *, int, int *);
161 static int an_dma_malloc        (struct an_softc *, bus_size_t,
162                                         struct an_dma_alloc *, int);
163 static void an_dma_free         (struct an_softc *, 
164                                         struct an_dma_alloc *);
165 static void an_dma_malloc_cb    (void *, bus_dma_segment_t *, int, int);
166 static void an_stats_update     (void *);
167 static void an_setdef           (struct an_softc *, struct an_req *);
168 #ifdef ANCACHE
169 static void an_cache_store      (struct an_softc *, struct mbuf *,
170                                  uint8_t, uint8_t);
171 #endif
172
173 /* function definitions for use with the Cisco's Linux configuration
174    utilities
175 */
176
177 static int readrids             (struct ifnet*, struct aironet_ioctl*);
178 static int writerids            (struct ifnet*, struct aironet_ioctl*);
179 static int flashcard            (struct ifnet*, struct aironet_ioctl*);
180
181 static int cmdreset             (struct ifnet *);
182 static int setflashmode         (struct ifnet *);
183 static int flashgchar           (struct ifnet *,int,int);
184 static int flashpchar           (struct ifnet *,int,int);
185 static int flashputbuf          (struct ifnet *);
186 static int flashrestart         (struct ifnet *);
187 static int WaitBusy             (struct ifnet *, int);
188 static int unstickbusy          (struct ifnet *);
189
190 static void an_dump_record      (struct an_softc *,struct an_ltv_gen *,
191                                     char *);
192
193 static int an_media_change      (struct ifnet *);
194 static void an_media_status     (struct ifnet *, struct ifmediareq *);
195
196 static int      an_dump = 0;
197 static int      an_cache_mode = 0;
198
199 #define DBM 0
200 #define PERCENT 1
201 #define RAW 2
202
203 static char an_conf[256];
204 static char an_conf_cache[256];
205
206 DECLARE_DUMMY_MODULE(if_an);
207
208 /* sysctl vars */
209
210 SYSCTL_NODE(_hw, OID_AUTO, an, CTLFLAG_RD, 0, "Wireless driver parameters");
211
212 static int
213 sysctl_an_dump(SYSCTL_HANDLER_ARGS)
214 {
215         int     error, r, last;
216         char    *s = an_conf;
217
218         last = an_dump;
219
220         switch (an_dump) {
221         case 0:
222                 strcpy(an_conf, "off");
223                 break;
224         case 1:
225                 strcpy(an_conf, "type");
226                 break;
227         case 2:
228                 strcpy(an_conf, "dump");
229                 break;
230         default:
231                 snprintf(an_conf, 5, "%x", an_dump);
232                 break;
233         }
234
235         error = sysctl_handle_string(oidp, an_conf, sizeof(an_conf), req);
236
237         if (strncmp(an_conf,"off", 3) == 0) {
238                 an_dump = 0;
239         }
240         if (strncmp(an_conf,"dump", 4) == 0) {
241                 an_dump = 1;
242         }
243         if (strncmp(an_conf,"type", 4) == 0) {
244                 an_dump = 2;
245         }
246         if (*s == 'f') {
247                 r = 0;
248                 for (;;s++) {
249                         if ((*s >= '0') && (*s <= '9')) {
250                                 r = r * 16 + (*s - '0');
251                         } else if ((*s >= 'a') && (*s <= 'f')) {
252                                 r = r * 16 + (*s - 'a' + 10);
253                         } else {
254                                 break;
255                         }
256                 }
257                 an_dump = r;
258         }
259         if (an_dump != last)
260                 printf("Sysctl changed for Aironet driver\n");
261
262         return error;
263 }
264
265 SYSCTL_PROC(_hw_an, OID_AUTO, an_dump, CTLTYPE_STRING | CTLFLAG_RW,
266             0, sizeof(an_conf), sysctl_an_dump, "A", "");
267
268 static int
269 sysctl_an_cache_mode(SYSCTL_HANDLER_ARGS)
270 {
271         int     error, last;
272
273         last = an_cache_mode;
274
275         switch (an_cache_mode) {
276         case 1:
277                 strcpy(an_conf_cache, "per");
278                 break;
279         case 2:
280                 strcpy(an_conf_cache, "raw");
281                 break;
282         default:
283                 strcpy(an_conf_cache, "dbm");
284                 break;
285         }
286
287         error = sysctl_handle_string(oidp, an_conf_cache, 
288                         sizeof(an_conf_cache), req);
289
290         if (strncmp(an_conf_cache,"dbm", 3) == 0) {
291                 an_cache_mode = 0;
292         }
293         if (strncmp(an_conf_cache,"per", 3) == 0) {
294                 an_cache_mode = 1;
295         }
296         if (strncmp(an_conf_cache,"raw", 3) == 0) {
297                 an_cache_mode = 2;
298         }
299
300         return error;
301 }
302
303 SYSCTL_PROC(_hw_an, OID_AUTO, an_cache_mode, CTLTYPE_STRING | CTLFLAG_RW,
304             0, sizeof(an_conf_cache), sysctl_an_cache_mode, "A", "");
305
306 /*
307  * We probe for an Aironet 4500/4800 card by attempting to
308  * read the default SSID list. On reset, the first entry in
309  * the SSID list will contain the name "tsunami." If we don't
310  * find this, then there's no card present.
311  */
312 int
313 an_probe(dev)
314         device_t                dev;
315 {
316         struct an_softc *sc = device_get_softc(dev);
317         struct an_ltv_ssidlist  ssid;
318         int     error;
319
320         bzero((char *)&ssid, sizeof(ssid));
321
322         error = an_alloc_port(dev, 0, AN_IOSIZ);
323         if (error)
324                 return (error);
325
326         /* can't do autoprobing */
327         if (rman_get_start(sc->port_res) == -1)
328                 return(ENXIO);
329
330         /*
331          * We need to fake up a softc structure long enough
332          * to be able to issue commands and call some of the
333          * other routines.
334          */
335         sc->an_bhandle = rman_get_bushandle(sc->port_res);
336         sc->an_btag = rman_get_bustag(sc->port_res);
337
338         ssid.an_len = sizeof(ssid);
339         ssid.an_type = AN_RID_SSIDLIST;
340
341         /* Make sure interrupts are disabled. */
342         CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), 0);
343         CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), 0xFFFF);
344
345         if_initname(&sc->arpcom.ac_if, device_get_name(dev),
346                     device_get_unit(dev));
347         an_reset(sc);
348         /* No need for an_init_mpi350_desc since it will be done in attach */
349
350         if (an_cmd(sc, AN_CMD_READCFG, 0))
351                 return(ENXIO);
352
353         if (an_read_record(sc, (struct an_ltv_gen *)&ssid))
354                 return(ENXIO);
355
356         /* See if the ssid matches what we expect ... but doesn't have to */
357         if (strcmp(ssid.an_ssid1, AN_DEF_SSID))
358                 return(ENXIO);
359
360         return(0);
361 }
362
363 /*
364  * Allocate a port resource with the given resource id.
365  */
366 int
367 an_alloc_port(dev, rid, size)
368         device_t dev;
369         int rid;
370         int size;
371 {
372         struct an_softc *sc = device_get_softc(dev);
373         struct resource *res;
374
375         res = bus_alloc_resource(dev, SYS_RES_IOPORT, &rid,
376                                  0ul, ~0ul, size, RF_ACTIVE);
377         if (res) {
378                 sc->port_rid = rid;
379                 sc->port_res = res;
380                 return (0);
381         } else {
382                 return (ENOENT);
383         }
384 }
385
386 /*
387  * Allocate a memory resource with the given resource id.
388  */
389 int an_alloc_memory(device_t dev, int rid, int size)
390 {
391         struct an_softc *sc = device_get_softc(dev);
392         struct resource *res;
393
394         res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
395                                  0ul, ~0ul, size, RF_ACTIVE);
396         if (res) {
397                 sc->mem_rid = rid;
398                 sc->mem_res = res;
399                 sc->mem_used = size;
400                 return (0);
401         } else {
402                 return (ENOENT);
403         }
404 }
405
406 /*
407  * Allocate a auxilary memory resource with the given resource id.
408  */
409 int an_alloc_aux_memory(device_t dev, int rid, int size)
410 {
411         struct an_softc *sc = device_get_softc(dev);
412         struct resource *res;
413
414         res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
415                                  0ul, ~0ul, size, RF_ACTIVE);
416         if (res) {
417                 sc->mem_aux_rid = rid;
418                 sc->mem_aux_res = res;
419                 sc->mem_aux_used = size;
420                 return (0);
421         } else {
422                 return (ENOENT);
423         }
424 }
425
426 /*
427  * Allocate an irq resource with the given resource id.
428  */
429 int
430 an_alloc_irq(dev, rid, flags)
431         device_t dev;
432         int rid;
433         int flags;
434 {
435         struct an_softc *sc = device_get_softc(dev);
436         struct resource *res;
437
438         res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
439             (RF_ACTIVE | flags));
440         if (res) {
441                 sc->irq_rid = rid;
442                 sc->irq_res = res;
443                 return (0);
444         } else {
445                 return (ENOENT);
446         }
447 }
448
449 static void
450 an_dma_malloc_cb(arg, segs, nseg, error)
451         void *arg;
452         bus_dma_segment_t *segs;
453         int nseg;
454         int error;
455 {
456         bus_addr_t *paddr = (bus_addr_t*) arg;
457         *paddr = segs->ds_addr;
458 }
459
460 /*
461  * Alloc DMA memory and set the pointer to it
462  */
463 static int
464 an_dma_malloc(sc, size, dma, mapflags)
465         struct an_softc *sc;
466         bus_size_t size;
467         struct an_dma_alloc *dma;
468         int mapflags;
469 {
470         int r;
471
472         r = bus_dmamap_create(sc->an_dtag, 0, &dma->an_dma_map);
473         if (r != 0)
474                 goto fail_0;
475
476         r = bus_dmamem_alloc(sc->an_dtag, (void**) &dma->an_dma_vaddr,
477                              BUS_DMA_WAITOK, &dma->an_dma_map);
478         if (r != 0)
479                 goto fail_1;
480
481         r = bus_dmamap_load(sc->an_dtag, dma->an_dma_map, dma->an_dma_vaddr,
482                             size,
483                             an_dma_malloc_cb,
484                             &dma->an_dma_paddr,
485                             mapflags);
486         if (r != 0)
487                 goto fail_2;
488
489         dma->an_dma_size = size;
490         return (0);
491
492 fail_2:
493         bus_dmamap_unload(sc->an_dtag, dma->an_dma_map);
494 fail_1:
495         bus_dmamem_free(sc->an_dtag, dma->an_dma_vaddr, dma->an_dma_map);
496 fail_0:
497         bus_dmamap_destroy(sc->an_dtag, dma->an_dma_map);
498         dma->an_dma_map = NULL;
499         return (r);
500 }
501
502 static void
503 an_dma_free(sc, dma)
504         struct an_softc *sc;
505         struct an_dma_alloc *dma;
506 {
507         bus_dmamap_unload(sc->an_dtag, dma->an_dma_map);
508         bus_dmamem_free(sc->an_dtag, dma->an_dma_vaddr, dma->an_dma_map);
509         bus_dmamap_destroy(sc->an_dtag, dma->an_dma_map);
510 }
511
512 /*
513  * Release all resources
514  */
515 void
516 an_release_resources(dev)
517         device_t dev;
518 {
519         struct an_softc *sc = device_get_softc(dev);
520         int i;
521
522         if (sc->port_res) {
523                 bus_release_resource(dev, SYS_RES_IOPORT,
524                                      sc->port_rid, sc->port_res);
525                 sc->port_res = 0;
526         }
527         if (sc->mem_res) {
528                 bus_release_resource(dev, SYS_RES_MEMORY,
529                                      sc->mem_rid, sc->mem_res);
530                 sc->mem_res = 0;
531         }
532         if (sc->mem_aux_res) {
533                 bus_release_resource(dev, SYS_RES_MEMORY,
534                                      sc->mem_aux_rid, sc->mem_aux_res);
535                 sc->mem_aux_res = 0;
536         }
537         if (sc->irq_res) {
538                 bus_release_resource(dev, SYS_RES_IRQ,
539                                      sc->irq_rid, sc->irq_res);
540                 sc->irq_res = 0;
541         }
542         if (sc->an_rid_buffer.an_dma_paddr) {
543                 an_dma_free(sc, &sc->an_rid_buffer);
544         }
545         for (i = 0; i < AN_MAX_RX_DESC; i++)
546                 if (sc->an_rx_buffer[i].an_dma_paddr) {
547                         an_dma_free(sc, &sc->an_rx_buffer[i]);
548                 }
549         for (i = 0; i < AN_MAX_TX_DESC; i++)
550                 if (sc->an_tx_buffer[i].an_dma_paddr) {
551                         an_dma_free(sc, &sc->an_tx_buffer[i]);
552                 }
553         if (sc->an_dtag) {
554                 bus_dma_tag_destroy(sc->an_dtag);
555         }
556
557 }
558
559 int
560 an_init_mpi350_desc(sc)
561         struct an_softc *sc;
562 {
563         struct an_command       cmd_struct;
564         struct an_reply         reply;
565         struct an_card_rid_desc an_rid_desc;
566         struct an_card_rx_desc  an_rx_desc;
567         struct an_card_tx_desc  an_tx_desc;
568         int                     i, desc;
569
570         if(!sc->an_rid_buffer.an_dma_paddr)
571                 an_dma_malloc(sc, AN_RID_BUFFER_SIZE,
572                                  &sc->an_rid_buffer, 0);
573         for (i = 0; i < AN_MAX_RX_DESC; i++)
574                 if(!sc->an_rx_buffer[i].an_dma_paddr)
575                         an_dma_malloc(sc, AN_RX_BUFFER_SIZE,
576                                       &sc->an_rx_buffer[i], 0);
577         for (i = 0; i < AN_MAX_TX_DESC; i++)
578                 if(!sc->an_tx_buffer[i].an_dma_paddr)
579                         an_dma_malloc(sc, AN_TX_BUFFER_SIZE,
580                                       &sc->an_tx_buffer[i], 0);
581
582         /*
583          * Allocate RX descriptor
584          */
585         bzero(&reply,sizeof(reply));
586         cmd_struct.an_cmd   = AN_CMD_ALLOC_DESC;
587         cmd_struct.an_parm0 = AN_DESCRIPTOR_RX;
588         cmd_struct.an_parm1 = AN_RX_DESC_OFFSET;
589         cmd_struct.an_parm2 = AN_MAX_RX_DESC;
590         if (an_cmd_struct(sc, &cmd_struct, &reply)) {
591                 if_printf(&sc->arpcom.ac_if,
592                           "failed to allocate RX descriptor\n");
593                 return(EIO);
594         }
595
596         for (desc = 0; desc < AN_MAX_RX_DESC; desc++) {
597                 bzero(&an_rx_desc, sizeof(an_rx_desc));
598                 an_rx_desc.an_valid = 1;
599                 an_rx_desc.an_len = AN_RX_BUFFER_SIZE;
600                 an_rx_desc.an_done = 0;
601                 an_rx_desc.an_phys = sc->an_rx_buffer[desc].an_dma_paddr;
602
603                 for (i = 0; i < sizeof(an_rx_desc) / 4; i++)
604                         CSR_MEM_AUX_WRITE_4(sc, AN_RX_DESC_OFFSET 
605                                             + (desc * sizeof(an_rx_desc))
606                                             + (i * 4),
607                                             ((u_int32_t*)&an_rx_desc)[i]);
608         }
609
610         /*
611          * Allocate TX descriptor
612          */
613
614         bzero(&reply,sizeof(reply));
615         cmd_struct.an_cmd   = AN_CMD_ALLOC_DESC;
616         cmd_struct.an_parm0 = AN_DESCRIPTOR_TX;
617         cmd_struct.an_parm1 = AN_TX_DESC_OFFSET;
618         cmd_struct.an_parm2 = AN_MAX_TX_DESC;
619         if (an_cmd_struct(sc, &cmd_struct, &reply)) {
620                 if_printf(&sc->arpcom.ac_if,
621                           "failed to allocate TX descriptor\n");
622                 return(EIO);
623         }
624
625         for (desc = 0; desc < AN_MAX_TX_DESC; desc++) {
626                 bzero(&an_tx_desc, sizeof(an_tx_desc));
627                 an_tx_desc.an_offset = 0;
628                 an_tx_desc.an_eoc = 0;
629                 an_tx_desc.an_valid = 0;
630                 an_tx_desc.an_len = 0;
631                 an_tx_desc.an_phys = sc->an_tx_buffer[desc].an_dma_paddr;
632
633                 for (i = 0; i < sizeof(an_tx_desc) / 4; i++)
634                         CSR_MEM_AUX_WRITE_4(sc, AN_TX_DESC_OFFSET
635                                             + (desc * sizeof(an_tx_desc))
636                                             + (i * 4),
637                                             ((u_int32_t*)&an_tx_desc)[i]);
638         }
639
640         /*
641          * Allocate RID descriptor
642          */
643
644         bzero(&reply,sizeof(reply));
645         cmd_struct.an_cmd   = AN_CMD_ALLOC_DESC;
646         cmd_struct.an_parm0 = AN_DESCRIPTOR_HOSTRW;
647         cmd_struct.an_parm1 = AN_HOST_DESC_OFFSET;
648         cmd_struct.an_parm2 = 1;
649         if (an_cmd_struct(sc, &cmd_struct, &reply)) {
650                 if_printf(&sc->arpcom.ac_if,
651                           "failed to allocate host descriptor\n");
652                 return(EIO);
653         }
654
655         bzero(&an_rid_desc, sizeof(an_rid_desc));
656         an_rid_desc.an_valid = 1;
657         an_rid_desc.an_len = AN_RID_BUFFER_SIZE;
658         an_rid_desc.an_rid = 0;
659         an_rid_desc.an_phys = sc->an_rid_buffer.an_dma_paddr;
660
661         for (i = 0; i < sizeof(an_rid_desc) / 4; i++)
662                 CSR_MEM_AUX_WRITE_4(sc, AN_HOST_DESC_OFFSET + i * 4, 
663                                     ((u_int32_t*)&an_rid_desc)[i]);
664
665         return(0);
666 }
667
668 int
669 an_attach(sc, dev, flags)
670         struct an_softc *sc;
671         device_t dev;
672         int flags;
673 {
674         struct ifnet            *ifp = &sc->arpcom.ac_if;
675         int                     error;
676
677         callout_init(&sc->an_stat_timer);
678         sc->an_associated = 0;
679         sc->an_monitor = 0;
680         sc->an_was_monitor = 0;
681         sc->an_flash_buffer = NULL;
682
683         ifp->if_softc = sc;
684         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
685
686         /* Reset the NIC. */
687         an_reset(sc);
688         if (sc->mpi350) {
689                 error = an_init_mpi350_desc(sc);
690                 if (error)
691                         return(error);
692         }
693
694         /* Load factory config */
695         if (an_cmd(sc, AN_CMD_READCFG, 0)) {
696                 device_printf(dev, "failed to load config data\n");
697                 return(EIO);
698         }
699
700         /* Read the current configuration */
701         sc->an_config.an_type = AN_RID_GENCONFIG;
702         sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
703         if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_config)) {
704                 device_printf(dev, "read record failed\n");
705                 return(EIO);
706         }
707
708         /* Read the card capabilities */
709         sc->an_caps.an_type = AN_RID_CAPABILITIES;
710         sc->an_caps.an_len = sizeof(struct an_ltv_caps);
711         if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_caps)) {
712                 device_printf(dev, "read record failed\n");
713                 return(EIO);
714         }
715
716         /* Read ssid list */
717         sc->an_ssidlist.an_type = AN_RID_SSIDLIST;
718         sc->an_ssidlist.an_len = sizeof(struct an_ltv_ssidlist);
719         if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_ssidlist)) {
720                 device_printf(dev, "read record failed\n");
721                 return(EIO);
722         }
723
724         /* Read AP list */
725         sc->an_aplist.an_type = AN_RID_APLIST;
726         sc->an_aplist.an_len = sizeof(struct an_ltv_aplist);
727         if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_aplist)) {
728                 device_printf(dev, "read record failed\n");
729                 return(EIO);
730         }
731
732 #ifdef ANCACHE
733         /* Read the RSSI <-> dBm map */
734         sc->an_have_rssimap = 0;
735         if (sc->an_caps.an_softcaps & 8) {
736                 sc->an_rssimap.an_type = AN_RID_RSSI_MAP;
737                 sc->an_rssimap.an_len = sizeof(struct an_ltv_rssi_map);
738                 if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_rssimap)) {
739                         device_printf(dev, "unable to get RSSI <-> dBM map\n");
740                 } else {
741                         device_printf(dev, "got RSSI <-> dBM map\n");
742                         sc->an_have_rssimap = 1;
743                 }
744         } else {
745                 device_printf(dev, "no RSSI <-> dBM map\n");
746         }
747 #endif
748
749         ifp->if_mtu = ETHERMTU;
750         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
751         ifp->if_ioctl = an_ioctl;
752         ifp->if_start = an_start;
753         ifp->if_watchdog = an_watchdog;
754         ifp->if_init = an_init;
755         ifp->if_baudrate = 10000000;
756         ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
757         ifq_set_ready(&ifp->if_snd);
758
759         bzero(sc->an_config.an_nodename, sizeof(sc->an_config.an_nodename));
760         bcopy(AN_DEFAULT_NODENAME, sc->an_config.an_nodename,
761             sizeof(AN_DEFAULT_NODENAME) - 1);
762
763         bzero(sc->an_ssidlist.an_ssid1, sizeof(sc->an_ssidlist.an_ssid1));
764         bcopy(AN_DEFAULT_NETNAME, sc->an_ssidlist.an_ssid1,
765             sizeof(AN_DEFAULT_NETNAME) - 1);
766         sc->an_ssidlist.an_ssid1_len = strlen(AN_DEFAULT_NETNAME);
767
768         sc->an_config.an_opmode =
769             AN_OPMODE_INFRASTRUCTURE_STATION;
770
771         sc->an_tx_rate = 0;
772         bzero((char *)&sc->an_stats, sizeof(sc->an_stats));
773
774         ifmedia_init(&sc->an_ifmedia, 0, an_media_change, an_media_status);
775 #define ADD(m, c)       ifmedia_add(&sc->an_ifmedia, (m), (c), NULL)
776         ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1,
777             IFM_IEEE80211_ADHOC, 0), 0);
778         ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1, 0, 0), 0);
779         ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2,
780             IFM_IEEE80211_ADHOC, 0), 0);
781         ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2, 0, 0), 0);
782         if (sc->an_caps.an_rates[2] == AN_RATE_5_5MBPS) {
783                 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5,
784                     IFM_IEEE80211_ADHOC, 0), 0);
785                 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5, 0, 0), 0);
786         }
787         if (sc->an_caps.an_rates[3] == AN_RATE_11MBPS) {
788                 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11,
789                     IFM_IEEE80211_ADHOC, 0), 0);
790                 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11, 0, 0), 0);
791         }
792         ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO,
793             IFM_IEEE80211_ADHOC, 0), 0);
794         ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0), 0);
795 #undef  ADD
796         ifmedia_set(&sc->an_ifmedia, IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO,
797             0, 0));
798
799         /*
800          * Call MI attach routine.
801          */
802         ether_ifattach(ifp, sc->an_caps.an_oemaddr);
803
804         return(0);
805 }
806
807 int
808 an_detach(device_t dev)
809 {
810         struct an_softc *sc = device_get_softc(dev);
811         struct ifnet *ifp = &sc->arpcom.ac_if;
812
813         crit_enter();
814         an_stop(sc);
815         ifmedia_removeall(&sc->an_ifmedia);
816         ether_ifdetach(ifp);
817         bus_teardown_intr(dev, sc->irq_res, sc->irq_handle);
818         crit_exit();
819
820         an_release_resources(dev);
821         return 0;
822 }
823
824 static void
825 an_rxeof(sc)
826         struct an_softc *sc;
827 {
828         struct ifnet   *ifp;
829         struct ether_header *eh;
830         struct ieee80211_frame *ih;
831         struct an_rxframe rx_frame;
832         struct an_rxframe_802_3 rx_frame_802_3;
833         struct mbuf    *m;
834         int             len, id, error = 0, i, count = 0;
835         int             ieee80211_header_len;
836         u_char          *bpf_buf;
837         u_short         fc1;
838         struct an_card_rx_desc an_rx_desc;
839         u_int8_t        *buf;
840
841         ifp = &sc->arpcom.ac_if;
842
843         if (!sc->mpi350) {
844                 id = CSR_READ_2(sc, AN_RX_FID);
845
846                 if (sc->an_monitor && (ifp->if_flags & IFF_PROMISC)) {
847                         /* read raw 802.11 packet */
848                         bpf_buf = sc->buf_802_11;
849
850                         /* read header */
851                         if (an_read_data(sc, id, 0x0, (caddr_t)&rx_frame,
852                                          sizeof(rx_frame))) {
853                                 ifp->if_ierrors++;
854                                 return;
855                         }
856
857                         /*
858                          * skip beacon by default since this increases the
859                          * system load a lot
860                          */
861
862                         if (!(sc->an_monitor & AN_MONITOR_INCLUDE_BEACON) &&
863                             (rx_frame.an_frame_ctl & 
864                              IEEE80211_FC0_SUBTYPE_BEACON)) {
865                                 return;
866                         }
867
868                         if (sc->an_monitor & AN_MONITOR_AIRONET_HEADER) {
869                                 len = rx_frame.an_rx_payload_len
870                                         + sizeof(rx_frame);
871                                 /* Check for insane frame length */
872                                 if (len > sizeof(sc->buf_802_11)) {
873                                         if_printf(ifp,
874                                                   "oversized packet received "
875                                                   "(%d, %d)\n", len, MCLBYTES);
876                                         ifp->if_ierrors++;
877                                         return;
878                                 }
879
880                                 bcopy((char *)&rx_frame,
881                                       bpf_buf, sizeof(rx_frame));
882
883                                 error = an_read_data(sc, id, sizeof(rx_frame),
884                                             (caddr_t)bpf_buf+sizeof(rx_frame),
885                                             rx_frame.an_rx_payload_len);
886                         } else {
887                                 fc1=rx_frame.an_frame_ctl >> 8;
888                                 ieee80211_header_len = 
889                                         sizeof(struct ieee80211_frame);
890                                 if ((fc1 & IEEE80211_FC1_DIR_TODS) &&
891                                     (fc1 & IEEE80211_FC1_DIR_FROMDS)) {
892                                         ieee80211_header_len += ETHER_ADDR_LEN;
893                                 }
894
895                                 len = rx_frame.an_rx_payload_len
896                                         + ieee80211_header_len;
897                                 /* Check for insane frame length */
898                                 if (len > sizeof(sc->buf_802_11)) {
899                                         if_printf(ifp,
900                                                   "oversized packet received "
901                                                   "(%d, %d)\n", len, MCLBYTES);
902                                         ifp->if_ierrors++;
903                                         return;
904                                 }
905
906                                 ih = (struct ieee80211_frame *)bpf_buf;
907
908                                 bcopy((char *)&rx_frame.an_frame_ctl,
909                                       (char *)ih, ieee80211_header_len);
910
911                                 error = an_read_data(sc, id, sizeof(rx_frame) +
912                                             rx_frame.an_gaplen,
913                                             (caddr_t)ih +ieee80211_header_len,
914                                             rx_frame.an_rx_payload_len);
915                         }
916                         BPF_TAP(ifp, bpf_buf, len);
917                 } else {
918                         m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
919                         if (m == NULL) {
920                                 ifp->if_ierrors++;
921                                 return;
922                         }
923                         m->m_pkthdr.rcvif = ifp;
924                         /* Read Ethernet encapsulated packet */
925
926 #ifdef ANCACHE
927                         /* Read NIC frame header */
928                         if (an_read_data(sc, id, 0, (caddr_t)&rx_frame, 
929                                          sizeof(rx_frame))) {
930                                 ifp->if_ierrors++;
931                                 return;
932                         }
933 #endif
934                         /* Read in the 802_3 frame header */
935                         if (an_read_data(sc, id, 0x34, 
936                                          (caddr_t)&rx_frame_802_3,
937                                          sizeof(rx_frame_802_3))) {
938                                 ifp->if_ierrors++;
939                                 return;
940                         }
941                         if (rx_frame_802_3.an_rx_802_3_status != 0) {
942                                 ifp->if_ierrors++;
943                                 return;
944                         }
945                         /* Check for insane frame length */
946                         len = rx_frame_802_3.an_rx_802_3_payload_len;
947                         if (len > sizeof(sc->buf_802_11)) {
948                                 if_printf(ifp,
949                                     "oversized packet received (%d, %d)\n",
950                                     len, MCLBYTES);
951                                 ifp->if_ierrors++;
952                                 return;
953                         }
954                         m->m_pkthdr.len = m->m_len =
955                                 rx_frame_802_3.an_rx_802_3_payload_len + 12;
956
957                         eh = mtod(m, struct ether_header *);
958
959                         bcopy((char *)&rx_frame_802_3.an_rx_dst_addr,
960                               (char *)&eh->ether_dhost, ETHER_ADDR_LEN);
961                         bcopy((char *)&rx_frame_802_3.an_rx_src_addr,
962                               (char *)&eh->ether_shost, ETHER_ADDR_LEN);
963
964                         /* in mbuf header type is just before payload */
965                         error = an_read_data(sc, id, 0x44, 
966                                     (caddr_t)&(eh->ether_type),
967                                     rx_frame_802_3.an_rx_802_3_payload_len);
968
969                         if (error) {
970                                 m_freem(m);
971                                 ifp->if_ierrors++;
972                                 return;
973                         }
974                         ifp->if_ipackets++;
975
976 #ifdef ANCACHE
977                         an_cache_store(sc, m,
978                                 rx_frame.an_rx_signal_strength,
979                                 rx_frame.an_rsvd0);
980 #endif
981                         (*ifp->if_input)(ifp, m);
982                 }
983
984         } else { /* MPI-350 */
985                 for (count = 0; count < AN_MAX_RX_DESC; count++){
986                         for (i = 0; i < sizeof(an_rx_desc) / 4; i++)
987                                 ((u_int32_t*)&an_rx_desc)[i] 
988                                         = CSR_MEM_AUX_READ_4(sc, 
989                                                 AN_RX_DESC_OFFSET 
990                                                 + (count * sizeof(an_rx_desc))
991                                                 + (i * 4));
992
993                         if (an_rx_desc.an_done && !an_rx_desc.an_valid) {
994                                 buf = sc->an_rx_buffer[count].an_dma_vaddr;
995
996                                 m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
997                                 if (m == NULL) {
998                                         ifp->if_ierrors++;
999                                         return;
1000                                 }
1001                                 m->m_pkthdr.rcvif = ifp;
1002                                 /* Read Ethernet encapsulated packet */
1003
1004                                 /* 
1005                                  * No ANCACHE support since we just get back
1006                                  * an Ethernet packet no 802.11 info
1007                                  */
1008 #if 0
1009 #ifdef ANCACHE
1010                                 /* Read NIC frame header */
1011                                 bcopy(buf, (caddr_t)&rx_frame, 
1012                                       sizeof(rx_frame));
1013 #endif
1014 #endif
1015                                 /* Check for insane frame length */
1016                                 len = an_rx_desc.an_len + 12;
1017                                 if (len > MCLBYTES) {
1018                                         if_printf(ifp,
1019                                                   "oversized packet received "
1020                                                   "(%d, %d)\n", len, MCLBYTES);
1021                                         ifp->if_ierrors++;
1022                                         return;
1023                                 }
1024
1025                                 m->m_pkthdr.len = m->m_len =
1026                                         an_rx_desc.an_len + 12;
1027                                 
1028                                 eh = mtod(m, struct ether_header *);
1029                                 
1030                                 bcopy(buf, (char *)eh,
1031                                       m->m_pkthdr.len);
1032                                 
1033                                 ifp->if_ipackets++;
1034                                 
1035 #if 0
1036 #ifdef ANCACHE
1037                                 an_cache_store(sc, m, 
1038                                         rx_frame.an_rx_signal_strength,
1039                                         rx_frame.an_rsvd0);
1040 #endif
1041 #endif
1042                                 (*ifp->if_input)(ifp, m);
1043                         
1044                                 an_rx_desc.an_valid = 1;
1045                                 an_rx_desc.an_len = AN_RX_BUFFER_SIZE;
1046                                 an_rx_desc.an_done = 0;
1047                                 an_rx_desc.an_phys = 
1048                                         sc->an_rx_buffer[count].an_dma_paddr;
1049                         
1050                                 for (i = 0; i < sizeof(an_rx_desc) / 4; i++)
1051                                         CSR_MEM_AUX_WRITE_4(sc, 
1052                                                 AN_RX_DESC_OFFSET 
1053                                                 + (count * sizeof(an_rx_desc))
1054                                                 + (i * 4),
1055                                                 ((u_int32_t*)&an_rx_desc)[i]);
1056                                 
1057                         } else {
1058                                 if_printf(ifp, "Didn't get valid RX packet "
1059                                           "%x %x %d\n",
1060                                           an_rx_desc.an_done,
1061                                           an_rx_desc.an_valid,
1062                                           an_rx_desc.an_len);
1063                         }
1064                 }
1065         }
1066 }
1067
1068 static void
1069 an_txeof(sc, status)
1070         struct an_softc         *sc;
1071         int                     status;
1072 {
1073         struct ifnet            *ifp;
1074         int                     id, i;
1075
1076         ifp = &sc->arpcom.ac_if;
1077
1078         ifp->if_timer = 0;
1079         ifp->if_flags &= ~IFF_OACTIVE;
1080
1081         if (!sc->mpi350) {
1082                 id = CSR_READ_2(sc, AN_TX_CMP_FID);
1083
1084                 if (status & AN_EV_TX_EXC) {
1085                         ifp->if_oerrors++;
1086                 } else
1087                         ifp->if_opackets++;
1088
1089                 for (i = 0; i < AN_TX_RING_CNT; i++) {
1090                         if (id == sc->an_rdata.an_tx_ring[i]) {
1091                                 sc->an_rdata.an_tx_ring[i] = 0;
1092                                 break;
1093                         }
1094                 }
1095
1096                 AN_INC(sc->an_rdata.an_tx_cons, AN_TX_RING_CNT);
1097         } else { /* MPI 350 */
1098                 AN_INC(sc->an_rdata.an_tx_cons, AN_MAX_TX_DESC);
1099                 if (sc->an_rdata.an_tx_prod ==
1100                     sc->an_rdata.an_tx_cons)
1101                         sc->an_rdata.an_tx_empty = 1;
1102         }
1103
1104         return;
1105 }
1106
1107 /*
1108  * We abuse the stats updater to check the current NIC status. This
1109  * is important because we don't want to allow transmissions until
1110  * the NIC has synchronized to the current cell (either as the master
1111  * in an ad-hoc group, or as a station connected to an access point).
1112  */
1113 static void
1114 an_stats_update(xsc)
1115         void                    *xsc;
1116 {
1117         struct an_softc         *sc;
1118         struct ifnet            *ifp;
1119
1120         sc = xsc;
1121         ifp = &sc->arpcom.ac_if;
1122
1123         crit_enter();
1124
1125         sc->an_status.an_type = AN_RID_STATUS;
1126         sc->an_status.an_len = sizeof(struct an_ltv_status);
1127         an_read_record(sc, (struct an_ltv_gen *)&sc->an_status);
1128
1129         if (sc->an_status.an_opmode & AN_STATUS_OPMODE_IN_SYNC)
1130                 sc->an_associated = 1;
1131         else
1132                 sc->an_associated = 0;
1133
1134         /* Don't do this while we're not transmitting */
1135         if ((ifp->if_flags & IFF_OACTIVE) == 0) {
1136                 sc->an_stats.an_len = sizeof(struct an_ltv_stats);
1137                 sc->an_stats.an_type = AN_RID_32BITS_CUM;
1138                 an_read_record(sc, (struct an_ltv_gen *)&sc->an_stats.an_len);
1139         }
1140
1141         callout_reset(&sc->an_stat_timer, hz, an_stats_update, sc);
1142
1143         crit_exit();
1144 }
1145
1146 void
1147 an_intr(xsc)
1148         void                    *xsc;
1149 {
1150         struct an_softc         *sc;
1151         struct ifnet            *ifp;
1152         u_int16_t               status;
1153
1154         sc = (struct an_softc*)xsc;
1155
1156         ifp = &sc->arpcom.ac_if;
1157
1158         /* Disable interrupts. */
1159         CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), 0);
1160
1161         status = CSR_READ_2(sc, AN_EVENT_STAT(sc->mpi350));
1162         CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), ~AN_INTRS);
1163
1164         if (status & AN_EV_AWAKE) {
1165                 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_AWAKE);
1166         }
1167
1168         if (status & AN_EV_LINKSTAT) {
1169                 if (CSR_READ_2(sc, AN_LINKSTAT(sc->mpi350)) 
1170                     == AN_LINKSTAT_ASSOCIATED)
1171                         sc->an_associated = 1;
1172                 else
1173                         sc->an_associated = 0;
1174                 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_LINKSTAT);
1175         }
1176
1177         if (status & AN_EV_RX) {
1178                 an_rxeof(sc);
1179                 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_RX);
1180         }
1181
1182         if (status & AN_EV_TX) {
1183                 an_txeof(sc, status);
1184                 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_TX);
1185         }
1186
1187         if (status & AN_EV_TX_EXC) {
1188                 an_txeof(sc, status);
1189                 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_TX_EXC);
1190         }
1191
1192         if (status & AN_EV_ALLOC)
1193                 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_ALLOC);
1194
1195         /* Re-enable interrupts. */
1196         CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), AN_INTRS);
1197
1198         if ((ifp->if_flags & IFF_UP) && !ifq_is_empty(&ifp->if_snd))
1199                 an_start(ifp);
1200
1201         return;
1202 }
1203
1204 static int
1205 an_cmd_struct(sc, cmd, reply)
1206         struct an_softc         *sc;
1207         struct an_command       *cmd;
1208         struct an_reply         *reply;
1209 {
1210         int                     i;
1211
1212         for (i = 0; i != AN_TIMEOUT; i++) {
1213                 if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) & AN_CMD_BUSY) {
1214                         DELAY(1000);
1215                 } else
1216                         break;
1217         }
1218         if( i == AN_TIMEOUT) {
1219                 printf("BUSY\n");
1220                 return(ETIMEDOUT);
1221         }
1222
1223         CSR_WRITE_2(sc, AN_PARAM0(sc->mpi350), cmd->an_parm0);
1224         CSR_WRITE_2(sc, AN_PARAM1(sc->mpi350), cmd->an_parm1);
1225         CSR_WRITE_2(sc, AN_PARAM2(sc->mpi350), cmd->an_parm2);
1226         CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), cmd->an_cmd);
1227
1228         for (i = 0; i < AN_TIMEOUT; i++) {
1229                 if (CSR_READ_2(sc, AN_EVENT_STAT(sc->mpi350)) & AN_EV_CMD)
1230                         break;
1231                 DELAY(1000);
1232         }
1233
1234         reply->an_resp0 = CSR_READ_2(sc, AN_RESP0(sc->mpi350));
1235         reply->an_resp1 = CSR_READ_2(sc, AN_RESP1(sc->mpi350));
1236         reply->an_resp2 = CSR_READ_2(sc, AN_RESP2(sc->mpi350));
1237         reply->an_status = CSR_READ_2(sc, AN_STATUS(sc->mpi350));
1238
1239         if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) & AN_CMD_BUSY)
1240                 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_CLR_STUCK_BUSY);
1241
1242         /* Ack the command */
1243         CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_CMD);
1244
1245         if (i == AN_TIMEOUT)
1246                 return(ETIMEDOUT);
1247
1248         return(0);
1249 }
1250
1251 static int
1252 an_cmd(sc, cmd, val)
1253         struct an_softc         *sc;
1254         int                     cmd;
1255         int                     val;
1256 {
1257         int                     i, s = 0;
1258
1259         CSR_WRITE_2(sc, AN_PARAM0(sc->mpi350), val);
1260         CSR_WRITE_2(sc, AN_PARAM1(sc->mpi350), 0);
1261         CSR_WRITE_2(sc, AN_PARAM2(sc->mpi350), 0);
1262         CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), cmd);
1263
1264         for (i = 0; i < AN_TIMEOUT; i++) {
1265                 if (CSR_READ_2(sc, AN_EVENT_STAT(sc->mpi350)) & AN_EV_CMD)
1266                         break;
1267                 else {
1268                         if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) == cmd)
1269                                 CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), cmd);
1270                 }
1271         }
1272
1273         for (i = 0; i < AN_TIMEOUT; i++) {
1274                 CSR_READ_2(sc, AN_RESP0(sc->mpi350));
1275                 CSR_READ_2(sc, AN_RESP1(sc->mpi350));
1276                 CSR_READ_2(sc, AN_RESP2(sc->mpi350));
1277                 s = CSR_READ_2(sc, AN_STATUS(sc->mpi350));
1278                 if ((s & AN_STAT_CMD_CODE) == (cmd & AN_STAT_CMD_CODE))
1279                         break;
1280         }
1281
1282         /* Ack the command */
1283         CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_CMD);
1284
1285         if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) & AN_CMD_BUSY)
1286                 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_CLR_STUCK_BUSY);
1287
1288         if (i == AN_TIMEOUT)
1289                 return(ETIMEDOUT);
1290
1291         return(0);
1292 }
1293
1294 /*
1295  * This reset sequence may look a little strange, but this is the
1296  * most reliable method I've found to really kick the NIC in the
1297  * head and force it to reboot correctly.
1298  */
1299 static void
1300 an_reset(sc)
1301         struct an_softc         *sc;
1302 {
1303         an_cmd(sc, AN_CMD_ENABLE, 0);
1304         an_cmd(sc, AN_CMD_FW_RESTART, 0);
1305         an_cmd(sc, AN_CMD_NOOP2, 0);
1306
1307         if (an_cmd(sc, AN_CMD_FORCE_SYNCLOSS, 0) == ETIMEDOUT)
1308                 if_printf(&sc->arpcom.ac_if, "reset failed\n");
1309
1310         an_cmd(sc, AN_CMD_DISABLE, 0);
1311
1312         return;
1313 }
1314
1315 /*
1316  * Read an LTV record from the NIC.
1317  */
1318 static int
1319 an_read_record(sc, ltv)
1320         struct an_softc         *sc;
1321         struct an_ltv_gen       *ltv;
1322 {
1323         struct an_ltv_gen       *an_ltv;
1324         struct an_card_rid_desc an_rid_desc;
1325         struct an_command       cmd;
1326         struct an_reply         reply;
1327         u_int16_t               *ptr;
1328         u_int8_t                *ptr2;
1329         int                     i, len;
1330
1331         if (ltv->an_len < 4 || ltv->an_type == 0)
1332                 return(EINVAL);
1333
1334         if (!sc->mpi350){
1335                 /* Tell the NIC to enter record read mode. */
1336                 if (an_cmd(sc, AN_CMD_ACCESS|AN_ACCESS_READ, ltv->an_type)) {
1337                         if_printf(&sc->arpcom.ac_if, "RID access failed\n");
1338                         return(EIO);
1339                 }
1340
1341                 /* Seek to the record. */
1342                 if (an_seek(sc, ltv->an_type, 0, AN_BAP1)) {
1343                         if_printf(&sc->arpcom.ac_if, "seek to record failed\n");
1344                         return(EIO);
1345                 }
1346
1347                 /*
1348                  * Read the length and record type and make sure they
1349                  * match what we expect (this verifies that we have enough
1350                  * room to hold all of the returned data).
1351                  * Length includes type but not length.
1352                  */
1353                 len = CSR_READ_2(sc, AN_DATA1);
1354                 if (len > (ltv->an_len - 2)) {
1355                         if_printf(&sc->arpcom.ac_if,
1356                                   "record length mismatch -- expected %d, "
1357                                   "got %d for Rid %x\n",
1358                                   ltv->an_len - 2, len, ltv->an_type);
1359                         len = ltv->an_len - 2;
1360                 } else {
1361                         ltv->an_len = len + 2;
1362                 }
1363
1364                 /* Now read the data. */
1365                 len -= 2;       /* skip the type */
1366                 ptr = &ltv->an_val;
1367                 for (i = len; i > 1; i -= 2)
1368                         *ptr++ = CSR_READ_2(sc, AN_DATA1);
1369                 if (i) {
1370                         ptr2 = (u_int8_t *)ptr;
1371                         *ptr2 = CSR_READ_1(sc, AN_DATA1);
1372                 }
1373         } else { /* MPI-350 */
1374                 an_rid_desc.an_valid = 1;
1375                 an_rid_desc.an_len = AN_RID_BUFFER_SIZE;
1376                 an_rid_desc.an_rid = 0;
1377                 an_rid_desc.an_phys = sc->an_rid_buffer.an_dma_paddr;
1378                 bzero(sc->an_rid_buffer.an_dma_vaddr, AN_RID_BUFFER_SIZE);
1379
1380                 bzero(&cmd, sizeof(cmd));
1381                 bzero(&reply, sizeof(reply));
1382                 cmd.an_cmd = AN_CMD_ACCESS|AN_ACCESS_READ;
1383                 cmd.an_parm0 = ltv->an_type;
1384
1385                 for (i = 0; i < sizeof(an_rid_desc) / 4; i++)
1386                         CSR_MEM_AUX_WRITE_4(sc, AN_HOST_DESC_OFFSET + i * 4, 
1387                                             ((u_int32_t*)&an_rid_desc)[i]);
1388
1389                 if (an_cmd_struct(sc, &cmd, &reply)
1390                     || reply.an_status & AN_CMD_QUAL_MASK) {
1391                         if_printf(&sc->arpcom.ac_if,
1392                                   "failed to read RID %x %x %x %x %x, %d\n", 
1393                                   ltv->an_type,
1394                                   reply.an_status,
1395                                   reply.an_resp0,
1396                                   reply.an_resp1,
1397                                   reply.an_resp2,
1398                                   i);
1399                         return(EIO);
1400                 }
1401
1402                 an_ltv = (struct an_ltv_gen *)sc->an_rid_buffer.an_dma_vaddr;
1403                 if (an_ltv->an_len + 2 < an_rid_desc.an_len) {
1404                         an_rid_desc.an_len = an_ltv->an_len;
1405                 }
1406
1407                 if (an_rid_desc.an_len > 2)
1408                         bcopy(&an_ltv->an_type,
1409                               &ltv->an_val, 
1410                               an_rid_desc.an_len - 2);
1411                 ltv->an_len = an_rid_desc.an_len + 2;
1412         }
1413
1414         if (an_dump)
1415                 an_dump_record(sc, ltv, "Read");
1416
1417         return(0);
1418 }
1419
1420 /*
1421  * Same as read, except we inject data instead of reading it.
1422  */
1423 static int
1424 an_write_record(sc, ltv)
1425         struct an_softc         *sc;
1426         struct an_ltv_gen       *ltv;
1427 {
1428         struct an_card_rid_desc an_rid_desc;
1429         struct an_command       cmd;
1430         struct an_reply         reply;
1431         char                    *buf;
1432         u_int16_t               *ptr;
1433         u_int8_t                *ptr2;
1434         int                     i, len;
1435
1436         if (an_dump)
1437                 an_dump_record(sc, ltv, "Write");
1438
1439         if (!sc->mpi350){
1440                 if (an_cmd(sc, AN_CMD_ACCESS|AN_ACCESS_READ, ltv->an_type))
1441                         return(EIO);
1442
1443                 if (an_seek(sc, ltv->an_type, 0, AN_BAP1))
1444                         return(EIO);
1445
1446                 /*
1447                  * Length includes type but not length.
1448                  */
1449                 len = ltv->an_len - 2;
1450                 CSR_WRITE_2(sc, AN_DATA1, len);
1451
1452                 len -= 2;       /* skip the type */
1453                 ptr = &ltv->an_val;
1454                 for (i = len; i > 1; i -= 2)
1455                         CSR_WRITE_2(sc, AN_DATA1, *ptr++);
1456                 if (i) {
1457                         ptr2 = (u_int8_t *)ptr;
1458                         CSR_WRITE_1(sc, AN_DATA0, *ptr2);
1459                 }
1460
1461                 if (an_cmd(sc, AN_CMD_ACCESS|AN_ACCESS_WRITE, ltv->an_type))
1462                         return(EIO);
1463         } else { 
1464                 /* MPI-350 */
1465
1466                 for (i = 0; i != AN_TIMEOUT; i++) {
1467                         if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) 
1468                             & AN_CMD_BUSY) {
1469                                 DELAY(10);
1470                         } else
1471                                 break;
1472                 }
1473                 if (i == AN_TIMEOUT) {
1474                         printf("BUSY\n");
1475                 }
1476
1477                 an_rid_desc.an_valid = 1;
1478                 an_rid_desc.an_len = ltv->an_len - 2;
1479                 an_rid_desc.an_rid = ltv->an_type;
1480                 an_rid_desc.an_phys = sc->an_rid_buffer.an_dma_paddr;
1481
1482                 bcopy(&ltv->an_type, sc->an_rid_buffer.an_dma_vaddr,
1483                       an_rid_desc.an_len);
1484
1485                 bzero(&cmd,sizeof(cmd));
1486                 bzero(&reply,sizeof(reply));
1487                 cmd.an_cmd = AN_CMD_ACCESS|AN_ACCESS_WRITE;
1488                 cmd.an_parm0 = ltv->an_type;
1489
1490                 for (i = 0; i < sizeof(an_rid_desc) / 4; i++)
1491                         CSR_MEM_AUX_WRITE_4(sc, AN_HOST_DESC_OFFSET + i * 4, 
1492                                             ((u_int32_t*)&an_rid_desc)[i]);
1493
1494                 if ((i = an_cmd_struct(sc, &cmd, &reply))) {
1495                         if_printf(&sc->arpcom.ac_if,
1496                             "failed to write RID 1 %x %x %x %x %x, %d\n", 
1497                             ltv->an_type, 
1498                             reply.an_status,
1499                             reply.an_resp0,
1500                             reply.an_resp1,
1501                             reply.an_resp2,
1502                             i);
1503                         return(EIO);
1504                 }
1505
1506                 ptr = (u_int16_t *)buf;
1507
1508                 if (reply.an_status & AN_CMD_QUAL_MASK) {
1509                         if_printf(&sc->arpcom.ac_if,
1510                             "failed to write RID 2 %x %x %x %x %x, %d\n", 
1511                             ltv->an_type, 
1512                             reply.an_status,
1513                             reply.an_resp0,
1514                             reply.an_resp1,
1515                             reply.an_resp2,
1516                             i);
1517                         return(EIO);
1518                 }
1519         }
1520
1521         return(0);
1522 }
1523
1524 static void
1525 an_dump_record(sc, ltv, string)
1526         struct an_softc         *sc;
1527         struct an_ltv_gen       *ltv;
1528         char                    *string;
1529 {
1530         u_int8_t                *ptr2;
1531         int                     len;
1532         int                     i;
1533         int                     count = 0;
1534         char                    buf[17], temp;
1535
1536         len = ltv->an_len - 4;
1537         if_printf(&sc->arpcom.ac_if, "RID %4x, Length %4d, Mode %s\n",
1538                   ltv->an_type, ltv->an_len - 4, string);
1539
1540         if (an_dump == 1 || (an_dump == ltv->an_type)) {
1541                 if_printf(&sc->arpcom.ac_if, "\t");
1542                 bzero(buf,sizeof(buf));
1543
1544                 ptr2 = (u_int8_t *)&ltv->an_val;
1545                 for (i = len; i > 0; i--) {
1546                         printf("%02x ", *ptr2);
1547
1548                         temp = *ptr2++;
1549                         if (temp >= ' ' && temp <= '~')
1550                                 buf[count] = temp;
1551                         else if (temp >= 'A' && temp <= 'Z')
1552                                 buf[count] = temp;
1553                         else
1554                                 buf[count] = '.';
1555                         if (++count == 16) {
1556                                 count = 0;
1557                                 printf("%s\n",buf);
1558                                 if_printf(&sc->arpcom.ac_if, "\t");
1559                                 bzero(buf,sizeof(buf));
1560                         }
1561                 }
1562                 for (; count != 16; count++) {
1563                         printf("   ");
1564                 }
1565                 printf(" %s\n",buf);
1566         }
1567 }
1568
1569 static int
1570 an_seek(sc, id, off, chan)
1571         struct an_softc         *sc;
1572         int                     id, off, chan;
1573 {
1574         int                     i;
1575         int                     selreg, offreg;
1576
1577         switch (chan) {
1578         case AN_BAP0:
1579                 selreg = AN_SEL0;
1580                 offreg = AN_OFF0;
1581                 break;
1582         case AN_BAP1:
1583                 selreg = AN_SEL1;
1584                 offreg = AN_OFF1;
1585                 break;
1586         default:
1587                 if_printf(&sc->arpcom.ac_if, "invalid data path: %x\n", chan);
1588                 return(EIO);
1589         }
1590
1591         CSR_WRITE_2(sc, selreg, id);
1592         CSR_WRITE_2(sc, offreg, off);
1593
1594         for (i = 0; i < AN_TIMEOUT; i++) {
1595                 if (!(CSR_READ_2(sc, offreg) & (AN_OFF_BUSY|AN_OFF_ERR)))
1596                         break;
1597         }
1598
1599         if (i == AN_TIMEOUT)
1600                 return(ETIMEDOUT);
1601
1602         return(0);
1603 }
1604
1605 static int
1606 an_read_data(sc, id, off, buf, len)
1607         struct an_softc         *sc;
1608         int                     id, off;
1609         caddr_t                 buf;
1610         int                     len;
1611 {
1612         int                     i;
1613         u_int16_t               *ptr;
1614         u_int8_t                *ptr2;
1615
1616         if (off != -1) {
1617                 if (an_seek(sc, id, off, AN_BAP1))
1618                         return(EIO);
1619         }
1620
1621         ptr = (u_int16_t *)buf;
1622         for (i = len; i > 1; i -= 2)
1623                 *ptr++ = CSR_READ_2(sc, AN_DATA1);
1624         if (i) {
1625                 ptr2 = (u_int8_t *)ptr;
1626                 *ptr2 = CSR_READ_1(sc, AN_DATA1);
1627         }
1628
1629         return(0);
1630 }
1631
1632 static int
1633 an_write_data(sc, id, off, buf, len)
1634         struct an_softc         *sc;
1635         int                     id, off;
1636         caddr_t                 buf;
1637         int                     len;
1638 {
1639         int                     i;
1640         u_int16_t               *ptr;
1641         u_int8_t                *ptr2;
1642
1643         if (off != -1) {
1644                 if (an_seek(sc, id, off, AN_BAP0))
1645                         return(EIO);
1646         }
1647
1648         ptr = (u_int16_t *)buf;
1649         for (i = len; i > 1; i -= 2)
1650                 CSR_WRITE_2(sc, AN_DATA0, *ptr++);
1651         if (i) {
1652                 ptr2 = (u_int8_t *)ptr;
1653                 CSR_WRITE_1(sc, AN_DATA0, *ptr2);
1654         }
1655
1656         return(0);
1657 }
1658
1659 /*
1660  * Allocate a region of memory inside the NIC and zero
1661  * it out.
1662  */
1663 static int
1664 an_alloc_nicmem(sc, len, id)
1665         struct an_softc         *sc;
1666         int                     len;
1667         int                     *id;
1668 {
1669         int                     i;
1670
1671         if (an_cmd(sc, AN_CMD_ALLOC_MEM, len)) {
1672                 if_printf(&sc->arpcom.ac_if,
1673                           "failed to allocate %d bytes on NIC\n", len);
1674                 return(ENOMEM);
1675         }
1676
1677         for (i = 0; i < AN_TIMEOUT; i++) {
1678                 if (CSR_READ_2(sc, AN_EVENT_STAT(sc->mpi350)) & AN_EV_ALLOC)
1679                         break;
1680         }
1681
1682         if (i == AN_TIMEOUT)
1683                 return(ETIMEDOUT);
1684
1685         CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_ALLOC);
1686         *id = CSR_READ_2(sc, AN_ALLOC_FID);
1687
1688         if (an_seek(sc, *id, 0, AN_BAP0))
1689                 return(EIO);
1690
1691         for (i = 0; i < len / 2; i++)
1692                 CSR_WRITE_2(sc, AN_DATA0, 0);
1693
1694         return(0);
1695 }
1696
1697 static void
1698 an_setdef(sc, areq)
1699         struct an_softc         *sc;
1700         struct an_req           *areq;
1701 {
1702         struct ifnet            *ifp;
1703         struct an_ltv_genconfig *cfg;
1704         struct an_ltv_ssidlist  *ssid;
1705         struct an_ltv_aplist    *ap;
1706         struct an_ltv_gen       *sp;
1707
1708         ifp = &sc->arpcom.ac_if;
1709
1710         switch (areq->an_type) {
1711         case AN_RID_GENCONFIG:
1712                 cfg = (struct an_ltv_genconfig *)areq;
1713
1714                 bcopy((char *)&cfg->an_macaddr, (char *)&sc->arpcom.ac_enaddr,
1715                     ETHER_ADDR_LEN);
1716                 bcopy((char *)&cfg->an_macaddr, IF_LLADDR(ifp), ETHER_ADDR_LEN);
1717
1718                 bcopy((char *)cfg, (char *)&sc->an_config,
1719                         sizeof(struct an_ltv_genconfig));
1720                 break;
1721         case AN_RID_SSIDLIST:
1722                 ssid = (struct an_ltv_ssidlist *)areq;
1723                 bcopy((char *)ssid, (char *)&sc->an_ssidlist,
1724                         sizeof(struct an_ltv_ssidlist));
1725                 break;
1726         case AN_RID_APLIST:
1727                 ap = (struct an_ltv_aplist *)areq;
1728                 bcopy((char *)ap, (char *)&sc->an_aplist,
1729                         sizeof(struct an_ltv_aplist));
1730                 break;
1731         case AN_RID_TX_SPEED:
1732                 sp = (struct an_ltv_gen *)areq;
1733                 sc->an_tx_rate = sp->an_val;
1734
1735                 /* Read the current configuration */
1736                 sc->an_config.an_type = AN_RID_GENCONFIG;
1737                 sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
1738                 an_read_record(sc, (struct an_ltv_gen *)&sc->an_config);
1739                 cfg = &sc->an_config;
1740
1741                 /* clear other rates and set the only one we want */
1742                 bzero(cfg->an_rates, sizeof(cfg->an_rates));
1743                 cfg->an_rates[0] = sc->an_tx_rate;
1744
1745                 /* Save the new rate */
1746                 sc->an_config.an_type = AN_RID_GENCONFIG;
1747                 sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
1748                 break;
1749         case AN_RID_WEP_TEMP:
1750                 /* Cache the temp keys */
1751                 bcopy(areq, 
1752                     &sc->an_temp_keys[((struct an_ltv_key *)areq)->kindex], 
1753                     sizeof(struct an_ltv_key));
1754         case AN_RID_WEP_PERM:
1755         case AN_RID_LEAPUSERNAME:
1756         case AN_RID_LEAPPASSWORD:
1757                 /* Disable the MAC. */
1758                 an_cmd(sc, AN_CMD_DISABLE, 0);
1759
1760                 /* Write the key */
1761                 an_write_record(sc, (struct an_ltv_gen *)areq);
1762
1763                 /* Turn the MAC back on. */
1764                 an_cmd(sc, AN_CMD_ENABLE, 0);
1765
1766                 break;
1767         case AN_RID_MONITOR_MODE:
1768                 cfg = (struct an_ltv_genconfig *)areq;
1769                 bpfdetach(ifp);
1770                 if (ng_ether_detach_p != NULL)
1771                         (*ng_ether_detach_p) (ifp);
1772                 sc->an_monitor = cfg->an_len;
1773
1774                 if (sc->an_monitor & AN_MONITOR) {
1775                         if (sc->an_monitor & AN_MONITOR_AIRONET_HEADER) {
1776                                 bpfattach(ifp, DLT_AIRONET_HEADER,
1777                                         sizeof(struct ether_header));
1778                         } else {
1779                                 bpfattach(ifp, DLT_IEEE802_11,
1780                                         sizeof(struct ether_header));
1781                         }
1782                 } else {
1783                         bpfattach(ifp, DLT_EN10MB,
1784                                   sizeof(struct ether_header));
1785                         if (ng_ether_attach_p != NULL)
1786                                 (*ng_ether_attach_p) (ifp);
1787                 }
1788                 break;
1789         default:
1790                 if_printf(ifp, "unknown RID: %x\n", areq->an_type);
1791                 return;
1792                 break;
1793         }
1794
1795
1796         /* Reinitialize the card. */
1797         if (ifp->if_flags)
1798                 an_init(sc);
1799
1800         return;
1801 }
1802
1803 /*
1804  * Derived from Linux driver to enable promiscious mode.
1805  */
1806
1807 static void
1808 an_promisc(sc, promisc)
1809         struct an_softc         *sc;
1810         int                     promisc;
1811 {
1812         if (sc->an_was_monitor)
1813                 an_reset(sc);
1814         if (sc->mpi350)
1815                 an_init_mpi350_desc(sc);        
1816         if (sc->an_monitor || sc->an_was_monitor)
1817                 an_init(sc);
1818
1819         sc->an_was_monitor = sc->an_monitor;
1820         an_cmd(sc, AN_CMD_SET_MODE, promisc ? 0xffff : 0);
1821
1822         return;
1823 }
1824
1825 static int
1826 an_ioctl(ifp, command, data, cr)
1827         struct ifnet            *ifp;
1828         u_long                  command;
1829         caddr_t                 data;
1830         struct ucred            *cr;
1831 {
1832         int                     error = 0;
1833         int                     len;
1834         int                     i;
1835         struct an_softc         *sc;
1836         struct ifreq            *ifr;
1837         struct ieee80211req     *ireq;
1838         u_int8_t                tmpstr[IEEE80211_NWID_LEN*2];
1839         u_int8_t                *tmpptr;
1840         struct an_ltv_genconfig *config;
1841         struct an_ltv_key       *key;
1842         struct an_ltv_status    *status;
1843         struct an_ltv_ssidlist  *ssids;
1844         int                     mode;
1845         struct aironet_ioctl    l_ioctl;
1846
1847         sc = ifp->if_softc;
1848         ifr = (struct ifreq *)data;
1849         ireq = (struct ieee80211req *)data;
1850
1851         crit_enter();
1852
1853         config = (struct an_ltv_genconfig *)&sc->areq;
1854         key = (struct an_ltv_key *)&sc->areq;
1855         status = (struct an_ltv_status *)&sc->areq;
1856         ssids = (struct an_ltv_ssidlist *)&sc->areq;
1857
1858         switch (command) {
1859         case SIOCSIFFLAGS:
1860                 if (ifp->if_flags & IFF_UP) {
1861                         if (ifp->if_flags & IFF_RUNNING &&
1862                             ifp->if_flags & IFF_PROMISC &&
1863                             !(sc->an_if_flags & IFF_PROMISC)) {
1864                                 an_promisc(sc, 1);
1865                         } else if (ifp->if_flags & IFF_RUNNING &&
1866                             !(ifp->if_flags & IFF_PROMISC) &&
1867                             sc->an_if_flags & IFF_PROMISC) {
1868                                 an_promisc(sc, 0);
1869                         } else
1870                                 an_init(sc);
1871                 } else {
1872                         if (ifp->if_flags & IFF_RUNNING)
1873                                 an_stop(sc);
1874                 }
1875                 sc->an_if_flags = ifp->if_flags;
1876                 error = 0;
1877                 break;
1878         case SIOCSIFMEDIA:
1879         case SIOCGIFMEDIA:
1880                 error = ifmedia_ioctl(ifp, ifr, &sc->an_ifmedia, command);
1881                 break;
1882         case SIOCADDMULTI:
1883         case SIOCDELMULTI:
1884                 /* The Aironet has no multicast filter. */
1885                 error = 0;
1886                 break;
1887         case SIOCGAIRONET:
1888                 error = copyin(ifr->ifr_data, &sc->areq, sizeof(sc->areq));
1889                 if (error != 0)
1890                         break;
1891 #ifdef ANCACHE
1892                 if (sc->areq.an_type == AN_RID_ZERO_CACHE) {
1893                         error = suser_cred(cr, NULL_CRED_OKAY);
1894                         if (error)
1895                                 break;
1896                         sc->an_sigitems = sc->an_nextitem = 0;
1897                         break;
1898                 } else if (sc->areq.an_type == AN_RID_READ_CACHE) {
1899                         char *pt = (char *)&sc->areq.an_val;
1900                         bcopy((char *)&sc->an_sigitems, (char *)pt,
1901                             sizeof(int));
1902                         pt += sizeof(int);
1903                         sc->areq.an_len = sizeof(int) / 2;
1904                         bcopy((char *)&sc->an_sigcache, (char *)pt,
1905                             sizeof(struct an_sigcache) * sc->an_sigitems);
1906                         sc->areq.an_len += ((sizeof(struct an_sigcache) *
1907                             sc->an_sigitems) / 2) + 1;
1908                 } else
1909 #endif
1910                 if (an_read_record(sc, (struct an_ltv_gen *)&sc->areq)) {
1911                         error = EINVAL;
1912                         break;
1913                 }
1914                 error = copyout(&sc->areq, ifr->ifr_data, sizeof(sc->areq));
1915                 break;
1916         case SIOCSAIRONET:
1917                 if ((error = suser_cred(cr, NULL_CRED_OKAY)))
1918                         break;
1919                 error = copyin(ifr->ifr_data, &sc->areq, sizeof(sc->areq));
1920                 if (error != 0)
1921                         break;
1922                 an_setdef(sc, &sc->areq);
1923                 break;
1924         case SIOCGPRIVATE_0:              /* used by Cisco client utility */
1925                 if ((error = suser_cred(cr, NULL_CRED_OKAY)))
1926                         break;
1927                 copyin(ifr->ifr_data, &l_ioctl, sizeof(l_ioctl));
1928                 mode = l_ioctl.command;
1929
1930                 if (mode >= AIROGCAP && mode <= AIROGSTATSD32) {
1931                         error = readrids(ifp, &l_ioctl);
1932                 } else if (mode >= AIROPCAP && mode <= AIROPLEAPUSR) {
1933                         error = writerids(ifp, &l_ioctl);
1934                 } else if (mode >= AIROFLSHRST && mode <= AIRORESTART) {
1935                         error = flashcard(ifp, &l_ioctl);
1936                 } else {
1937                         error =-1;
1938                 }
1939
1940                 /* copy out the updated command info */
1941                 copyout(&l_ioctl, ifr->ifr_data, sizeof(l_ioctl));
1942
1943                 break;
1944         case SIOCGPRIVATE_1:              /* used by Cisco client utility */
1945                 if ((error = suser_cred(cr, NULL_CRED_OKAY)))
1946                         break;
1947                 copyin(ifr->ifr_data, &l_ioctl, sizeof(l_ioctl));
1948                 l_ioctl.command = 0;
1949                 error = AIROMAGIC;
1950                 copyout(&error, l_ioctl.data, sizeof(error));
1951                 error = 0;
1952                 break;
1953         case SIOCG80211:
1954                 sc->areq.an_len = sizeof(sc->areq);
1955                 /* was that a good idea DJA we are doing a short-cut */
1956                 switch (ireq->i_type) {
1957                 case IEEE80211_IOC_SSID:
1958                         if (ireq->i_val == -1) {
1959                                 sc->areq.an_type = AN_RID_STATUS;
1960                                 if (an_read_record(sc,
1961                                     (struct an_ltv_gen *)&sc->areq)) {
1962                                         error = EINVAL;
1963                                         break;
1964                                 }
1965                                 len = status->an_ssidlen;
1966                                 tmpptr = status->an_ssid;
1967                         } else if (ireq->i_val >= 0) {
1968                                 sc->areq.an_type = AN_RID_SSIDLIST;
1969                                 if (an_read_record(sc,
1970                                     (struct an_ltv_gen *)&sc->areq)) {
1971                                         error = EINVAL;
1972                                         break;
1973                                 }
1974                                 if (ireq->i_val == 0) {
1975                                         len = ssids->an_ssid1_len;
1976                                         tmpptr = ssids->an_ssid1;
1977                                 } else if (ireq->i_val == 1) {
1978                                         len = ssids->an_ssid2_len;
1979                                         tmpptr = ssids->an_ssid2;
1980                                 } else if (ireq->i_val == 2) {
1981                                         len = ssids->an_ssid3_len;
1982                                         tmpptr = ssids->an_ssid3;
1983                                 } else {
1984                                         error = EINVAL;
1985                                         break;
1986                                 }
1987                         } else {
1988                                 error = EINVAL;
1989                                 break;
1990                         }
1991                         if (len > IEEE80211_NWID_LEN) {
1992                                 error = EINVAL;
1993                                 break;
1994                         }
1995                         ireq->i_len = len;
1996                         bzero(tmpstr, IEEE80211_NWID_LEN);
1997                         bcopy(tmpptr, tmpstr, len);
1998                         error = copyout(tmpstr, ireq->i_data,
1999                             IEEE80211_NWID_LEN);
2000                         break;
2001                 case IEEE80211_IOC_NUMSSIDS:
2002                         ireq->i_val = 3;
2003                         break;
2004                 case IEEE80211_IOC_WEP:
2005                         sc->areq.an_type = AN_RID_ACTUALCFG;
2006                         if (an_read_record(sc,
2007                             (struct an_ltv_gen *)&sc->areq)) {
2008                                 error = EINVAL;
2009                                 break;
2010                         }
2011                         if (config->an_authtype & AN_AUTHTYPE_PRIVACY_IN_USE) {
2012                                 if (config->an_authtype &
2013                                     AN_AUTHTYPE_ALLOW_UNENCRYPTED)
2014                                         ireq->i_val = IEEE80211_WEP_MIXED;
2015                                 else
2016                                         ireq->i_val = IEEE80211_WEP_ON;
2017                         } else {
2018                                 ireq->i_val = IEEE80211_WEP_OFF;
2019                         }
2020                         break;
2021                 case IEEE80211_IOC_WEPKEY:
2022                         /*
2023                          * XXX: I'm not entierly convinced this is
2024                          * correct, but it's what is implemented in
2025                          * ancontrol so it will have to do until we get
2026                          * access to actual Cisco code.
2027                          */
2028                         if (ireq->i_val < 0 || ireq->i_val > 8) {
2029                                 error = EINVAL;
2030                                 break;
2031                         }
2032                         len = 0;
2033                         if (ireq->i_val < 5) {
2034                                 sc->areq.an_type = AN_RID_WEP_TEMP;
2035                                 for (i = 0; i < 5; i++) {
2036                                         if (an_read_record(sc,
2037                                             (struct an_ltv_gen *)&sc->areq)) {
2038                                                 error = EINVAL;
2039                                                 break;
2040                                         }
2041                                         if (key->kindex == 0xffff)
2042                                                 break;
2043                                         if (key->kindex == ireq->i_val)
2044                                                 len = key->klen;
2045                                         /* Required to get next entry */
2046                                         sc->areq.an_type = AN_RID_WEP_PERM;
2047                                 }
2048                                 if (error != 0)
2049                                         break;
2050                         }
2051                         /* We aren't allowed to read the value of the
2052                          * key from the card so we just output zeros
2053                          * like we would if we could read the card, but
2054                          * denied the user access.
2055                          */
2056                         bzero(tmpstr, len);
2057                         ireq->i_len = len;
2058                         error = copyout(tmpstr, ireq->i_data, len);
2059                         break;
2060                 case IEEE80211_IOC_NUMWEPKEYS:
2061                         ireq->i_val = 9; /* include home key */
2062                         break;
2063                 case IEEE80211_IOC_WEPTXKEY:
2064                         /*
2065                          * For some strange reason, you have to read all
2066                          * keys before you can read the txkey.
2067                          */
2068                         sc->areq.an_type = AN_RID_WEP_TEMP;
2069                         for (i = 0; i < 5; i++) {
2070                                 if (an_read_record(sc,
2071                                     (struct an_ltv_gen *) &sc->areq)) {
2072                                         error = EINVAL;
2073                                         break;
2074                                 }
2075                                 if (key->kindex == 0xffff)
2076                                         break;
2077                                 /* Required to get next entry */
2078                                 sc->areq.an_type = AN_RID_WEP_PERM;
2079                         }
2080                         if (error != 0)
2081                                 break;
2082
2083                         sc->areq.an_type = AN_RID_WEP_PERM;
2084                         key->kindex = 0xffff;
2085                         if (an_read_record(sc,
2086                             (struct an_ltv_gen *)&sc->areq)) {
2087                                 error = EINVAL;
2088                                 break;
2089                         }
2090                         ireq->i_val = key->mac[0];
2091                         /*
2092                          * Check for home mode.  Map home mode into
2093                          * 5th key since that is how it is stored on
2094                          * the card
2095                          */
2096                         sc->areq.an_len  = sizeof(struct an_ltv_genconfig);
2097                         sc->areq.an_type = AN_RID_GENCONFIG;
2098                         if (an_read_record(sc,
2099                             (struct an_ltv_gen *)&sc->areq)) {
2100                                 error = EINVAL;
2101                                 break;
2102                         }
2103                         if (config->an_home_product & AN_HOME_NETWORK)
2104                                 ireq->i_val = 4;
2105                         break;
2106                 case IEEE80211_IOC_AUTHMODE:
2107                         sc->areq.an_type = AN_RID_ACTUALCFG;
2108                         if (an_read_record(sc,
2109                             (struct an_ltv_gen *)&sc->areq)) {
2110                                 error = EINVAL;
2111                                 break;
2112                         }
2113                         if ((config->an_authtype & AN_AUTHTYPE_MASK) ==
2114                             AN_AUTHTYPE_NONE) {
2115                             ireq->i_val = IEEE80211_AUTH_NONE;
2116                         } else if ((config->an_authtype & AN_AUTHTYPE_MASK) ==
2117                             AN_AUTHTYPE_OPEN) {
2118                             ireq->i_val = IEEE80211_AUTH_OPEN;
2119                         } else if ((config->an_authtype & AN_AUTHTYPE_MASK) ==
2120                             AN_AUTHTYPE_SHAREDKEY) {
2121                             ireq->i_val = IEEE80211_AUTH_SHARED;
2122                         } else
2123                                 error = EINVAL;
2124                         break;
2125                 case IEEE80211_IOC_STATIONNAME:
2126                         sc->areq.an_type = AN_RID_ACTUALCFG;
2127                         if (an_read_record(sc,
2128                             (struct an_ltv_gen *)&sc->areq)) {
2129                                 error = EINVAL;
2130                                 break;
2131                         }
2132                         ireq->i_len = sizeof(config->an_nodename);
2133                         tmpptr = config->an_nodename;
2134                         bzero(tmpstr, IEEE80211_NWID_LEN);
2135                         bcopy(tmpptr, tmpstr, ireq->i_len);
2136                         error = copyout(tmpstr, ireq->i_data,
2137                             IEEE80211_NWID_LEN);
2138                         break;
2139                 case IEEE80211_IOC_CHANNEL:
2140                         sc->areq.an_type = AN_RID_STATUS;
2141                         if (an_read_record(sc,
2142                             (struct an_ltv_gen *)&sc->areq)) {
2143                                 error = EINVAL;
2144                                 break;
2145                         }
2146                         ireq->i_val = status->an_cur_channel;
2147                         break;
2148                 case IEEE80211_IOC_POWERSAVE:
2149                         sc->areq.an_type = AN_RID_ACTUALCFG;
2150                         if (an_read_record(sc,
2151                             (struct an_ltv_gen *)&sc->areq)) {
2152                                 error = EINVAL;
2153                                 break;
2154                         }
2155                         if (config->an_psave_mode == AN_PSAVE_NONE) {
2156                                 ireq->i_val = IEEE80211_POWERSAVE_OFF;
2157                         } else if (config->an_psave_mode == AN_PSAVE_CAM) {
2158                                 ireq->i_val = IEEE80211_POWERSAVE_CAM;
2159                         } else if (config->an_psave_mode == AN_PSAVE_PSP) {
2160                                 ireq->i_val = IEEE80211_POWERSAVE_PSP;
2161                         } else if (config->an_psave_mode == AN_PSAVE_PSP_CAM) {
2162                                 ireq->i_val = IEEE80211_POWERSAVE_PSP_CAM;
2163                         } else
2164                                 error = EINVAL;
2165                         break;
2166                 case IEEE80211_IOC_POWERSAVESLEEP:
2167                         sc->areq.an_type = AN_RID_ACTUALCFG;
2168                         if (an_read_record(sc,
2169                             (struct an_ltv_gen *)&sc->areq)) {
2170                                 error = EINVAL;
2171                                 break;
2172                         }
2173                         ireq->i_val = config->an_listen_interval;
2174                         break;
2175                 }
2176                 break;
2177         case SIOCS80211:
2178                 if ((error = suser_cred(cr, NULL_CRED_OKAY)))
2179                         break;
2180                 sc->areq.an_len = sizeof(sc->areq);
2181                 /*
2182                  * We need a config structure for everything but the WEP
2183                  * key management and SSIDs so we get it now so avoid
2184                  * duplicating this code every time.
2185                  */
2186                 if (ireq->i_type != IEEE80211_IOC_SSID &&
2187                     ireq->i_type != IEEE80211_IOC_WEPKEY &&
2188                     ireq->i_type != IEEE80211_IOC_WEPTXKEY) {
2189                         sc->areq.an_type = AN_RID_GENCONFIG;
2190                         if (an_read_record(sc,
2191                             (struct an_ltv_gen *)&sc->areq)) {
2192                                 error = EINVAL;
2193                                 break;
2194                         }
2195                 }
2196                 switch (ireq->i_type) {
2197                 case IEEE80211_IOC_SSID:
2198                         sc->areq.an_type = AN_RID_SSIDLIST;
2199                         if (an_read_record(sc,
2200                             (struct an_ltv_gen *)&sc->areq)) {
2201                                 error = EINVAL;
2202                                 break;
2203                         }
2204                         if (ireq->i_len > IEEE80211_NWID_LEN) {
2205                                 error = EINVAL;
2206                                 break;
2207                         }
2208                         switch (ireq->i_val) {
2209                         case 0:
2210                                 error = copyin(ireq->i_data,
2211                                     ssids->an_ssid1, ireq->i_len);
2212                                 ssids->an_ssid1_len = ireq->i_len;
2213                                 break;
2214                         case 1:
2215                                 error = copyin(ireq->i_data,
2216                                     ssids->an_ssid2, ireq->i_len);
2217                                 ssids->an_ssid2_len = ireq->i_len;
2218                                 break;
2219                         case 2:
2220                                 error = copyin(ireq->i_data,
2221                                     ssids->an_ssid3, ireq->i_len);
2222                                 ssids->an_ssid3_len = ireq->i_len;
2223                                 break;
2224                         default:
2225                                 error = EINVAL;
2226                                 break;
2227                         }
2228                         break;
2229                 case IEEE80211_IOC_WEP:
2230                         switch (ireq->i_val) {
2231                         case IEEE80211_WEP_OFF:
2232                                 config->an_authtype &=
2233                                     ~(AN_AUTHTYPE_PRIVACY_IN_USE |
2234                                     AN_AUTHTYPE_ALLOW_UNENCRYPTED);
2235                                 break;
2236                         case IEEE80211_WEP_ON:
2237                                 config->an_authtype |=
2238                                     AN_AUTHTYPE_PRIVACY_IN_USE;
2239                                 config->an_authtype &=
2240                                     ~AN_AUTHTYPE_ALLOW_UNENCRYPTED;
2241                                 break;
2242                         case IEEE80211_WEP_MIXED:
2243                                 config->an_authtype |=
2244                                     AN_AUTHTYPE_PRIVACY_IN_USE |
2245                                     AN_AUTHTYPE_ALLOW_UNENCRYPTED;
2246                                 break;
2247                         default:
2248                                 error = EINVAL;
2249                                 break;
2250                         }
2251                         break;
2252                 case IEEE80211_IOC_WEPKEY:
2253                         if (ireq->i_val < 0 || ireq->i_val > 8 ||
2254                             ireq->i_len > 13) {
2255                                 error = EINVAL;
2256                                 break;
2257                         }
2258                         error = copyin(ireq->i_data, tmpstr, 13);
2259                         if (error != 0)
2260                                 break;
2261                         /*
2262                          * Map the 9th key into the home mode
2263                          * since that is how it is stored on
2264                          * the card
2265                          */
2266                         bzero(&sc->areq, sizeof(struct an_ltv_key));
2267                         sc->areq.an_len = sizeof(struct an_ltv_key);
2268                         key->mac[0] = 1;        /* The others are 0. */
2269                         if (ireq->i_val < 4) {
2270                                 sc->areq.an_type = AN_RID_WEP_TEMP;
2271                                 key->kindex = ireq->i_val;
2272                         } else {
2273                                 sc->areq.an_type = AN_RID_WEP_PERM;
2274                                 key->kindex = ireq->i_val - 4;
2275                         }
2276                         key->klen = ireq->i_len;
2277                         bcopy(tmpstr, key->key, key->klen);
2278                         break;
2279                 case IEEE80211_IOC_WEPTXKEY:
2280                         if (ireq->i_val < 0 || ireq->i_val > 4) {
2281                                 error = EINVAL;
2282                                 break;
2283                         }
2284
2285                         /*
2286                          * Map the 5th key into the home mode
2287                          * since that is how it is stored on
2288                          * the card
2289                          */
2290                         sc->areq.an_len  = sizeof(struct an_ltv_genconfig);
2291                         sc->areq.an_type = AN_RID_ACTUALCFG;
2292                         if (an_read_record(sc,
2293                             (struct an_ltv_gen *)&sc->areq)) {
2294                                 error = EINVAL;
2295                                 break;
2296                         }
2297                         if (ireq->i_val ==  4) {
2298                                 config->an_home_product |= AN_HOME_NETWORK;
2299                                 ireq->i_val = 0;
2300                         } else {
2301                                 config->an_home_product &= ~AN_HOME_NETWORK;
2302                         }
2303
2304                         sc->an_config.an_home_product
2305                                 = config->an_home_product;
2306
2307                         /* update configuration */
2308                         an_init(sc);
2309
2310                         bzero(&sc->areq, sizeof(struct an_ltv_key));
2311                         sc->areq.an_len = sizeof(struct an_ltv_key);
2312                         sc->areq.an_type = AN_RID_WEP_PERM;
2313                         key->kindex = 0xffff;
2314                         key->mac[0] = ireq->i_val;
2315                         break;
2316                 case IEEE80211_IOC_AUTHMODE:
2317                         switch (ireq->i_val) {
2318                         case IEEE80211_AUTH_NONE:
2319                                 config->an_authtype = AN_AUTHTYPE_NONE |
2320                                     (config->an_authtype & ~AN_AUTHTYPE_MASK);
2321                                 break;
2322                         case IEEE80211_AUTH_OPEN:
2323                                 config->an_authtype = AN_AUTHTYPE_OPEN |
2324                                     (config->an_authtype & ~AN_AUTHTYPE_MASK);
2325                                 break;
2326                         case IEEE80211_AUTH_SHARED:
2327                                 config->an_authtype = AN_AUTHTYPE_SHAREDKEY |
2328                                     (config->an_authtype & ~AN_AUTHTYPE_MASK);
2329                                 break;
2330                         default:
2331                                 error = EINVAL;
2332                         }
2333                         break;
2334                 case IEEE80211_IOC_STATIONNAME:
2335                         if (ireq->i_len > 16) {
2336                                 error = EINVAL;
2337                                 break;
2338                         }
2339                         bzero(config->an_nodename, 16);
2340                         error = copyin(ireq->i_data,
2341                             config->an_nodename, ireq->i_len);
2342                         break;
2343                 case IEEE80211_IOC_CHANNEL:
2344                         /*
2345                          * The actual range is 1-14, but if you set it
2346                          * to 0 you get the default so we let that work
2347                          * too.
2348                          */
2349                         if (ireq->i_val < 0 || ireq->i_val >14) {
2350                                 error = EINVAL;
2351                                 break;
2352                         }
2353                         config->an_ds_channel = ireq->i_val;
2354                         break;
2355                 case IEEE80211_IOC_POWERSAVE:
2356                         switch (ireq->i_val) {
2357                         case IEEE80211_POWERSAVE_OFF:
2358                                 config->an_psave_mode = AN_PSAVE_NONE;
2359                                 break;
2360                         case IEEE80211_POWERSAVE_CAM:
2361                                 config->an_psave_mode = AN_PSAVE_CAM;
2362                                 break;
2363                         case IEEE80211_POWERSAVE_PSP:
2364                                 config->an_psave_mode = AN_PSAVE_PSP;
2365                                 break;
2366                         case IEEE80211_POWERSAVE_PSP_CAM:
2367                                 config->an_psave_mode = AN_PSAVE_PSP_CAM;
2368                                 break;
2369                         default:
2370                                 error = EINVAL;
2371                                 break;
2372                         }
2373                         break;
2374                 case IEEE80211_IOC_POWERSAVESLEEP:
2375                         config->an_listen_interval = ireq->i_val;
2376                         break;
2377                 }
2378
2379                 if (!error)
2380                         an_setdef(sc, &sc->areq);
2381                 break;
2382         default:
2383                 error = ether_ioctl(ifp, command, data);
2384                 break;
2385         }
2386
2387         crit_exit();
2388
2389         return(error != 0);
2390 }
2391
2392 static int
2393 an_init_tx_ring(sc)
2394         struct an_softc         *sc;
2395 {
2396         int                     i;
2397         int                     id;
2398
2399         if (!sc->mpi350) {
2400                 for (i = 0; i < AN_TX_RING_CNT; i++) {
2401                         if (an_alloc_nicmem(sc, 1518 +
2402                             0x44, &id))
2403                                 return(ENOMEM);
2404                         sc->an_rdata.an_tx_fids[i] = id;
2405                         sc->an_rdata.an_tx_ring[i] = 0;
2406                 }
2407         }
2408
2409         sc->an_rdata.an_tx_prod = 0;
2410         sc->an_rdata.an_tx_cons = 0;
2411         sc->an_rdata.an_tx_empty = 1;
2412
2413         return(0);
2414 }
2415
2416 static void
2417 an_init(xsc)
2418         void                    *xsc;
2419 {
2420         struct an_softc         *sc = xsc;
2421         struct ifnet            *ifp = &sc->arpcom.ac_if;
2422
2423         crit_enter();
2424         if (ifp->if_flags & IFF_RUNNING)
2425                 an_stop(sc);
2426
2427         sc->an_associated = 0;
2428
2429         /* Allocate the TX buffers */
2430         if (an_init_tx_ring(sc)) {
2431                 an_reset(sc);
2432                 if (sc->mpi350)
2433                         an_init_mpi350_desc(sc);        
2434                 if (an_init_tx_ring(sc)) {
2435                         crit_exit();
2436                         if_printf(ifp, "tx buffer allocation failed\n");
2437                         return;
2438                 }
2439         }
2440
2441         /* Set our MAC address. */
2442         bcopy((char *)&sc->arpcom.ac_enaddr,
2443             (char *)&sc->an_config.an_macaddr, ETHER_ADDR_LEN);
2444
2445         if (ifp->if_flags & IFF_BROADCAST)
2446                 sc->an_config.an_rxmode = AN_RXMODE_BC_ADDR;
2447         else
2448                 sc->an_config.an_rxmode = AN_RXMODE_ADDR;
2449
2450         if (ifp->if_flags & IFF_MULTICAST)
2451                 sc->an_config.an_rxmode = AN_RXMODE_BC_MC_ADDR;
2452
2453         if (ifp->if_flags & IFF_PROMISC) {
2454                 if (sc->an_monitor & AN_MONITOR) {
2455                         if (sc->an_monitor & AN_MONITOR_ANY_BSS) {
2456                                 sc->an_config.an_rxmode |=
2457                                     AN_RXMODE_80211_MONITOR_ANYBSS |
2458                                     AN_RXMODE_NO_8023_HEADER;
2459                         } else {
2460                                 sc->an_config.an_rxmode |=
2461                                     AN_RXMODE_80211_MONITOR_CURBSS |
2462                                     AN_RXMODE_NO_8023_HEADER;
2463                         }
2464                 }
2465         }
2466
2467         if (sc->an_have_rssimap)
2468                 sc->an_config.an_rxmode |= AN_RXMODE_NORMALIZED_RSSI;
2469
2470         /* Set the ssid list */
2471         sc->an_ssidlist.an_type = AN_RID_SSIDLIST;
2472         sc->an_ssidlist.an_len = sizeof(struct an_ltv_ssidlist);
2473         if (an_write_record(sc, (struct an_ltv_gen *)&sc->an_ssidlist)) {
2474                 crit_exit();
2475                 if_printf(ifp, "failed to set ssid list\n");
2476                 return;
2477         }
2478
2479         /* Set the AP list */
2480         sc->an_aplist.an_type = AN_RID_APLIST;
2481         sc->an_aplist.an_len = sizeof(struct an_ltv_aplist);
2482         if (an_write_record(sc, (struct an_ltv_gen *)&sc->an_aplist)) {
2483                 crit_exit();
2484                 if_printf(ifp, "failed to set AP list\n");
2485                 return;
2486         }
2487
2488         /* Set the configuration in the NIC */
2489         sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
2490         sc->an_config.an_type = AN_RID_GENCONFIG;
2491         if (an_write_record(sc, (struct an_ltv_gen *)&sc->an_config)) {
2492                 crit_exit();
2493                 if_printf(ifp, "failed to set configuration\n");
2494                 return;
2495         }
2496
2497         /* Enable the MAC */
2498         if (an_cmd(sc, AN_CMD_ENABLE, 0)) {
2499                 crit_exit();
2500                 if_printf(ifp, "failed to enable MAC\n");
2501                 return;
2502         }
2503
2504         if (ifp->if_flags & IFF_PROMISC)
2505                 an_cmd(sc, AN_CMD_SET_MODE, 0xffff);
2506
2507         /* enable interrupts */
2508         CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), AN_INTRS);
2509
2510         ifp->if_flags |= IFF_RUNNING;
2511         ifp->if_flags &= ~IFF_OACTIVE;
2512
2513         callout_reset(&sc->an_stat_timer, hz, an_stats_update, sc);
2514
2515         crit_exit();
2516 }
2517
2518 static void
2519 an_start(ifp)
2520         struct ifnet            *ifp;
2521 {
2522         struct an_softc         *sc;
2523         struct mbuf             *m0 = NULL;
2524         struct an_txframe_802_3 tx_frame_802_3;
2525         struct ether_header     *eh;
2526         int                     id, idx, i;
2527         unsigned char           txcontrol;
2528         struct an_card_tx_desc an_tx_desc;
2529         u_int8_t                *ptr;
2530         u_int8_t                *buf;
2531
2532         sc = ifp->if_softc;
2533
2534         if (ifp->if_flags & IFF_OACTIVE)
2535                 return;
2536
2537         if (!sc->an_associated)
2538                 return;
2539
2540         /* We can't send in monitor mode so toss any attempts. */
2541         if (sc->an_monitor && (ifp->if_flags & IFF_PROMISC)) {
2542                 ifq_purge(&ifp->if_snd);
2543                 return;
2544         }
2545
2546         idx = sc->an_rdata.an_tx_prod;
2547
2548         if (!sc->mpi350) {
2549                 bzero((char *)&tx_frame_802_3, sizeof(tx_frame_802_3));
2550
2551                 while (sc->an_rdata.an_tx_ring[idx] == 0) {
2552                         m0 = ifq_dequeue(&ifp->if_snd);
2553                         if (m0 == NULL)
2554                                 break;
2555
2556                         id = sc->an_rdata.an_tx_fids[idx];
2557                         eh = mtod(m0, struct ether_header *);
2558
2559                         bcopy((char *)&eh->ether_dhost,
2560                               (char *)&tx_frame_802_3.an_tx_dst_addr, 
2561                               ETHER_ADDR_LEN);
2562                         bcopy((char *)&eh->ether_shost,
2563                               (char *)&tx_frame_802_3.an_tx_src_addr, 
2564                               ETHER_ADDR_LEN);
2565
2566                         /* minus src/dest mac & type */
2567                         tx_frame_802_3.an_tx_802_3_payload_len =
2568                                 m0->m_pkthdr.len - 12;  
2569
2570                         m_copydata(m0, sizeof(struct ether_header) - 2 ,
2571                                    tx_frame_802_3.an_tx_802_3_payload_len,
2572                                    (caddr_t)&sc->an_txbuf);
2573
2574                         txcontrol = AN_TXCTL_8023;
2575                         /* write the txcontrol only */
2576                         an_write_data(sc, id, 0x08, (caddr_t)&txcontrol,
2577                                       sizeof(txcontrol));
2578
2579                         /* 802_3 header */
2580                         an_write_data(sc, id, 0x34, (caddr_t)&tx_frame_802_3,
2581                                       sizeof(struct an_txframe_802_3));
2582
2583                         /* in mbuf header type is just before payload */
2584                         an_write_data(sc, id, 0x44, (caddr_t)&sc->an_txbuf,
2585                                       tx_frame_802_3.an_tx_802_3_payload_len);
2586
2587                         BPF_MTAP(ifp, m0);
2588
2589                         m_freem(m0);
2590                         m0 = NULL;
2591
2592                         sc->an_rdata.an_tx_ring[idx] = id;
2593                         if (an_cmd(sc, AN_CMD_TX, id))
2594                                 if_printf(ifp, "xmit failed\n");
2595
2596                         AN_INC(idx, AN_TX_RING_CNT);
2597                 }
2598         } else { /* MPI-350 */
2599                 while (sc->an_rdata.an_tx_empty ||
2600                     idx != sc->an_rdata.an_tx_cons) {
2601                         m0 = ifq_dequeue(&ifp->if_snd);
2602                         if (m0 == NULL) {
2603                                 break;
2604                         }
2605                         buf = sc->an_tx_buffer[idx].an_dma_vaddr;
2606
2607                         eh = mtod(m0, struct ether_header *);
2608
2609                         /* DJA optimize this to limit bcopy */
2610                         bcopy((char *)&eh->ether_dhost,
2611                               (char *)&tx_frame_802_3.an_tx_dst_addr, 
2612                               ETHER_ADDR_LEN);
2613                         bcopy((char *)&eh->ether_shost,
2614                               (char *)&tx_frame_802_3.an_tx_src_addr, 
2615                               ETHER_ADDR_LEN);
2616
2617                         /* minus src/dest mac & type */
2618                         tx_frame_802_3.an_tx_802_3_payload_len =
2619                                 m0->m_pkthdr.len - 12; 
2620
2621                         m_copydata(m0, sizeof(struct ether_header) - 2 ,
2622                                    tx_frame_802_3.an_tx_802_3_payload_len,
2623                                    (caddr_t)&sc->an_txbuf);
2624
2625                         txcontrol = AN_TXCTL_8023;
2626                         /* write the txcontrol only */
2627                         bcopy((caddr_t)&txcontrol, &buf[0x08],
2628                               sizeof(txcontrol));
2629
2630                         /* 802_3 header */
2631                         bcopy((caddr_t)&tx_frame_802_3, &buf[0x34],
2632                               sizeof(struct an_txframe_802_3));
2633
2634                         /* in mbuf header type is just before payload */
2635                         bcopy((caddr_t)&sc->an_txbuf, &buf[0x44],
2636                               tx_frame_802_3.an_tx_802_3_payload_len);
2637
2638
2639                         bzero(&an_tx_desc, sizeof(an_tx_desc));
2640                         an_tx_desc.an_offset = 0;
2641                         an_tx_desc.an_eoc = 1;
2642                         an_tx_desc.an_valid = 1;
2643                         an_tx_desc.an_len =  0x44 +
2644                                 tx_frame_802_3.an_tx_802_3_payload_len;
2645                         an_tx_desc.an_phys = sc->an_tx_buffer[idx].an_dma_paddr;
2646                         ptr = (u_int8_t*)&an_tx_desc;
2647                         for (i = 0; i < sizeof(an_tx_desc); i++) {
2648                                 CSR_MEM_AUX_WRITE_1(sc, AN_TX_DESC_OFFSET + i,
2649                                                     ptr[i]);
2650                         }
2651
2652                         BPF_MTAP(ifp, m0);
2653
2654                         m_freem(m0);
2655                         m0 = NULL;
2656
2657                         CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_ALLOC);
2658
2659                         AN_INC(idx, AN_MAX_TX_DESC);
2660                         sc->an_rdata.an_tx_empty = 0;
2661                 }
2662         }
2663
2664         if (m0 != NULL)
2665                 ifp->if_flags |= IFF_OACTIVE;
2666
2667         sc->an_rdata.an_tx_prod = idx;
2668
2669         /*
2670          * Set a timeout in case the chip goes out to lunch.
2671          */
2672         ifp->if_timer = 5;
2673
2674         return;
2675 }
2676
2677 void
2678 an_stop(sc)
2679         struct an_softc         *sc;
2680 {
2681         struct ifnet            *ifp;
2682         int                     i;
2683
2684         ifp = &sc->arpcom.ac_if;
2685
2686         crit_enter();
2687
2688         an_cmd(sc, AN_CMD_FORCE_SYNCLOSS, 0);
2689         CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), 0);
2690         an_cmd(sc, AN_CMD_DISABLE, 0);
2691
2692         for (i = 0; i < AN_TX_RING_CNT; i++)
2693                 an_cmd(sc, AN_CMD_DEALLOC_MEM, sc->an_rdata.an_tx_fids[i]);
2694
2695         callout_stop(&sc->an_stat_timer);
2696
2697         ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2698
2699         if (sc->an_flash_buffer) {
2700                 free(sc->an_flash_buffer, M_DEVBUF);
2701                 sc->an_flash_buffer = NULL;
2702         }
2703
2704         crit_exit();
2705 }
2706
2707 static void
2708 an_watchdog(ifp)
2709         struct ifnet            *ifp;
2710 {
2711         struct an_softc         *sc;
2712
2713         sc = ifp->if_softc;
2714
2715         crit_enter();
2716         an_reset(sc);
2717         if (sc->mpi350)
2718                 an_init_mpi350_desc(sc);        
2719         an_init(sc);
2720
2721         ifp->if_oerrors++;
2722         crit_exit();
2723
2724         if_printf(ifp, "device timeout\n");
2725 }
2726
2727 void
2728 an_shutdown(dev)
2729         device_t                dev;
2730 {
2731         struct an_softc         *sc;
2732
2733         sc = device_get_softc(dev);
2734         an_stop(sc);
2735
2736         return;
2737 }
2738
2739 void
2740 an_resume(dev)
2741         device_t                dev;
2742 {
2743         struct an_softc         *sc;
2744         struct ifnet            *ifp;
2745         int                     i;
2746
2747         sc = device_get_softc(dev);
2748         ifp = &sc->arpcom.ac_if;
2749
2750         an_reset(sc);
2751         if (sc->mpi350)
2752                 an_init_mpi350_desc(sc);        
2753         an_init(sc);
2754
2755         /* Recovery temporary keys */
2756         for (i = 0; i < 4; i++) {
2757                 sc->areq.an_type = AN_RID_WEP_TEMP;
2758                 sc->areq.an_len = sizeof(struct an_ltv_key);            
2759                 bcopy(&sc->an_temp_keys[i],
2760                     &sc->areq, sizeof(struct an_ltv_key));
2761                 an_setdef(sc, &sc->areq);
2762         }
2763
2764         if (ifp->if_flags & IFF_UP)
2765                 an_start(ifp);
2766
2767         return;
2768 }
2769
2770 #ifdef ANCACHE
2771 /* Aironet signal strength cache code.
2772  * store signal/noise/quality on per MAC src basis in
2773  * a small fixed cache.  The cache wraps if > MAX slots
2774  * used.  The cache may be zeroed out to start over.
2775  * Two simple filters exist to reduce computation:
2776  * 1. ip only (literally 0x800, ETHERTYPE_IP) which may be used
2777  * to ignore some packets.  It defaults to ip only.
2778  * it could be used to focus on broadcast, non-IP 802.11 beacons.
2779  * 2. multicast/broadcast only.  This may be used to
2780  * ignore unicast packets and only cache signal strength
2781  * for multicast/broadcast packets (beacons); e.g., Mobile-IP
2782  * beacons and not unicast traffic.
2783  *
2784  * The cache stores (MAC src(index), IP src (major clue), signal,
2785  *      quality, noise)
2786  *
2787  * No apologies for storing IP src here.  It's easy and saves much
2788  * trouble elsewhere.  The cache is assumed to be INET dependent,
2789  * although it need not be.
2790  *
2791  * Note: the Aironet only has a single byte of signal strength value
2792  * in the rx frame header, and it's not scaled to anything sensible.
2793  * This is kind of lame, but it's all we've got.
2794  */
2795
2796 #ifdef documentation
2797
2798 int an_sigitems;                                /* number of cached entries */
2799 struct an_sigcache an_sigcache[MAXANCACHE];  /*  array of cache entries */
2800 int an_nextitem;                                /*  index/# of entries */
2801
2802
2803 #endif
2804
2805 /* control variables for cache filtering.  Basic idea is
2806  * to reduce cost (e.g., to only Mobile-IP agent beacons
2807  * which are broadcast or multicast).  Still you might
2808  * want to measure signal strength anth unicast ping packets
2809  * on a pt. to pt. ant. setup.
2810  */
2811 /* set true if you want to limit cache items to broadcast/mcast
2812  * only packets (not unicast).  Useful for mobile-ip beacons which
2813  * are broadcast/multicast at network layer.  Default is all packets
2814  * so ping/unicast anll work say anth pt. to pt. antennae setup.
2815  */
2816 static int an_cache_mcastonly = 0;
2817 SYSCTL_INT(_hw_an, OID_AUTO, an_cache_mcastonly, CTLFLAG_RW,
2818         &an_cache_mcastonly, 0, "");
2819
2820 /* set true if you want to limit cache items to IP packets only
2821 */
2822 static int an_cache_iponly = 1;
2823 SYSCTL_INT(_hw_an, OID_AUTO, an_cache_iponly, CTLFLAG_RW,
2824         &an_cache_iponly, 0, "");
2825
2826 /*
2827  * an_cache_store, per rx packet store signal
2828  * strength in MAC (src) indexed cache.
2829  */
2830 static void
2831 an_cache_store (sc, m, rx_rssi, rx_quality)
2832         struct an_softc *sc;
2833         struct mbuf *m;
2834         u_int8_t rx_rssi;
2835         u_int8_t rx_quality;
2836 {
2837         struct ether_header *eh = mtod(m, struct ether_header *);
2838         struct ip *ip = NULL;
2839         int i;
2840         static int cache_slot = 0;      /* use this cache entry */
2841         static int wrapindex = 0;       /* next "free" cache entry */
2842
2843         /* filters:
2844          * 1. ip only
2845          * 2. configurable filter to throw out unicast packets,
2846          * keep multicast only.
2847          */
2848
2849         if ((ntohs(eh->ether_type) == ETHERTYPE_IP))
2850                 ip = (struct ip *)(mtod(m, uint8_t *) + ETHER_HDR_LEN);
2851         else if (an_cache_iponly)
2852                 return;
2853
2854         /* filter for broadcast/multicast only
2855          */
2856         if (an_cache_mcastonly && ((eh->ether_dhost[0] & 1) == 0)) {
2857                 return;
2858         }
2859
2860 #ifdef SIGDEBUG
2861         if_printf(&sc->arpcom.ac_if, "q value %x (MSB=0x%x, LSB=0x%x)\n",
2862                   rx_rssi & 0xffff, rx_rssi >> 8, rx_rssi & 0xff);
2863 #endif
2864
2865         /* do a linear search for a matching MAC address
2866          * in the cache table
2867          * . MAC address is 6 bytes,
2868          * . var w_nextitem holds total number of entries already cached
2869          */
2870         for (i = 0; i < sc->an_nextitem; i++) {
2871                 if (! bcmp(eh->ether_shost , sc->an_sigcache[i].macsrc,  6 )) {
2872                         /* Match!,
2873                          * so we already have this entry,
2874                          * update the data
2875                          */
2876                         break;
2877                 }
2878         }
2879
2880         /* did we find a matching mac address?
2881          * if yes, then overwrite a previously existing cache entry
2882          */
2883         if (i < sc->an_nextitem )   {
2884                 cache_slot = i;
2885         }
2886         /* else, have a new address entry,so
2887          * add this new entry,
2888          * if table full, then we need to replace LRU entry
2889          */
2890         else    {
2891
2892                 /* check for space in cache table
2893                  * note: an_nextitem also holds number of entries
2894                  * added in the cache table
2895                  */
2896                 if ( sc->an_nextitem < MAXANCACHE ) {
2897                         cache_slot = sc->an_nextitem;
2898                         sc->an_nextitem++;
2899                         sc->an_sigitems = sc->an_nextitem;
2900                 }
2901                 /* no space found, so simply wrap anth wrap index
2902                  * and "zap" the next entry
2903                  */
2904                 else {
2905                         if (wrapindex == MAXANCACHE) {
2906                                 wrapindex = 0;
2907                         }
2908                         cache_slot = wrapindex++;
2909                 }
2910         }
2911
2912         /* invariant: cache_slot now points at some slot
2913          * in cache.
2914          */
2915         if (cache_slot < 0 || cache_slot >= MAXANCACHE) {
2916                 log(LOG_ERR, "an_cache_store, bad index: %d of "
2917                     "[0..%d], gross cache error\n",
2918                     cache_slot, MAXANCACHE);
2919                 return;
2920         }
2921
2922         /*  store items in cache
2923          *  .ip source address
2924          *  .mac src
2925          *  .signal, etc.
2926          */
2927         if (ip != NULL) {
2928                 sc->an_sigcache[cache_slot].ipsrc = ip->ip_src.s_addr;
2929         }
2930         bcopy( eh->ether_shost, sc->an_sigcache[cache_slot].macsrc,  6);
2931
2932
2933         switch (an_cache_mode) {
2934         case DBM:
2935                 if (sc->an_have_rssimap) {
2936                         sc->an_sigcache[cache_slot].signal = 
2937                                 - sc->an_rssimap.an_entries[rx_rssi].an_rss_dbm;
2938                         sc->an_sigcache[cache_slot].quality = 
2939                                 - sc->an_rssimap.an_entries[rx_quality].an_rss_dbm;
2940                 } else {
2941                         sc->an_sigcache[cache_slot].signal = rx_rssi - 100;
2942                         sc->an_sigcache[cache_slot].quality = rx_quality - 100;
2943                 }
2944                 break;
2945         case PERCENT:
2946                 if (sc->an_have_rssimap) {
2947                         sc->an_sigcache[cache_slot].signal = 
2948                                 sc->an_rssimap.an_entries[rx_rssi].an_rss_pct;
2949                         sc->an_sigcache[cache_slot].quality = 
2950                                 sc->an_rssimap.an_entries[rx_quality].an_rss_pct;
2951                 } else {
2952                         if (rx_rssi > 100)
2953                                 rx_rssi = 100;
2954                         if (rx_quality > 100)
2955                                 rx_quality = 100;
2956                         sc->an_sigcache[cache_slot].signal = rx_rssi;
2957                         sc->an_sigcache[cache_slot].quality = rx_quality;
2958                 }
2959                 break;
2960         case RAW:
2961                 sc->an_sigcache[cache_slot].signal = rx_rssi;
2962                 sc->an_sigcache[cache_slot].quality = rx_quality;
2963                 break;
2964         }
2965
2966         sc->an_sigcache[cache_slot].noise = 0;
2967
2968         return;
2969 }
2970 #endif
2971
2972 static int
2973 an_media_change(ifp)
2974         struct ifnet            *ifp;
2975 {
2976         struct an_softc *sc = ifp->if_softc;
2977         struct an_ltv_genconfig *cfg;
2978         int otype = sc->an_config.an_opmode;
2979         int orate = sc->an_tx_rate;
2980
2981         if ((sc->an_ifmedia.ifm_cur->ifm_media & IFM_IEEE80211_ADHOC) != 0)
2982                 sc->an_config.an_opmode = AN_OPMODE_IBSS_ADHOC;
2983         else
2984                 sc->an_config.an_opmode = AN_OPMODE_INFRASTRUCTURE_STATION;
2985
2986         switch (IFM_SUBTYPE(sc->an_ifmedia.ifm_cur->ifm_media)) {
2987         case IFM_IEEE80211_DS1:
2988                 sc->an_tx_rate = AN_RATE_1MBPS;
2989                 break;
2990         case IFM_IEEE80211_DS2:
2991                 sc->an_tx_rate = AN_RATE_2MBPS;
2992                 break;
2993         case IFM_IEEE80211_DS5:
2994                 sc->an_tx_rate = AN_RATE_5_5MBPS;
2995                 break;
2996         case IFM_IEEE80211_DS11:
2997                 sc->an_tx_rate = AN_RATE_11MBPS;
2998                 break;
2999         case IFM_AUTO:
3000                 sc->an_tx_rate = 0;
3001                 break;
3002         }
3003
3004         if (orate != sc->an_tx_rate) {
3005                 /* Read the current configuration */
3006                 sc->an_config.an_type = AN_RID_GENCONFIG;
3007                 sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
3008                 an_read_record(sc, (struct an_ltv_gen *)&sc->an_config);
3009                 cfg = &sc->an_config;
3010
3011                 /* clear other rates and set the only one we want */
3012                 bzero(cfg->an_rates, sizeof(cfg->an_rates));
3013                 cfg->an_rates[0] = sc->an_tx_rate;
3014
3015                 /* Save the new rate */
3016                 sc->an_config.an_type = AN_RID_GENCONFIG;
3017                 sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
3018         }
3019
3020         if (otype != sc->an_config.an_opmode ||
3021             orate != sc->an_tx_rate)
3022                 an_init(sc);
3023
3024         return(0);
3025 }
3026
3027 static void
3028 an_media_status(ifp, imr)
3029         struct ifnet            *ifp;
3030         struct ifmediareq       *imr;
3031 {
3032         struct an_ltv_status    status;
3033         struct an_softc         *sc = ifp->if_softc;
3034
3035         status.an_len = sizeof(status);
3036         status.an_type = AN_RID_STATUS;
3037         if (an_read_record(sc, (struct an_ltv_gen *)&status)) {
3038                 /* If the status read fails, just lie. */
3039                 imr->ifm_active = sc->an_ifmedia.ifm_cur->ifm_media;
3040                 imr->ifm_status = IFM_AVALID|IFM_ACTIVE;
3041         }
3042
3043         if (sc->an_tx_rate == 0) {
3044                 imr->ifm_active = IFM_IEEE80211|IFM_AUTO;
3045                 if (sc->an_config.an_opmode == AN_OPMODE_IBSS_ADHOC)
3046                         imr->ifm_active |= IFM_IEEE80211_ADHOC;
3047                 switch (status.an_current_tx_rate) {
3048                 case AN_RATE_1MBPS:
3049                         imr->ifm_active |= IFM_IEEE80211_DS1;
3050                         break;
3051                 case AN_RATE_2MBPS:
3052                         imr->ifm_active |= IFM_IEEE80211_DS2;
3053                         break;
3054                 case AN_RATE_5_5MBPS:
3055                         imr->ifm_active |= IFM_IEEE80211_DS5;
3056                         break;
3057                 case AN_RATE_11MBPS:
3058                         imr->ifm_active |= IFM_IEEE80211_DS11;
3059                         break;
3060                 }
3061         } else {
3062                 imr->ifm_active = sc->an_ifmedia.ifm_cur->ifm_media;
3063         }
3064
3065         imr->ifm_status = IFM_AVALID;
3066         if (status.an_opmode & AN_STATUS_OPMODE_ASSOCIATED)
3067                 imr->ifm_status |= IFM_ACTIVE;
3068 }
3069
3070 /********************** Cisco utility support routines *************/
3071
3072 /*
3073  * ReadRids & WriteRids derived from Cisco driver additions to Ben Reed's
3074  * Linux driver
3075  */
3076
3077 static int
3078 readrids(ifp, l_ioctl)
3079         struct ifnet   *ifp;
3080         struct aironet_ioctl *l_ioctl;
3081 {
3082         unsigned short  rid;
3083         struct an_softc *sc;
3084
3085         switch (l_ioctl->command) {
3086         case AIROGCAP:
3087                 rid = AN_RID_CAPABILITIES;
3088                 break;
3089         case AIROGCFG:
3090                 rid = AN_RID_GENCONFIG;
3091                 break;
3092         case AIROGSLIST:
3093                 rid = AN_RID_SSIDLIST;
3094                 break;
3095         case AIROGVLIST:
3096                 rid = AN_RID_APLIST;
3097                 break;
3098         case AIROGDRVNAM:
3099                 rid = AN_RID_DRVNAME;
3100                 break;
3101         case AIROGEHTENC:
3102                 rid = AN_RID_ENCAPPROTO;
3103                 break;
3104         case AIROGWEPKTMP:
3105                 rid = AN_RID_WEP_TEMP;
3106                 break;
3107         case AIROGWEPKNV:
3108                 rid = AN_RID_WEP_PERM;
3109                 break;
3110         case AIROGSTAT:
3111                 rid = AN_RID_STATUS;
3112                 break;
3113         case AIROGSTATSD32:
3114                 rid = AN_RID_32BITS_DELTA;
3115                 break;
3116         case AIROGSTATSC32:
3117                 rid = AN_RID_32BITS_CUM;
3118                 break;
3119         default:
3120                 rid = 999;
3121                 break;
3122         }
3123
3124         if (rid == 999) /* Is bad command */
3125                 return -EINVAL;
3126
3127         sc = ifp->if_softc;
3128         sc->areq.an_len  = AN_MAX_DATALEN;
3129         sc->areq.an_type = rid;
3130
3131         an_read_record(sc, (struct an_ltv_gen *)&sc->areq);
3132
3133         l_ioctl->len = sc->areq.an_len - 4;     /* just data */
3134
3135         /* the data contains the length at first */
3136         if (copyout(&(sc->areq.an_len), l_ioctl->data,
3137                     sizeof(sc->areq.an_len))) {
3138                 return -EFAULT;
3139         }
3140         /* Just copy the data back */
3141         if (copyout(&(sc->areq.an_val), l_ioctl->data + 2,
3142                     l_ioctl->len)) {
3143                 return -EFAULT;
3144         }
3145         return 0;
3146 }
3147
3148 static int
3149 writerids(ifp, l_ioctl)
3150         struct ifnet   *ifp;
3151         struct aironet_ioctl *l_ioctl;
3152 {
3153         struct an_softc *sc;
3154         int             rid, command;
3155
3156         sc = ifp->if_softc;
3157         rid = 0;
3158         command = l_ioctl->command;
3159
3160         switch (command) {
3161         case AIROPSIDS:
3162                 rid = AN_RID_SSIDLIST;
3163                 break;
3164         case AIROPCAP:
3165                 rid = AN_RID_CAPABILITIES;
3166                 break;
3167         case AIROPAPLIST:
3168                 rid = AN_RID_APLIST;
3169                 break;
3170         case AIROPCFG:
3171                 rid = AN_RID_GENCONFIG;
3172                 break;
3173         case AIROPMACON:
3174                 an_cmd(sc, AN_CMD_ENABLE, 0);
3175                 return 0;
3176                 break;
3177         case AIROPMACOFF:
3178                 an_cmd(sc, AN_CMD_DISABLE, 0);
3179                 return 0;
3180                 break;
3181         case AIROPSTCLR:
3182                 /*
3183                  * This command merely clears the counts does not actually
3184                  * store any data only reads rid. But as it changes the cards
3185                  * state, I put it in the writerid routines.
3186                  */
3187
3188                 rid = AN_RID_32BITS_DELTACLR;
3189                 sc = ifp->if_softc;
3190                 sc->areq.an_len = AN_MAX_DATALEN;
3191                 sc->areq.an_type = rid;
3192
3193                 an_read_record(sc, (struct an_ltv_gen *)&sc->areq);
3194                 l_ioctl->len = sc->areq.an_len - 4;     /* just data */
3195
3196                 /* the data contains the length at first */
3197                 if (copyout(&(sc->areq.an_len), l_ioctl->data,
3198                             sizeof(sc->areq.an_len))) {
3199                         return -EFAULT;
3200                 }
3201                 /* Just copy the data */
3202                 if (copyout(&(sc->areq.an_val), l_ioctl->data + 2,
3203                             l_ioctl->len)) {
3204                         return -EFAULT;
3205                 }
3206                 return 0;
3207                 break;
3208         case AIROPWEPKEY:
3209                 rid = AN_RID_WEP_TEMP;
3210                 break;
3211         case AIROPWEPKEYNV:
3212                 rid = AN_RID_WEP_PERM;
3213                 break;
3214         case AIROPLEAPUSR:
3215                 rid = AN_RID_LEAPUSERNAME;
3216                 break;
3217         case AIROPLEAPPWD:
3218                 rid = AN_RID_LEAPPASSWORD;
3219                 break;
3220         default:
3221                 return -EOPNOTSUPP;
3222         }
3223
3224         if (rid) {
3225                 if (l_ioctl->len > sizeof(sc->areq.an_val) + 4)
3226                         return -EINVAL;
3227                 sc->areq.an_len = l_ioctl->len + 4;     /* add type & length */
3228                 sc->areq.an_type = rid;
3229
3230                 /* Just copy the data back */
3231                 copyin((l_ioctl->data) + 2, &sc->areq.an_val,
3232                        l_ioctl->len);
3233
3234                 an_cmd(sc, AN_CMD_DISABLE, 0);
3235                 an_write_record(sc, (struct an_ltv_gen *)&sc->areq);
3236                 an_cmd(sc, AN_CMD_ENABLE, 0);
3237                 return 0;
3238         }
3239         return -EOPNOTSUPP;
3240 }
3241
3242 /*
3243  * General Flash utilities derived from Cisco driver additions to Ben Reed's
3244  * Linux driver
3245  */
3246
3247 #define FLASH_DELAY(x)  tsleep(ifp, 0, "flash", ((x) / hz) + 1);
3248 #define FLASH_COMMAND   0x7e7e
3249 #define FLASH_SIZE      32 * 1024
3250
3251 static int
3252 unstickbusy(ifp)
3253         struct ifnet   *ifp;
3254 {
3255         struct an_softc *sc = ifp->if_softc;
3256
3257         if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) & AN_CMD_BUSY) {
3258                 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), 
3259                             AN_EV_CLR_STUCK_BUSY);
3260                 return 1;
3261         }
3262         return 0;
3263 }
3264
3265 /*
3266  * Wait for busy completion from card wait for delay uSec's Return true for
3267  * success meaning command reg is clear
3268  */
3269
3270 static int
3271 WaitBusy(ifp, uSec)
3272         struct ifnet   *ifp;
3273         int             uSec;
3274 {
3275         int             statword = 0xffff;
3276         int             delay = 0;
3277         struct an_softc *sc = ifp->if_softc;
3278
3279         while ((statword & AN_CMD_BUSY) && delay <= (1000 * 100)) {
3280                 FLASH_DELAY(10);
3281                 delay += 10;
3282                 statword = CSR_READ_2(sc, AN_COMMAND(sc->mpi350));
3283
3284                 if ((AN_CMD_BUSY & statword) && (delay % 200)) {
3285                         unstickbusy(ifp);
3286                 }
3287         }
3288
3289         return 0 == (AN_CMD_BUSY & statword);
3290 }
3291
3292 /*
3293  * STEP 1) Disable MAC and do soft reset on card.
3294  */
3295
3296 static int
3297 cmdreset(ifp)
3298         struct ifnet   *ifp;
3299 {
3300         int             status;
3301         struct an_softc *sc = ifp->if_softc;
3302
3303         an_stop(sc);
3304
3305         an_cmd(sc, AN_CMD_DISABLE, 0);
3306
3307         if (!(status = WaitBusy(ifp, AN_TIMEOUT))) {
3308                 if_printf(ifp, "Waitbusy hang b4 RESET =%d\n", status);
3309                 return -EBUSY;
3310         }
3311         CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), AN_CMD_FW_RESTART);
3312
3313         FLASH_DELAY(1000);      /* WAS 600 12/7/00 */
3314
3315
3316         if (!(status = WaitBusy(ifp, 100))) {
3317                 if_printf(ifp, "Waitbusy hang AFTER RESET =%d\n", status);
3318                 return -EBUSY;
3319         }
3320         return 0;
3321 }
3322
3323 /*
3324  * STEP 2) Put the card in legendary flash mode
3325  */
3326
3327 static int
3328 setflashmode(ifp)
3329         struct ifnet   *ifp;
3330 {
3331         int             status;
3332         struct an_softc *sc = ifp->if_softc;
3333
3334         CSR_WRITE_2(sc, AN_SW0(sc->mpi350), FLASH_COMMAND);
3335         CSR_WRITE_2(sc, AN_SW1(sc->mpi350), FLASH_COMMAND);
3336         CSR_WRITE_2(sc, AN_SW0(sc->mpi350), FLASH_COMMAND);
3337         CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), FLASH_COMMAND);
3338
3339         /*
3340          * mdelay(500); // 500ms delay
3341          */
3342
3343         FLASH_DELAY(500);
3344
3345         if (!(status = WaitBusy(ifp, AN_TIMEOUT))) {
3346                 printf("Waitbusy hang after setflash mode\n");
3347                 return -EIO;
3348         }
3349         return 0;
3350 }
3351
3352 /*
3353  * Get a character from the card matching matchbyte Step 3)
3354  */
3355
3356 static int
3357 flashgchar(ifp, matchbyte, dwelltime)
3358         struct ifnet   *ifp;
3359         int             matchbyte;
3360         int             dwelltime;
3361 {
3362         int             rchar;
3363         unsigned char   rbyte = 0;
3364         int             success = -1;
3365         struct an_softc *sc = ifp->if_softc;
3366
3367
3368         do {
3369                 rchar = CSR_READ_2(sc, AN_SW1(sc->mpi350));
3370
3371                 if (dwelltime && !(0x8000 & rchar)) {
3372                         dwelltime -= 10;
3373                         FLASH_DELAY(10);
3374                         continue;
3375                 }
3376                 rbyte = 0xff & rchar;
3377
3378                 if ((rbyte == matchbyte) && (0x8000 & rchar)) {
3379                         CSR_WRITE_2(sc, AN_SW1(sc->mpi350), 0);
3380                         success = 1;
3381                         break;
3382                 }
3383                 if (rbyte == 0x81 || rbyte == 0x82 || rbyte == 0x83 || rbyte == 0x1a || 0xffff == rchar)
3384                         break;
3385                 CSR_WRITE_2(sc, AN_SW1(sc->mpi350), 0);
3386
3387         } while (dwelltime > 0);
3388         return success;
3389 }
3390
3391 /*
3392  * Put character to SWS0 wait for dwelltime x 50us for  echo .
3393  */
3394
3395 static int
3396 flashpchar(ifp, byte, dwelltime)
3397         struct ifnet   *ifp;
3398         int             byte;
3399         int             dwelltime;
3400 {
3401         int             echo;
3402         int             pollbusy, waittime;
3403         struct an_softc *sc = ifp->if_softc;
3404
3405         byte |= 0x8000;
3406
3407         if (dwelltime == 0)
3408                 dwelltime = 200;
3409
3410         waittime = dwelltime;
3411
3412         /*
3413          * Wait for busy bit d15 to go false indicating buffer empty
3414          */
3415         do {
3416                 pollbusy = CSR_READ_2(sc, AN_SW0(sc->mpi350));
3417
3418                 if (pollbusy & 0x8000) {
3419                         FLASH_DELAY(50);
3420                         waittime -= 50;
3421                         continue;
3422                 } else
3423                         break;
3424         }
3425         while (waittime >= 0);
3426
3427         /* timeout for busy clear wait */
3428
3429         if (waittime <= 0) {
3430                 if_printf(ifp, "flash putchar busywait timeout!\n");
3431                 return -1;
3432         }
3433         /*
3434          * Port is clear now write byte and wait for it to echo back
3435          */
3436         do {
3437                 CSR_WRITE_2(sc, AN_SW0(sc->mpi350), byte);
3438                 FLASH_DELAY(50);
3439                 dwelltime -= 50;
3440                 echo = CSR_READ_2(sc, AN_SW1(sc->mpi350));
3441         } while (dwelltime >= 0 && echo != byte);
3442
3443
3444         CSR_WRITE_2(sc, AN_SW1(sc->mpi350), 0);
3445
3446         return echo == byte;
3447 }
3448
3449 /*
3450  * Transfer 32k of firmware data from user buffer to our buffer and send to
3451  * the card
3452  */
3453
3454 static int
3455 flashputbuf(ifp)
3456         struct ifnet   *ifp;
3457 {
3458         unsigned short *bufp;
3459         int             nwords;
3460         struct an_softc *sc = ifp->if_softc;
3461
3462         /* Write stuff */
3463
3464         bufp = sc->an_flash_buffer;
3465
3466         if (!sc->mpi350) {
3467                 CSR_WRITE_2(sc, AN_AUX_PAGE, 0x100);
3468                 CSR_WRITE_2(sc, AN_AUX_OFFSET, 0);
3469
3470                 for (nwords = 0; nwords != FLASH_SIZE / 2; nwords++) {
3471                         CSR_WRITE_2(sc, AN_AUX_DATA, bufp[nwords] & 0xffff);
3472                 }
3473         } else {
3474                 for (nwords = 0; nwords != FLASH_SIZE / 4; nwords++) {
3475                         CSR_MEM_AUX_WRITE_4(sc, 0x8000, 
3476                                 ((u_int32_t *)bufp)[nwords] & 0xffff);
3477                 }
3478         }
3479
3480         CSR_WRITE_2(sc, AN_SW0(sc->mpi350), 0x8000);
3481
3482         return 0;
3483 }
3484
3485 /*
3486  * After flashing restart the card.
3487  */
3488
3489 static int
3490 flashrestart(ifp)
3491         struct ifnet   *ifp;
3492 {
3493         int             status = 0;
3494         struct an_softc *sc = ifp->if_softc;
3495
3496         FLASH_DELAY(1024);              /* Added 12/7/00 */
3497
3498         an_init(sc);
3499
3500         FLASH_DELAY(1024);              /* Added 12/7/00 */
3501         return status;
3502 }
3503
3504 /*
3505  * Entry point for flash ioclt.
3506  */
3507
3508 static int
3509 flashcard(ifp, l_ioctl)
3510         struct ifnet   *ifp;
3511         struct aironet_ioctl *l_ioctl;
3512 {
3513         int             z = 0, status;
3514         struct an_softc *sc;
3515
3516         sc = ifp->if_softc;
3517         if (sc->mpi350) {
3518                 if_printf(ifp, "flashing not supported on MPI 350 yet\n");
3519                 return(-1);
3520         }
3521         status = l_ioctl->command;
3522
3523         switch (l_ioctl->command) {
3524         case AIROFLSHRST:
3525                 return cmdreset(ifp);
3526                 break;
3527         case AIROFLSHSTFL:
3528                 if (sc->an_flash_buffer) {
3529                         free(sc->an_flash_buffer, M_DEVBUF);
3530                         sc->an_flash_buffer = NULL;
3531                 }
3532                 sc->an_flash_buffer = malloc(FLASH_SIZE, M_DEVBUF, 0);
3533                 if (sc->an_flash_buffer)
3534                         return setflashmode(ifp);
3535                 else
3536                         return ENOBUFS;
3537                 break;
3538         case AIROFLSHGCHR:      /* Get char from aux */
3539                 copyin(l_ioctl->data, &sc->areq, l_ioctl->len);
3540                 z = *(int *)&sc->areq;
3541                 if ((status = flashgchar(ifp, z, 8000)) == 1)
3542                         return 0;
3543                 else
3544                         return -1;
3545                 break;
3546         case AIROFLSHPCHR:      /* Send char to card. */
3547                 copyin(l_ioctl->data, &sc->areq, l_ioctl->len);
3548                 z = *(int *)&sc->areq;
3549                 if ((status = flashpchar(ifp, z, 8000)) == -1)
3550                         return -EIO;
3551                 else
3552                         return 0;
3553                 break;
3554         case AIROFLPUTBUF:      /* Send 32k to card */
3555                 if (l_ioctl->len > FLASH_SIZE) {
3556                         if_printf(ifp, "Buffer to big, %x %x\n",
3557                                   l_ioctl->len, FLASH_SIZE);
3558                         return -EINVAL;
3559                 }
3560                 copyin(l_ioctl->data, sc->an_flash_buffer, l_ioctl->len);
3561
3562                 if ((status = flashputbuf(ifp)) != 0)
3563                         return -EIO;
3564                 else
3565                         return 0;
3566                 break;
3567         case AIRORESTART:
3568                 if ((status = flashrestart(ifp)) != 0) {
3569                         if_printf(ifp, "FLASHRESTART returned %d\n", status);
3570                         return -EIO;
3571                 } else
3572                         return 0;
3573
3574                 break;
3575         default:
3576                 return -EINVAL;
3577         }
3578
3579         return -EINVAL;
3580 }