Merge from vendor branch GCC:
[dragonfly.git] / sys / dev / netif / acx / if_acx.c
1 /*
2  * Copyright (c) 2006 The DragonFly Project.  All rights reserved.
3  * 
4  * This code is derived from software contributed to The DragonFly Project
5  * by Sepherosa Ziehau <sepherosa@gmail.com>
6  * 
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  * 
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  * 
34  * $DragonFly: src/sys/dev/netif/acx/if_acx.c,v 1.15 2007/01/02 23:28:49 swildner Exp $
35  */
36
37 /*
38  * Copyright (c) 2003-2004 wlan.kewl.org Project
39  * All rights reserved.
40  * 
41  * $Id: LICENSE,v 1.1.1.1 2004/07/01 12:20:39 darron Exp $
42  *  
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 
47  * 1. Redistributions of source code must retain the above copyright
48  *    notice, this list of conditions and the following disclaimer.
49  * 
50  * 2. Redistributions in binary form must reproduce the above copyright
51  *    notice, this list of conditions and the following disclaimer in the
52  *    documentation and/or other materials provided with the distribution.
53  *    
54  * 3. All advertising materials mentioning features or use of this software
55  *    must display the following acknowledgement:
56  * 
57  *    This product includes software developed by the wlan.kewl.org Project.
58  * 
59  * 4. Neither the name of the wlan.kewl.org Project nor the names of its
60  *    contributors may be used to endorse or promote products derived from
61  *    this software without specific prior written permission.
62  * 
63  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
64  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
65  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL
66  * THE wlan.kewl.org Project BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
67  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
68  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
69  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
70  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
71  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
72  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
73  */
74
75 #include <sys/param.h>
76 #include <sys/endian.h>
77 #include <sys/kernel.h>
78 #include <sys/bus.h>
79 #include <sys/malloc.h>
80 #include <sys/proc.h>
81 #include <sys/rman.h>
82 #include <sys/serialize.h>
83 #include <sys/socket.h>
84 #include <sys/sockio.h>
85 #include <sys/sysctl.h>
86
87 #include <net/ethernet.h>
88 #include <net/if.h>
89 #include <net/bpf.h>
90 #include <net/if_arp.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/ifq_var.h>
94
95 #include <netproto/802_11/ieee80211_var.h>
96
97 #include <bus/pci/pcireg.h>
98 #include <bus/pci/pcivar.h>
99 #include <bus/pci/pcidevs.h>
100
101 #define ACX_DEBUG
102
103 #include "if_acxreg.h"
104 #include "if_acxvar.h"
105 #include "acxcmd.h"
106
107 #define ACX_ENABLE_TXCHAN(sc, chan)                                     \
108 do {                                                                    \
109         if (acx_enable_txchan((sc), (chan)) != 0) {                     \
110                 if_printf(&(sc)->sc_ic.ic_if,                           \
111                           "enable TX on channel %d failed\n", (chan));  \
112         }                                                               \
113 } while (0)
114
115 #define ACX_ENABLE_RXCHAN(sc, chan)                                     \
116 do {                                                                    \
117         if (acx_enable_rxchan((sc), (chan)) != 0) {                     \
118                 if_printf(&(sc)->sc_ic.ic_if,                           \
119                           "enable RX on channel %d failed\n", (chan));  \
120         }                                                               \
121 } while (0)
122
123 #define SIOCSLOADFW     _IOW('i', 137, struct ifreq)    /* load firmware */
124 #define SIOCGRADIO      _IOW('i', 138, struct ifreq)    /* get radio type */
125 #define SIOCGSTATS      _IOW('i', 139, struct ifreq)    /* get acx stats */
126 #define SIOCSKILLFW     _IOW('i', 140, struct ifreq)    /* free firmware */
127 #define SIOCGFWVER      _IOW('i', 141, struct ifreq)    /* get firmware ver */
128 #define SIOCGHWID       _IOW('i', 142, struct ifreq)    /* get hardware id */
129
130 static int      acx_probe(device_t);
131 static int      acx_attach(device_t);
132 static int      acx_detach(device_t);
133 static int      acx_shutdown(device_t);
134 static int      acx_media_change(struct ifnet *);
135
136 static void     acx_init(void *);
137 static int      acx_stop(struct acx_softc *);
138 static void     acx_init_info_reg(struct acx_softc *);
139 static int      acx_config(struct acx_softc *);
140 static int      acx_read_config(struct acx_softc *, struct acx_config *);
141 static int      acx_write_config(struct acx_softc *, struct acx_config *);
142 static int      acx_set_crypt_keys(struct acx_softc *);
143 #ifdef foo
144 static void     acx_begin_scan(struct acx_softc *);
145 #endif
146 static void     acx_next_scan(void *);
147
148 static void     acx_start(struct ifnet *);
149 static void     acx_watchdog(struct ifnet *);
150
151 static int      acx_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
152
153 static void     acx_intr(void *);
154 static void     acx_disable_intr(struct acx_softc *);
155 static void     acx_enable_intr(struct acx_softc *);
156 static void     acx_txeof(struct acx_softc *);
157 static void     acx_txerr(struct acx_softc *, uint8_t);
158 static void     acx_rxeof(struct acx_softc *);
159
160 static int      acx_dma_alloc(struct acx_softc *);
161 static void     acx_dma_free(struct acx_softc *);
162 static int      acx_init_tx_ring(struct acx_softc *);
163 static int      acx_init_rx_ring(struct acx_softc *);
164 static int      acx_newbuf(struct acx_softc *, struct acx_rxbuf *, int);
165 static int      acx_encap(struct acx_softc *, struct acx_txbuf *,
166                           struct mbuf *, struct ieee80211_node *);
167
168 static int      acx_reset(struct acx_softc *);
169
170 static int      acx_set_null_tmplt(struct acx_softc *);
171 static int      acx_set_probe_req_tmplt(struct acx_softc *, const char *, int);
172 static int      acx_set_probe_resp_tmplt(struct acx_softc *,
173                                          struct ieee80211_node *);
174 static int      acx_set_beacon_tmplt(struct acx_softc *,
175                                      struct ieee80211_node *);
176
177 static int      acx_read_eeprom(struct acx_softc *, uint32_t, uint8_t *);
178 static int      acx_read_phyreg(struct acx_softc *, uint32_t, uint8_t *);
179
180 static int      acx_copyin_firmware(struct acx_softc *, struct ifreq *);
181 static void     acx_free_firmware(struct acx_softc *);
182 static int      acx_load_firmware(struct acx_softc *, uint32_t,
183                                   const uint8_t *, int);
184 static int      acx_load_radio_firmware(struct acx_softc *, const uint8_t *,
185                                         uint32_t);
186 static int      acx_load_base_firmware(struct acx_softc *, const uint8_t *,
187                                        uint32_t);
188
189 static int      acx_newstate(struct ieee80211com *, enum ieee80211_state, int);
190
191 static int      acx_sysctl_msdu_lifetime(SYSCTL_HANDLER_ARGS);
192
193 const struct ieee80211_rateset  acx_rates_11b =
194         { 5, { 2, 4, 11, 22, 44 } };
195 const struct ieee80211_rateset  acx_rates_11g =
196         { 13, { 2, 4, 11, 22, 44, 12, 18, 24, 36, 48, 72, 96, 108 } };
197
198 static int      acx_chanscan_rate = 5;  /* 5/second */
199
200 static const struct acx_device {
201         uint16_t        vid;
202         uint16_t        did;
203         void            (*set_param)(device_t);
204         const char      *desc;
205 } acx_devices[] = {
206         { PCI_VENDOR_TI, PCI_PRODUCT_TI_ACX100A, acx100_set_param,
207           "Texas Instruments TNETW1100A Wireless Adapter" },
208         { PCI_VENDOR_TI, PCI_PRODUCT_TI_ACX100B, acx100_set_param,
209           "Texas Instruments TNETW1100B Wireless Adapter" },
210         { PCI_VENDOR_TI, PCI_PRODUCT_TI_ACX111, acx111_set_param,
211           "Texas Instruments TNETW1130 Wireless Adapter" },
212         { 0, 0, NULL, NULL }
213 };
214
215 static device_method_t acx_methods[] = {
216         DEVMETHOD(device_probe,         acx_probe),
217         DEVMETHOD(device_attach,        acx_attach),
218         DEVMETHOD(device_detach,        acx_detach),
219         DEVMETHOD(device_shutdown,      acx_shutdown),
220 #if 0
221         DEVMETHOD(device_suspend,       acx_suspend),
222         DEVMETHOD(device_resume,        acx_resume),
223 #endif
224         { 0, 0 }
225 };
226
227 static driver_t acx_driver = {
228         "acx",
229         acx_methods,
230         sizeof(struct acx_softc)
231 };
232
233 static devclass_t acx_devclass;
234
235 DRIVER_MODULE(acx, pci, acx_driver, acx_devclass, 0, 0);
236 DRIVER_MODULE(acx, cardbus, acx_driver, acx_devclass, 0, 0);
237
238 MODULE_DEPEND(acx, wlan, 1, 1, 1);
239 MODULE_DEPEND(acx, wlan_ratectl_onoe, 1, 1, 1);
240 MODULE_DEPEND(acx, wlan_ratectl_amrr, 1, 1, 1);
241 MODULE_DEPEND(acx, pci, 1, 1, 1);
242 MODULE_DEPEND(acx, cardbus, 1, 1, 1);
243
244 static int
245 acx_probe(device_t dev)
246 {
247         const struct acx_device *a;
248         uint16_t did, vid;
249
250         vid = pci_get_vendor(dev);
251         did = pci_get_device(dev);
252         for (a = acx_devices; a->desc != NULL; ++a) {
253                 if (vid == a->vid && did == a->did) {
254                         a->set_param(dev);
255                         device_set_desc(dev, a->desc);
256                         return 0;
257                 }
258         }
259         return ENXIO;
260 }
261
262 static int
263 acx_attach(device_t dev)
264 {
265         struct acx_softc *sc;
266         struct ifnet *ifp;
267         struct ieee80211com *ic;
268         int i, error;
269
270         sc = device_get_softc(dev);
271         ic = &sc->sc_ic;
272         ifp = &ic->ic_if;
273
274         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
275
276 #ifndef BURN_BRIDGES
277         if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
278                 uint32_t mem1, mem2, irq;
279
280                 mem1 = pci_read_config(dev, sc->chip_mem1_rid, 4);
281                 mem2 = pci_read_config(dev, sc->chip_mem2_rid, 4);
282                 irq = pci_read_config(dev, PCIR_INTLINE, 4);
283
284                 device_printf(dev, "chip is in D%d power mode "
285                     "-- setting to D0\n", pci_get_powerstate(dev));
286
287                 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
288
289                 pci_write_config(dev, sc->chip_mem1_rid, mem1, 4);
290                 pci_write_config(dev, sc->chip_mem2_rid, mem2, 4);
291                 pci_write_config(dev, PCIR_INTLINE, irq, 4);
292         }
293 #endif  /* !BURN_BRIDGE */
294
295         /* Enable bus mastering */
296         pci_enable_busmaster(dev); 
297
298         /* Allocate IO memory 1 */
299         sc->sc_mem1_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
300                                                  &sc->chip_mem1_rid,
301                                                  RF_ACTIVE);
302         if (sc->sc_mem1_res == NULL) {
303                 error = ENXIO;
304                 device_printf(dev, "can't allocate IO mem1\n");
305                 goto fail;
306         }
307         sc->sc_mem1_bt = rman_get_bustag(sc->sc_mem1_res);
308         sc->sc_mem1_bh = rman_get_bushandle(sc->sc_mem1_res);
309
310         /* Allocate IO memory 2 */
311         sc->sc_mem2_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
312                                                  &sc->chip_mem2_rid,
313                                                  RF_ACTIVE);
314         if (sc->sc_mem2_res == NULL) {
315                 error = ENXIO;
316                 device_printf(dev, "can't allocate IO mem2\n");
317                 goto fail;
318         }
319         sc->sc_mem2_bt = rman_get_bustag(sc->sc_mem2_res);
320         sc->sc_mem2_bh = rman_get_bushandle(sc->sc_mem2_res);
321
322         /* Allocate irq */
323         sc->sc_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
324                                                 &sc->sc_irq_rid,
325                                                 RF_SHAREABLE | RF_ACTIVE);
326         if (sc->sc_irq_res == NULL) {
327                 error = ENXIO;
328                 device_printf(dev, "can't allocate intr\n");
329                 goto fail;
330         }
331
332         /* Initilize channel scanning timer */
333         callout_init(&sc->sc_chanscan_timer);
334
335         /* Allocate busdma stuffs */
336         error = acx_dma_alloc(sc);
337         if (error)
338                 goto fail;
339
340         /* Reset Hardware */
341         error = acx_reset(sc);
342         if (error)
343                 goto fail;
344
345         /* Disable interrupts before firmware is loaded */
346         acx_disable_intr(sc);
347
348         /* Get radio type and form factor */
349 #define EEINFO_RETRY_MAX        50
350         for (i = 0; i < EEINFO_RETRY_MAX; ++i) {
351                 uint16_t ee_info;
352
353                 ee_info = CSR_READ_2(sc, ACXREG_EEPROM_INFO);
354                 if (ACX_EEINFO_HAS_RADIO_TYPE(ee_info)) {
355                         sc->sc_form_factor = ACX_EEINFO_FORM_FACTOR(ee_info);
356                         sc->sc_radio_type = ACX_EEINFO_RADIO_TYPE(ee_info);
357                         break;
358                 }
359                 DELAY(10000);
360         }
361         if (i == EEINFO_RETRY_MAX) {
362                 error = ENXIO;
363                 goto fail;
364         }
365 #undef EEINFO_RETRY_MAX
366
367         DPRINTF((&sc->sc_ic.ic_if, "radio type %02x\n", sc->sc_radio_type));
368
369 #ifdef DUMP_EEPROM
370         for (i = 0; i < 0x40; ++i) {
371                 uint8_t val;
372
373                 error = acx_read_eeprom(sc, i, &val);
374                 if (i % 10 == 0)
375                         kprintf("\n");
376                 kprintf("%02x ", val);
377         }
378         kprintf("\n");
379 #endif  /* DUMP_EEPROM */
380
381         /* Get EEPROM version */
382         error = acx_read_eeprom(sc, ACX_EE_VERSION_OFS, &sc->sc_eeprom_ver);
383         if (error)
384                 goto fail;
385         DPRINTF((&sc->sc_ic.ic_if, "EEPROM version %u\n", sc->sc_eeprom_ver));
386
387         ifp->if_softc = sc;
388         ifp->if_init = acx_init;
389         ifp->if_ioctl = acx_ioctl;
390         ifp->if_start = acx_start;
391         ifp->if_watchdog = acx_watchdog;
392         ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
393         ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
394         ifq_set_ready(&ifp->if_snd);
395
396         /* Set channels */
397         for (i = 1; i <= 14; ++i) {
398                 ic->ic_channels[i].ic_freq =
399                         ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
400                 ic->ic_channels[i].ic_flags = sc->chip_chan_flags;
401         }
402
403         ic->ic_opmode = IEEE80211_M_STA;
404         ic->ic_state = IEEE80211_S_INIT;
405
406         /*
407          * NOTE: Don't overwrite ic_caps set by chip specific code
408          */
409         ic->ic_caps |= IEEE80211_C_WEP |        /* WEP */
410                        IEEE80211_C_HOSTAP |     /* Host AP modes */
411                        IEEE80211_C_IBSS |       /* IBSS modes */
412                        IEEE80211_C_SHPREAMBLE;  /* Short preamble */
413         ic->ic_caps_ext = IEEE80211_CEXT_PBCC;  /* PBCC modulation */
414
415         /* Get station id */
416         for (i = 0; i < IEEE80211_ADDR_LEN; ++i) {
417                 error = acx_read_eeprom(sc, sc->chip_ee_eaddr_ofs - i,
418                                         &ic->ic_myaddr[i]);
419         }
420
421         ieee80211_ifattach(ic);
422
423         /* Enable software beacon missing */
424         ic->ic_flags_ext |= IEEE80211_FEXT_SWBMISS;
425
426         /* Override newstate */
427         sc->sc_newstate = ic->ic_newstate;
428         ic->ic_newstate = acx_newstate;
429
430         ieee80211_media_init(ic, acx_media_change, ieee80211_media_status);
431
432         sc->sc_long_retry_limit = 4;
433         sc->sc_msdu_lifetime = 4096;
434
435         sysctl_ctx_init(&sc->sc_sysctl_ctx);
436         sc->sc_sysctl_tree = SYSCTL_ADD_NODE(&sc->sc_sysctl_ctx,
437                                              SYSCTL_STATIC_CHILDREN(_hw),
438                                              OID_AUTO,
439                                              device_get_nameunit(dev),
440                                              CTLFLAG_RD, 0, "");
441         if (sc->sc_sysctl_tree == NULL) {
442                 device_printf(dev, "can't add sysctl node\n");
443                 error = ENXIO;
444                 goto fail1;
445         }
446
447         SYSCTL_ADD_PROC(&sc->sc_sysctl_ctx,
448                         SYSCTL_CHILDREN(sc->sc_sysctl_tree),
449                         OID_AUTO, "msdu_lifetime",
450                         CTLTYPE_INT | CTLFLAG_RW,
451                         sc, 0, acx_sysctl_msdu_lifetime, "I",
452                         "MSDU life time");
453
454         error = bus_setup_intr(dev, sc->sc_irq_res, INTR_MPSAFE, acx_intr, sc,
455                                &sc->sc_irq_handle, ifp->if_serializer);
456         if (error) {
457                 device_printf(dev, "can't set up interrupt\n");
458                 goto fail1;
459         }
460
461         if (bootverbose)
462                 ieee80211_announce(ic);
463
464         return 0;
465 fail1:
466         ieee80211_ifdetach(ic);
467 fail:
468         acx_detach(dev);
469         return error;
470 }
471
472 static int
473 acx_detach(device_t dev)
474 {
475         struct acx_softc *sc = device_get_softc(dev);
476
477         if (device_is_attached(dev)) {
478                 struct ieee80211com *ic = &sc->sc_ic;
479                 struct ifnet *ifp = &ic->ic_if;
480
481                 lwkt_serialize_enter(ifp->if_serializer);
482
483                 acx_stop(sc);
484                 acx_free_firmware(sc);
485                 bus_teardown_intr(dev, sc->sc_irq_res, sc->sc_irq_handle);
486
487                 lwkt_serialize_exit(ifp->if_serializer);
488
489                 ieee80211_ifdetach(ic);
490         }
491
492         if (sc->sc_sysctl_tree != NULL)
493                 sysctl_ctx_free(&sc->sc_sysctl_ctx);
494
495         if (sc->sc_irq_res != NULL) {
496                 bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irq_rid,
497                                      sc->sc_irq_res);
498         }
499         if (sc->sc_mem1_res != NULL) {
500                 bus_release_resource(dev, SYS_RES_MEMORY, sc->chip_mem1_rid,
501                                      sc->sc_mem1_res);
502         }
503         if (sc->sc_mem2_res != NULL) {
504                 bus_release_resource(dev, SYS_RES_MEMORY, sc->chip_mem2_rid,
505                                      sc->sc_mem2_res);
506         }
507
508         acx_dma_free(sc);
509         return 0;
510 }
511
512 static int
513 acx_shutdown(device_t dev)
514 {
515         struct acx_softc *sc = device_get_softc(dev);
516
517         lwkt_serialize_enter(sc->sc_ic.ic_if.if_serializer);
518         acx_stop(sc);
519         lwkt_serialize_exit(sc->sc_ic.ic_if.if_serializer);
520         return 0;
521 }
522
523 static void
524 acx_init(void *arg)
525 {
526         struct acx_softc *sc = arg;
527         struct ifnet *ifp = &sc->sc_ic.ic_if;
528         struct acx_firmware *fw = &sc->sc_firmware;
529         int error;
530
531         error = acx_stop(sc);
532         if (error)
533                 return;
534
535         if (fw->base_fw == NULL) {
536                 error = EINVAL;
537                 if_printf(ifp, "base firmware is not loaded yet\n");
538                 return;
539         }
540
541         error = acx_init_tx_ring(sc);
542         if (error) {
543                 if_printf(ifp, "can't initialize TX ring\n");
544                 goto back;
545         }
546
547         error = acx_init_rx_ring(sc);
548         if (error) {
549                 if_printf(ifp, "can't initialize RX ring\n");
550                 goto back;
551         }
552
553         error = acx_load_base_firmware(sc, fw->base_fw, fw->base_fw_len);
554         if (error)
555                 goto back;
556
557         /*
558          * Initialize command and information registers
559          * NOTE: This should be done after base firmware is loaded
560          */
561         acx_init_cmd_reg(sc);
562         acx_init_info_reg(sc);
563
564         sc->sc_flags |= ACX_FLAG_FW_LOADED;
565
566 #if 0
567         if (sc->chip_post_basefw != NULL) {
568                 error = sc->chip_post_basefw(sc);
569                 if (error)
570                         goto back;
571         }
572 #endif
573
574         if (fw->radio_fw != NULL) {
575                 error = acx_load_radio_firmware(sc, fw->radio_fw,
576                                                 fw->radio_fw_len);
577                 if (error)
578                         goto back;
579         }
580
581         error = sc->chip_init(sc);
582         if (error)
583                 goto back;
584
585         /* Get and set device various configuration */
586         error = acx_config(sc);
587         if (error)
588                 goto back;
589
590         /* Setup crypto stuffs */
591         if (sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) {
592                 error = acx_set_crypt_keys(sc);
593                 if (error)
594                         goto back;
595                 sc->sc_ic.ic_flags &= ~IEEE80211_F_DROPUNENC;
596         }
597
598         /* Turn on power led */
599         CSR_CLRB_2(sc, ACXREG_GPIO_OUT, sc->chip_gpio_pled);
600
601         acx_enable_intr(sc);
602
603         ifp->if_flags |= IFF_RUNNING;
604         ifp->if_flags &= ~IFF_OACTIVE;
605
606         /* Begin background scanning */
607 #ifdef foo
608         acx_begin_scan(sc);
609 #else
610         ieee80211_new_state(&sc->sc_ic, IEEE80211_S_SCAN, -1);
611 #endif
612
613 back:
614         if (error)
615                 acx_stop(sc);
616 }
617
618 static void
619 acx_init_info_reg(struct acx_softc *sc)
620 {
621         sc->sc_info = CSR_READ_4(sc, ACXREG_INFO_REG_OFFSET);
622         sc->sc_info_param = sc->sc_info + ACX_INFO_REG_SIZE;
623 }
624
625 static int
626 acx_set_crypt_keys(struct acx_softc *sc)
627 {
628         struct ieee80211com *ic = &sc->sc_ic;
629         struct acx_conf_wep_txkey wep_txkey;
630         int i, error, got_wk = 0;
631
632         for (i = 0; i < IEEE80211_WEP_NKID; ++i) {
633                 struct ieee80211_key *wk = &ic->ic_nw_keys[i];
634
635                 if (wk->wk_keylen == 0)
636                         continue;
637
638                 if (sc->chip_hw_crypt) {
639                         error = sc->chip_set_wepkey(sc, wk, i);
640                         if (error)
641                                 return error;
642                         got_wk = 1;
643                 } else if (wk->wk_flags & IEEE80211_KEY_XMIT) {
644                         wk->wk_flags |= IEEE80211_KEY_SWCRYPT;
645                 }
646         }
647
648         if (!got_wk || sc->chip_hw_crypt ||
649             ic->ic_def_txkey == IEEE80211_KEYIX_NONE)
650                 return 0;
651
652         /* Set current WEP key index */
653         wep_txkey.wep_txkey = ic->ic_def_txkey;
654         if (acx_set_wep_txkey_conf(sc, &wep_txkey) != 0) {
655                 if_printf(&ic->ic_if, "set WEP txkey failed\n");
656                 return ENXIO;
657         }
658         return 0;
659 }
660
661 #ifdef foo
662 static void
663 acx_begin_scan(struct acx_softc *sc)
664 {
665         struct ieee80211com *ic = &sc->sc_ic;
666         uint8_t chan;
667
668         ieee80211_begin_scan(ic, 1);
669
670         chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
671
672         ACX_ENABLE_TXCHAN(sc, chan);
673         ACX_ENABLE_RXCHAN(sc, chan);
674
675         /* Start background scanning */
676         callout_reset(&sc->sc_chanscan_timer, hz / acx_chanscan_rate,
677                       acx_next_scan, sc);
678 }
679 #endif
680
681 static void
682 acx_next_scan(void *arg)
683 {
684         struct acx_softc *sc = arg;
685         struct ieee80211com *ic = &sc->sc_ic;
686         struct ifnet *ifp = &ic->ic_if;
687
688         lwkt_serialize_enter(ifp->if_serializer);
689
690         if (ic->ic_state == IEEE80211_S_SCAN) {
691 #if 0
692                 uint8_t chan;
693 #endif
694
695                 ieee80211_next_scan(ic);
696
697 #if 0
698                 chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
699
700                 ACX_ENABLE_TXCHAN(sc, chan);
701                 ACX_ENABLE_RXCHAN(sc, chan);
702
703                 callout_reset(&sc->sc_chanscan_timer, hz / acx_chanscan_rate,
704                               acx_next_scan, sc);
705 #endif
706         }
707
708         lwkt_serialize_exit(ifp->if_serializer);
709 }
710
711 static int
712 acx_stop(struct acx_softc *sc)
713 {
714         struct ieee80211com *ic = &sc->sc_ic;
715         struct ifnet *ifp = &ic->ic_if;
716         struct acx_buf_data *bd = &sc->sc_buf_data;
717         struct acx_ring_data *rd = &sc->sc_ring_data;
718         int i, error;
719
720         ASSERT_SERIALIZED(ifp->if_serializer);
721
722         ieee80211_new_state(&sc->sc_ic, IEEE80211_S_INIT, -1);
723
724         sc->sc_firmware_ver = 0;
725         sc->sc_hardware_id = 0;
726
727         /* Reset hardware */
728         error = acx_reset(sc);
729         if (error)
730                 return error;
731
732         /* Firmware no longer functions after hardware reset */
733         sc->sc_flags &= ~ACX_FLAG_FW_LOADED;
734
735         acx_disable_intr(sc);
736
737         /* Stop backgroud scanning */
738         callout_stop(&sc->sc_chanscan_timer);
739
740         /* Turn off power led */
741         CSR_SETB_2(sc, ACXREG_GPIO_OUT, sc->chip_gpio_pled);
742
743         /* Free TX mbuf */
744         for (i = 0; i < ACX_TX_DESC_CNT; ++i) {
745                 struct acx_txbuf *buf;
746
747                 buf = &bd->tx_buf[i];
748
749                 if (buf->tb_mbuf != NULL) {
750                         bus_dmamap_unload(bd->mbuf_dma_tag,
751                                           buf->tb_mbuf_dmamap);
752                         m_freem(buf->tb_mbuf);
753                         buf->tb_mbuf = NULL;
754                 }
755
756                 if (buf->tb_node != NULL)
757                         ieee80211_free_node(buf->tb_node);
758                 buf->tb_node = NULL;
759         }
760
761         /* Clear TX host descriptors */
762         bzero(rd->tx_ring, ACX_TX_RING_SIZE);
763
764         /* Free RX mbuf */
765         for (i = 0; i < ACX_RX_DESC_CNT; ++i) {
766                 if (bd->rx_buf[i].rb_mbuf != NULL) {
767                         bus_dmamap_unload(bd->mbuf_dma_tag,
768                                           bd->rx_buf[i].rb_mbuf_dmamap);
769                         m_freem(bd->rx_buf[i].rb_mbuf);
770                         bd->rx_buf[i].rb_mbuf = NULL;
771                 }
772         }
773
774         /* Clear RX host descriptors */
775         bzero(rd->rx_ring, ACX_RX_RING_SIZE);
776
777         sc->sc_tx_timer = 0;
778         ifp->if_timer = 0;
779         ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
780
781         return 0;
782 }
783
784 static int
785 acx_config(struct acx_softc *sc)
786 {
787         struct acx_config conf;
788         int error;
789
790         error = acx_read_config(sc, &conf);
791         if (error)
792                 return error;
793
794         error = acx_write_config(sc, &conf);
795         if (error)
796                 return error;
797
798         if (acx_set_probe_req_tmplt(sc, "", 0) != 0) {
799                 if_printf(&sc->sc_ic.ic_if, "can't set probe req template "
800                           "(empty ssid)\n");
801                 return ENXIO;
802         }
803
804         /* XXX for PM?? */
805         if (acx_set_null_tmplt(sc) != 0) {
806                 if_printf(&sc->sc_ic.ic_if, "can't set null data template\n");
807                 return ENXIO;
808         }
809         return 0;
810 }
811
812 static int
813 acx_read_config(struct acx_softc *sc, struct acx_config *conf)
814 {
815         struct acx_conf_eaddr addr;
816         struct acx_conf_regdom reg_dom;
817         struct acx_conf_antenna ant;
818         struct acx_conf_fwrev fw_rev;
819         uint32_t fw_rev_no;
820         uint8_t sen;
821         int i, error;
822
823         /* Get station id */
824         if (acx_get_eaddr_conf(sc, &addr) != 0) {
825                 if_printf(&sc->sc_ic.ic_if, "can't get station id\n");
826                 return ENXIO;
827         }
828
829         /*
830          * Get and print station id in case that EEPROM station id's
831          * offset is not correct
832          */
833         for (i = 0; i < IEEE80211_ADDR_LEN; ++i)
834                 conf->eaddr[IEEE80211_ADDR_LEN - 1 - i] = addr.eaddr[i];
835         if_printf(&sc->sc_ic.ic_if, "MAC address (from firmware): %6D\n",
836                   conf->eaddr, ":");
837
838         /* Get region domain */
839         if (acx_get_regdom_conf(sc, &reg_dom) != 0) {
840                 if_printf(&sc->sc_ic.ic_if, "can't get region domain\n");
841                 return ENXIO;
842         }
843         conf->regdom = reg_dom.regdom;
844         DPRINTF((&sc->sc_ic.ic_if, "regdom %02x\n", reg_dom.regdom));
845
846         /* Get antenna */
847         if (acx_get_antenna_conf(sc, &ant) != 0) {
848                 if_printf(&sc->sc_ic.ic_if, "can't get antenna\n");
849                 return ENXIO;
850         }
851         conf->antenna = ant.antenna;
852         DPRINTF((&sc->sc_ic.ic_if, "antenna %02x\n", ant.antenna));
853
854         /* Get sensitivity XXX not used */
855         if (sc->sc_radio_type == ACX_RADIO_TYPE_MAXIM ||
856             sc->sc_radio_type == ACX_RADIO_TYPE_RFMD ||
857             sc->sc_radio_type == ACX_RADIO_TYPE_RALINK) {
858                 error = acx_read_phyreg(sc, ACXRV_PHYREG_SENSITIVITY, &sen);
859                 if (error) {
860                         if_printf(&sc->sc_ic.ic_if, "can't get sensitivity\n");
861                         return error;
862                 }
863         } else {
864                 sen = 0;
865         }
866         DPRINTF((&sc->sc_ic.ic_if, "sensitivity %02x\n", sen));
867
868         /* Get firmware revision */
869         if (acx_get_fwrev_conf(sc, &fw_rev) != 0) {
870                 if_printf(&sc->sc_ic.ic_if, "can't get firmware revision\n");
871                 return ENXIO;
872         }
873
874         if (strncmp(fw_rev.fw_rev, "Rev ", 4) != 0) {
875                 if_printf(&sc->sc_ic.ic_if, "strange revision string -- %s\n",
876                           fw_rev.fw_rev);
877                 fw_rev_no = 0x01090407;
878         } else {
879                 char *s, *endp;
880
881                 /*
882                  *  01234
883                  * "Rev xx.xx.xx.xx"
884                  *      ^ Start from here
885                  */
886                 s = &fw_rev.fw_rev[4];
887                 fw_rev_no = 0;
888                 for (i = 0; i < 4; ++i) {
889                         uint8_t val;
890
891                         val = strtoul(s, &endp, 16);
892                         fw_rev_no |= val << ((3 - i) * 8);
893
894                         if (*endp == '\0')
895                                 break;
896                         else
897                                 s = ++endp;
898                 }
899         }
900         sc->sc_firmware_ver = fw_rev_no;
901         sc->sc_hardware_id = le32toh(fw_rev.hw_id);
902         DPRINTF((&sc->sc_ic.ic_if, "fw rev %08x, hw id %08x\n",
903                  sc->sc_firmware_ver, sc->sc_hardware_id));
904
905         if (sc->chip_read_config != NULL) {
906                 error = sc->chip_read_config(sc, conf);
907                 if (error)
908                         return error;
909         }
910         return 0;
911 }
912
913 static int
914 acx_write_config(struct acx_softc *sc, struct acx_config *conf)
915 {
916         struct acx_conf_nretry_short sretry;
917         struct acx_conf_nretry_long lretry;
918         struct acx_conf_msdu_lifetime msdu_lifetime;
919         struct acx_conf_rate_fallback rate_fb;
920         struct acx_conf_antenna ant;
921         struct acx_conf_regdom reg_dom;
922         struct acx_conf_rxopt rx_opt;
923         int error;
924
925         /* Set number of long/short retry */
926         KKASSERT(sc->chip_short_retry_limit > 0);
927         sretry.nretry = sc->chip_short_retry_limit;
928         if (acx_set_nretry_short_conf(sc, &sretry) != 0) {
929                 if_printf(&sc->sc_ic.ic_if, "can't set short retry limit\n");
930                 return ENXIO;
931         }
932
933         lretry.nretry = sc->sc_long_retry_limit;
934         if (acx_set_nretry_long_conf(sc, &lretry) != 0) {
935                 if_printf(&sc->sc_ic.ic_if, "can't set long retry limit\n");
936                 return ENXIO;
937         }
938
939         /* Set MSDU lifetime */
940         msdu_lifetime.lifetime = htole32(sc->sc_msdu_lifetime);
941         if (acx_set_msdu_lifetime_conf(sc, &msdu_lifetime) != 0) {
942                 if_printf(&sc->sc_ic.ic_if, "can't set MSDU lifetime\n");
943                 return ENXIO;
944         }
945
946         /* Enable rate fallback */
947         rate_fb.ratefb_enable = 1;
948         if (acx_set_rate_fallback_conf(sc, &rate_fb) != 0) {
949                 if_printf(&sc->sc_ic.ic_if, "can't enable rate fallback\n");
950                 return ENXIO;
951         }
952
953         /* Set antenna */
954         ant.antenna = conf->antenna;
955         if (acx_set_antenna_conf(sc, &ant) != 0) {
956                 if_printf(&sc->sc_ic.ic_if, "can't set antenna\n");
957                 return ENXIO;
958         }
959
960         /* Set region domain */
961         reg_dom.regdom = conf->regdom;
962         if (acx_set_regdom_conf(sc, &reg_dom) != 0) {
963                 if_printf(&sc->sc_ic.ic_if, "can't set region domain\n");
964                 return ENXIO;
965         }
966
967         if (sc->chip_write_config != NULL) {
968                 error = sc->chip_write_config(sc, conf);
969                 if (error)
970                         return error;
971         }
972
973         /* What we want to receive and how to receive */
974         /* XXX may not belong here, acx_init() */
975         rx_opt.opt1 = RXOPT1_FILT_FDEST | RXOPT1_INCL_RXBUF_HDR;
976         rx_opt.opt2 = RXOPT2_RECV_ASSOC_REQ |
977                       RXOPT2_RECV_AUTH |
978                       RXOPT2_RECV_BEACON |
979                       RXOPT2_RECV_CF |
980                       RXOPT2_RECV_CTRL |
981                       RXOPT2_RECV_DATA |
982                       RXOPT2_RECV_MGMT |
983                       RXOPT2_RECV_PROBE_REQ |
984                       RXOPT2_RECV_PROBE_RESP |
985                       RXOPT2_RECV_OTHER;
986         if (acx_set_rxopt_conf(sc, &rx_opt) != 0) {
987                 if_printf(&sc->sc_ic.ic_if, "can't set RX option\n");
988                 return ENXIO;
989         }
990         return 0;
991 }
992
993 static int
994 acx_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
995 {
996         struct acx_softc *sc = ifp->if_softc;
997         struct ifreq *req;
998         int error;
999
1000         error = 0;
1001         req = (struct ifreq *)data;
1002
1003         switch (cmd) {
1004         case SIOCSLOADFW:
1005                 error = suser_cred(cr, NULL_CRED_OKAY);
1006                 if (error)
1007                         break;
1008
1009                 error = acx_copyin_firmware(sc, req);
1010                 break;
1011         case SIOCSKILLFW:
1012                 error = suser_cred(cr, NULL_CRED_OKAY);
1013                 if (error)
1014                         break;
1015                 acx_free_firmware(sc);
1016                 break;
1017         case SIOCGRADIO:
1018                 error = copyout(&sc->sc_radio_type, req->ifr_data,
1019                                 sizeof(sc->sc_radio_type));
1020                 break;
1021         case SIOCGFWVER:
1022                 error = copyout(&sc->sc_firmware_ver, req->ifr_data,
1023                                 sizeof(sc->sc_firmware_ver));
1024                 break;
1025         case SIOCGHWID:
1026                 error = copyout(&sc->sc_hardware_id, req->ifr_data,
1027                                 sizeof(sc->sc_hardware_id));
1028                 break;
1029         case SIOCGSTATS:
1030                 error = copyout(&sc->sc_stats, req->ifr_data,
1031                                 sizeof(sc->sc_stats));
1032                 break;
1033         case SIOCSIFFLAGS:
1034                 if (ifp->if_flags & IFF_UP) {
1035                         if ((ifp->if_flags & IFF_RUNNING) == 0)
1036                                 acx_init(sc);
1037                 } else {
1038                         if (ifp->if_flags & IFF_RUNNING)
1039                                 acx_stop(sc);
1040                 }
1041                 break;
1042         case SIOCADDMULTI:
1043         case SIOCDELMULTI:
1044                 /* TODO */
1045                 break;
1046         default:
1047                 error = ieee80211_ioctl(&sc->sc_ic, cmd, data, cr);
1048                 break;
1049         }
1050
1051         if (error == ENETRESET) {
1052                 if ((ifp->if_flags & (IFF_RUNNING | IFF_UP)) ==
1053                     (IFF_RUNNING | IFF_UP))
1054                         acx_init(sc);
1055                 error = 0;
1056         }
1057         return error;
1058 }
1059
1060 static void
1061 acx_start(struct ifnet *ifp)
1062 {
1063         struct acx_softc *sc = ifp->if_softc;
1064         struct ieee80211com *ic = &sc->sc_ic;
1065         struct acx_buf_data *bd = &sc->sc_buf_data;
1066         struct acx_txbuf *buf;
1067         int trans, idx;
1068
1069         ASSERT_SERIALIZED(ifp->if_serializer);
1070
1071         if ((sc->sc_flags & ACX_FLAG_FW_LOADED) == 0 ||
1072             (ifp->if_flags & IFF_RUNNING) == 0 ||
1073             (ifp->if_flags & IFF_OACTIVE))
1074                 return;
1075
1076         /*
1077          * NOTE:
1078          * We can't start from a random position that TX descriptor
1079          * is free, since hardware will be confused by that.
1080          * We have to follow the order of the TX ring.
1081          */
1082         idx = bd->tx_free_start;
1083         trans = 0;
1084         for (buf = &bd->tx_buf[idx]; buf->tb_mbuf == NULL;
1085              buf = &bd->tx_buf[idx]) {
1086                 struct ieee80211_frame *f;
1087                 struct ieee80211_node *ni = NULL;
1088                 struct mbuf *m;
1089                 int mgmt_pkt = 0;
1090
1091                 if (!IF_QEMPTY(&ic->ic_mgtq)) {
1092                         IF_DEQUEUE(&ic->ic_mgtq, m);
1093
1094                         ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
1095                         m->m_pkthdr.rcvif = NULL;
1096
1097                         mgmt_pkt = 1;
1098
1099                         /*
1100                          * Don't transmit probe response firmware will
1101                          * do it for us.
1102                          */
1103                         f = mtod(m, struct ieee80211_frame *);
1104                         if ((f->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1105                             IEEE80211_FC0_TYPE_MGT &&
1106                             (f->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1107                             IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1108                                 if (ni != NULL)
1109                                         ieee80211_free_node(ni);
1110                                 m_freem(m);
1111                                 continue;
1112                         }
1113                 } else if (!ifq_is_empty(&ifp->if_snd)) {
1114                         struct ether_header *eh;
1115
1116                         if (ic->ic_state != IEEE80211_S_RUN) {
1117                                 if_printf(ifp, "data packet dropped due to "
1118                                           "not RUN.  Current state %d\n",
1119                                           ic->ic_state);
1120                                 break;
1121                         }
1122
1123                         m = ifq_dequeue(&ifp->if_snd, NULL);
1124                         if (m == NULL)
1125                                 break;
1126
1127                         if (m->m_len < sizeof(struct ether_header)) {
1128                                 m = m_pullup(m, sizeof(struct ether_header));
1129                                 if (m == NULL) {
1130                                         ifp->if_oerrors++;
1131                                         continue;
1132                                 }
1133                         }
1134                         eh = mtod(m, struct ether_header *);
1135
1136                         ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1137                         if (ni == NULL) {
1138                                 m_freem(m);
1139                                 ifp->if_oerrors++;
1140                                 continue;
1141                         }
1142
1143                         /* TODO power save */
1144
1145                         m = ieee80211_encap(ic, m, ni);
1146                         if (m == NULL) {
1147                                 ieee80211_free_node(ni);
1148                                 ifp->if_oerrors++;
1149                                 continue;
1150                         }
1151
1152                         BPF_MTAP(ifp, m);
1153                 } else {
1154                         break;
1155                 }
1156
1157                 f = mtod(m, struct ieee80211_frame *);
1158                 if ((f->i_fc[1] & IEEE80211_FC1_WEP) && !sc->chip_hw_crypt) {
1159                         KASSERT(ni != NULL, ("TX node is NULL (WEP)\n"));
1160                         if (ieee80211_crypto_encap(ic, ni, m) == NULL) {
1161                                 ieee80211_free_node(ni);
1162                                 m_freem(m);
1163                                 ifp->if_oerrors++;
1164                                 continue;
1165                         }
1166                 }
1167
1168                 if (ic->ic_rawbpf != NULL)
1169                         bpf_mtap(ic->ic_rawbpf, m);
1170
1171                 /*
1172                  * Since mgmt data are transmitted at fixed rate
1173                  * they will not be used to do rate control.
1174                  */
1175                 if (mgmt_pkt && ni != NULL) {
1176                         ieee80211_free_node(ni);
1177                         ni = NULL;
1178                 }
1179
1180                 if (acx_encap(sc, buf, m, ni) != 0) {
1181                         /*
1182                          * NOTE: `m' will be freed in acx_encap()
1183                          * if we reach here.
1184                          */
1185                         if (ni != NULL)
1186                                 ieee80211_free_node(ni);
1187                         ifp->if_oerrors++;
1188                         continue;
1189                 }
1190
1191                 /*
1192                  * NOTE:
1193                  * 1) `m' should not be touched after acx_encap()
1194                  * 2) `node' will be used to do TX rate control during
1195                  *    acx_txeof(), so it is not freed here.  acx_txeof()
1196                  *    will free it for us
1197                  */
1198
1199                 trans = 1;
1200                 bd->tx_used_count++;
1201                 idx = (idx + 1) % ACX_TX_DESC_CNT;
1202         }
1203         bd->tx_free_start = idx;
1204
1205         if (bd->tx_used_count == ACX_TX_DESC_CNT)
1206                 ifp->if_flags |= IFF_OACTIVE;
1207
1208         if (trans && sc->sc_tx_timer == 0)
1209                 sc->sc_tx_timer = 5;
1210         ifp->if_timer = 1;
1211 }
1212
1213 static void
1214 acx_watchdog(struct ifnet *ifp)
1215 {
1216         struct acx_softc *sc = ifp->if_softc;
1217
1218         ifp->if_timer = 0;
1219
1220         if ((ifp->if_flags & IFF_RUNNING) == 0)
1221                 return;
1222
1223         if (sc->sc_tx_timer) {
1224                 if (--sc->sc_tx_timer == 0) {
1225                         if_printf(ifp, "watchdog timeout\n");
1226                         ifp->if_oerrors++;
1227                         acx_txeof(ifp->if_softc);
1228                 } else {
1229                         ifp->if_timer = 1;
1230                 }
1231         }
1232         ieee80211_watchdog(&sc->sc_ic);
1233 }
1234
1235 static void
1236 acx_intr(void *arg)
1237 {
1238         struct acx_softc *sc = arg;
1239         uint16_t intr_status;
1240
1241         if ((sc->sc_flags & ACX_FLAG_FW_LOADED) == 0)
1242                 return;
1243
1244         intr_status = CSR_READ_2(sc, ACXREG_INTR_STATUS_CLR);
1245         if (intr_status == ACXRV_INTR_ALL) {
1246                 /* not our interrupt */
1247                 return;
1248         }
1249
1250         intr_status &= sc->chip_intr_enable;
1251         if (intr_status == 0) {
1252                 /* not interrupts we care about */
1253                 return;
1254         }
1255
1256         /* Acknowledge all interrupts */
1257         CSR_WRITE_2(sc, ACXREG_INTR_ACK, ACXRV_INTR_ALL);
1258
1259         if (intr_status & ACXRV_INTR_TX_FINI)
1260                 acx_txeof(sc);
1261
1262         if (intr_status & ACXRV_INTR_RX_FINI)
1263                 acx_rxeof(sc);
1264 }
1265
1266 static void
1267 acx_disable_intr(struct acx_softc *sc)
1268 {
1269         CSR_WRITE_2(sc, ACXREG_INTR_MASK, sc->chip_intr_disable);
1270         CSR_WRITE_2(sc, ACXREG_EVENT_MASK, 0);
1271 }
1272
1273 static void
1274 acx_enable_intr(struct acx_softc *sc)
1275 {
1276         /* Mask out interrupts that are not in the enable set */
1277         CSR_WRITE_2(sc, ACXREG_INTR_MASK, ~sc->chip_intr_enable);
1278         CSR_WRITE_2(sc, ACXREG_EVENT_MASK, ACXRV_EVENT_DISABLE);
1279 }
1280
1281 static void
1282 acx_txeof(struct acx_softc *sc)
1283 {
1284         struct acx_buf_data *bd;
1285         struct acx_txbuf *buf;
1286         struct ifnet *ifp;
1287         int idx;
1288
1289         ifp = &sc->sc_ic.ic_if;
1290         ASSERT_SERIALIZED(ifp->if_serializer);
1291
1292         bd = &sc->sc_buf_data;
1293         idx = bd->tx_used_start;
1294         for (buf = &bd->tx_buf[idx]; buf->tb_mbuf != NULL;
1295              buf = &bd->tx_buf[idx]) {
1296                 uint8_t ctrl, error;
1297                 int frame_len;
1298
1299                 ctrl = FW_TXDESC_GETFIELD_1(sc, buf, f_tx_ctrl);
1300                 if ((ctrl & (DESC_CTRL_HOSTOWN | DESC_CTRL_ACXDONE)) !=
1301                     (DESC_CTRL_HOSTOWN | DESC_CTRL_ACXDONE))
1302                         break;
1303
1304                 bus_dmamap_unload(bd->mbuf_dma_tag, buf->tb_mbuf_dmamap);
1305                 frame_len = buf->tb_mbuf->m_pkthdr.len;
1306                 m_freem(buf->tb_mbuf);
1307                 buf->tb_mbuf = NULL;
1308
1309                 error = FW_TXDESC_GETFIELD_1(sc, buf, f_tx_error);
1310                 if (error) {
1311                         acx_txerr(sc, error);
1312                         ifp->if_oerrors++;
1313                 } else {
1314                         ifp->if_opackets++;
1315                 }
1316
1317                 if (buf->tb_node != NULL) {
1318                         sc->chip_tx_complete(sc, buf, frame_len, error);
1319                         ieee80211_free_node(buf->tb_node);
1320                         buf->tb_node = NULL;
1321                 }
1322
1323                 FW_TXDESC_SETFIELD_1(sc, buf, f_tx_ctrl, DESC_CTRL_HOSTOWN);
1324
1325                 bd->tx_used_count--;
1326
1327                 idx = (idx + 1) % ACX_TX_DESC_CNT;
1328         }
1329         bd->tx_used_start = idx;
1330
1331         sc->sc_tx_timer = bd->tx_used_count == 0 ? 0 : 5;
1332
1333         if (bd->tx_used_count != ACX_TX_DESC_CNT) {
1334                 ifp->if_flags &= ~IFF_OACTIVE;
1335                 acx_start(ifp);
1336         }
1337 }
1338
1339 static void
1340 acx_txerr(struct acx_softc *sc, uint8_t err)
1341 {
1342         struct ifnet *ifp = &sc->sc_ic.ic_if;
1343         struct acx_stats *stats = &sc->sc_stats;
1344
1345         if (err == DESC_ERR_EXCESSIVE_RETRY) {
1346                 /*
1347                  * This a common error (see comment below),
1348                  * so print it using DPRINTF()
1349                  */
1350                 DPRINTF((ifp, "TX failed -- excessive retry\n"));
1351         } else {
1352                 if_printf(ifp, "TX failed -- ");
1353         }
1354
1355         /*
1356          * Although `err' looks like bitmask, it never
1357          * has multiple bits set.
1358          */
1359         switch (err) {
1360 #if 0
1361         case DESC_ERR_OTHER_FRAG:
1362                 /* XXX what's this */
1363                 kprintf("error in other fragment\n");
1364                 stats->err_oth_frag++;
1365                 break;
1366 #endif
1367         case DESC_ERR_ABORT:
1368                 kprintf("aborted\n");
1369                 stats->err_abort++;
1370                 break;
1371         case DESC_ERR_PARAM:
1372                 kprintf("wrong paramters in descriptor\n");
1373                 stats->err_param++;
1374                 break;
1375         case DESC_ERR_NO_WEPKEY:
1376                 kprintf("WEP key missing\n");
1377                 stats->err_no_wepkey++;
1378                 break;
1379         case DESC_ERR_MSDU_TIMEOUT:
1380                 kprintf("MSDU life timeout\n");
1381                 stats->err_msdu_timeout++;
1382                 break;
1383         case DESC_ERR_EXCESSIVE_RETRY:
1384                 /*
1385                  * Possible causes:
1386                  * 1) Distance is too long
1387                  * 2) Transmit failed (e.g. no MAC level ACK)
1388                  * 3) Chip overheated (this should be rare)
1389                  */
1390                 stats->err_ex_retry++;
1391                 break;
1392         case DESC_ERR_BUF_OVERFLOW:
1393                 kprintf("buffer overflow\n");
1394                 stats->err_buf_oflow++;
1395                 break;
1396         case DESC_ERR_DMA:
1397                 kprintf("DMA error\n");
1398                 stats->err_dma++;
1399                 break;
1400         default:
1401                 kprintf("unknown error %d\n", err);
1402                 stats->err_unkn++;
1403                 break;
1404         }
1405 }
1406
1407 static void
1408 acx_rxeof(struct acx_softc *sc)
1409 {
1410         struct ieee80211com *ic = &sc->sc_ic;
1411         struct acx_ring_data *rd = &sc->sc_ring_data;
1412         struct acx_buf_data *bd = &sc->sc_buf_data;
1413         struct ifnet *ifp = &ic->ic_if;
1414         int idx, ready;
1415
1416         ASSERT_SERIALIZED(ic->ic_if.if_serializer);
1417
1418         bus_dmamap_sync(rd->rx_ring_dma_tag, rd->rx_ring_dmamap,
1419                         BUS_DMASYNC_POSTREAD);
1420
1421         /*
1422          * Locate first "ready" rx buffer,
1423          * start from last stopped position
1424          */
1425         idx = bd->rx_scan_start;
1426         ready = 0;
1427         do {
1428                 struct acx_rxbuf *buf;
1429
1430                 buf = &bd->rx_buf[idx];
1431                 if ((buf->rb_desc->h_ctrl & htole16(DESC_CTRL_HOSTOWN)) &&
1432                     (buf->rb_desc->h_status & htole32(DESC_STATUS_FULL))) {
1433                         ready = 1;
1434                         break;
1435                 }
1436                 idx = (idx + 1) % ACX_RX_DESC_CNT;
1437         } while (idx != bd->rx_scan_start);
1438
1439         if (!ready)
1440                 return;
1441
1442         /*
1443          * NOTE: don't mess up `idx' here, it will
1444          * be used in the following code
1445          */
1446
1447         do {
1448                 struct acx_rxbuf_hdr *head;
1449                 struct acx_rxbuf *buf;
1450                 struct mbuf *m;
1451                 uint32_t desc_status;
1452                 uint16_t desc_ctrl;
1453                 int len, error;
1454
1455                 buf = &bd->rx_buf[idx];
1456
1457                 desc_ctrl = le16toh(buf->rb_desc->h_ctrl);
1458                 desc_status = le32toh(buf->rb_desc->h_status);
1459                 if (!(desc_ctrl & DESC_CTRL_HOSTOWN) ||
1460                     !(desc_status & DESC_STATUS_FULL))
1461                         break;
1462
1463                 bus_dmamap_sync(bd->mbuf_dma_tag, buf->rb_mbuf_dmamap,
1464                                 BUS_DMASYNC_POSTREAD);
1465
1466                 m = buf->rb_mbuf;
1467
1468                 error = acx_newbuf(sc, buf, 0);
1469                 if (error) {
1470                         ifp->if_ierrors++;
1471                         goto next;
1472                 }
1473
1474                 head = mtod(m, struct acx_rxbuf_hdr *);
1475
1476                 len = le16toh(head->rbh_len) & ACX_RXBUF_LEN_MASK;
1477                 if (len >= sizeof(struct ieee80211_frame_min) &&
1478                     len < MCLBYTES) {
1479                         struct ieee80211_frame *f;
1480                         struct ieee80211_node *ni;
1481
1482                         m_adj(m, sizeof(struct acx_rxbuf_hdr) +
1483                                  sc->chip_rxbuf_exhdr);
1484                         f = mtod(m, struct ieee80211_frame *);
1485
1486                         if ((f->i_fc[1] & IEEE80211_FC1_WEP) &&
1487                             sc->chip_hw_crypt) {
1488                                 /* Short circuit software WEP */
1489                                 f->i_fc[1] &= ~IEEE80211_FC1_WEP;
1490
1491                                 /* Do chip specific RX buffer processing */
1492                                 if (sc->chip_proc_wep_rxbuf != NULL) {
1493                                         sc->chip_proc_wep_rxbuf(sc, m, &len);
1494                                         f = mtod(m, struct ieee80211_frame *);
1495                                 }
1496                         }
1497
1498                         ni = ieee80211_find_rxnode(ic,
1499                                 (struct ieee80211_frame_min *)f);
1500
1501                         m->m_len = m->m_pkthdr.len = len;
1502                         m->m_pkthdr.rcvif = &ic->ic_if;
1503
1504                         ieee80211_input(ic, m, ni, head->rbh_level,
1505                                         le32toh(head->rbh_time));
1506
1507                         ieee80211_free_node(ni);
1508                         ifp->if_ipackets++;
1509                 } else {
1510                         m_freem(m);
1511                         ifp->if_ierrors++;
1512                 }
1513
1514 next:
1515                 buf->rb_desc->h_ctrl = htole16(desc_ctrl & ~DESC_CTRL_HOSTOWN);
1516                 buf->rb_desc->h_status = 0;
1517                 bus_dmamap_sync(rd->rx_ring_dma_tag, rd->rx_ring_dmamap,
1518                                 BUS_DMASYNC_PREWRITE);
1519
1520                 idx = (idx + 1) % ACX_RX_DESC_CNT;
1521         } while (idx != bd->rx_scan_start);
1522
1523         /*
1524          * Record the position so that next
1525          * time we can start from it
1526          */
1527         bd->rx_scan_start = idx;
1528 }
1529
1530 static int
1531 acx_reset(struct acx_softc *sc)
1532 {
1533         uint16_t reg;
1534
1535         /* Halt ECPU */
1536         CSR_SETB_2(sc, ACXREG_ECPU_CTRL, ACXRV_ECPU_HALT);
1537
1538         /* Software reset */
1539         reg = CSR_READ_2(sc, ACXREG_SOFT_RESET);
1540         CSR_WRITE_2(sc, ACXREG_SOFT_RESET, reg | ACXRV_SOFT_RESET);
1541         DELAY(100);
1542         CSR_WRITE_2(sc, ACXREG_SOFT_RESET, reg);
1543
1544         /* Initialize EEPROM */
1545         CSR_SETB_2(sc, ACXREG_EEPROM_INIT, ACXRV_EEPROM_INIT);
1546         DELAY(50000);
1547
1548         /* Test whether ECPU is stopped */
1549         reg = CSR_READ_2(sc, ACXREG_ECPU_CTRL);
1550         if (!(reg & ACXRV_ECPU_HALT)) {
1551                 if_printf(&sc->sc_ic.ic_if, "can't halt ECPU\n");
1552                 return ENXIO;
1553         }
1554         return 0;
1555 }
1556
1557 static int
1558 acx_read_eeprom(struct acx_softc *sc, uint32_t offset, uint8_t *val)
1559 {
1560         int i;
1561
1562         CSR_WRITE_4(sc, ACXREG_EEPROM_CONF, 0);
1563         CSR_WRITE_4(sc, ACXREG_EEPROM_ADDR, offset);
1564         CSR_WRITE_4(sc, ACXREG_EEPROM_CTRL, ACXRV_EEPROM_READ);
1565
1566 #define EE_READ_RETRY_MAX       100
1567         for (i = 0; i < EE_READ_RETRY_MAX; ++i) {
1568                 if (CSR_READ_2(sc, ACXREG_EEPROM_CTRL) == 0)
1569                         break;
1570                 DELAY(10000);
1571         }
1572         if (i == EE_READ_RETRY_MAX) {
1573                 if_printf(&sc->sc_ic.ic_if, "can't read EEPROM offset %x "
1574                           "(timeout)\n", offset);
1575                 return ETIMEDOUT;
1576         }
1577 #undef EE_READ_RETRY_MAX
1578
1579         *val = CSR_READ_1(sc, ACXREG_EEPROM_DATA);
1580         return 0;
1581 }
1582
1583 static int
1584 acx_read_phyreg(struct acx_softc *sc, uint32_t reg, uint8_t *val)
1585 {
1586         int i;
1587
1588         CSR_WRITE_4(sc, ACXREG_PHY_ADDR, reg);
1589         CSR_WRITE_4(sc, ACXREG_PHY_CTRL, ACXRV_PHY_READ);
1590
1591 #define PHY_READ_RETRY_MAX      100
1592         for (i = 0; i < PHY_READ_RETRY_MAX; ++i) {
1593                 if (CSR_READ_4(sc, ACXREG_PHY_CTRL) == 0)
1594                         break;
1595                 DELAY(10000);
1596         }
1597         if (i == PHY_READ_RETRY_MAX) {
1598                 if_printf(&sc->sc_ic.ic_if, "can't read phy reg %x (timeout)\n",
1599                           reg);
1600                 return ETIMEDOUT;
1601         }
1602 #undef PHY_READ_RETRY_MAX
1603
1604         *val = CSR_READ_1(sc, ACXREG_PHY_DATA);
1605         return 0;
1606 }
1607
1608 void
1609 acx_write_phyreg(struct acx_softc *sc, uint32_t reg, uint8_t val)
1610 {
1611         CSR_WRITE_4(sc, ACXREG_PHY_DATA, val);
1612         CSR_WRITE_4(sc, ACXREG_PHY_ADDR, reg);
1613         CSR_WRITE_4(sc, ACXREG_PHY_CTRL, ACXRV_PHY_WRITE);
1614 }
1615
1616 static int
1617 acx_copyin_firmware(struct acx_softc *sc, struct ifreq *req)
1618 {
1619         struct acx_firmware ufw, *kfw;
1620         uint8_t *base_fw, *radio_fw;
1621         int error;
1622
1623         kfw = &sc->sc_firmware;
1624         base_fw = NULL;
1625         radio_fw = NULL;
1626
1627         error = copyin(req->ifr_data, &ufw, sizeof(ufw));
1628         if (error)
1629                 return error;
1630
1631         /*
1632          * For combined base firmware, there is no radio firmware.
1633          * But base firmware must exist.
1634          */
1635         if (ufw.base_fw_len <= 0 || ufw.radio_fw_len < 0)
1636                 return EINVAL;
1637
1638         base_fw = kmalloc(ufw.base_fw_len, M_DEVBUF, M_INTWAIT);
1639         error = copyin(ufw.base_fw, base_fw, ufw.base_fw_len);
1640         if (error)
1641                 goto fail;
1642
1643         if (ufw.radio_fw_len > 0) {
1644                 radio_fw = kmalloc(ufw.radio_fw_len, M_DEVBUF, M_INTWAIT);
1645                 error = copyin(ufw.radio_fw, radio_fw, ufw.radio_fw_len);
1646                 if (error)
1647                         goto fail;
1648         }
1649
1650         kfw->base_fw_len = ufw.base_fw_len;
1651         if (kfw->base_fw != NULL)
1652                 kfree(kfw->base_fw, M_DEVBUF);
1653         kfw->base_fw = base_fw;
1654
1655         kfw->radio_fw_len = ufw.radio_fw_len;
1656         if (kfw->radio_fw != NULL)
1657                 kfree(kfw->radio_fw, M_DEVBUF);
1658         kfw->radio_fw = radio_fw;
1659
1660         return 0;
1661 fail:
1662         if (base_fw != NULL)
1663                 kfree(base_fw, M_DEVBUF);
1664         if (radio_fw != NULL)
1665                 kfree(radio_fw, M_DEVBUF);
1666         return error;
1667 }
1668
1669 static void
1670 acx_free_firmware(struct acx_softc *sc)
1671 {
1672         struct acx_firmware *fw = &sc->sc_firmware;
1673
1674         if (fw->base_fw != NULL) {
1675                 kfree(fw->base_fw, M_DEVBUF);
1676                 fw->base_fw = NULL;
1677                 fw->base_fw_len = 0;
1678         }
1679         if (fw->radio_fw != NULL) {
1680                 kfree(fw->radio_fw, M_DEVBUF);
1681                 fw->radio_fw = NULL;
1682                 fw->radio_fw_len = 0;
1683         }
1684 }
1685
1686 static int
1687 acx_load_base_firmware(struct acx_softc *sc, const uint8_t *base_fw,
1688                        uint32_t base_fw_len)
1689 {
1690         int i, error;
1691
1692         /* Load base firmware */
1693         error = acx_load_firmware(sc, 0, base_fw, base_fw_len);
1694         if (error) {
1695                 if_printf(&sc->sc_ic.ic_if, "can't load base firmware\n");
1696                 return error;
1697         }
1698         DPRINTF((&sc->sc_ic.ic_if, "base firmware loaded\n"));
1699
1700         /* Start ECPU */
1701         CSR_WRITE_2(sc, ACXREG_ECPU_CTRL, ACXRV_ECPU_START);
1702
1703         /* Wait for ECPU to be up */
1704         for (i = 0; i < 500; ++i) {
1705                 uint16_t reg;
1706
1707                 reg = CSR_READ_2(sc, ACXREG_INTR_STATUS);
1708                 if (reg & ACXRV_INTR_FCS_THRESH) {
1709                         CSR_WRITE_2(sc, ACXREG_INTR_ACK, ACXRV_INTR_FCS_THRESH);
1710                         return 0;
1711                 }
1712                 DELAY(10000);
1713         }
1714
1715         if_printf(&sc->sc_ic.ic_if, "can't initialize ECPU (timeout)\n");
1716         return ENXIO;
1717 }
1718
1719 static int
1720 acx_load_radio_firmware(struct acx_softc *sc, const uint8_t *radio_fw,
1721                         uint32_t radio_fw_len)
1722 {
1723         struct acx_conf_mmap mem_map;
1724         uint32_t radio_fw_ofs;
1725         int error;
1726
1727         /*
1728          * Get the position, where base firmware is loaded, so that
1729          * radio firmware can be loaded after it.
1730          */
1731         if (acx_get_mmap_conf(sc, &mem_map) != 0)
1732                 return ENXIO;
1733         radio_fw_ofs = le32toh(mem_map.code_end);
1734
1735         /* Put ECPU into sleeping state, before loading radio firmware */
1736         if (acx_sleep(sc) != 0)
1737                 return ENXIO;
1738
1739         /* Load radio firmware */
1740         error = acx_load_firmware(sc, radio_fw_ofs, radio_fw, radio_fw_len);
1741         if (error) {
1742                 if_printf(&sc->sc_ic.ic_if, "can't load radio firmware\n");
1743                 return ENXIO;
1744         }
1745         DPRINTF((&sc->sc_ic.ic_if, "radio firmware loaded\n"));
1746
1747         /* Wake up sleeping ECPU, after radio firmware is loaded */
1748         if (acx_wakeup(sc) != 0)
1749                 return ENXIO;
1750
1751         /* Initialize radio */
1752         if (acx_init_radio(sc, radio_fw_ofs, radio_fw_len) != 0)
1753                 return ENXIO;
1754
1755         /* Verify radio firmware's loading position */
1756         if (acx_get_mmap_conf(sc, &mem_map) != 0)
1757                 return ENXIO;
1758         if (le32toh(mem_map.code_end) != radio_fw_ofs + radio_fw_len) {
1759                 if_printf(&sc->sc_ic.ic_if, "loaded radio firmware position "
1760                           "mismatch\n");
1761                 return ENXIO;
1762         }
1763
1764         DPRINTF((&sc->sc_ic.ic_if, "radio firmware initialized\n"));
1765         return 0;
1766 }
1767
1768 static int
1769 acx_load_firmware(struct acx_softc *sc, uint32_t offset, const uint8_t *data,
1770                   int data_len)
1771 {
1772         const uint32_t *fw;
1773         int i, fw_len;
1774
1775         fw = (const uint32_t *)data;
1776         fw_len = data_len / sizeof(uint32_t);
1777
1778         /*
1779          * LOADFW_AUTO_INC only works with some older firmware:
1780          * 1) acx100's firmware
1781          * 2) acx111's firmware whose rev is 0x00010011
1782          */
1783
1784         /* Load firmware */
1785         CSR_WRITE_4(sc, ACXREG_FWMEM_START, ACXRV_FWMEM_START_OP);
1786 #ifndef LOADFW_AUTO_INC
1787         CSR_WRITE_4(sc, ACXREG_FWMEM_CTRL, 0);
1788 #else
1789         CSR_WRITE_4(sc, ACXREG_FWMEM_CTRL, ACXRV_FWMEM_ADDR_AUTOINC);
1790         CSR_WRITE_4(sc, ACXREG_FWMEM_ADDR, offset);
1791 #endif
1792
1793         for (i = 0; i < fw_len; ++i) {
1794 #ifndef LOADFW_AUTO_INC
1795                 CSR_WRITE_4(sc, ACXREG_FWMEM_ADDR, offset + (i * 4));
1796 #endif
1797                 CSR_WRITE_4(sc, ACXREG_FWMEM_DATA, be32toh(fw[i]));
1798         }
1799
1800         /* Verify firmware */
1801         CSR_WRITE_4(sc, ACXREG_FWMEM_START, ACXRV_FWMEM_START_OP);
1802 #ifndef LOADFW_AUTO_INC
1803         CSR_WRITE_4(sc, ACXREG_FWMEM_CTRL, 0);
1804 #else
1805         CSR_WRITE_4(sc, ACXREG_FWMEM_CTRL, ACXRV_FWMEM_ADDR_AUTOINC);
1806         CSR_WRITE_4(sc, ACXREG_FWMEM_ADDR, offset);
1807 #endif
1808
1809         for (i = 0; i < fw_len; ++i) {
1810                 uint32_t val;
1811
1812 #ifndef LOADFW_AUTO_INC
1813                 CSR_WRITE_4(sc, ACXREG_FWMEM_ADDR, offset + (i * 4));
1814 #endif
1815                 val = CSR_READ_4(sc, ACXREG_FWMEM_DATA);
1816                 if (be32toh(fw[i]) != val) {
1817                         if_printf(&sc->sc_ic.ic_if, "fireware mismatch "
1818                                   "fw %08x  loaded %08x\n", fw[i], val);
1819                         return ENXIO;
1820                 }
1821         }
1822         return 0;
1823 }
1824
1825 static int
1826 acx_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1827 {
1828         struct acx_softc *sc = ic->ic_if.if_softc;
1829         int error = 0, mode = 0;
1830
1831         ASSERT_SERIALIZED(ic->ic_if.if_serializer);
1832
1833         ieee80211_ratectl_newstate(ic, nstate);
1834
1835         switch (nstate) {
1836         case IEEE80211_S_SCAN:
1837                 if (ic->ic_state != IEEE80211_S_INIT) {
1838                         uint8_t chan;
1839
1840                         chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
1841                         ACX_ENABLE_TXCHAN(sc, chan);
1842                         ACX_ENABLE_RXCHAN(sc, chan);
1843
1844                         callout_reset(&sc->sc_chanscan_timer,
1845                                       hz / acx_chanscan_rate,
1846                                       acx_next_scan, sc);
1847                 }
1848                 break;
1849         case IEEE80211_S_AUTH:
1850                 if (ic->ic_opmode == IEEE80211_M_STA) {
1851                         struct ieee80211_node *ni;
1852
1853                         ni = ic->ic_bss;
1854
1855                         if (acx_join_bss(sc, ACX_MODE_STA, ni) != 0) {
1856                                 if_printf(&ic->ic_if, "join BSS failed\n");
1857                                 error = 1;
1858                                 goto back;
1859                         }
1860
1861                         DPRINTF((&ic->ic_if, "join BSS\n"));
1862                         if (ic->ic_state == IEEE80211_S_ASSOC) {
1863                                 DPRINTF((&ic->ic_if,
1864                                          "change from assoc to run\n"));
1865                                 ic->ic_state = IEEE80211_S_RUN;
1866                         }
1867                 }
1868                 break;
1869         case IEEE80211_S_RUN:
1870                 if (ic->ic_opmode == IEEE80211_M_IBSS ||
1871                     ic->ic_opmode == IEEE80211_M_HOSTAP) {
1872                         struct ieee80211_node *ni;
1873                         uint8_t chan;
1874
1875                         ni = ic->ic_bss;
1876                         chan = ieee80211_chan2ieee(ic, ni->ni_chan);
1877
1878                         error = 1;
1879
1880                         if (acx_enable_txchan(sc, chan) != 0) {
1881                                 if_printf(&ic->ic_if,
1882                                           "enable TX on channel %d failed\n",
1883                                           chan);
1884                                 goto back;
1885                         }
1886
1887                         if (acx_enable_rxchan(sc, chan) != 0) {
1888                                 if_printf(&ic->ic_if,
1889                                           "enable RX on channel %d failed\n",
1890                                           chan);
1891                                 goto back;
1892                         }
1893
1894                         if (acx_set_beacon_tmplt(sc, ni) != 0) {
1895                                 if_printf(&ic->ic_if,
1896                                           "set bescon template failed\n");
1897                                 goto back;
1898                         }
1899
1900                         if (acx_set_probe_resp_tmplt(sc, ni) != 0) {
1901                                 if_printf(&ic->ic_if, "set probe response "
1902                                           "template failed\n");
1903                                 goto back;
1904                         }
1905
1906                         if (ic->ic_opmode == IEEE80211_M_IBSS)
1907                                 mode = ACX_MODE_ADHOC;
1908                         else
1909                                 mode = ACX_MODE_AP;
1910
1911                         if (acx_join_bss(sc, mode, ni) != 0) {
1912                                 if_printf(&ic->ic_if, "acx_join_ibss failed\n");
1913                                 goto back;
1914                         }
1915
1916                         DPRINTF((&ic->ic_if, "join IBSS\n"));
1917                         error = 0;
1918                 }
1919                 break;
1920         default:
1921                 break;
1922         }
1923
1924 back:
1925         if (error) {
1926                 /* XXX */
1927                 nstate = IEEE80211_S_INIT;
1928                 arg = -1;
1929         }
1930         return sc->sc_newstate(ic, nstate, arg);
1931 }
1932
1933 int
1934 acx_init_tmplt_ordered(struct acx_softc *sc)
1935 {
1936         struct acx_tmplt_tim tim;
1937
1938 #define INIT_TMPLT(name)                        \
1939 do {                                            \
1940         if (acx_init_##name##_tmplt(sc) != 0)   \
1941                 return 1;                       \
1942 } while (0)
1943
1944         /*
1945          * NOTE:
1946          * Order of templates initialization:
1947          * 1) Probe request
1948          * 2) NULL data
1949          * 3) Beacon
1950          * 4) TIM
1951          * 5) Probe response
1952          * Above order is critical to get a correct memory map.
1953          */
1954         INIT_TMPLT(probe_req);
1955         INIT_TMPLT(null_data);
1956         INIT_TMPLT(beacon);
1957         INIT_TMPLT(tim);
1958         INIT_TMPLT(probe_resp);
1959
1960         /* Setup TIM template */
1961         bzero(&tim, sizeof(tim));
1962         tim.tim_eid = IEEE80211_ELEMID_TIM;
1963         tim.tim_len = ACX_TIM_LEN(ACX_TIM_BITMAP_LEN);
1964         if (_acx_set_tim_tmplt(sc, &tim,
1965                                ACX_TMPLT_TIM_SIZ(ACX_TIM_BITMAP_LEN)) != 0) {
1966                 if_printf(&sc->sc_ic.ic_if, "%s can't set tim tmplt\n",
1967                           __func__);
1968                 return 1;
1969         }
1970
1971 #undef INIT_TMPLT
1972         return 0;
1973 }
1974
1975 static void
1976 acx_ring_dma_addr(void *arg, bus_dma_segment_t *seg, int nseg, int error)
1977 {
1978         *((uint32_t *)arg) = seg->ds_addr;
1979 }
1980
1981 static int
1982 acx_dma_alloc(struct acx_softc *sc)
1983 {
1984         struct acx_ring_data *rd = &sc->sc_ring_data;
1985         struct acx_buf_data *bd = &sc->sc_buf_data;
1986         int i, error;
1987
1988         /* Allocate DMA stuffs for RX descriptors  */
1989         error = bus_dma_tag_create(NULL, PAGE_SIZE, 0,
1990                                    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
1991                                    NULL, NULL,
1992                                    ACX_RX_RING_SIZE, 1, ACX_RX_RING_SIZE,
1993                                    0, &rd->rx_ring_dma_tag);
1994         if (error) {
1995                 if_printf(&sc->sc_ic.ic_if, "can't create rx ring dma tag\n");
1996                 return error;
1997         }
1998
1999         error = bus_dmamem_alloc(rd->rx_ring_dma_tag, (void **)&rd->rx_ring,
2000                                  BUS_DMA_WAITOK | BUS_DMA_ZERO,
2001                                  &rd->rx_ring_dmamap);
2002         if (error) {
2003                 if_printf(&sc->sc_ic.ic_if,
2004                           "can't allocate rx ring dma memory\n");
2005                 bus_dma_tag_destroy(rd->rx_ring_dma_tag);
2006                 rd->rx_ring_dma_tag = NULL;
2007                 return error;
2008         }
2009
2010         error = bus_dmamap_load(rd->rx_ring_dma_tag, rd->rx_ring_dmamap,
2011                                 rd->rx_ring, ACX_RX_RING_SIZE,
2012                                 acx_ring_dma_addr, &rd->rx_ring_paddr,
2013                                 BUS_DMA_WAITOK);
2014         if (error) {
2015                 if_printf(&sc->sc_ic.ic_if, "can't get rx ring dma address\n");
2016                 bus_dmamem_free(rd->rx_ring_dma_tag, rd->rx_ring,
2017                                 rd->rx_ring_dmamap);
2018                 bus_dma_tag_destroy(rd->rx_ring_dma_tag);
2019                 rd->rx_ring_dma_tag = NULL;
2020                 return error;
2021         }
2022
2023         /* Allocate DMA stuffs for TX descriptors */
2024         error = bus_dma_tag_create(NULL, PAGE_SIZE, 0,
2025                                    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
2026                                    NULL, NULL,
2027                                    ACX_TX_RING_SIZE, 1, ACX_TX_RING_SIZE,
2028                                    0, &rd->tx_ring_dma_tag);
2029         if (error) {
2030                 if_printf(&sc->sc_ic.ic_if, "can't create tx ring dma tag\n");
2031                 return error;
2032         }
2033
2034         error = bus_dmamem_alloc(rd->tx_ring_dma_tag, (void **)&rd->tx_ring,
2035                                  BUS_DMA_WAITOK | BUS_DMA_ZERO,
2036                                  &rd->tx_ring_dmamap);
2037         if (error) {
2038                 if_printf(&sc->sc_ic.ic_if,
2039                           "can't allocate tx ring dma memory\n");
2040                 bus_dma_tag_destroy(rd->tx_ring_dma_tag);
2041                 rd->tx_ring_dma_tag = NULL;
2042                 return error;
2043         }
2044
2045         error = bus_dmamap_load(rd->tx_ring_dma_tag, rd->tx_ring_dmamap,
2046                                 rd->tx_ring, ACX_TX_RING_SIZE,
2047                                 acx_ring_dma_addr, &rd->tx_ring_paddr,
2048                                 BUS_DMA_WAITOK);
2049         if (error) {
2050                 if_printf(&sc->sc_ic.ic_if, "can't get tx ring dma address\n");
2051                 bus_dmamem_free(rd->tx_ring_dma_tag, rd->tx_ring,
2052                                 rd->tx_ring_dmamap);
2053                 bus_dma_tag_destroy(rd->tx_ring_dma_tag);
2054                 rd->tx_ring_dma_tag = NULL;
2055                 return error;
2056         }
2057
2058         /* Create DMA tag for RX/TX mbuf map */
2059         error = bus_dma_tag_create(NULL, 1, 0,
2060                                    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
2061                                    NULL, NULL,
2062                                    MCLBYTES, 1, MCLBYTES,
2063                                    0, &bd->mbuf_dma_tag);
2064         if (error) {
2065                 if_printf(&sc->sc_ic.ic_if, "can't create mbuf dma tag\n");
2066                 return error;
2067         }
2068
2069         /* Create a spare RX DMA map */
2070         error = bus_dmamap_create(bd->mbuf_dma_tag, 0, &bd->mbuf_tmp_dmamap);
2071         if (error) {
2072                 if_printf(&sc->sc_ic.ic_if, "can't create tmp mbuf dma map\n");
2073                 bus_dma_tag_destroy(bd->mbuf_dma_tag);
2074                 bd->mbuf_dma_tag = NULL;
2075                 return error;
2076         }
2077
2078         /* Create DMA map for RX mbufs */
2079         for (i = 0; i < ACX_RX_DESC_CNT; ++i) {
2080                 error = bus_dmamap_create(bd->mbuf_dma_tag, 0,
2081                                           &bd->rx_buf[i].rb_mbuf_dmamap);
2082                 if (error) {
2083                         if_printf(&sc->sc_ic.ic_if, "can't create rx mbuf "
2084                                   "dma map (%d)\n", i);
2085                         return error;
2086                 }
2087                 bd->rx_buf[i].rb_desc = &rd->rx_ring[i];
2088         }
2089
2090         /* Create DMA map for TX mbufs */
2091         for (i = 0; i < ACX_TX_DESC_CNT; ++i) {
2092                 error = bus_dmamap_create(bd->mbuf_dma_tag, 0,
2093                                           &bd->tx_buf[i].tb_mbuf_dmamap);
2094                 if (error) {
2095                         if_printf(&sc->sc_ic.ic_if, "can't create tx mbuf "
2096                                   "dma map (%d)\n", i);
2097                         return error;
2098                 }
2099                 bd->tx_buf[i].tb_desc1 = &rd->tx_ring[i * 2];
2100                 bd->tx_buf[i].tb_desc2 = &rd->tx_ring[(i * 2) + 1];
2101         }
2102
2103         return 0;
2104 }
2105
2106 static void
2107 acx_dma_free(struct acx_softc *sc)
2108 {
2109         struct acx_ring_data *rd = &sc->sc_ring_data;
2110         struct acx_buf_data *bd = &sc->sc_buf_data;
2111         int i;
2112
2113         if (rd->rx_ring_dma_tag != NULL) {
2114                 bus_dmamap_unload(rd->rx_ring_dma_tag, rd->rx_ring_dmamap);
2115                 bus_dmamem_free(rd->rx_ring_dma_tag, rd->rx_ring,
2116                                 rd->rx_ring_dmamap);
2117                 bus_dma_tag_destroy(rd->rx_ring_dma_tag);
2118         }
2119
2120         if (rd->tx_ring_dma_tag != NULL) {
2121                 bus_dmamap_unload(rd->tx_ring_dma_tag, rd->tx_ring_dmamap);
2122                 bus_dmamem_free(rd->tx_ring_dma_tag, rd->tx_ring,
2123                                 rd->tx_ring_dmamap);
2124                 bus_dma_tag_destroy(rd->tx_ring_dma_tag);
2125         }
2126
2127         for (i = 0; i < ACX_RX_DESC_CNT; ++i) {
2128                 if (bd->rx_buf[i].rb_desc != NULL) {
2129                         if (bd->rx_buf[i].rb_mbuf != NULL) {
2130                                 bus_dmamap_unload(bd->mbuf_dma_tag,
2131                                                   bd->rx_buf[i].rb_mbuf_dmamap);
2132                                 m_freem(bd->rx_buf[i].rb_mbuf);
2133                         }
2134                         bus_dmamap_destroy(bd->mbuf_dma_tag,
2135                                            bd->rx_buf[i].rb_mbuf_dmamap);
2136                 }
2137         }
2138
2139         for (i = 0; i < ACX_TX_DESC_CNT; ++i) {
2140                 if (bd->tx_buf[i].tb_desc1 != NULL) {
2141                         if (bd->tx_buf[i].tb_mbuf != NULL) {
2142                                 bus_dmamap_unload(bd->mbuf_dma_tag,
2143                                                   bd->tx_buf[i].tb_mbuf_dmamap);
2144                                 m_freem(bd->tx_buf[i].tb_mbuf);
2145                         }
2146                         bus_dmamap_destroy(bd->mbuf_dma_tag,
2147                                            bd->tx_buf[i].tb_mbuf_dmamap);
2148                 }
2149         }
2150
2151         if (bd->mbuf_dma_tag != NULL) {
2152                 bus_dmamap_destroy(bd->mbuf_dma_tag, bd->mbuf_tmp_dmamap);
2153                 bus_dma_tag_destroy(bd->mbuf_dma_tag);
2154         }
2155 }
2156
2157 static int
2158 acx_init_tx_ring(struct acx_softc *sc)
2159 {
2160         struct acx_ring_data *rd;
2161         struct acx_buf_data *bd;
2162         uint32_t paddr;
2163         int i;
2164
2165         rd = &sc->sc_ring_data;
2166         paddr = rd->tx_ring_paddr;
2167         for (i = 0; i < (ACX_TX_DESC_CNT * 2) - 1; ++i) {
2168                 paddr += sizeof(struct acx_host_desc);
2169
2170                 rd->tx_ring[i].h_ctrl = htole16(DESC_CTRL_HOSTOWN);
2171
2172                 if (i == (ACX_TX_DESC_CNT * 2) - 1)
2173                         rd->tx_ring[i].h_next_desc = htole32(rd->tx_ring_paddr);
2174                 else
2175                         rd->tx_ring[i].h_next_desc = htole32(paddr);
2176         }
2177
2178         bus_dmamap_sync(rd->tx_ring_dma_tag, rd->tx_ring_dmamap,
2179                         BUS_DMASYNC_PREWRITE);
2180
2181         bd = &sc->sc_buf_data;
2182         bd->tx_free_start = 0;
2183         bd->tx_used_start = 0;
2184         bd->tx_used_count = 0;
2185
2186         return 0;
2187 }
2188
2189 static int
2190 acx_init_rx_ring(struct acx_softc *sc)
2191 {
2192         struct acx_ring_data *rd;
2193         struct acx_buf_data *bd;
2194         uint32_t paddr;
2195         int i;
2196
2197         bd = &sc->sc_buf_data;
2198         rd = &sc->sc_ring_data;
2199         paddr = rd->rx_ring_paddr;
2200
2201         for (i = 0; i < ACX_RX_DESC_CNT; ++i) {
2202                 int error;
2203
2204                 paddr += sizeof(struct acx_host_desc);
2205
2206                 error = acx_newbuf(sc, &bd->rx_buf[i], 1);
2207                 if (error)
2208                         return error;
2209
2210                 if (i == ACX_RX_DESC_CNT - 1)
2211                         rd->rx_ring[i].h_next_desc = htole32(rd->rx_ring_paddr);
2212                 else
2213                         rd->rx_ring[i].h_next_desc = htole32(paddr);
2214         }
2215
2216         bus_dmamap_sync(rd->rx_ring_dma_tag, rd->rx_ring_dmamap,
2217                         BUS_DMASYNC_PREWRITE);
2218
2219         bd->rx_scan_start = 0;
2220         return 0;
2221 }
2222
2223 static void
2224 acx_buf_dma_addr(void *arg, bus_dma_segment_t *seg, int nseg,
2225                  bus_size_t mapsz, int error)
2226 {
2227         if (error)
2228                 return;
2229
2230         /* XXX */
2231         KASSERT(nseg == 1, ("too many RX dma segments\n"));
2232         *((uint32_t *)arg) = seg->ds_addr;
2233 }
2234
2235 static int
2236 acx_newbuf(struct acx_softc *sc, struct acx_rxbuf *rb, int wait)
2237 {
2238         struct acx_buf_data *bd;
2239         struct mbuf *m;
2240         bus_dmamap_t map;
2241         uint32_t paddr;
2242         int error;
2243
2244         bd = &sc->sc_buf_data;
2245
2246         m = m_getcl(wait ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2247         if (m == NULL)
2248                 return ENOBUFS;
2249
2250         m->m_len = m->m_pkthdr.len = MCLBYTES;
2251
2252         error = bus_dmamap_load_mbuf(bd->mbuf_dma_tag, bd->mbuf_tmp_dmamap,
2253                                      m, acx_buf_dma_addr, &paddr,
2254                                      wait ? BUS_DMA_WAITOK : BUS_DMA_NOWAIT);
2255         if (error) {
2256                 m_freem(m);
2257                 if_printf(&sc->sc_ic.ic_if, "can't map rx mbuf %d\n", error);
2258                 return error;
2259         }
2260
2261         /* Unload originally mapped mbuf */
2262         bus_dmamap_unload(bd->mbuf_dma_tag, rb->rb_mbuf_dmamap);
2263
2264         /* Swap this dmamap with tmp dmamap */
2265         map = rb->rb_mbuf_dmamap;
2266         rb->rb_mbuf_dmamap = bd->mbuf_tmp_dmamap;
2267         bd->mbuf_tmp_dmamap = map;
2268
2269         rb->rb_mbuf = m;
2270         rb->rb_desc->h_data_paddr = htole32(paddr);
2271         rb->rb_desc->h_data_len = htole16(m->m_len);
2272
2273         bus_dmamap_sync(bd->mbuf_dma_tag, rb->rb_mbuf_dmamap,
2274                         BUS_DMASYNC_PREREAD);
2275         return 0;
2276 }
2277
2278 static int
2279 acx_encap(struct acx_softc *sc, struct acx_txbuf *txbuf, struct mbuf *m,
2280           struct ieee80211_node *ni)
2281 {
2282         struct acx_buf_data *bd = &sc->sc_buf_data;
2283         struct acx_ring_data *rd = &sc->sc_ring_data;
2284         uint32_t paddr;
2285         uint8_t ctrl;
2286         int error;
2287
2288         KASSERT(txbuf->tb_mbuf == NULL, ("free TX buf has mbuf installed\n"));
2289         error = 0;
2290
2291         if (m->m_pkthdr.len > MCLBYTES) {
2292                 if_printf(&sc->sc_ic.ic_if, "mbuf too big\n");
2293                 error = E2BIG;
2294                 goto back;
2295         } else if (m->m_pkthdr.len < ACX_FRAME_HDRLEN) {
2296                 if_printf(&sc->sc_ic.ic_if, "mbuf too small\n");
2297                 error = EINVAL;
2298                 goto back;
2299         }
2300
2301         error = bus_dmamap_load_mbuf(bd->mbuf_dma_tag, txbuf->tb_mbuf_dmamap,
2302                                      m, acx_buf_dma_addr, &paddr,
2303                                      BUS_DMA_NOWAIT);
2304         if (error && error != EFBIG) {
2305                 if_printf(&sc->sc_ic.ic_if, "can't map tx mbuf1 %d\n", error);
2306                 goto back;
2307         }
2308
2309         if (error) {    /* error == EFBIG */
2310                 struct mbuf *m_new;
2311
2312                 m_new = m_defrag(m, MB_DONTWAIT);
2313                 if (m_new == NULL) {
2314                         if_printf(&sc->sc_ic.ic_if, "can't defrag tx mbuf\n");
2315                         error = ENOBUFS;
2316                         goto back;
2317                 } else {
2318                         m = m_new;
2319                 }
2320
2321                 error = bus_dmamap_load_mbuf(bd->mbuf_dma_tag,
2322                                              txbuf->tb_mbuf_dmamap, m,
2323                                              acx_buf_dma_addr, &paddr,
2324                                              BUS_DMA_NOWAIT);
2325                 if (error) {
2326                         if_printf(&sc->sc_ic.ic_if, "can't map tx mbuf2 %d\n",
2327                                   error);
2328                         goto back;
2329                 }
2330         }
2331
2332         error = 0;
2333
2334         bus_dmamap_sync(bd->mbuf_dma_tag, txbuf->tb_mbuf_dmamap,
2335                         BUS_DMASYNC_PREWRITE);
2336
2337         txbuf->tb_mbuf = m;
2338         txbuf->tb_node = ni;
2339
2340         /*
2341          * TX buffers are accessed in following way:
2342          * acx_fw_txdesc -> acx_host_desc -> buffer
2343          *
2344          * It is quite strange that acx also querys acx_host_desc next to
2345          * the one we have assigned to acx_fw_txdesc even if first one's
2346          * acx_host_desc.h_data_len == acx_fw_txdesc.f_tx_len
2347          *
2348          * So we allocate two acx_host_desc for one acx_fw_txdesc and
2349          * assign the first acx_host_desc to acx_fw_txdesc
2350          *
2351          * For acx111
2352          * host_desc1.h_data_len = buffer_len
2353          * host_desc2.h_data_len = buffer_len - mac_header_len
2354          *
2355          * For acx100
2356          * host_desc1.h_data_len = mac_header_len
2357          * host_desc2.h_data_len = buffer_len - mac_header_len
2358          */
2359
2360         txbuf->tb_desc1->h_data_paddr = htole32(paddr);
2361         txbuf->tb_desc2->h_data_paddr = htole32(paddr + ACX_FRAME_HDRLEN);
2362
2363         txbuf->tb_desc1->h_data_len =
2364                 htole16(sc->chip_txdesc1_len ? sc->chip_txdesc1_len
2365                                              : m->m_pkthdr.len);
2366         txbuf->tb_desc2->h_data_len =
2367                 htole16(m->m_pkthdr.len - ACX_FRAME_HDRLEN);
2368
2369         /*
2370          * NOTE:
2371          * We can't simply assign f_tx_ctrl, we will first read it back
2372          * and change it bit by bit
2373          */
2374         ctrl = FW_TXDESC_GETFIELD_1(sc, txbuf, f_tx_ctrl);
2375         ctrl |= sc->chip_fw_txdesc_ctrl; /* extra chip specific flags */
2376         ctrl &= ~(DESC_CTRL_HOSTOWN | DESC_CTRL_ACXDONE);
2377
2378         FW_TXDESC_SETFIELD_4(sc, txbuf, f_tx_len, m->m_pkthdr.len);
2379         FW_TXDESC_SETFIELD_1(sc, txbuf, f_tx_error, 0);
2380         FW_TXDESC_SETFIELD_1(sc, txbuf, f_tx_data_nretry, 0);
2381         FW_TXDESC_SETFIELD_1(sc, txbuf, f_tx_rts_nretry, 0);
2382         FW_TXDESC_SETFIELD_1(sc, txbuf, f_tx_rts_ok, 0);
2383         sc->chip_set_fw_txdesc_rate(sc, txbuf, ni, m->m_pkthdr.len);
2384
2385         txbuf->tb_desc1->h_ctrl = 0;
2386         txbuf->tb_desc2->h_ctrl = 0;
2387         bus_dmamap_sync(rd->tx_ring_dma_tag, rd->tx_ring_dmamap,
2388                         BUS_DMASYNC_PREWRITE);
2389
2390         FW_TXDESC_SETFIELD_1(sc, txbuf, f_tx_ctrl2, 0);
2391         FW_TXDESC_SETFIELD_1(sc, txbuf, f_tx_ctrl, ctrl);
2392
2393         /* Tell chip to inform us about TX completion */
2394         CSR_WRITE_2(sc, ACXREG_INTR_TRIG, ACXRV_TRIG_TX_FINI);
2395 back:
2396         if (error)
2397                 m_freem(m);
2398         return error;
2399 }
2400
2401 static int
2402 acx_set_null_tmplt(struct acx_softc *sc)
2403 {
2404         struct acx_tmplt_null_data n;
2405         struct ieee80211_frame *f;
2406
2407         bzero(&n, sizeof(n));
2408
2409         f = &n.data;
2410         f->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA |
2411                      IEEE80211_FC0_SUBTYPE_NODATA;
2412         IEEE80211_ADDR_COPY(f->i_addr1, etherbroadcastaddr);
2413         IEEE80211_ADDR_COPY(f->i_addr2, IF_LLADDR(&sc->sc_ic.ic_if));
2414         IEEE80211_ADDR_COPY(f->i_addr3, etherbroadcastaddr);
2415
2416         return _acx_set_null_data_tmplt(sc, &n, sizeof(n));
2417 }
2418
2419 static int
2420 acx_set_probe_req_tmplt(struct acx_softc *sc, const char *ssid, int ssid_len)
2421 {
2422         struct acx_tmplt_probe_req req;
2423         struct ieee80211_frame *f;
2424         uint8_t *v;
2425         int vlen;
2426
2427         bzero(&req, sizeof(req));
2428
2429         f = &req.data.u_data.f;
2430         f->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2431                      IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2432         IEEE80211_ADDR_COPY(f->i_addr1, etherbroadcastaddr);
2433         IEEE80211_ADDR_COPY(f->i_addr2, IF_LLADDR(&sc->sc_ic.ic_if));
2434         IEEE80211_ADDR_COPY(f->i_addr3, etherbroadcastaddr);
2435
2436         v = req.data.u_data.var;
2437         v = ieee80211_add_ssid(v, ssid, ssid_len);
2438         v = ieee80211_add_rates(v, &sc->sc_ic.ic_sup_rates[sc->chip_phymode]);
2439         v = ieee80211_add_xrates(v, &sc->sc_ic.ic_sup_rates[sc->chip_phymode]);
2440         vlen = v - req.data.u_data.var;
2441
2442         return _acx_set_probe_req_tmplt(sc, &req,
2443                                         ACX_TMPLT_PROBE_REQ_SIZ(vlen));
2444 }
2445
2446 static int
2447 acx_set_probe_resp_tmplt(struct acx_softc *sc, struct ieee80211_node *ni)
2448 {
2449         struct ieee80211com *ic = &sc->sc_ic;
2450         struct acx_tmplt_probe_resp resp;
2451         struct ieee80211_frame *f;
2452         struct mbuf *m;
2453         int len;
2454
2455         m = ieee80211_probe_resp_alloc(ic, ni);
2456         if (m == NULL)
2457                 return 1;
2458         DPRINTF((&ic->ic_if, "%s alloc probe resp size %d\n", __func__,
2459                  m->m_pkthdr.len));
2460
2461         f = mtod(m, struct ieee80211_frame *);
2462         IEEE80211_ADDR_COPY(f->i_addr1, etherbroadcastaddr);
2463
2464         bzero(&resp, sizeof(resp));
2465         m_copydata(m, 0, m->m_pkthdr.len, (caddr_t)&resp.data);
2466         len = m->m_pkthdr.len + sizeof(resp.size);
2467         m_freem(m);
2468
2469         return _acx_set_probe_resp_tmplt(sc, &resp, len);
2470 }
2471
2472 static int
2473 acx_set_beacon_tmplt(struct acx_softc *sc, struct ieee80211_node *ni)
2474 {
2475         struct ieee80211com *ic = &sc->sc_ic;
2476         struct acx_tmplt_beacon beacon;
2477         struct ieee80211_beacon_offsets bo;
2478         struct mbuf *m;
2479         int len;
2480
2481         bzero(&bo, sizeof(bo));
2482         m = ieee80211_beacon_alloc(ic, ni, &bo);
2483         if (m == NULL)
2484                 return 1;
2485         DPRINTF((&ic->ic_if, "%s alloc beacon size %d\n", __func__,
2486                  m->m_pkthdr.len));
2487
2488         bzero(&beacon, sizeof(beacon));
2489         m_copydata(m, 0, m->m_pkthdr.len, (caddr_t)&beacon.data);
2490         len = m->m_pkthdr.len + sizeof(beacon.size);
2491         m_freem(m);
2492
2493         return _acx_set_beacon_tmplt(sc, &beacon, len);
2494 }
2495
2496 static int
2497 acx_sysctl_msdu_lifetime(SYSCTL_HANDLER_ARGS)
2498 {
2499         struct acx_softc *sc = arg1;
2500         struct ifnet *ifp = &sc->sc_ic.ic_if;
2501         int error = 0, v;
2502
2503         lwkt_serialize_enter(ifp->if_serializer);
2504
2505         v = sc->sc_msdu_lifetime;
2506         error = sysctl_handle_int(oidp, &v, 0, req);
2507         if (error || req->newptr == NULL)
2508                 goto back;
2509         if (v <= 0) {
2510                 error = EINVAL;
2511                 goto back;
2512         }
2513
2514         if (sc->sc_flags & ACX_FLAG_FW_LOADED) {
2515                 struct acx_conf_msdu_lifetime msdu_lifetime;
2516
2517                 msdu_lifetime.lifetime = htole32(v);
2518                 if (acx_set_msdu_lifetime_conf(sc, &msdu_lifetime) != 0) {
2519                         if_printf(&sc->sc_ic.ic_if,
2520                                   "can't set MSDU lifetime\n");
2521                         error = ENXIO;
2522                         goto back;
2523                 }
2524         }
2525         sc->sc_msdu_lifetime = v;
2526 back:
2527         lwkt_serialize_exit(ifp->if_serializer);
2528         return error;
2529 }
2530
2531 static int
2532 acx_media_change(struct ifnet *ifp)
2533 {
2534         int error;
2535
2536         error = ieee80211_media_change(ifp);
2537         if (error != ENETRESET)
2538                 return error;
2539
2540         if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
2541                 acx_init(ifp->if_softc);
2542         return 0;
2543 }