kernel - Fix pager bug in vm_fault and UFS and have UFS use vop_stdgetpages
[dragonfly.git] / sys / vm / vm_object.c
1 /*
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *      This product includes software developed by the University of
19  *      California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
65  * $DragonFly: src/sys/vm/vm_object.c,v 1.33 2008/05/09 07:24:48 dillon Exp $
66  */
67
68 /*
69  *      Virtual memory object module.
70  */
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/proc.h>           /* for curproc, pageproc */
75 #include <sys/vnode.h>
76 #include <sys/vmmeter.h>
77 #include <sys/mman.h>
78 #include <sys/mount.h>
79 #include <sys/kernel.h>
80 #include <sys/sysctl.h>
81
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pageout.h>
89 #include <vm/vm_pager.h>
90 #include <vm/swap_pager.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 #include <vm/vm_zone.h>
94
95 #define EASY_SCAN_FACTOR        8
96
97 static void     vm_object_qcollapse(vm_object_t object);
98 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
99                                              int pagerflags);
100
101 /*
102  *      Virtual memory objects maintain the actual data
103  *      associated with allocated virtual memory.  A given
104  *      page of memory exists within exactly one object.
105  *
106  *      An object is only deallocated when all "references"
107  *      are given up.  Only one "reference" to a given
108  *      region of an object should be writeable.
109  *
110  *      Associated with each object is a list of all resident
111  *      memory pages belonging to that object; this list is
112  *      maintained by the "vm_page" module, and locked by the object's
113  *      lock.
114  *
115  *      Each object also records a "pager" routine which is
116  *      used to retrieve (and store) pages to the proper backing
117  *      storage.  In addition, objects may be backed by other
118  *      objects from which they were virtual-copied.
119  *
120  *      The only items within the object structure which are
121  *      modified after time of creation are:
122  *              reference count         locked by object's lock
123  *              pager routine           locked by object's lock
124  *
125  */
126
127 struct object_q vm_object_list;
128 struct vm_object kernel_object;
129
130 static long vm_object_count;            /* count of all objects */
131 extern int vm_pageout_page_count;
132
133 static long object_collapses;
134 static long object_bypasses;
135 static int next_index;
136 static vm_zone_t obj_zone;
137 static struct vm_zone obj_zone_store;
138 static int object_hash_rand;
139 #define VM_OBJECTS_INIT 256
140 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
141
142 void
143 _vm_object_allocate(objtype_t type, vm_size_t size, vm_object_t object)
144 {
145         int incr;
146         RB_INIT(&object->rb_memq);
147         LIST_INIT(&object->shadow_head);
148
149         object->type = type;
150         object->size = size;
151         object->ref_count = 1;
152         object->flags = 0;
153         if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
154                 vm_object_set_flag(object, OBJ_ONEMAPPING);
155         object->paging_in_progress = 0;
156         object->resident_page_count = 0;
157         object->shadow_count = 0;
158         object->pg_color = next_index;
159         if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
160                 incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
161         else
162                 incr = size;
163         next_index = (next_index + incr) & PQ_L2_MASK;
164         object->handle = NULL;
165         object->backing_object = NULL;
166         object->backing_object_offset = (vm_ooffset_t) 0;
167         /*
168          * Try to generate a number that will spread objects out in the
169          * hash table.  We 'wipe' new objects across the hash in 128 page
170          * increments plus 1 more to offset it a little more by the time
171          * it wraps around.
172          */
173         object->hash_rand = object_hash_rand - 129;
174
175         object->generation++;
176
177         crit_enter();
178         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
179         vm_object_count++;
180         object_hash_rand = object->hash_rand;
181         crit_exit();
182 }
183
184 /*
185  *      vm_object_init:
186  *
187  *      Initialize the VM objects module.
188  */
189 void
190 vm_object_init(void)
191 {
192         TAILQ_INIT(&vm_object_list);
193         
194         _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd),
195                             &kernel_object);
196
197         obj_zone = &obj_zone_store;
198         zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
199                 vm_objects_init, VM_OBJECTS_INIT);
200 }
201
202 void
203 vm_object_init2(void)
204 {
205         zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1);
206 }
207
208 /*
209  *      vm_object_allocate:
210  *
211  *      Returns a new object with the given size.
212  */
213
214 vm_object_t
215 vm_object_allocate(objtype_t type, vm_size_t size)
216 {
217         vm_object_t result;
218
219         result = (vm_object_t) zalloc(obj_zone);
220
221         _vm_object_allocate(type, size, result);
222
223         return (result);
224 }
225
226
227 /*
228  *      vm_object_reference:
229  *
230  *      Gets another reference to the given object.
231  */
232 void
233 vm_object_reference(vm_object_t object)
234 {
235         if (object == NULL)
236                 return;
237
238         object->ref_count++;
239         if (object->type == OBJT_VNODE) {
240                 vref(object->handle);
241                 /* XXX what if the vnode is being destroyed? */
242         }
243 }
244
245 static void
246 vm_object_vndeallocate(vm_object_t object)
247 {
248         struct vnode *vp = (struct vnode *) object->handle;
249
250         KASSERT(object->type == OBJT_VNODE,
251             ("vm_object_vndeallocate: not a vnode object"));
252         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
253 #ifdef INVARIANTS
254         if (object->ref_count == 0) {
255                 vprint("vm_object_vndeallocate", vp);
256                 panic("vm_object_vndeallocate: bad object reference count");
257         }
258 #endif
259
260         object->ref_count--;
261         if (object->ref_count == 0)
262                 vclrflags(vp, VTEXT);
263         vrele(vp);
264 }
265
266 /*
267  *      vm_object_deallocate:
268  *
269  *      Release a reference to the specified object,
270  *      gained either through a vm_object_allocate
271  *      or a vm_object_reference call.  When all references
272  *      are gone, storage associated with this object
273  *      may be relinquished.
274  *
275  *      No object may be locked.
276  */
277 void
278 vm_object_deallocate(vm_object_t object)
279 {
280         vm_object_t temp;
281
282         while (object != NULL) {
283                 if (object->type == OBJT_VNODE) {
284                         vm_object_vndeallocate(object);
285                         return;
286                 }
287
288                 if (object->ref_count == 0) {
289                         panic("vm_object_deallocate: object deallocated too many times: %d", object->type);
290                 } else if (object->ref_count > 2) {
291                         object->ref_count--;
292                         return;
293                 }
294
295                 /*
296                  * Here on ref_count of one or two, which are special cases for
297                  * objects.
298                  */
299                 if ((object->ref_count == 2) && (object->shadow_count == 0)) {
300                         vm_object_set_flag(object, OBJ_ONEMAPPING);
301                         object->ref_count--;
302                         return;
303                 } else if ((object->ref_count == 2) && (object->shadow_count == 1)) {
304                         object->ref_count--;
305                         if ((object->handle == NULL) &&
306                             (object->type == OBJT_DEFAULT ||
307                              object->type == OBJT_SWAP)) {
308                                 vm_object_t robject;
309
310                                 robject = LIST_FIRST(&object->shadow_head);
311                                 KASSERT(robject != NULL,
312                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
313                                          object->ref_count,
314                                          object->shadow_count));
315                                 if ((robject->handle == NULL) &&
316                                     (robject->type == OBJT_DEFAULT ||
317                                      robject->type == OBJT_SWAP)) {
318
319                                         robject->ref_count++;
320
321                                         while (
322                                                 robject->paging_in_progress ||
323                                                 object->paging_in_progress
324                                         ) {
325                                                 vm_object_pip_sleep(robject, "objde1");
326                                                 vm_object_pip_sleep(object, "objde2");
327                                         }
328
329                                         if (robject->ref_count == 1) {
330                                                 robject->ref_count--;
331                                                 object = robject;
332                                                 goto doterm;
333                                         }
334
335                                         object = robject;
336                                         vm_object_collapse(object);
337                                         continue;
338                                 }
339                         }
340
341                         return;
342
343                 } else {
344                         object->ref_count--;
345                         if (object->ref_count != 0)
346                                 return;
347                 }
348
349 doterm:
350
351                 temp = object->backing_object;
352                 if (temp) {
353                         LIST_REMOVE(object, shadow_list);
354                         temp->shadow_count--;
355                         temp->generation++;
356                         object->backing_object = NULL;
357                 }
358
359                 /*
360                  * Don't double-terminate, we could be in a termination
361                  * recursion due to the terminate having to sync data
362                  * to disk.
363                  */
364                 if ((object->flags & OBJ_DEAD) == 0)
365                         vm_object_terminate(object);
366                 object = temp;
367         }
368 }
369
370 /*
371  *      vm_object_terminate actually destroys the specified object, freeing
372  *      up all previously used resources.
373  *
374  *      The object must be locked.
375  *      This routine may block.
376  */
377 static int vm_object_terminate_callback(vm_page_t p, void *data);
378
379 void
380 vm_object_terminate(vm_object_t object)
381 {
382         /*
383          * Make sure no one uses us.
384          */
385         vm_object_set_flag(object, OBJ_DEAD);
386
387         /*
388          * wait for the pageout daemon to be done with the object
389          */
390         vm_object_pip_wait(object, "objtrm");
391
392         KASSERT(!object->paging_in_progress,
393                 ("vm_object_terminate: pageout in progress"));
394
395         /*
396          * Clean and free the pages, as appropriate. All references to the
397          * object are gone, so we don't need to lock it.
398          */
399         if (object->type == OBJT_VNODE) {
400                 struct vnode *vp;
401
402                 /*
403                  * Clean pages and flush buffers.
404                  */
405                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
406
407                 vp = (struct vnode *) object->handle;
408                 vinvalbuf(vp, V_SAVE, 0, 0);
409         }
410
411         /*
412          * Wait for any I/O to complete, after which there had better not
413          * be any references left on the object.
414          */
415         vm_object_pip_wait(object, "objtrm");
416
417         if (object->ref_count != 0)
418                 panic("vm_object_terminate: object with references, ref_count=%d", object->ref_count);
419
420         /*
421          * Now free any remaining pages. For internal objects, this also
422          * removes them from paging queues. Don't free wired pages, just
423          * remove them from the object. 
424          */
425         crit_enter();
426         vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
427                                 vm_object_terminate_callback, NULL);
428         crit_exit();
429
430         /*
431          * Let the pager know object is dead.
432          */
433         vm_pager_deallocate(object);
434
435         /*
436          * Remove the object from the global object list.
437          */
438         crit_enter();
439         TAILQ_REMOVE(&vm_object_list, object, object_list);
440         vm_object_count--;
441         crit_exit();
442
443         vm_object_dead_wakeup(object);
444         if (object->ref_count != 0)
445                 panic("vm_object_terminate2: object with references, ref_count=%d", object->ref_count);
446
447         /*
448          * Free the space for the object.
449          */
450         zfree(obj_zone, object);
451 }
452
453 static int
454 vm_object_terminate_callback(vm_page_t p, void *data __unused)
455 {
456         if (p->busy || (p->flags & PG_BUSY))
457                 panic("vm_object_terminate: freeing busy page %p", p);
458         if (p->wire_count == 0) {
459                 vm_page_busy(p);
460                 vm_page_free(p);
461                 mycpu->gd_cnt.v_pfree++;
462         } else {
463                 if (p->queue != PQ_NONE)
464                         kprintf("vm_object_terminate: Warning: Encountered wired page %p on queue %d\n", p, p->queue);
465                 vm_page_busy(p);
466                 vm_page_remove(p);
467                 vm_page_wakeup(p);
468         }
469         return(0);
470 }
471
472 /*
473  * The object is dead but still has an object<->pager association.  Sleep
474  * and return.  The caller typically retests the association in a loop.
475  */
476 void
477 vm_object_dead_sleep(vm_object_t object, const char *wmesg)
478 {
479         crit_enter();
480         if (object->handle) {
481                 vm_object_set_flag(object, OBJ_DEADWNT);
482                 tsleep(object, 0, wmesg, 0);
483         }
484         crit_exit();
485 }
486
487 /*
488  * Wakeup anyone waiting for the object<->pager disassociation on
489  * a dead object.
490  */
491 void
492 vm_object_dead_wakeup(vm_object_t object)
493 {
494         if (object->flags & OBJ_DEADWNT) {
495                 vm_object_clear_flag(object, OBJ_DEADWNT);
496                 wakeup(object);
497         }
498 }
499
500 /*
501  *      vm_object_page_clean
502  *
503  *      Clean all dirty pages in the specified range of object.  Leaves page 
504  *      on whatever queue it is currently on.   If NOSYNC is set then do not
505  *      write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
506  *      leaving the object dirty.
507  *
508  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
509  *      synchronous clustering mode implementation.
510  *
511  *      Odd semantics: if start == end, we clean everything.
512  */
513 static int vm_object_page_clean_pass1(struct vm_page *p, void *data);
514 static int vm_object_page_clean_pass2(struct vm_page *p, void *data);
515
516 void
517 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
518                      int flags)
519 {
520         struct rb_vm_page_scan_info info;
521         struct vnode *vp;
522         int wholescan;
523         int pagerflags;
524         int curgeneration;
525
526         if (object->type != OBJT_VNODE ||
527                 (object->flags & OBJ_MIGHTBEDIRTY) == 0)
528                 return;
529
530         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? 
531                         VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
532         pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
533
534         vp = object->handle;
535
536         /*
537          * Interlock other major object operations.  This allows us to 
538          * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY.
539          */
540         crit_enter();
541         vm_object_set_flag(object, OBJ_CLEANING);
542
543         /*
544          * Handle 'entire object' case
545          */
546         info.start_pindex = start;
547         if (end == 0) {
548                 info.end_pindex = object->size - 1;
549         } else {
550                 info.end_pindex = end - 1;
551         }
552         wholescan = (start == 0 && info.end_pindex == object->size - 1);
553         info.limit = flags;
554         info.pagerflags = pagerflags;
555         info.object = object;
556
557         /*
558          * If cleaning the entire object do a pass to mark the pages read-only.
559          * If everything worked out ok, clear OBJ_WRITEABLE and
560          * OBJ_MIGHTBEDIRTY.
561          */
562         if (wholescan) {
563                 info.error = 0;
564                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
565                                         vm_object_page_clean_pass1, &info);
566                 if (info.error == 0) {
567                         vm_object_clear_flag(object,
568                                              OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
569                         if (object->type == OBJT_VNODE &&
570                             (vp = (struct vnode *)object->handle) != NULL) {
571                                 if (vp->v_flag & VOBJDIRTY) 
572                                         vclrflags(vp, VOBJDIRTY);
573                         }
574                 }
575         }
576
577         /*
578          * Do a pass to clean all the dirty pages we find.
579          */
580         do {
581                 info.error = 0;
582                 curgeneration = object->generation;
583                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
584                                         vm_object_page_clean_pass2, &info);
585         } while (info.error || curgeneration != object->generation);
586
587         vm_object_clear_flag(object, OBJ_CLEANING);
588         crit_exit();
589 }
590
591 static 
592 int
593 vm_object_page_clean_pass1(struct vm_page *p, void *data)
594 {
595         struct rb_vm_page_scan_info *info = data;
596
597         vm_page_flag_set(p, PG_CLEANCHK);
598         if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
599                 info->error = 1;
600         else
601                 vm_page_protect(p, VM_PROT_READ);       /* must not block */
602         return(0);
603 }
604
605 static 
606 int
607 vm_object_page_clean_pass2(struct vm_page *p, void *data)
608 {
609         struct rb_vm_page_scan_info *info = data;
610         int n;
611
612         /*
613          * Do not mess with pages that were inserted after we started
614          * the cleaning pass.
615          */
616         if ((p->flags & PG_CLEANCHK) == 0)
617                 return(0);
618
619         /*
620          * Before wasting time traversing the pmaps, check for trivial
621          * cases where the page cannot be dirty.
622          */
623         if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) {
624                 KKASSERT((p->dirty & p->valid) == 0);
625                 return(0);
626         }
627
628         /*
629          * Check whether the page is dirty or not.  The page has been set
630          * to be read-only so the check will not race a user dirtying the
631          * page.
632          */
633         vm_page_test_dirty(p);
634         if ((p->dirty & p->valid) == 0) {
635                 vm_page_flag_clear(p, PG_CLEANCHK);
636                 return(0);
637         }
638
639         /*
640          * If we have been asked to skip nosync pages and this is a
641          * nosync page, skip it.  Note that the object flags were
642          * not cleared in this case (because pass1 will have returned an
643          * error), so we do not have to set them.
644          */
645         if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
646                 vm_page_flag_clear(p, PG_CLEANCHK);
647                 return(0);
648         }
649
650         /*
651          * Flush as many pages as we can.  PG_CLEANCHK will be cleared on
652          * the pages that get successfully flushed.  Set info->error if
653          * we raced an object modification.
654          */
655         n = vm_object_page_collect_flush(info->object, p, info->pagerflags);
656         if (n == 0)
657                 info->error = 1;
658         return(0);
659 }
660
661 /*
662  * This routine must be called within a critical section to properly avoid
663  * an interrupt unbusy/free race that can occur prior to the busy check.
664  *
665  * Using the object generation number here to detect page ripout is not
666  * the best idea in the world. XXX
667  *
668  * NOTE: we operate under the assumption that a page found to not be busy
669  * will not be ripped out from under us by an interrupt.  XXX we should
670  * recode this to explicitly busy the pages.
671  */
672 static int
673 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags)
674 {
675         int runlen;
676         int maxf;
677         int chkb;
678         int maxb;
679         int i;
680         int curgeneration;
681         vm_pindex_t pi;
682         vm_page_t maf[vm_pageout_page_count];
683         vm_page_t mab[vm_pageout_page_count];
684         vm_page_t ma[vm_pageout_page_count];
685
686         curgeneration = object->generation;
687
688         pi = p->pindex;
689         while (vm_page_sleep_busy(p, TRUE, "vpcwai")) {
690                 if (object->generation != curgeneration) {
691                         return(0);
692                 }
693         }
694         KKASSERT(p->object == object && p->pindex == pi);
695
696         maxf = 0;
697         for(i = 1; i < vm_pageout_page_count; i++) {
698                 vm_page_t tp;
699
700                 if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
701                         if ((tp->flags & PG_BUSY) ||
702                                 ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 && 
703                                  (tp->flags & PG_CLEANCHK) == 0) ||
704                                 (tp->busy != 0))
705                                 break;
706                         if((tp->queue - tp->pc) == PQ_CACHE) {
707                                 vm_page_flag_clear(tp, PG_CLEANCHK);
708                                 break;
709                         }
710                         vm_page_test_dirty(tp);
711                         if ((tp->dirty & tp->valid) == 0) {
712                                 vm_page_flag_clear(tp, PG_CLEANCHK);
713                                 break;
714                         }
715                         maf[ i - 1 ] = tp;
716                         maxf++;
717                         continue;
718                 }
719                 break;
720         }
721
722         maxb = 0;
723         chkb = vm_pageout_page_count -  maxf;
724         if (chkb) {
725                 for(i = 1; i < chkb;i++) {
726                         vm_page_t tp;
727
728                         if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
729                                 if ((tp->flags & PG_BUSY) ||
730                                         ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 && 
731                                          (tp->flags & PG_CLEANCHK) == 0) ||
732                                         (tp->busy != 0))
733                                         break;
734                                 if((tp->queue - tp->pc) == PQ_CACHE) {
735                                         vm_page_flag_clear(tp, PG_CLEANCHK);
736                                         break;
737                                 }
738                                 vm_page_test_dirty(tp);
739                                 if ((tp->dirty & tp->valid) == 0) {
740                                         vm_page_flag_clear(tp, PG_CLEANCHK);
741                                         break;
742                                 }
743                                 mab[ i - 1 ] = tp;
744                                 maxb++;
745                                 continue;
746                         }
747                         break;
748                 }
749         }
750
751         for(i = 0; i < maxb; i++) {
752                 int index = (maxb - i) - 1;
753                 ma[index] = mab[i];
754                 vm_page_flag_clear(ma[index], PG_CLEANCHK);
755         }
756         vm_page_flag_clear(p, PG_CLEANCHK);
757         ma[maxb] = p;
758         for(i = 0; i < maxf; i++) {
759                 int index = (maxb + i) + 1;
760                 ma[index] = maf[i];
761                 vm_page_flag_clear(ma[index], PG_CLEANCHK);
762         }
763         runlen = maxb + maxf + 1;
764
765         vm_pageout_flush(ma, runlen, pagerflags);
766         for (i = 0; i < runlen; i++) {
767                 if (ma[i]->valid & ma[i]->dirty) {
768                         vm_page_protect(ma[i], VM_PROT_READ);
769                         vm_page_flag_set(ma[i], PG_CLEANCHK);
770
771                         /*
772                          * maxf will end up being the actual number of pages
773                          * we wrote out contiguously, non-inclusive of the
774                          * first page.  We do not count look-behind pages.
775                          */
776                         if (i >= maxb + 1 && (maxf > i - maxb - 1))
777                                 maxf = i - maxb - 1;
778                 }
779         }
780         return(maxf + 1);
781 }
782
783 #ifdef not_used
784 /* XXX I cannot tell if this should be an exported symbol */
785 /*
786  *      vm_object_deactivate_pages
787  *
788  *      Deactivate all pages in the specified object.  (Keep its pages
789  *      in memory even though it is no longer referenced.)
790  *
791  *      The object must be locked.
792  */
793 static int vm_object_deactivate_pages_callback(vm_page_t p, void *data);
794
795 static void
796 vm_object_deactivate_pages(vm_object_t object)
797 {
798         crit_enter();
799         vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
800                                 vm_object_deactivate_pages_callback, NULL);
801         crit_exit();
802 }
803
804 static int
805 vm_object_deactivate_pages_callback(vm_page_t p, void *data __unused)
806 {
807         vm_page_deactivate(p);
808         return(0);
809 }
810
811 #endif
812
813 /*
814  * Same as vm_object_pmap_copy, except range checking really
815  * works, and is meant for small sections of an object.
816  *
817  * This code protects resident pages by making them read-only
818  * and is typically called on a fork or split when a page
819  * is converted to copy-on-write.  
820  *
821  * NOTE: If the page is already at VM_PROT_NONE, calling
822  * vm_page_protect will have no effect.
823  */
824 void
825 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
826 {
827         vm_pindex_t idx;
828         vm_page_t p;
829
830         if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
831                 return;
832
833         /*
834          * spl protection needed to prevent races between the lookup,
835          * an interrupt unbusy/free, and our protect call.
836          */
837         crit_enter();
838         for (idx = start; idx < end; idx++) {
839                 p = vm_page_lookup(object, idx);
840                 if (p == NULL)
841                         continue;
842                 vm_page_protect(p, VM_PROT_READ);
843         }
844         crit_exit();
845 }
846
847 /*
848  *      vm_object_pmap_remove:
849  *
850  *      Removes all physical pages in the specified
851  *      object range from all physical maps.
852  *
853  *      The object must *not* be locked.
854  */
855
856 static int vm_object_pmap_remove_callback(vm_page_t p, void *data);
857
858 void
859 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
860 {
861         struct rb_vm_page_scan_info info;
862
863         if (object == NULL)
864                 return;
865         info.start_pindex = start;
866         info.end_pindex = end - 1;
867         crit_enter();
868         vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
869                                 vm_object_pmap_remove_callback, &info);
870         if (start == 0 && end == object->size)
871                 vm_object_clear_flag(object, OBJ_WRITEABLE);
872         crit_exit();
873 }
874
875 static int
876 vm_object_pmap_remove_callback(vm_page_t p, void *data __unused)
877 {
878         vm_page_protect(p, VM_PROT_NONE);
879         return(0);
880 }
881
882 /*
883  *      vm_object_madvise:
884  *
885  *      Implements the madvise function at the object/page level.
886  *
887  *      MADV_WILLNEED   (any object)
888  *
889  *          Activate the specified pages if they are resident.
890  *
891  *      MADV_DONTNEED   (any object)
892  *
893  *          Deactivate the specified pages if they are resident.
894  *
895  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
896  *                       OBJ_ONEMAPPING only)
897  *
898  *          Deactivate and clean the specified pages if they are
899  *          resident.  This permits the process to reuse the pages
900  *          without faulting or the kernel to reclaim the pages
901  *          without I/O.
902  */
903 void
904 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
905 {
906         vm_pindex_t end, tpindex;
907         vm_object_t tobject;
908         vm_page_t m;
909
910         if (object == NULL)
911                 return;
912
913         end = pindex + count;
914
915         /*
916          * Locate and adjust resident pages
917          */
918
919         for (; pindex < end; pindex += 1) {
920 relookup:
921                 tobject = object;
922                 tpindex = pindex;
923 shadowlookup:
924                 /*
925                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
926                  * and those pages must be OBJ_ONEMAPPING.
927                  */
928                 if (advise == MADV_FREE) {
929                         if ((tobject->type != OBJT_DEFAULT &&
930                              tobject->type != OBJT_SWAP) ||
931                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
932                                 continue;
933                         }
934                 }
935
936                 /*
937                  * spl protection is required to avoid a race between the
938                  * lookup, an interrupt unbusy/free, and our busy check.
939                  */
940
941                 crit_enter();
942                 m = vm_page_lookup(tobject, tpindex);
943
944                 if (m == NULL) {
945                         /*
946                          * There may be swap even if there is no backing page
947                          */
948                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
949                                 swap_pager_freespace(tobject, tpindex, 1);
950
951                         /*
952                          * next object
953                          */
954                         crit_exit();
955                         if (tobject->backing_object == NULL)
956                                 continue;
957                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
958                         tobject = tobject->backing_object;
959                         goto shadowlookup;
960                 }
961
962                 /*
963                  * If the page is busy or not in a normal active state,
964                  * we skip it.  If the page is not managed there are no
965                  * page queues to mess with.  Things can break if we mess
966                  * with pages in any of the below states.
967                  */
968                 if (
969                     m->hold_count ||
970                     m->wire_count ||
971                     (m->flags & PG_UNMANAGED) ||
972                     m->valid != VM_PAGE_BITS_ALL
973                 ) {
974                         crit_exit();
975                         continue;
976                 }
977
978                 if (vm_page_sleep_busy(m, TRUE, "madvpo")) {
979                         crit_exit();
980                         goto relookup;
981                 }
982                 crit_exit();
983
984                 /*
985                  * Theoretically once a page is known not to be busy, an
986                  * interrupt cannot come along and rip it out from under us.
987                  */
988
989                 if (advise == MADV_WILLNEED) {
990                         vm_page_activate(m);
991                 } else if (advise == MADV_DONTNEED) {
992                         vm_page_dontneed(m);
993                 } else if (advise == MADV_FREE) {
994                         /*
995                          * Mark the page clean.  This will allow the page
996                          * to be freed up by the system.  However, such pages
997                          * are often reused quickly by malloc()/free()
998                          * so we do not do anything that would cause
999                          * a page fault if we can help it.
1000                          *
1001                          * Specifically, we do not try to actually free
1002                          * the page now nor do we try to put it in the
1003                          * cache (which would cause a page fault on reuse).
1004                          *
1005                          * But we do make the page is freeable as we
1006                          * can without actually taking the step of unmapping
1007                          * it.
1008                          */
1009                         pmap_clear_modify(m);
1010                         m->dirty = 0;
1011                         m->act_count = 0;
1012                         vm_page_dontneed(m);
1013                         if (tobject->type == OBJT_SWAP)
1014                                 swap_pager_freespace(tobject, tpindex, 1);
1015                 }
1016         }       
1017 }
1018
1019 /*
1020  *      vm_object_shadow:
1021  *
1022  *      Create a new object which is backed by the
1023  *      specified existing object range.  The source
1024  *      object reference is deallocated.
1025  *
1026  *      The new object and offset into that object
1027  *      are returned in the source parameters.
1028  */
1029
1030 void
1031 vm_object_shadow(vm_object_t *object,   /* IN/OUT */
1032                  vm_ooffset_t *offset,  /* IN/OUT */
1033                  vm_size_t length)
1034 {
1035         vm_object_t source;
1036         vm_object_t result;
1037
1038         source = *object;
1039
1040         /*
1041          * Don't create the new object if the old object isn't shared.
1042          */
1043
1044         if (source != NULL &&
1045             source->ref_count == 1 &&
1046             source->handle == NULL &&
1047             (source->type == OBJT_DEFAULT ||
1048              source->type == OBJT_SWAP))
1049                 return;
1050
1051         /*
1052          * Allocate a new object with the given length
1053          */
1054
1055         if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL)
1056                 panic("vm_object_shadow: no object for shadowing");
1057
1058         /*
1059          * The new object shadows the source object, adding a reference to it.
1060          * Our caller changes his reference to point to the new object,
1061          * removing a reference to the source object.  Net result: no change
1062          * of reference count.
1063          *
1064          * Try to optimize the result object's page color when shadowing
1065          * in order to maintain page coloring consistency in the combined 
1066          * shadowed object.
1067          */
1068         result->backing_object = source;
1069         if (source) {
1070                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1071                 source->shadow_count++;
1072                 source->generation++;
1073                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & PQ_L2_MASK;
1074         }
1075
1076         /*
1077          * Store the offset into the source object, and fix up the offset into
1078          * the new object.
1079          */
1080
1081         result->backing_object_offset = *offset;
1082
1083         /*
1084          * Return the new things
1085          */
1086
1087         *offset = 0;
1088         *object = result;
1089 }
1090
1091 #define OBSC_TEST_ALL_SHADOWED  0x0001
1092 #define OBSC_COLLAPSE_NOWAIT    0x0002
1093 #define OBSC_COLLAPSE_WAIT      0x0004
1094
1095 static int vm_object_backing_scan_callback(vm_page_t p, void *data);
1096
1097 static __inline int
1098 vm_object_backing_scan(vm_object_t object, int op)
1099 {
1100         struct rb_vm_page_scan_info info;
1101         vm_object_t backing_object;
1102
1103         /*
1104          * spl protection is required to avoid races between the memq/lookup,
1105          * an interrupt doing an unbusy/free, and our busy check.  Amoung
1106          * other things.
1107          */
1108         crit_enter();
1109
1110         backing_object = object->backing_object;
1111         info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1112
1113         /*
1114          * Initial conditions
1115          */
1116
1117         if (op & OBSC_TEST_ALL_SHADOWED) {
1118                 /*
1119                  * We do not want to have to test for the existence of
1120                  * swap pages in the backing object.  XXX but with the
1121                  * new swapper this would be pretty easy to do.
1122                  *
1123                  * XXX what about anonymous MAP_SHARED memory that hasn't
1124                  * been ZFOD faulted yet?  If we do not test for this, the
1125                  * shadow test may succeed! XXX
1126                  */
1127                 if (backing_object->type != OBJT_DEFAULT) {
1128                         crit_exit();
1129                         return(0);
1130                 }
1131         }
1132         if (op & OBSC_COLLAPSE_WAIT) {
1133                 KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
1134                 vm_object_set_flag(backing_object, OBJ_DEAD);
1135         }
1136
1137         /*
1138          * Our scan.   We have to retry if a negative error code is returned,
1139          * otherwise 0 or 1 will be returned in info.error.  0 Indicates that
1140          * the scan had to be stopped because the parent does not completely
1141          * shadow the child.
1142          */
1143         info.object = object;
1144         info.backing_object = backing_object;
1145         info.limit = op;
1146         do {
1147                 info.error = 1;
1148                 vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL,
1149                                         vm_object_backing_scan_callback,
1150                                         &info);
1151         } while (info.error < 0);
1152         crit_exit();
1153         return(info.error);
1154 }
1155
1156 static int
1157 vm_object_backing_scan_callback(vm_page_t p, void *data)
1158 {
1159         struct rb_vm_page_scan_info *info = data;
1160         vm_object_t backing_object;
1161         vm_object_t object;
1162         vm_pindex_t new_pindex;
1163         vm_pindex_t backing_offset_index;
1164         int op;
1165
1166         new_pindex = p->pindex - info->backing_offset_index;
1167         op = info->limit;
1168         object = info->object;
1169         backing_object = info->backing_object;
1170         backing_offset_index = info->backing_offset_index;
1171
1172         if (op & OBSC_TEST_ALL_SHADOWED) {
1173                 vm_page_t pp;
1174
1175                 /*
1176                  * Ignore pages outside the parent object's range
1177                  * and outside the parent object's mapping of the 
1178                  * backing object.
1179                  *
1180                  * note that we do not busy the backing object's
1181                  * page.
1182                  */
1183                 if (
1184                     p->pindex < backing_offset_index ||
1185                     new_pindex >= object->size
1186                 ) {
1187                         return(0);
1188                 }
1189
1190                 /*
1191                  * See if the parent has the page or if the parent's
1192                  * object pager has the page.  If the parent has the
1193                  * page but the page is not valid, the parent's
1194                  * object pager must have the page.
1195                  *
1196                  * If this fails, the parent does not completely shadow
1197                  * the object and we might as well give up now.
1198                  */
1199
1200                 pp = vm_page_lookup(object, new_pindex);
1201                 if ((pp == NULL || pp->valid == 0) &&
1202                     !vm_pager_has_page(object, new_pindex)
1203                 ) {
1204                         info->error = 0;        /* problemo */
1205                         return(-1);             /* stop the scan */
1206                 }
1207         }
1208
1209         /*
1210          * Check for busy page
1211          */
1212
1213         if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1214                 vm_page_t pp;
1215
1216                 if (op & OBSC_COLLAPSE_NOWAIT) {
1217                         if (
1218                             (p->flags & PG_BUSY) ||
1219                             !p->valid || 
1220                             p->hold_count || 
1221                             p->wire_count ||
1222                             p->busy
1223                         ) {
1224                                 return(0);
1225                         }
1226                 } else if (op & OBSC_COLLAPSE_WAIT) {
1227                         if (vm_page_sleep_busy(p, TRUE, "vmocol")) {
1228                                 /*
1229                                  * If we slept, anything could have
1230                                  * happened.   Ask that the scan be restarted.
1231                                  *
1232                                  * Since the object is marked dead, the
1233                                  * backing offset should not have changed.  
1234                                  */
1235                                 info->error = -1;
1236                                 return(-1);
1237                         }
1238                 }
1239
1240                 /* 
1241                  * Busy the page
1242                  */
1243                 vm_page_busy(p);
1244
1245                 KASSERT(
1246                     p->object == backing_object,
1247                     ("vm_object_qcollapse(): object mismatch")
1248                 );
1249
1250                 /*
1251                  * Destroy any associated swap
1252                  */
1253                 if (backing_object->type == OBJT_SWAP) {
1254                         swap_pager_freespace(
1255                             backing_object, 
1256                             p->pindex,
1257                             1
1258                         );
1259                 }
1260
1261                 if (
1262                     p->pindex < backing_offset_index ||
1263                     new_pindex >= object->size
1264                 ) {
1265                         /*
1266                          * Page is out of the parent object's range, we 
1267                          * can simply destroy it. 
1268                          */
1269                         vm_page_protect(p, VM_PROT_NONE);
1270                         vm_page_free(p);
1271                         return(0);
1272                 }
1273
1274                 pp = vm_page_lookup(object, new_pindex);
1275                 if (pp != NULL || vm_pager_has_page(object, new_pindex)) {
1276                         /*
1277                          * page already exists in parent OR swap exists
1278                          * for this location in the parent.  Destroy 
1279                          * the original page from the backing object.
1280                          *
1281                          * Leave the parent's page alone
1282                          */
1283                         vm_page_protect(p, VM_PROT_NONE);
1284                         vm_page_free(p);
1285                         return(0);
1286                 }
1287
1288                 /*
1289                  * Page does not exist in parent, rename the
1290                  * page from the backing object to the main object. 
1291                  *
1292                  * If the page was mapped to a process, it can remain 
1293                  * mapped through the rename.
1294                  */
1295                 if ((p->queue - p->pc) == PQ_CACHE)
1296                         vm_page_deactivate(p);
1297
1298                 vm_page_rename(p, object, new_pindex);
1299                 /* page automatically made dirty by rename */
1300         }
1301         return(0);
1302 }
1303
1304 /*
1305  * this version of collapse allows the operation to occur earlier and
1306  * when paging_in_progress is true for an object...  This is not a complete
1307  * operation, but should plug 99.9% of the rest of the leaks.
1308  */
1309 static void
1310 vm_object_qcollapse(vm_object_t object)
1311 {
1312         vm_object_t backing_object = object->backing_object;
1313
1314         if (backing_object->ref_count != 1)
1315                 return;
1316
1317         backing_object->ref_count += 2;
1318
1319         vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1320
1321         backing_object->ref_count -= 2;
1322 }
1323
1324 /*
1325  *      vm_object_collapse:
1326  *
1327  *      Collapse an object with the object backing it.
1328  *      Pages in the backing object are moved into the
1329  *      parent, and the backing object is deallocated.
1330  */
1331 void
1332 vm_object_collapse(vm_object_t object)
1333 {
1334         while (TRUE) {
1335                 vm_object_t backing_object;
1336
1337                 /*
1338                  * Verify that the conditions are right for collapse:
1339                  *
1340                  * The object exists and the backing object exists.
1341                  */
1342                 if (object == NULL)
1343                         break;
1344
1345                 if ((backing_object = object->backing_object) == NULL)
1346                         break;
1347
1348                 /*
1349                  * we check the backing object first, because it is most likely
1350                  * not collapsable.
1351                  */
1352                 if (backing_object->handle != NULL ||
1353                     (backing_object->type != OBJT_DEFAULT &&
1354                      backing_object->type != OBJT_SWAP) ||
1355                     (backing_object->flags & OBJ_DEAD) ||
1356                     object->handle != NULL ||
1357                     (object->type != OBJT_DEFAULT &&
1358                      object->type != OBJT_SWAP) ||
1359                     (object->flags & OBJ_DEAD)) {
1360                         break;
1361                 }
1362
1363                 if (
1364                     object->paging_in_progress != 0 ||
1365                     backing_object->paging_in_progress != 0
1366                 ) {
1367                         vm_object_qcollapse(object);
1368                         break;
1369                 }
1370
1371                 /*
1372                  * We know that we can either collapse the backing object (if
1373                  * the parent is the only reference to it) or (perhaps) have
1374                  * the parent bypass the object if the parent happens to shadow
1375                  * all the resident pages in the entire backing object.
1376                  *
1377                  * This is ignoring pager-backed pages such as swap pages.
1378                  * vm_object_backing_scan fails the shadowing test in this
1379                  * case.
1380                  */
1381
1382                 if (backing_object->ref_count == 1) {
1383                         /*
1384                          * If there is exactly one reference to the backing
1385                          * object, we can collapse it into the parent.  
1386                          */
1387                         vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1388
1389                         /*
1390                          * Move the pager from backing_object to object.
1391                          */
1392
1393                         if (backing_object->type == OBJT_SWAP) {
1394                                 vm_object_pip_add(backing_object, 1);
1395
1396                                 /*
1397                                  * scrap the paging_offset junk and do a 
1398                                  * discrete copy.  This also removes major 
1399                                  * assumptions about how the swap-pager 
1400                                  * works from where it doesn't belong.  The
1401                                  * new swapper is able to optimize the
1402                                  * destroy-source case.
1403                                  */
1404
1405                                 vm_object_pip_add(object, 1);
1406                                 swap_pager_copy(
1407                                     backing_object,
1408                                     object,
1409                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1410                                 vm_object_pip_wakeup(object);
1411
1412                                 vm_object_pip_wakeup(backing_object);
1413                         }
1414                         /*
1415                          * Object now shadows whatever backing_object did.
1416                          * Note that the reference to 
1417                          * backing_object->backing_object moves from within 
1418                          * backing_object to within object.
1419                          */
1420
1421                         LIST_REMOVE(object, shadow_list);
1422                         object->backing_object->shadow_count--;
1423                         object->backing_object->generation++;
1424                         if (backing_object->backing_object) {
1425                                 LIST_REMOVE(backing_object, shadow_list);
1426                                 backing_object->backing_object->shadow_count--;
1427                                 backing_object->backing_object->generation++;
1428                         }
1429                         object->backing_object = backing_object->backing_object;
1430                         if (object->backing_object) {
1431                                 LIST_INSERT_HEAD(
1432                                     &object->backing_object->shadow_head,
1433                                     object, 
1434                                     shadow_list
1435                                 );
1436                                 object->backing_object->shadow_count++;
1437                                 object->backing_object->generation++;
1438                         }
1439
1440                         object->backing_object_offset +=
1441                             backing_object->backing_object_offset;
1442
1443                         /*
1444                          * Discard backing_object.
1445                          *
1446                          * Since the backing object has no pages, no pager left,
1447                          * and no object references within it, all that is
1448                          * necessary is to dispose of it.
1449                          */
1450
1451                         KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1452                         KASSERT(RB_EMPTY(&backing_object->rb_memq), ("backing_object %p somehow has left over pages during collapse!", backing_object));
1453                         crit_enter();
1454                         TAILQ_REMOVE(
1455                             &vm_object_list, 
1456                             backing_object,
1457                             object_list
1458                         );
1459                         vm_object_count--;
1460                         crit_exit();
1461
1462                         zfree(obj_zone, backing_object);
1463
1464                         object_collapses++;
1465                 } else {
1466                         vm_object_t new_backing_object;
1467
1468                         /*
1469                          * If we do not entirely shadow the backing object,
1470                          * there is nothing we can do so we give up.
1471                          */
1472
1473                         if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1474                                 break;
1475                         }
1476
1477                         /*
1478                          * Make the parent shadow the next object in the
1479                          * chain.  Deallocating backing_object will not remove
1480                          * it, since its reference count is at least 2.
1481                          */
1482
1483                         LIST_REMOVE(object, shadow_list);
1484                         backing_object->shadow_count--;
1485                         backing_object->generation++;
1486
1487                         new_backing_object = backing_object->backing_object;
1488                         if ((object->backing_object = new_backing_object) != NULL) {
1489                                 vm_object_reference(new_backing_object);
1490                                 LIST_INSERT_HEAD(
1491                                     &new_backing_object->shadow_head,
1492                                     object,
1493                                     shadow_list
1494                                 );
1495                                 new_backing_object->shadow_count++;
1496                                 new_backing_object->generation++;
1497                                 object->backing_object_offset +=
1498                                         backing_object->backing_object_offset;
1499                         }
1500
1501                         /*
1502                          * Drop the reference count on backing_object. Since
1503                          * its ref_count was at least 2, it will not vanish;
1504                          * so we don't need to call vm_object_deallocate, but
1505                          * we do anyway.
1506                          */
1507                         vm_object_deallocate(backing_object);
1508                         object_bypasses++;
1509                 }
1510
1511                 /*
1512                  * Try again with this object's new backing object.
1513                  */
1514         }
1515 }
1516
1517 /*
1518  *      vm_object_page_remove: [internal]
1519  *
1520  *      Removes all physical pages in the specified
1521  *      object range from the object's list of pages.
1522  */
1523 static int vm_object_page_remove_callback(vm_page_t p, void *data);
1524
1525 void
1526 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1527                       boolean_t clean_only)
1528 {
1529         struct rb_vm_page_scan_info info;
1530         int all;
1531
1532         /*
1533          * Degenerate cases and assertions
1534          */
1535         if (object == NULL || object->resident_page_count == 0)
1536                 return;
1537         KASSERT(object->type != OBJT_PHYS, 
1538                 ("attempt to remove pages from a physical object"));
1539
1540         /*
1541          * Indicate that paging is occuring on the object
1542          */
1543         crit_enter();
1544         vm_object_pip_add(object, 1);
1545
1546         /*
1547          * Figure out the actual removal range and whether we are removing
1548          * the entire contents of the object or not.  If removing the entire
1549          * contents, be sure to get all pages, even those that might be 
1550          * beyond the end of the object.
1551          */
1552         info.start_pindex = start;
1553         if (end == 0)
1554                 info.end_pindex = (vm_pindex_t)-1;
1555         else
1556                 info.end_pindex = end - 1;
1557         info.limit = clean_only;
1558         all = (start == 0 && info.end_pindex >= object->size - 1);
1559
1560         /*
1561          * Loop until we are sure we have gotten them all.
1562          */
1563         do {
1564                 info.error = 0;
1565                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1566                                         vm_object_page_remove_callback, &info);
1567         } while (info.error);
1568
1569         /*
1570          * Cleanup
1571          */
1572         vm_object_pip_wakeup(object);
1573         crit_exit();
1574 }
1575
1576 static int
1577 vm_object_page_remove_callback(vm_page_t p, void *data)
1578 {
1579         struct rb_vm_page_scan_info *info = data;
1580
1581         /*
1582          * Wired pages cannot be destroyed, but they can be invalidated
1583          * and we do so if clean_only (limit) is not set.
1584          *
1585          * WARNING!  The page may be wired due to being part of a buffer
1586          *           cache buffer, and the buffer might be marked B_CACHE.
1587          *           This is fine as part of a truncation but VFSs must be
1588          *           sure to fix the buffer up when re-extending the file.
1589          */
1590         if (p->wire_count != 0) {
1591                 vm_page_protect(p, VM_PROT_NONE);
1592                 if (info->limit == 0)
1593                         p->valid = 0;
1594                 return(0);
1595         }
1596
1597         /*
1598          * The busy flags are only cleared at
1599          * interrupt -- minimize the spl transitions
1600          */
1601
1602         if (vm_page_sleep_busy(p, TRUE, "vmopar")) {
1603                 info->error = 1;
1604                 return(0);
1605         }
1606
1607         /*
1608          * limit is our clean_only flag.  If set and the page is dirty, do
1609          * not free it.  If set and the page is being held by someone, do
1610          * not free it.
1611          */
1612         if (info->limit && p->valid) {
1613                 vm_page_test_dirty(p);
1614                 if (p->valid & p->dirty)
1615                         return(0);
1616                 if (p->hold_count)
1617                         return(0);
1618         }
1619
1620         /*
1621          * Destroy the page
1622          */
1623         vm_page_busy(p);
1624         vm_page_protect(p, VM_PROT_NONE);
1625         vm_page_free(p);
1626         return(0);
1627 }
1628
1629 /*
1630  *      Routine:        vm_object_coalesce
1631  *      Function:       Coalesces two objects backing up adjoining
1632  *                      regions of memory into a single object.
1633  *
1634  *      returns TRUE if objects were combined.
1635  *
1636  *      NOTE:   Only works at the moment if the second object is NULL -
1637  *              if it's not, which object do we lock first?
1638  *
1639  *      Parameters:
1640  *              prev_object     First object to coalesce
1641  *              prev_offset     Offset into prev_object
1642  *              next_object     Second object into coalesce
1643  *              next_offset     Offset into next_object
1644  *
1645  *              prev_size       Size of reference to prev_object
1646  *              next_size       Size of reference to next_object
1647  *
1648  *      Conditions:
1649  *      The object must *not* be locked.
1650  */
1651 boolean_t
1652 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
1653     vm_size_t prev_size, vm_size_t next_size)
1654 {
1655         vm_pindex_t next_pindex;
1656
1657         if (prev_object == NULL) {
1658                 return (TRUE);
1659         }
1660
1661         if (prev_object->type != OBJT_DEFAULT &&
1662             prev_object->type != OBJT_SWAP) {
1663                 return (FALSE);
1664         }
1665
1666         /*
1667          * Try to collapse the object first
1668          */
1669         vm_object_collapse(prev_object);
1670
1671         /*
1672          * Can't coalesce if: . more than one reference . paged out . shadows
1673          * another object . has a copy elsewhere (any of which mean that the
1674          * pages not mapped to prev_entry may be in use anyway)
1675          */
1676
1677         if (prev_object->backing_object != NULL) {
1678                 return (FALSE);
1679         }
1680
1681         prev_size >>= PAGE_SHIFT;
1682         next_size >>= PAGE_SHIFT;
1683         next_pindex = prev_pindex + prev_size;
1684
1685         if ((prev_object->ref_count > 1) &&
1686             (prev_object->size != next_pindex)) {
1687                 return (FALSE);
1688         }
1689
1690         /*
1691          * Remove any pages that may still be in the object from a previous
1692          * deallocation.
1693          */
1694         if (next_pindex < prev_object->size) {
1695                 vm_object_page_remove(prev_object,
1696                                       next_pindex,
1697                                       next_pindex + next_size, FALSE);
1698                 if (prev_object->type == OBJT_SWAP)
1699                         swap_pager_freespace(prev_object,
1700                                              next_pindex, next_size);
1701         }
1702
1703         /*
1704          * Extend the object if necessary.
1705          */
1706         if (next_pindex + next_size > prev_object->size)
1707                 prev_object->size = next_pindex + next_size;
1708
1709         return (TRUE);
1710 }
1711
1712 void
1713 vm_object_set_writeable_dirty(vm_object_t object)
1714 {
1715         struct vnode *vp;
1716
1717         vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1718         if (object->type == OBJT_VNODE &&
1719             (vp = (struct vnode *)object->handle) != NULL) {
1720                 if ((vp->v_flag & VOBJDIRTY) == 0) {
1721                         vsetflags(vp, VOBJDIRTY);
1722                 }
1723         }
1724 }
1725
1726
1727
1728 #include "opt_ddb.h"
1729 #ifdef DDB
1730 #include <sys/kernel.h>
1731
1732 #include <sys/cons.h>
1733
1734 #include <ddb/ddb.h>
1735
1736 static int      _vm_object_in_map (vm_map_t map, vm_object_t object,
1737                                        vm_map_entry_t entry);
1738 static int      vm_object_in_map (vm_object_t object);
1739
1740 static int
1741 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
1742 {
1743         vm_map_t tmpm;
1744         vm_map_entry_t tmpe;
1745         vm_object_t obj;
1746         int entcount;
1747
1748         if (map == 0)
1749                 return 0;
1750         if (entry == 0) {
1751                 tmpe = map->header.next;
1752                 entcount = map->nentries;
1753                 while (entcount-- && (tmpe != &map->header)) {
1754                         if( _vm_object_in_map(map, object, tmpe)) {
1755                                 return 1;
1756                         }
1757                         tmpe = tmpe->next;
1758                 }
1759                 return (0);
1760         }
1761         switch(entry->maptype) {
1762         case VM_MAPTYPE_SUBMAP:
1763                 tmpm = entry->object.sub_map;
1764                 tmpe = tmpm->header.next;
1765                 entcount = tmpm->nentries;
1766                 while (entcount-- && tmpe != &tmpm->header) {
1767                         if( _vm_object_in_map(tmpm, object, tmpe)) {
1768                                 return 1;
1769                         }
1770                         tmpe = tmpe->next;
1771                 }
1772                 break;
1773         case VM_MAPTYPE_NORMAL:
1774         case VM_MAPTYPE_VPAGETABLE:
1775                 obj = entry->object.vm_object;
1776                 while (obj) {
1777                         if (obj == object)
1778                                 return 1;
1779                         obj = obj->backing_object;
1780                 }
1781                 break;
1782         default:
1783                 break;
1784         }
1785         return 0;
1786 }
1787
1788 static int vm_object_in_map_callback(struct proc *p, void *data);
1789
1790 struct vm_object_in_map_info {
1791         vm_object_t object;
1792         int rv;
1793 };
1794
1795 static int
1796 vm_object_in_map(vm_object_t object)
1797 {
1798         struct vm_object_in_map_info info;
1799
1800         info.rv = 0;
1801         info.object = object;
1802
1803         allproc_scan(vm_object_in_map_callback, &info);
1804         if (info.rv)
1805                 return 1;
1806         if( _vm_object_in_map(&kernel_map, object, 0))
1807                 return 1;
1808         if( _vm_object_in_map(&pager_map, object, 0))
1809                 return 1;
1810         if( _vm_object_in_map(&buffer_map, object, 0))
1811                 return 1;
1812         return 0;
1813 }
1814
1815 static int
1816 vm_object_in_map_callback(struct proc *p, void *data)
1817 {
1818         struct vm_object_in_map_info *info = data;
1819
1820         if (p->p_vmspace) {
1821                 if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) {
1822                         info->rv = 1;
1823                         return -1;
1824                 }
1825         }
1826         return (0);
1827 }
1828
1829 DB_SHOW_COMMAND(vmochk, vm_object_check)
1830 {
1831         vm_object_t object;
1832
1833         /*
1834          * make sure that internal objs are in a map somewhere
1835          * and none have zero ref counts.
1836          */
1837         for (object = TAILQ_FIRST(&vm_object_list);
1838                         object != NULL;
1839                         object = TAILQ_NEXT(object, object_list)) {
1840                 if (object->handle == NULL &&
1841                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
1842                         if (object->ref_count == 0) {
1843                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
1844                                         (long)object->size);
1845                         }
1846                         if (!vm_object_in_map(object)) {
1847                                 db_printf(
1848                         "vmochk: internal obj is not in a map: "
1849                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
1850                                     object->ref_count, (u_long)object->size, 
1851                                     (u_long)object->size,
1852                                     (void *)object->backing_object);
1853                         }
1854                 }
1855         }
1856 }
1857
1858 /*
1859  *      vm_object_print:        [ debug ]
1860  */
1861 DB_SHOW_COMMAND(object, vm_object_print_static)
1862 {
1863         /* XXX convert args. */
1864         vm_object_t object = (vm_object_t)addr;
1865         boolean_t full = have_addr;
1866
1867         vm_page_t p;
1868
1869         /* XXX count is an (unused) arg.  Avoid shadowing it. */
1870 #define count   was_count
1871
1872         int count;
1873
1874         if (object == NULL)
1875                 return;
1876
1877         db_iprintf(
1878             "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
1879             object, (int)object->type, (u_long)object->size,
1880             object->resident_page_count, object->ref_count, object->flags);
1881         /*
1882          * XXX no %qd in kernel.  Truncate object->backing_object_offset.
1883          */
1884         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
1885             object->shadow_count, 
1886             object->backing_object ? object->backing_object->ref_count : 0,
1887             object->backing_object, (long)object->backing_object_offset);
1888
1889         if (!full)
1890                 return;
1891
1892         db_indent += 2;
1893         count = 0;
1894         RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) {
1895                 if (count == 0)
1896                         db_iprintf("memory:=");
1897                 else if (count == 6) {
1898                         db_printf("\n");
1899                         db_iprintf(" ...");
1900                         count = 0;
1901                 } else
1902                         db_printf(",");
1903                 count++;
1904
1905                 db_printf("(off=0x%lx,page=0x%lx)",
1906                     (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
1907         }
1908         if (count != 0)
1909                 db_printf("\n");
1910         db_indent -= 2;
1911 }
1912
1913 /* XXX. */
1914 #undef count
1915
1916 /* XXX need this non-static entry for calling from vm_map_print. */
1917 void
1918 vm_object_print(/* db_expr_t */ long addr,
1919                 boolean_t have_addr,
1920                 /* db_expr_t */ long count,
1921                 char *modif)
1922 {
1923         vm_object_print_static(addr, have_addr, count, modif);
1924 }
1925
1926 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
1927 {
1928         vm_object_t object;
1929         int nl = 0;
1930         int c;
1931         for (object = TAILQ_FIRST(&vm_object_list);
1932                         object != NULL;
1933                         object = TAILQ_NEXT(object, object_list)) {
1934                 vm_pindex_t idx, fidx;
1935                 vm_pindex_t osize;
1936                 vm_paddr_t pa = -1, padiff;
1937                 int rcount;
1938                 vm_page_t m;
1939
1940                 db_printf("new object: %p\n", (void *)object);
1941                 if ( nl > 18) {
1942                         c = cngetc();
1943                         if (c != ' ')
1944                                 return;
1945                         nl = 0;
1946                 }
1947                 nl++;
1948                 rcount = 0;
1949                 fidx = 0;
1950                 osize = object->size;
1951                 if (osize > 128)
1952                         osize = 128;
1953                 for (idx = 0; idx < osize; idx++) {
1954                         m = vm_page_lookup(object, idx);
1955                         if (m == NULL) {
1956                                 if (rcount) {
1957                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
1958                                                 (long)fidx, rcount, (long)pa);
1959                                         if ( nl > 18) {
1960                                                 c = cngetc();
1961                                                 if (c != ' ')
1962                                                         return;
1963                                                 nl = 0;
1964                                         }
1965                                         nl++;
1966                                         rcount = 0;
1967                                 }
1968                                 continue;
1969                         }
1970
1971                                 
1972                         if (rcount &&
1973                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
1974                                 ++rcount;
1975                                 continue;
1976                         }
1977                         if (rcount) {
1978                                 padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
1979                                 padiff >>= PAGE_SHIFT;
1980                                 padiff &= PQ_L2_MASK;
1981                                 if (padiff == 0) {
1982                                         pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
1983                                         ++rcount;
1984                                         continue;
1985                                 }
1986                                 db_printf(" index(%ld)run(%d)pa(0x%lx)",
1987                                         (long)fidx, rcount, (long)pa);
1988                                 db_printf("pd(%ld)\n", (long)padiff);
1989                                 if ( nl > 18) {
1990                                         c = cngetc();
1991                                         if (c != ' ')
1992                                                 return;
1993                                         nl = 0;
1994                                 }
1995                                 nl++;
1996                         }
1997                         fidx = idx;
1998                         pa = VM_PAGE_TO_PHYS(m);
1999                         rcount = 1;
2000                 }
2001                 if (rcount) {
2002                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2003                                 (long)fidx, rcount, (long)pa);
2004                         if ( nl > 18) {
2005                                 c = cngetc();
2006                                 if (c != ' ')
2007                                         return;
2008                                 nl = 0;
2009                         }
2010                         nl++;
2011                 }
2012         }
2013 }
2014 #endif /* DDB */