cam - Fix bus registration race
[dragonfly.git] / sys / bus / cam / cam_xpt.c
1 /*
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD: src/sys/cam/cam_xpt.c,v 1.80.2.18 2002/12/09 17:31:55 gibbs Exp $
30  */
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/types.h>
34 #include <sys/malloc.h>
35 #include <sys/kernel.h>
36 #include <sys/time.h>
37 #include <sys/conf.h>
38 #include <sys/device.h>
39 #include <sys/fcntl.h>
40 #include <sys/md5.h>
41 #include <sys/devicestat.h>
42 #include <sys/interrupt.h>
43 #include <sys/sbuf.h>
44 #include <sys/taskqueue.h>
45 #include <sys/bus.h>
46 #include <sys/thread.h>
47 #include <sys/lock.h>
48 #include <sys/spinlock.h>
49
50 #include <sys/thread2.h>
51 #include <sys/spinlock2.h>
52 #include <sys/mplock2.h>
53
54 #include <machine/clock.h>
55 #include <machine/stdarg.h>
56
57 #include "cam.h"
58 #include "cam_ccb.h"
59 #include "cam_periph.h"
60 #include "cam_sim.h"
61 #include "cam_xpt.h"
62 #include "cam_xpt_sim.h"
63 #include "cam_xpt_periph.h"
64 #include "cam_debug.h"
65
66 #include "scsi/scsi_all.h"
67 #include "scsi/scsi_message.h"
68 #include "scsi/scsi_pass.h"
69 #include <sys/kthread.h>
70 #include "opt_cam.h"
71
72 /* Datastructures internal to the xpt layer */
73 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
74
75 /* Object for defering XPT actions to a taskqueue */
76 struct xpt_task {
77         struct task     task;
78         void            *data1;
79         uintptr_t       data2;
80 };
81
82 /*
83  * Definition of an async handler callback block.  These are used to add
84  * SIMs and peripherals to the async callback lists.
85  */
86 struct async_node {
87         SLIST_ENTRY(async_node) links;
88         u_int32_t       event_enable;   /* Async Event enables */
89         void            (*callback)(void *arg, u_int32_t code,
90                                     struct cam_path *path, void *args);
91         void            *callback_arg;
92 };
93
94 SLIST_HEAD(async_list, async_node);
95 SLIST_HEAD(periph_list, cam_periph);
96
97 /*
98  * This is the maximum number of high powered commands (e.g. start unit)
99  * that can be outstanding at a particular time.
100  */
101 #ifndef CAM_MAX_HIGHPOWER
102 #define CAM_MAX_HIGHPOWER  4
103 #endif
104
105 /*
106  * Structure for queueing a device in a run queue.
107  * There is one run queue for allocating new ccbs,
108  * and another for sending ccbs to the controller.
109  */
110 struct cam_ed_qinfo {
111         cam_pinfo pinfo;
112         struct    cam_ed *device;
113 };
114
115 /*
116  * The CAM EDT (Existing Device Table) contains the device information for
117  * all devices for all busses in the system.  The table contains a
118  * cam_ed structure for each device on the bus.
119  */
120 struct cam_ed {
121         TAILQ_ENTRY(cam_ed) links;
122         struct  cam_ed_qinfo alloc_ccb_entry;
123         struct  cam_ed_qinfo send_ccb_entry;
124         struct  cam_et   *target;
125         struct  cam_sim  *sim;
126         lun_id_t         lun_id;
127         struct  camq drvq;              /*
128                                          * Queue of type drivers wanting to do
129                                          * work on this device.
130                                          */
131         struct  cam_ccbq ccbq;          /* Queue of pending ccbs */
132         struct  async_list asyncs;      /* Async callback info for this B/T/L */
133         struct  periph_list periphs;    /* All attached devices */
134         u_int   generation;             /* Generation number */
135         struct  cam_periph *owner;      /* Peripheral driver's ownership tag */
136         struct  xpt_quirk_entry *quirk; /* Oddities about this device */
137                                         /* Storage for the inquiry data */
138         cam_proto        protocol;
139         u_int            protocol_version;
140         cam_xport        transport;
141         u_int            transport_version;
142         struct           scsi_inquiry_data inq_data;
143         u_int8_t         inq_flags;     /*
144                                          * Current settings for inquiry flags.
145                                          * This allows us to override settings
146                                          * like disconnection and tagged
147                                          * queuing for a device.
148                                          */
149         u_int8_t         queue_flags;   /* Queue flags from the control page */
150         u_int8_t         serial_num_len;
151         u_int8_t        *serial_num;
152         u_int32_t        qfrozen_cnt;
153         u_int32_t        flags;
154 #define CAM_DEV_UNCONFIGURED            0x01
155 #define CAM_DEV_REL_TIMEOUT_PENDING     0x02
156 #define CAM_DEV_REL_ON_COMPLETE         0x04
157 #define CAM_DEV_REL_ON_QUEUE_EMPTY      0x08
158 #define CAM_DEV_RESIZE_QUEUE_NEEDED     0x10
159 #define CAM_DEV_TAG_AFTER_COUNT         0x20
160 #define CAM_DEV_INQUIRY_DATA_VALID      0x40
161 #define CAM_DEV_IN_DV                   0x80
162 #define CAM_DEV_DV_HIT_BOTTOM           0x100
163         u_int32_t        tag_delay_count;
164 #define CAM_TAG_DELAY_COUNT             5
165         u_int32_t        tag_saved_openings;
166         u_int32_t        refcount;
167         struct callout   callout;
168 };
169
170 /*
171  * Each target is represented by an ET (Existing Target).  These
172  * entries are created when a target is successfully probed with an
173  * identify, and removed when a device fails to respond after a number
174  * of retries, or a bus rescan finds the device missing.
175  */
176 struct cam_et {
177         TAILQ_HEAD(, cam_ed) ed_entries;
178         TAILQ_ENTRY(cam_et) links;
179         struct  cam_eb  *bus;
180         target_id_t     target_id;
181         u_int32_t       refcount;
182         u_int           generation;
183         struct          timeval last_reset;     /* uptime of last reset */
184 };
185
186 /*
187  * Each bus is represented by an EB (Existing Bus).  These entries
188  * are created by calls to xpt_bus_register and deleted by calls to
189  * xpt_bus_deregister.
190  */
191 struct cam_eb {
192         TAILQ_HEAD(, cam_et) et_entries;
193         TAILQ_ENTRY(cam_eb)  links;
194         path_id_t            path_id;
195         struct cam_sim       *sim;
196         struct timeval       last_reset;        /* uptime of last reset */
197         u_int32_t            flags;
198 #define CAM_EB_RUNQ_SCHEDULED   0x01
199         u_int32_t            refcount;
200         u_int                generation;
201         int                  counted_to_config; /* busses_to_config */
202 };
203
204 struct cam_path {
205         struct cam_periph *periph;
206         struct cam_eb     *bus;
207         struct cam_et     *target;
208         struct cam_ed     *device;
209 };
210
211 struct xpt_quirk_entry {
212         struct scsi_inquiry_pattern inq_pat;
213         u_int8_t quirks;
214 #define CAM_QUIRK_NOLUNS        0x01
215 #define CAM_QUIRK_NOSERIAL      0x02
216 #define CAM_QUIRK_HILUNS        0x04
217 #define CAM_QUIRK_NOHILUNS      0x08
218         u_int mintags;
219         u_int maxtags;
220 };
221
222 static int cam_srch_hi = 0;
223 TUNABLE_INT("kern.cam.cam_srch_hi", &cam_srch_hi);
224 static int sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS);
225 SYSCTL_PROC(_kern_cam, OID_AUTO, cam_srch_hi, CTLTYPE_INT|CTLFLAG_RW, 0, 0,
226     sysctl_cam_search_luns, "I",
227     "allow search above LUN 7 for SCSI3 and greater devices");
228
229 #define CAM_SCSI2_MAXLUN        8
230 /*
231  * If we're not quirked to search <= the first 8 luns
232  * and we are either quirked to search above lun 8,
233  * or we're > SCSI-2 and we've enabled hilun searching,
234  * or we're > SCSI-2 and the last lun was a success,
235  * we can look for luns above lun 8.
236  */
237 #define CAN_SRCH_HI_SPARSE(dv)                          \
238   (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0)      \
239   && ((dv->quirk->quirks & CAM_QUIRK_HILUNS)            \
240   || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2 && cam_srch_hi)))
241
242 #define CAN_SRCH_HI_DENSE(dv)                           \
243   (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0)      \
244   && ((dv->quirk->quirks & CAM_QUIRK_HILUNS)            \
245   || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2)))
246
247 typedef enum {
248         XPT_FLAG_OPEN           = 0x01
249 } xpt_flags;
250
251 struct xpt_softc {
252         xpt_flags               flags;
253         u_int32_t               xpt_generation;
254
255         /* number of high powered commands that can go through right now */
256         STAILQ_HEAD(highpowerlist, ccb_hdr)     highpowerq;
257         int                     num_highpower;
258
259         /* queue for handling async rescan requests. */
260         TAILQ_HEAD(, ccb_hdr)   ccb_scanq;
261         int                     ccb_scanq_running;
262
263         /* Registered busses */
264         TAILQ_HEAD(,cam_eb)     xpt_busses;
265         u_int                   bus_generation;
266
267         struct intr_config_hook *xpt_config_hook;
268
269         struct lock             xpt_topo_lock;
270         struct lock             xpt_lock;
271 };
272
273 static const char quantum[] = "QUANTUM";
274 static const char sony[] = "SONY";
275 static const char west_digital[] = "WDIGTL";
276 static const char samsung[] = "SAMSUNG";
277 static const char seagate[] = "SEAGATE";
278 static const char microp[] = "MICROP";
279
280 static struct xpt_quirk_entry xpt_quirk_table[] =
281 {
282         {
283                 /* Reports QUEUE FULL for temporary resource shortages */
284                 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP39100*", "*" },
285                 /*quirks*/0, /*mintags*/24, /*maxtags*/32
286         },
287         {
288                 /* Reports QUEUE FULL for temporary resource shortages */
289                 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP34550*", "*" },
290                 /*quirks*/0, /*mintags*/24, /*maxtags*/32
291         },
292         {
293                 /* Reports QUEUE FULL for temporary resource shortages */
294                 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP32275*", "*" },
295                 /*quirks*/0, /*mintags*/24, /*maxtags*/32
296         },
297         {
298                 /* Broken tagged queuing drive */
299                 { T_DIRECT, SIP_MEDIA_FIXED, microp, "4421-07*", "*" },
300                 /*quirks*/0, /*mintags*/0, /*maxtags*/0
301         },
302         {
303                 /* Broken tagged queuing drive */
304                 { T_DIRECT, SIP_MEDIA_FIXED, "HP", "C372*", "*" },
305                 /*quirks*/0, /*mintags*/0, /*maxtags*/0
306         },
307         {
308                 /* Broken tagged queuing drive */
309                 { T_DIRECT, SIP_MEDIA_FIXED, microp, "3391*", "x43h" },
310                 /*quirks*/0, /*mintags*/0, /*maxtags*/0
311         },
312         {
313                 /*
314                  * Unfortunately, the Quantum Atlas III has the same
315                  * problem as the Atlas II drives above.
316                  * Reported by: "Johan Granlund" <johan@granlund.nu>
317                  *
318                  * For future reference, the drive with the problem was:
319                  * QUANTUM QM39100TD-SW N1B0
320                  *
321                  * It's possible that Quantum will fix the problem in later
322                  * firmware revisions.  If that happens, the quirk entry
323                  * will need to be made specific to the firmware revisions
324                  * with the problem.
325                  *
326                  */
327                 /* Reports QUEUE FULL for temporary resource shortages */
328                 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM39100*", "*" },
329                 /*quirks*/0, /*mintags*/24, /*maxtags*/32
330         },
331         {
332                 /*
333                  * 18 Gig Atlas III, same problem as the 9G version.
334                  * Reported by: Andre Albsmeier
335                  *              <andre.albsmeier@mchp.siemens.de>
336                  *
337                  * For future reference, the drive with the problem was:
338                  * QUANTUM QM318000TD-S N491
339                  */
340                 /* Reports QUEUE FULL for temporary resource shortages */
341                 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM318000*", "*" },
342                 /*quirks*/0, /*mintags*/24, /*maxtags*/32
343         },
344         {
345                 /*
346                  * Broken tagged queuing drive
347                  * Reported by: Bret Ford <bford@uop.cs.uop.edu>
348                  *         and: Martin Renters <martin@tdc.on.ca>
349                  */
350                 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST410800*", "71*" },
351                 /*quirks*/0, /*mintags*/0, /*maxtags*/0
352         },
353                 /*
354                  * The Seagate Medalist Pro drives have very poor write
355                  * performance with anything more than 2 tags.
356                  *
357                  * Reported by:  Paul van der Zwan <paulz@trantor.xs4all.nl>
358                  * Drive:  <SEAGATE ST36530N 1444>
359                  *
360                  * Reported by:  Jeremy Lea <reg@shale.csir.co.za>
361                  * Drive:  <SEAGATE ST34520W 1281>
362                  *
363                  * No one has actually reported that the 9G version
364                  * (ST39140*) of the Medalist Pro has the same problem, but
365                  * we're assuming that it does because the 4G and 6.5G
366                  * versions of the drive are broken.
367                  */
368         {
369                 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST34520*", "*"},
370                 /*quirks*/0, /*mintags*/2, /*maxtags*/2
371         },
372         {
373                 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST36530*", "*"},
374                 /*quirks*/0, /*mintags*/2, /*maxtags*/2
375         },
376         {
377                 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST39140*", "*"},
378                 /*quirks*/0, /*mintags*/2, /*maxtags*/2
379         },
380         {
381                 /*
382                  * Slow when tagged queueing is enabled.  Write performance
383                  * steadily drops off with more and more concurrent
384                  * transactions.  Best sequential write performance with
385                  * tagged queueing turned off and write caching turned on.
386                  *
387                  * PR:  kern/10398
388                  * Submitted by:  Hideaki Okada <hokada@isl.melco.co.jp>
389                  * Drive:  DCAS-34330 w/ "S65A" firmware.
390                  *
391                  * The drive with the problem had the "S65A" firmware
392                  * revision, and has also been reported (by Stephen J.
393                  * Roznowski <sjr@home.net>) for a drive with the "S61A"
394                  * firmware revision.
395                  *
396                  * Although no one has reported problems with the 2 gig
397                  * version of the DCAS drive, the assumption is that it
398                  * has the same problems as the 4 gig version.  Therefore
399                  * this quirk entries disables tagged queueing for all
400                  * DCAS drives.
401                  */
402                 { T_DIRECT, SIP_MEDIA_FIXED, "IBM", "DCAS*", "*" },
403                 /*quirks*/0, /*mintags*/0, /*maxtags*/0
404         },
405         {
406                 /* Broken tagged queuing drive */
407                 { T_DIRECT, SIP_MEDIA_REMOVABLE, "iomega", "jaz*", "*" },
408                 /*quirks*/0, /*mintags*/0, /*maxtags*/0
409         },
410         {
411                 /* Broken tagged queuing drive */
412                 { T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CFP2107*", "*" },
413                 /*quirks*/0, /*mintags*/0, /*maxtags*/0
414         },
415         {
416                 /* This does not support other than LUN 0 */
417                 { T_DIRECT, SIP_MEDIA_FIXED, "VMware*", "*", "*" },
418                 CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
419         },
420         {
421                 /*
422                  * Broken tagged queuing drive.
423                  * Submitted by:
424                  * NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp>
425                  * in PR kern/9535
426                  */
427                 { T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN34324U*", "*" },
428                 /*quirks*/0, /*mintags*/0, /*maxtags*/0
429         },
430         {
431                 /*
432                  * Slow when tagged queueing is enabled. (1.5MB/sec versus
433                  * 8MB/sec.)
434                  * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
435                  * Best performance with these drives is achieved with
436                  * tagged queueing turned off, and write caching turned on.
437                  */
438                 { T_DIRECT, SIP_MEDIA_FIXED, west_digital, "WDE*", "*" },
439                 /*quirks*/0, /*mintags*/0, /*maxtags*/0
440         },
441         {
442                 /*
443                  * Slow when tagged queueing is enabled. (1.5MB/sec versus
444                  * 8MB/sec.)
445                  * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
446                  * Best performance with these drives is achieved with
447                  * tagged queueing turned off, and write caching turned on.
448                  */
449                 { T_DIRECT, SIP_MEDIA_FIXED, west_digital, "ENTERPRISE", "*" },
450                 /*quirks*/0, /*mintags*/0, /*maxtags*/0
451         },
452         {
453                 /*
454                  * Doesn't handle queue full condition correctly,
455                  * so we need to limit maxtags to what the device
456                  * can handle instead of determining this automatically.
457                  */
458                 { T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN321010S*", "*" },
459                 /*quirks*/0, /*mintags*/2, /*maxtags*/32
460         },
461         {
462                 /* Really only one LUN */
463                 { T_ENCLOSURE, SIP_MEDIA_FIXED, "SUN", "SENA", "*" },
464                 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
465         },
466         {
467                 /* I can't believe we need a quirk for DPT volumes. */
468                 { T_ANY, SIP_MEDIA_FIXED|SIP_MEDIA_REMOVABLE, "DPT", "*", "*" },
469                 CAM_QUIRK_NOLUNS,
470                 /*mintags*/0, /*maxtags*/255
471         },
472         {
473                 /*
474                  * Many Sony CDROM drives don't like multi-LUN probing.
475                  */
476                 { T_CDROM, SIP_MEDIA_REMOVABLE, sony, "CD-ROM CDU*", "*" },
477                 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
478         },
479         {
480                 /*
481                  * This drive doesn't like multiple LUN probing.
482                  * Submitted by:  Parag Patel <parag@cgt.com>
483                  */
484                 { T_WORM, SIP_MEDIA_REMOVABLE, sony, "CD-R   CDU9*", "*" },
485                 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
486         },
487         {
488                 { T_WORM, SIP_MEDIA_REMOVABLE, "YAMAHA", "CDR100*", "*" },
489                 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
490         },
491         {
492                 /*
493                  * The 8200 doesn't like multi-lun probing, and probably
494                  * don't like serial number requests either.
495                  */
496                 {
497                         T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
498                         "EXB-8200*", "*"
499                 },
500                 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
501         },
502         {
503                 /*
504                  * Let's try the same as above, but for a drive that says
505                  * it's an IPL-6860 but is actually an EXB 8200.
506                  */
507                 {
508                         T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
509                         "IPL-6860*", "*"
510                 },
511                 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
512         },
513         {
514                 /*
515                  * These Hitachi drives don't like multi-lun probing.
516                  * The PR submitter has a DK319H, but says that the Linux
517                  * kernel has a similar work-around for the DK312 and DK314,
518                  * so all DK31* drives are quirked here.
519                  * PR:            misc/18793
520                  * Submitted by:  Paul Haddad <paul@pth.com>
521                  */
522                 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK31*", "*" },
523                 CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
524         },
525         {
526                 /*
527                  * The Hitachi CJ series with J8A8 firmware apparantly has
528                  * problems with tagged commands.
529                  * PR: 23536
530                  * Reported by: amagai@nue.org
531                  */
532                 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK32CJ*", "J8A8" },
533                 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
534         },
535         {
536                 /*
537                  * These are the large storage arrays.
538                  * Submitted by:  William Carrel <william.carrel@infospace.com>
539                  */
540                 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "OPEN*", "*" },
541                 CAM_QUIRK_HILUNS, 2, 1024
542         },
543         {
544                 /*
545                  * This old revision of the TDC3600 is also SCSI-1, and
546                  * hangs upon serial number probing.
547                  */
548                 {
549                         T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG",
550                         " TDC 3600", "U07:"
551                 },
552                 CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0
553         },
554         {
555                 /*
556                  * Would repond to all LUNs if asked for.
557                  */
558                 {
559                         T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "CALIPER",
560                         "CP150", "*"
561                 },
562                 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
563         },
564         {
565                 /*
566                  * Would repond to all LUNs if asked for.
567                  */
568                 {
569                         T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY",
570                         "96X2*", "*"
571                 },
572                 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
573         },
574         {
575                 /* Submitted by: Matthew Dodd <winter@jurai.net> */
576                 { T_PROCESSOR, SIP_MEDIA_FIXED, "Cabletrn", "EA41*", "*" },
577                 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
578         },
579         {
580                 /* Submitted by: Matthew Dodd <winter@jurai.net> */
581                 { T_PROCESSOR, SIP_MEDIA_FIXED, "CABLETRN", "EA41*", "*" },
582                 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
583         },
584         {
585                 /* TeraSolutions special settings for TRC-22 RAID */
586                 { T_DIRECT, SIP_MEDIA_FIXED, "TERASOLU", "TRC-22", "*" },
587                   /*quirks*/0, /*mintags*/55, /*maxtags*/255
588         },
589         {
590                 /* Veritas Storage Appliance */
591                 { T_DIRECT, SIP_MEDIA_FIXED, "VERITAS", "*", "*" },
592                   CAM_QUIRK_HILUNS, /*mintags*/2, /*maxtags*/1024
593         },
594         {
595                 /*
596                  * Would respond to all LUNs.  Device type and removable
597                  * flag are jumper-selectable.
598                  */
599                 { T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, "MaxOptix",
600                   "Tahiti 1", "*"
601                 },
602                 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
603         },
604         {
605                 /* EasyRAID E5A aka. areca ARC-6010 */
606                 { T_DIRECT, SIP_MEDIA_FIXED, "easyRAID", "*", "*" },
607                   CAM_QUIRK_NOHILUNS, /*mintags*/2, /*maxtags*/255
608         },
609         {
610                 { T_ENCLOSURE, SIP_MEDIA_FIXED, "DP", "BACKPLANE", "*" },
611                 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
612         },
613         {
614                 /* Default tagged queuing parameters for all devices */
615                 {
616                   T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED,
617                   /*vendor*/"*", /*product*/"*", /*revision*/"*"
618                 },
619                 /*quirks*/0, /*mintags*/2, /*maxtags*/255
620         },
621 };
622
623 static const int xpt_quirk_table_size = NELEM(xpt_quirk_table);
624
625 typedef enum {
626         DM_RET_COPY             = 0x01,
627         DM_RET_FLAG_MASK        = 0x0f,
628         DM_RET_NONE             = 0x00,
629         DM_RET_STOP             = 0x10,
630         DM_RET_DESCEND          = 0x20,
631         DM_RET_ERROR            = 0x30,
632         DM_RET_ACTION_MASK      = 0xf0
633 } dev_match_ret;
634
635 typedef enum {
636         XPT_DEPTH_BUS,
637         XPT_DEPTH_TARGET,
638         XPT_DEPTH_DEVICE,
639         XPT_DEPTH_PERIPH
640 } xpt_traverse_depth;
641
642 struct xpt_traverse_config {
643         xpt_traverse_depth      depth;
644         void                    *tr_func;
645         void                    *tr_arg;
646 };
647
648 typedef int     xpt_busfunc_t (struct cam_eb *bus, void *arg);
649 typedef int     xpt_targetfunc_t (struct cam_et *target, void *arg);
650 typedef int     xpt_devicefunc_t (struct cam_ed *device, void *arg);
651 typedef int     xpt_periphfunc_t (struct cam_periph *periph, void *arg);
652 typedef int     xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
653
654 /* Transport layer configuration information */
655 static struct xpt_softc xsoftc;
656
657 /* Queues for our software interrupt handler */
658 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
659 typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t;
660 static cam_simq_t cam_simq;
661 static struct spinlock cam_simq_spin;
662
663 struct cam_periph *xpt_periph;
664
665 static periph_init_t xpt_periph_init;
666
667 static periph_init_t probe_periph_init;
668
669 static struct periph_driver xpt_driver =
670 {
671         xpt_periph_init, "xpt",
672         TAILQ_HEAD_INITIALIZER(xpt_driver.units)
673 };
674
675 static struct periph_driver probe_driver =
676 {
677         probe_periph_init, "probe",
678         TAILQ_HEAD_INITIALIZER(probe_driver.units)
679 };
680
681 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
682 PERIPHDRIVER_DECLARE(probe, probe_driver);
683
684 static d_open_t xptopen;
685 static d_close_t xptclose;
686 static d_ioctl_t xptioctl;
687
688 static struct dev_ops xpt_ops = {
689         { "xpt", 0, 0 },
690         .d_open = xptopen,
691         .d_close = xptclose,
692         .d_ioctl = xptioctl
693 };
694
695 static void dead_sim_action(struct cam_sim *sim, union ccb *ccb);
696 static void dead_sim_poll(struct cam_sim *sim);
697
698 /* Dummy SIM that is used when the real one has gone. */
699 static struct cam_sim cam_dead_sim;
700 static struct lock    cam_dead_lock;
701
702 /* Storage for debugging datastructures */
703 #ifdef  CAMDEBUG
704 struct cam_path *cam_dpath;
705 u_int32_t cam_dflags;
706 u_int32_t cam_debug_delay;
707 #endif
708
709 #if defined(CAM_DEBUG_FLAGS) && !defined(CAMDEBUG)
710 #error "You must have options CAMDEBUG to use options CAM_DEBUG_FLAGS"
711 #endif
712
713 /*
714  * In order to enable the CAM_DEBUG_* options, the user must have CAMDEBUG
715  * enabled.  Also, the user must have either none, or all of CAM_DEBUG_BUS,
716  * CAM_DEBUG_TARGET, and CAM_DEBUG_LUN specified.
717  */
718 #if defined(CAM_DEBUG_BUS) || defined(CAM_DEBUG_TARGET) \
719     || defined(CAM_DEBUG_LUN)
720 #ifdef CAMDEBUG
721 #if !defined(CAM_DEBUG_BUS) || !defined(CAM_DEBUG_TARGET) \
722     || !defined(CAM_DEBUG_LUN)
723 #error "You must define all or none of CAM_DEBUG_BUS, CAM_DEBUG_TARGET \
724         and CAM_DEBUG_LUN"
725 #endif /* !CAM_DEBUG_BUS || !CAM_DEBUG_TARGET || !CAM_DEBUG_LUN */
726 #else /* !CAMDEBUG */
727 #error "You must use options CAMDEBUG if you use the CAM_DEBUG_* options"
728 #endif /* CAMDEBUG */
729 #endif /* CAM_DEBUG_BUS || CAM_DEBUG_TARGET || CAM_DEBUG_LUN */
730
731 /* Our boot-time initialization hook */
732 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
733
734 static moduledata_t cam_moduledata = {
735         "cam",
736         cam_module_event_handler,
737         NULL
738 };
739
740 static int      xpt_init(void *);
741
742 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
743 MODULE_VERSION(cam, 1);
744
745
746 static cam_status       xpt_compile_path(struct cam_path *new_path,
747                                          struct cam_periph *perph,
748                                          path_id_t path_id,
749                                          target_id_t target_id,
750                                          lun_id_t lun_id);
751
752 static void             xpt_release_path(struct cam_path *path);
753
754 static void             xpt_async_bcast(struct async_list *async_head,
755                                         u_int32_t async_code,
756                                         struct cam_path *path,
757                                         void *async_arg);
758 static void             xpt_dev_async(u_int32_t async_code,
759                                       struct cam_eb *bus,
760                                       struct cam_et *target,
761                                       struct cam_ed *device,
762                                       void *async_arg);
763 static path_id_t xptnextfreepathid(void);
764 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
765 static union ccb *xpt_get_ccb(struct cam_ed *device);
766 static int       xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
767                                   u_int32_t new_priority);
768 static void      xpt_run_dev_allocq(struct cam_eb *bus);
769 static void      xpt_run_dev_sendq(struct cam_eb *bus);
770 static timeout_t xpt_release_devq_timeout;
771 static void      xpt_release_bus(struct cam_eb *bus);
772 static void      xpt_release_devq_device(struct cam_ed *dev, u_int count,
773                                          int run_queue);
774 static struct cam_et*
775                  xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
776 static void      xpt_release_target(struct cam_eb *bus, struct cam_et *target);
777 static struct cam_ed*
778                  xpt_alloc_device(struct cam_eb *bus, struct cam_et *target,
779                                   lun_id_t lun_id);
780 static void      xpt_release_device(struct cam_eb *bus, struct cam_et *target,
781                                     struct cam_ed *device);
782 static u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings);
783 static struct cam_eb*
784                  xpt_find_bus(path_id_t path_id);
785 static struct cam_et*
786                  xpt_find_target(struct cam_eb *bus, target_id_t target_id);
787 static struct cam_ed*
788                  xpt_find_device(struct cam_et *target, lun_id_t lun_id);
789 static void      xpt_scan_bus(struct cam_periph *periph, union ccb *ccb);
790 static void      xpt_scan_lun(struct cam_periph *periph,
791                               struct cam_path *path, cam_flags flags,
792                               union ccb *ccb);
793 static void      xptscandone(struct cam_periph *periph, union ccb *done_ccb);
794 static xpt_busfunc_t    xptconfigbuscountfunc;
795 static xpt_busfunc_t    xptconfigfunc;
796 static void      xpt_config(void *arg);
797 static xpt_devicefunc_t xptpassannouncefunc;
798 static void      xpt_finishconfig(struct cam_periph *periph, union ccb *ccb);
799 static void      xpt_uncount_bus (struct cam_eb *bus);
800 static void      xptaction(struct cam_sim *sim, union ccb *work_ccb);
801 static void      xptpoll(struct cam_sim *sim);
802 static inthand2_t swi_cambio;
803 static void      camisr(void *);
804 static void      camisr_runqueue(struct cam_sim *);
805 static dev_match_ret    xptbusmatch(struct dev_match_pattern *patterns,
806                                     u_int num_patterns, struct cam_eb *bus);
807 static dev_match_ret    xptdevicematch(struct dev_match_pattern *patterns,
808                                        u_int num_patterns,
809                                        struct cam_ed *device);
810 static dev_match_ret    xptperiphmatch(struct dev_match_pattern *patterns,
811                                        u_int num_patterns,
812                                        struct cam_periph *periph);
813 static xpt_busfunc_t    xptedtbusfunc;
814 static xpt_targetfunc_t xptedttargetfunc;
815 static xpt_devicefunc_t xptedtdevicefunc;
816 static xpt_periphfunc_t xptedtperiphfunc;
817 static xpt_pdrvfunc_t   xptplistpdrvfunc;
818 static xpt_periphfunc_t xptplistperiphfunc;
819 static int              xptedtmatch(struct ccb_dev_match *cdm);
820 static int              xptperiphlistmatch(struct ccb_dev_match *cdm);
821 static int              xptbustraverse(struct cam_eb *start_bus,
822                                        xpt_busfunc_t *tr_func, void *arg);
823 static int              xpttargettraverse(struct cam_eb *bus,
824                                           struct cam_et *start_target,
825                                           xpt_targetfunc_t *tr_func, void *arg);
826 static int              xptdevicetraverse(struct cam_et *target,
827                                           struct cam_ed *start_device,
828                                           xpt_devicefunc_t *tr_func, void *arg);
829 static int              xptperiphtraverse(struct cam_ed *device,
830                                           struct cam_periph *start_periph,
831                                           xpt_periphfunc_t *tr_func, void *arg);
832 static int              xptpdrvtraverse(struct periph_driver **start_pdrv,
833                                         xpt_pdrvfunc_t *tr_func, void *arg);
834 static int              xptpdperiphtraverse(struct periph_driver **pdrv,
835                                             struct cam_periph *start_periph,
836                                             xpt_periphfunc_t *tr_func,
837                                             void *arg);
838 static xpt_busfunc_t    xptdefbusfunc;
839 static xpt_targetfunc_t xptdeftargetfunc;
840 static xpt_devicefunc_t xptdefdevicefunc;
841 static xpt_periphfunc_t xptdefperiphfunc;
842 static int              xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg);
843 static int              xpt_for_all_devices(xpt_devicefunc_t *tr_func,
844                                             void *arg);
845 static xpt_devicefunc_t xptsetasyncfunc;
846 static xpt_busfunc_t    xptsetasyncbusfunc;
847 static cam_status       xptregister(struct cam_periph *periph,
848                                     void *arg);
849 static cam_status       proberegister(struct cam_periph *periph,
850                                       void *arg);
851 static void      probeschedule(struct cam_periph *probe_periph);
852 static void      probestart(struct cam_periph *periph, union ccb *start_ccb);
853 static void      proberequestdefaultnegotiation(struct cam_periph *periph);
854 static int       proberequestbackoff(struct cam_periph *periph,
855                                      struct cam_ed *device);
856 static void      probedone(struct cam_periph *periph, union ccb *done_ccb);
857 static void      probecleanup(struct cam_periph *periph);
858 static void      xpt_find_quirk(struct cam_ed *device);
859 static void      xpt_devise_transport(struct cam_path *path);
860 static void      xpt_set_transfer_settings(struct ccb_trans_settings *cts,
861                                            struct cam_ed *device,
862                                            int async_update);
863 static void      xpt_toggle_tags(struct cam_path *path);
864 static void      xpt_start_tags(struct cam_path *path);
865 static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus,
866                                             struct cam_ed *dev);
867 static __inline int xpt_schedule_dev_sendq(struct cam_eb *bus,
868                                            struct cam_ed *dev);
869 static __inline int periph_is_queued(struct cam_periph *periph);
870 static __inline int device_is_alloc_queued(struct cam_ed *device);
871 static __inline int device_is_send_queued(struct cam_ed *device);
872 static __inline int dev_allocq_is_runnable(struct cam_devq *devq);
873
874 static __inline int
875 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev)
876 {
877         int retval;
878
879         if (bus->sim->devq && dev->ccbq.devq_openings > 0) {
880                 if ((dev->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) != 0) {
881                         cam_ccbq_resize(&dev->ccbq,
882                                         dev->ccbq.dev_openings
883                                         + dev->ccbq.dev_active);
884                         dev->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
885                 }
886                 /*
887                  * The priority of a device waiting for CCB resources
888                  * is that of the the highest priority peripheral driver
889                  * enqueued.
890                  */
891                 retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue,
892                                           &dev->alloc_ccb_entry.pinfo,
893                                           CAMQ_GET_HEAD(&dev->drvq)->priority);
894         } else {
895                 retval = 0;
896         }
897
898         return (retval);
899 }
900
901 static __inline int
902 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev)
903 {
904         int     retval;
905
906         if (bus->sim->devq && dev->ccbq.dev_openings > 0) {
907                 /*
908                  * The priority of a device waiting for controller
909                  * resources is that of the the highest priority CCB
910                  * enqueued.
911                  */
912                 retval =
913                     xpt_schedule_dev(&bus->sim->devq->send_queue,
914                                      &dev->send_ccb_entry.pinfo,
915                                      CAMQ_GET_HEAD(&dev->ccbq.queue)->priority);
916         } else {
917                 retval = 0;
918         }
919         return (retval);
920 }
921
922 static __inline int
923 periph_is_queued(struct cam_periph *periph)
924 {
925         return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
926 }
927
928 static __inline int
929 device_is_alloc_queued(struct cam_ed *device)
930 {
931         return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
932 }
933
934 static __inline int
935 device_is_send_queued(struct cam_ed *device)
936 {
937         return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
938 }
939
940 static __inline int
941 dev_allocq_is_runnable(struct cam_devq *devq)
942 {
943         /*
944          * Have work to do.
945          * Have space to do more work.
946          * Allowed to do work.
947          */
948         return ((devq->alloc_queue.qfrozen_cnt == 0)
949              && (devq->alloc_queue.entries > 0)
950              && (devq->alloc_openings > 0));
951 }
952
953 static void
954 xpt_periph_init(void)
955 {
956         make_dev(&xpt_ops, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
957 }
958
959 static void
960 probe_periph_init(void)
961 {
962 }
963
964
965 static void
966 xptdone(struct cam_periph *periph, union ccb *done_ccb)
967 {
968         /* Caller will release the CCB */
969         wakeup(&done_ccb->ccb_h.cbfcnp);
970 }
971
972 static int
973 xptopen(struct dev_open_args *ap)
974 {
975         cdev_t dev = ap->a_head.a_dev;
976
977         /*
978          * Only allow read-write access.
979          */
980         if (((ap->a_oflags & FWRITE) == 0) || ((ap->a_oflags & FREAD) == 0))
981                 return(EPERM);
982
983         /*
984          * We don't allow nonblocking access.
985          */
986         if ((ap->a_oflags & O_NONBLOCK) != 0) {
987                 kprintf("%s: can't do nonblocking access\n", devtoname(dev));
988                 return(ENODEV);
989         }
990
991         /* Mark ourselves open */
992         lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
993         xsoftc.flags |= XPT_FLAG_OPEN;
994         lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
995
996         return(0);
997 }
998
999 static int
1000 xptclose(struct dev_close_args *ap)
1001 {
1002
1003         /* Mark ourselves closed */
1004         lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
1005         xsoftc.flags &= ~XPT_FLAG_OPEN;
1006         lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
1007
1008         return(0);
1009 }
1010
1011 /*
1012  * Don't automatically grab the xpt softc lock here even though this is going
1013  * through the xpt device.  The xpt device is really just a back door for
1014  * accessing other devices and SIMs, so the right thing to do is to grab
1015  * the appropriate SIM lock once the bus/SIM is located.
1016  */
1017 static int
1018 xptioctl(struct dev_ioctl_args *ap)
1019 {
1020         int error;
1021
1022         error = 0;
1023
1024         switch(ap->a_cmd) {
1025         /*
1026          * For the transport layer CAMIOCOMMAND ioctl, we really only want
1027          * to accept CCB types that don't quite make sense to send through a
1028          * passthrough driver.
1029          */
1030         case CAMIOCOMMAND: {
1031                 union ccb *ccb;
1032                 union ccb *inccb;
1033                 struct cam_eb *bus;
1034
1035                 inccb = (union ccb *)ap->a_data;
1036
1037                 bus = xpt_find_bus(inccb->ccb_h.path_id);
1038                 if (bus == NULL) {
1039                         error = EINVAL;
1040                         break;
1041                 }
1042
1043                 switch(inccb->ccb_h.func_code) {
1044                 case XPT_SCAN_BUS:
1045                 case XPT_RESET_BUS:
1046                         if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD)
1047                          || (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) {
1048                                 error = EINVAL;
1049                                 break;
1050                         }
1051                         /* FALLTHROUGH */
1052                 case XPT_PATH_INQ:
1053                 case XPT_ENG_INQ:
1054                 case XPT_SCAN_LUN:
1055
1056                         ccb = xpt_alloc_ccb();
1057
1058                         CAM_SIM_LOCK(bus->sim);
1059
1060                         /*
1061                          * Create a path using the bus, target, and lun the
1062                          * user passed in.
1063                          */
1064                         if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
1065                                             inccb->ccb_h.path_id,
1066                                             inccb->ccb_h.target_id,
1067                                             inccb->ccb_h.target_lun) !=
1068                                             CAM_REQ_CMP){
1069                                 error = EINVAL;
1070                                 CAM_SIM_UNLOCK(bus->sim);
1071                                 xpt_free_ccb(ccb);
1072                                 break;
1073                         }
1074                         /* Ensure all of our fields are correct */
1075                         xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
1076                                       inccb->ccb_h.pinfo.priority);
1077                         xpt_merge_ccb(ccb, inccb);
1078                         ccb->ccb_h.cbfcnp = xptdone;
1079                         cam_periph_runccb(ccb, NULL, 0, 0, NULL);
1080                         bcopy(ccb, inccb, sizeof(union ccb));
1081                         xpt_free_path(ccb->ccb_h.path);
1082                         xpt_free_ccb(ccb);
1083                         CAM_SIM_UNLOCK(bus->sim);
1084                         break;
1085
1086                 case XPT_DEBUG: {
1087                         union ccb ccb;
1088
1089                         /*
1090                          * This is an immediate CCB, so it's okay to
1091                          * allocate it on the stack.
1092                          */
1093
1094                         CAM_SIM_LOCK(bus->sim);
1095
1096                         /*
1097                          * Create a path using the bus, target, and lun the
1098                          * user passed in.
1099                          */
1100                         if (xpt_create_path(&ccb.ccb_h.path, xpt_periph,
1101                                             inccb->ccb_h.path_id,
1102                                             inccb->ccb_h.target_id,
1103                                             inccb->ccb_h.target_lun) !=
1104                                             CAM_REQ_CMP){
1105                                 error = EINVAL;
1106                                 CAM_SIM_UNLOCK(bus->sim);
1107                                 break;
1108                         }
1109                         /* Ensure all of our fields are correct */
1110                         xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
1111                                       inccb->ccb_h.pinfo.priority);
1112                         xpt_merge_ccb(&ccb, inccb);
1113                         ccb.ccb_h.cbfcnp = xptdone;
1114                         xpt_action(&ccb);
1115                         CAM_SIM_UNLOCK(bus->sim);
1116                         bcopy(&ccb, inccb, sizeof(union ccb));
1117                         xpt_free_path(ccb.ccb_h.path);
1118                         break;
1119
1120                 }
1121                 case XPT_DEV_MATCH: {
1122                         struct cam_periph_map_info mapinfo;
1123                         struct cam_path *old_path;
1124
1125                         /*
1126                          * We can't deal with physical addresses for this
1127                          * type of transaction.
1128                          */
1129                         if (inccb->ccb_h.flags & CAM_DATA_PHYS) {
1130                                 error = EINVAL;
1131                                 break;
1132                         }
1133
1134                         /*
1135                          * Save this in case the caller had it set to
1136                          * something in particular.
1137                          */
1138                         old_path = inccb->ccb_h.path;
1139
1140                         /*
1141                          * We really don't need a path for the matching
1142                          * code.  The path is needed because of the
1143                          * debugging statements in xpt_action().  They
1144                          * assume that the CCB has a valid path.
1145                          */
1146                         inccb->ccb_h.path = xpt_periph->path;
1147
1148                         bzero(&mapinfo, sizeof(mapinfo));
1149
1150                         /*
1151                          * Map the pattern and match buffers into kernel
1152                          * virtual address space.
1153                          */
1154                         error = cam_periph_mapmem(inccb, &mapinfo);
1155
1156                         if (error) {
1157                                 inccb->ccb_h.path = old_path;
1158                                 break;
1159                         }
1160
1161                         /*
1162                          * This is an immediate CCB, we can send it on directly.
1163                          */
1164                         xpt_action(inccb);
1165
1166                         /*
1167                          * Map the buffers back into user space.
1168                          */
1169                         cam_periph_unmapmem(inccb, &mapinfo);
1170
1171                         inccb->ccb_h.path = old_path;
1172
1173                         error = 0;
1174                         break;
1175                 }
1176                 default:
1177                         error = ENOTSUP;
1178                         break;
1179                 }
1180                 xpt_release_bus(bus);
1181                 break;
1182         }
1183         /*
1184          * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
1185          * with the periphal driver name and unit name filled in.  The other
1186          * fields don't really matter as input.  The passthrough driver name
1187          * ("pass"), and unit number are passed back in the ccb.  The current
1188          * device generation number, and the index into the device peripheral
1189          * driver list, and the status are also passed back.  Note that
1190          * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
1191          * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
1192          * (or rather should be) impossible for the device peripheral driver
1193          * list to change since we look at the whole thing in one pass, and
1194          * we do it with lock protection.
1195          *
1196          */
1197         case CAMGETPASSTHRU: {
1198                 union ccb *ccb;
1199                 struct cam_periph *periph;
1200                 struct periph_driver **p_drv;
1201                 char   *name;
1202                 u_int unit;
1203                 u_int cur_generation;
1204                 int base_periph_found;
1205                 int splbreaknum;
1206
1207                 ccb = (union ccb *)ap->a_data;
1208                 unit = ccb->cgdl.unit_number;
1209                 name = ccb->cgdl.periph_name;
1210                 /*
1211                  * Every 100 devices, we want to drop our lock protection to
1212                  * give the software interrupt handler a chance to run.
1213                  * Most systems won't run into this check, but this should
1214                  * avoid starvation in the software interrupt handler in
1215                  * large systems.
1216                  */
1217                 splbreaknum = 100;
1218
1219                 ccb = (union ccb *)ap->a_data;
1220
1221                 base_periph_found = 0;
1222
1223                 /*
1224                  * Sanity check -- make sure we don't get a null peripheral
1225                  * driver name.
1226                  */
1227                 if (*ccb->cgdl.periph_name == '\0') {
1228                         error = EINVAL;
1229                         break;
1230                 }
1231
1232                 /* Keep the list from changing while we traverse it */
1233                 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1234 ptstartover:
1235                 cur_generation = xsoftc.xpt_generation;
1236
1237                 /* first find our driver in the list of drivers */
1238                 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
1239                         if (strcmp((*p_drv)->driver_name, name) == 0)
1240                                 break;
1241                 }
1242
1243                 if (*p_drv == NULL) {
1244                         lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1245                         ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1246                         ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1247                         *ccb->cgdl.periph_name = '\0';
1248                         ccb->cgdl.unit_number = 0;
1249                         error = ENOENT;
1250                         break;
1251                 }
1252
1253                 /*
1254                  * Run through every peripheral instance of this driver
1255                  * and check to see whether it matches the unit passed
1256                  * in by the user.  If it does, get out of the loops and
1257                  * find the passthrough driver associated with that
1258                  * peripheral driver.
1259                  */
1260                 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) {
1261
1262                         if (periph->unit_number == unit) {
1263                                 break;
1264                         } else if (--splbreaknum == 0) {
1265                                 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1266                                 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1267                                 splbreaknum = 100;
1268                                 if (cur_generation != xsoftc.xpt_generation)
1269                                        goto ptstartover;
1270                         }
1271                 }
1272                 /*
1273                  * If we found the peripheral driver that the user passed
1274                  * in, go through all of the peripheral drivers for that
1275                  * particular device and look for a passthrough driver.
1276                  */
1277                 if (periph != NULL) {
1278                         struct cam_ed *device;
1279                         int i;
1280
1281                         base_periph_found = 1;
1282                         device = periph->path->device;
1283                         for (i = 0, periph = SLIST_FIRST(&device->periphs);
1284                              periph != NULL;
1285                              periph = SLIST_NEXT(periph, periph_links), i++) {
1286                                 /*
1287                                  * Check to see whether we have a
1288                                  * passthrough device or not.
1289                                  */
1290                                 if (strcmp(periph->periph_name, "pass") == 0) {
1291                                         /*
1292                                          * Fill in the getdevlist fields.
1293                                          */
1294                                         strcpy(ccb->cgdl.periph_name,
1295                                                periph->periph_name);
1296                                         ccb->cgdl.unit_number =
1297                                                 periph->unit_number;
1298                                         if (SLIST_NEXT(periph, periph_links))
1299                                                 ccb->cgdl.status =
1300                                                         CAM_GDEVLIST_MORE_DEVS;
1301                                         else
1302                                                 ccb->cgdl.status =
1303                                                        CAM_GDEVLIST_LAST_DEVICE;
1304                                         ccb->cgdl.generation =
1305                                                 device->generation;
1306                                         ccb->cgdl.index = i;
1307                                         /*
1308                                          * Fill in some CCB header fields
1309                                          * that the user may want.
1310                                          */
1311                                         ccb->ccb_h.path_id =
1312                                                 periph->path->bus->path_id;
1313                                         ccb->ccb_h.target_id =
1314                                                 periph->path->target->target_id;
1315                                         ccb->ccb_h.target_lun =
1316                                                 periph->path->device->lun_id;
1317                                         ccb->ccb_h.status = CAM_REQ_CMP;
1318                                         break;
1319                                 }
1320                         }
1321                 }
1322
1323                 /*
1324                  * If the periph is null here, one of two things has
1325                  * happened.  The first possibility is that we couldn't
1326                  * find the unit number of the particular peripheral driver
1327                  * that the user is asking about.  e.g. the user asks for
1328                  * the passthrough driver for "da11".  We find the list of
1329                  * "da" peripherals all right, but there is no unit 11.
1330                  * The other possibility is that we went through the list
1331                  * of peripheral drivers attached to the device structure,
1332                  * but didn't find one with the name "pass".  Either way,
1333                  * we return ENOENT, since we couldn't find something.
1334                  */
1335                 if (periph == NULL) {
1336                         ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1337                         ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1338                         *ccb->cgdl.periph_name = '\0';
1339                         ccb->cgdl.unit_number = 0;
1340                         error = ENOENT;
1341                         /*
1342                          * It is unfortunate that this is even necessary,
1343                          * but there are many, many clueless users out there.
1344                          * If this is true, the user is looking for the
1345                          * passthrough driver, but doesn't have one in his
1346                          * kernel.
1347                          */
1348                         if (base_periph_found == 1) {
1349                                 kprintf("xptioctl: pass driver is not in the "
1350                                        "kernel\n");
1351                                 kprintf("xptioctl: put \"device pass\" in "
1352                                        "your kernel config file\n");
1353                         }
1354                 }
1355                 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1356                 break;
1357                 }
1358         default:
1359                 error = ENOTTY;
1360                 break;
1361         }
1362
1363         return(error);
1364 }
1365
1366 static int
1367 cam_module_event_handler(module_t mod, int what, void *arg)
1368 {
1369         int error;
1370
1371         switch (what) {
1372         case MOD_LOAD:
1373                 if ((error = xpt_init(NULL)) != 0)
1374                         return (error);
1375                 break;
1376         case MOD_UNLOAD:
1377                 return EBUSY;
1378         default:
1379                 return EOPNOTSUPP;
1380         }
1381
1382         return 0;
1383 }
1384
1385 /*
1386  * Thread to handle asynchronous main-context requests.
1387  *
1388  * This function is typically used by drivers to perform complex actions
1389  * such as bus scans and engineering requests in a main context instead
1390  * of an interrupt context.
1391  */
1392 static void
1393 xpt_scanner_thread(void *dummy)
1394 {
1395         union ccb       *ccb;
1396         struct cam_sim  *sim;
1397
1398         get_mplock();
1399
1400         for (;;) {
1401                 xpt_lock_buses();
1402                 xsoftc.ccb_scanq_running = 1;
1403                 while ((ccb = (void *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
1404                         TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h,
1405                                      sim_links.tqe);
1406                         xpt_unlock_buses();
1407
1408                         sim = ccb->ccb_h.path->bus->sim;
1409                         CAM_SIM_LOCK(sim);
1410                         xpt_action(ccb);
1411                         CAM_SIM_UNLOCK(sim);
1412
1413                         xpt_lock_buses();
1414                 }
1415                 xsoftc.ccb_scanq_running = 0;
1416                 tsleep_interlock(&xsoftc.ccb_scanq, 0);
1417                 xpt_unlock_buses();
1418                 tsleep(&xsoftc.ccb_scanq, PINTERLOCKED, "ccb_scanq", 0);
1419         }
1420
1421         rel_mplock();   /* not reached */
1422 }
1423
1424 /*
1425  * Issue an asynchronous asction
1426  */
1427 void
1428 xpt_action_async(union ccb *ccb)
1429 {
1430         xpt_lock_buses();
1431         TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
1432         if (xsoftc.ccb_scanq_running == 0) {
1433                 xsoftc.ccb_scanq_running = 1;
1434                 wakeup(&xsoftc.ccb_scanq);
1435         }
1436         xpt_unlock_buses();
1437 }
1438
1439
1440 /* Functions accessed by the peripheral drivers */
1441 static int
1442 xpt_init(void *dummy)
1443 {
1444         struct cam_sim *xpt_sim;
1445         struct cam_path *path;
1446         struct cam_devq *devq;
1447         cam_status status;
1448
1449         TAILQ_INIT(&xsoftc.xpt_busses);
1450         TAILQ_INIT(&cam_simq);
1451         TAILQ_INIT(&xsoftc.ccb_scanq);
1452         STAILQ_INIT(&xsoftc.highpowerq);
1453         xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
1454
1455         spin_init(&cam_simq_spin, "cam_simq_spin");
1456         lockinit(&xsoftc.xpt_lock, "XPT lock", 0, LK_CANRECURSE);
1457         lockinit(&xsoftc.xpt_topo_lock, "XPT topology lock", 0, LK_CANRECURSE);
1458
1459         SLIST_INIT(&cam_dead_sim.ccb_freeq);
1460         TAILQ_INIT(&cam_dead_sim.sim_doneq);
1461         spin_init(&cam_dead_sim.sim_spin, "cam_dead_sim");
1462         cam_dead_sim.sim_action = dead_sim_action;
1463         cam_dead_sim.sim_poll = dead_sim_poll;
1464         cam_dead_sim.sim_name = "dead_sim";
1465         cam_dead_sim.lock = &cam_dead_lock;
1466         lockinit(&cam_dead_lock, "XPT dead_sim lock", 0, LK_CANRECURSE);
1467         cam_dead_sim.flags |= CAM_SIM_DEREGISTERED;
1468
1469         /*
1470          * The xpt layer is, itself, the equivelent of a SIM.
1471          * Allow 16 ccbs in the ccb pool for it.  This should
1472          * give decent parallelism when we probe busses and
1473          * perform other XPT functions.
1474          */
1475         devq = cam_simq_alloc(16);
1476         xpt_sim = cam_sim_alloc(xptaction,
1477                                 xptpoll,
1478                                 "xpt",
1479                                 /*softc*/NULL,
1480                                 /*unit*/0,
1481                                 /*lock*/&xsoftc.xpt_lock,
1482                                 /*max_dev_transactions*/0,
1483                                 /*max_tagged_dev_transactions*/0,
1484                                 devq);
1485         cam_simq_release(devq);
1486         if (xpt_sim == NULL)
1487                 return (ENOMEM);
1488
1489         xpt_sim->max_ccbs = 16;
1490
1491         lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
1492         if ((status = xpt_bus_register(xpt_sim, /*bus #*/0)) != CAM_SUCCESS) {
1493                 lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
1494                 kprintf("xpt_init: xpt_bus_register failed with status %#x,"
1495                        " failing attach\n", status);
1496                 return (EINVAL);
1497         }
1498
1499         /*
1500          * Looking at the XPT from the SIM layer, the XPT is
1501          * the equivelent of a peripheral driver.  Allocate
1502          * a peripheral driver entry for us.
1503          */
1504         if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
1505                                       CAM_TARGET_WILDCARD,
1506                                       CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
1507                 lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
1508                 kprintf("xpt_init: xpt_create_path failed with status %#x,"
1509                        " failing attach\n", status);
1510                 return (EINVAL);
1511         }
1512
1513         cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
1514                          path, NULL, 0, xpt_sim);
1515         xpt_free_path(path);
1516
1517         lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
1518
1519         /*
1520          * Register a callback for when interrupts are enabled.
1521          */
1522         xsoftc.xpt_config_hook = kmalloc(sizeof(struct intr_config_hook),
1523                                   M_CAMXPT, M_INTWAIT | M_ZERO);
1524         xsoftc.xpt_config_hook->ich_func = xpt_config;
1525         xsoftc.xpt_config_hook->ich_desc = "xpt";
1526         xsoftc.xpt_config_hook->ich_order = 1000;
1527         if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
1528                 kfree (xsoftc.xpt_config_hook, M_CAMXPT);
1529                 kprintf("xpt_init: config_intrhook_establish failed "
1530                        "- failing attach\n");
1531         }
1532
1533         /* fire up rescan thread */
1534         if (kthread_create(xpt_scanner_thread, NULL, NULL, "xpt_thrd")) {
1535                 kprintf("xpt_init: failed to create rescan thread\n");
1536         }
1537         /* Install our software interrupt handlers */
1538         register_swi_mp(SWI_CAMBIO, swi_cambio, NULL, "swi_cambio", NULL, -1);
1539
1540         return (0);
1541 }
1542
1543 static cam_status
1544 xptregister(struct cam_periph *periph, void *arg)
1545 {
1546         struct cam_sim *xpt_sim;
1547
1548         if (periph == NULL) {
1549                 kprintf("xptregister: periph was NULL!!\n");
1550                 return(CAM_REQ_CMP_ERR);
1551         }
1552
1553         xpt_sim = (struct cam_sim *)arg;
1554         xpt_sim->softc = periph;
1555         xpt_periph = periph;
1556         periph->softc = NULL;
1557
1558         return(CAM_REQ_CMP);
1559 }
1560
1561 int32_t
1562 xpt_add_periph(struct cam_periph *periph)
1563 {
1564         struct cam_ed *device;
1565         int32_t  status;
1566         struct periph_list *periph_head;
1567
1568         sim_lock_assert_owned(periph->sim->lock);
1569
1570         device = periph->path->device;
1571
1572         periph_head = &device->periphs;
1573
1574         status = CAM_REQ_CMP;
1575
1576         if (device != NULL) {
1577                 /*
1578                  * Make room for this peripheral
1579                  * so it will fit in the queue
1580                  * when it's scheduled to run
1581                  */
1582                 status = camq_resize(&device->drvq,
1583                                      device->drvq.array_size + 1);
1584
1585                 device->generation++;
1586
1587                 SLIST_INSERT_HEAD(periph_head, periph, periph_links);
1588         }
1589
1590         lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1591         xsoftc.xpt_generation++;
1592         lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1593
1594         return (status);
1595 }
1596
1597 void
1598 xpt_remove_periph(struct cam_periph *periph)
1599 {
1600         struct cam_ed *device;
1601
1602         sim_lock_assert_owned(periph->sim->lock);
1603
1604         device = periph->path->device;
1605
1606         if (device != NULL) {
1607                 struct periph_list *periph_head;
1608
1609                 periph_head = &device->periphs;
1610
1611                 /* Release the slot for this peripheral */
1612                 camq_resize(&device->drvq, device->drvq.array_size - 1);
1613
1614                 device->generation++;
1615
1616                 SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1617         }
1618
1619         lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1620         xsoftc.xpt_generation++;
1621         lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1622 }
1623
1624 void
1625 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1626 {
1627         struct  ccb_pathinq cpi;
1628         struct  ccb_trans_settings cts;
1629         struct  cam_path *path;
1630         u_int   speed;
1631         u_int   freq;
1632         u_int   mb;
1633
1634         sim_lock_assert_owned(periph->sim->lock);
1635
1636         path = periph->path;
1637
1638         /* Report basic attachment and inquiry data */
1639         kprintf("%s%d at %s%d bus %d target %d lun %d\n",
1640                periph->periph_name, periph->unit_number,
1641                path->bus->sim->sim_name,
1642                path->bus->sim->unit_number,
1643                path->bus->sim->bus_id,
1644                path->target->target_id,
1645                path->device->lun_id);
1646         kprintf("%s%d: ", periph->periph_name, periph->unit_number);
1647         scsi_print_inquiry(&path->device->inq_data);
1648
1649         /* Report serial number */
1650         if (path->device->serial_num_len > 0) {
1651                 /* Don't wrap the screen  - print only the first 60 chars */
1652                 kprintf("%s%d: Serial Number %.60s\n", periph->periph_name,
1653                        periph->unit_number, path->device->serial_num);
1654         }
1655
1656         /* Acquire and report transfer speed */
1657         xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
1658         cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
1659         cts.type = CTS_TYPE_CURRENT_SETTINGS;
1660         xpt_action((union ccb*)&cts);
1661         if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
1662                 return;
1663         }
1664
1665         /* Ask the SIM for its base transfer speed */
1666         xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
1667         cpi.ccb_h.func_code = XPT_PATH_INQ;
1668         xpt_action((union ccb *)&cpi);
1669
1670         speed = cpi.base_transfer_speed;
1671         freq = 0;
1672         if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) {
1673                 struct  ccb_trans_settings_spi *spi;
1674
1675                 spi = &cts.xport_specific.spi;
1676                 if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0
1677                   && spi->sync_offset != 0) {
1678                         freq = scsi_calc_syncsrate(spi->sync_period);
1679                         speed = freq;
1680                 }
1681
1682                 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
1683                         speed *= (0x01 << spi->bus_width);
1684         }
1685         if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) {
1686                 struct  ccb_trans_settings_fc *fc = &cts.xport_specific.fc;
1687                 if (fc->valid & CTS_FC_VALID_SPEED) {
1688                         speed = fc->bitrate;
1689                 }
1690         }
1691
1692         if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SAS) {
1693                 struct  ccb_trans_settings_sas *sas = &cts.xport_specific.sas;
1694                 if (sas->valid & CTS_SAS_VALID_SPEED) {
1695                         speed = sas->bitrate;
1696                 }
1697         }
1698
1699         mb = speed / 1000;
1700         if (mb > 0)
1701                 kprintf("%s%d: %d.%03dMB/s transfers",
1702                        periph->periph_name, periph->unit_number,
1703                        mb, speed % 1000);
1704         else
1705                 kprintf("%s%d: %dKB/s transfers", periph->periph_name,
1706                        periph->unit_number, speed);
1707
1708         /* Report additional information about SPI connections */
1709         if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) {
1710                 struct  ccb_trans_settings_spi *spi;
1711
1712                 spi = &cts.xport_specific.spi;
1713                 if (freq != 0) {
1714                         kprintf(" (%d.%03dMHz%s, offset %d", freq / 1000,
1715                                freq % 1000,
1716                                (spi->ppr_options & MSG_EXT_PPR_DT_REQ) != 0
1717                              ? " DT" : "",
1718                                spi->sync_offset);
1719                 }
1720                 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0
1721                  && spi->bus_width > 0) {
1722                         if (freq != 0) {
1723                                 kprintf(", ");
1724                         } else {
1725                                 kprintf(" (");
1726                         }
1727                         kprintf("%dbit)", 8 * (0x01 << spi->bus_width));
1728                 } else if (freq != 0) {
1729                         kprintf(")");
1730                 }
1731         }
1732         if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) {
1733                 struct  ccb_trans_settings_fc *fc;
1734
1735                 fc = &cts.xport_specific.fc;
1736                 if (fc->valid & CTS_FC_VALID_WWNN)
1737                         kprintf(" WWNN 0x%llx", (long long) fc->wwnn);
1738                 if (fc->valid & CTS_FC_VALID_WWPN)
1739                         kprintf(" WWPN 0x%llx", (long long) fc->wwpn);
1740                 if (fc->valid & CTS_FC_VALID_PORT)
1741                         kprintf(" PortID 0x%x", fc->port);
1742         }
1743
1744         if (path->device->inq_flags & SID_CmdQue
1745          || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1746                 kprintf("\n%s%d: Command Queueing Enabled",
1747                        periph->periph_name, periph->unit_number);
1748         }
1749         kprintf("\n");
1750
1751         /*
1752          * We only want to print the caller's announce string if they've
1753          * passed one in..
1754          */
1755         if (announce_string != NULL)
1756                 kprintf("%s%d: %s\n", periph->periph_name,
1757                        periph->unit_number, announce_string);
1758 }
1759
1760 static dev_match_ret
1761 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1762             struct cam_eb *bus)
1763 {
1764         dev_match_ret retval;
1765         int i;
1766
1767         retval = DM_RET_NONE;
1768
1769         /*
1770          * If we aren't given something to match against, that's an error.
1771          */
1772         if (bus == NULL)
1773                 return(DM_RET_ERROR);
1774
1775         /*
1776          * If there are no match entries, then this bus matches no
1777          * matter what.
1778          */
1779         if ((patterns == NULL) || (num_patterns == 0))
1780                 return(DM_RET_DESCEND | DM_RET_COPY);
1781
1782         for (i = 0; i < num_patterns; i++) {
1783                 struct bus_match_pattern *cur_pattern;
1784
1785                 /*
1786                  * If the pattern in question isn't for a bus node, we
1787                  * aren't interested.  However, we do indicate to the
1788                  * calling routine that we should continue descending the
1789                  * tree, since the user wants to match against lower-level
1790                  * EDT elements.
1791                  */
1792                 if (patterns[i].type != DEV_MATCH_BUS) {
1793                         if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1794                                 retval |= DM_RET_DESCEND;
1795                         continue;
1796                 }
1797
1798                 cur_pattern = &patterns[i].pattern.bus_pattern;
1799
1800                 /*
1801                  * If they want to match any bus node, we give them any
1802                  * device node.
1803                  */
1804                 if (cur_pattern->flags == BUS_MATCH_ANY) {
1805                         /* set the copy flag */
1806                         retval |= DM_RET_COPY;
1807
1808                         /*
1809                          * If we've already decided on an action, go ahead
1810                          * and return.
1811                          */
1812                         if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1813                                 return(retval);
1814                 }
1815
1816                 /*
1817                  * Not sure why someone would do this...
1818                  */
1819                 if (cur_pattern->flags == BUS_MATCH_NONE)
1820                         continue;
1821
1822                 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1823                  && (cur_pattern->path_id != bus->path_id))
1824                         continue;
1825
1826                 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1827                  && (cur_pattern->bus_id != bus->sim->bus_id))
1828                         continue;
1829
1830                 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1831                  && (cur_pattern->unit_number != bus->sim->unit_number))
1832                         continue;
1833
1834                 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1835                  && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1836                              DEV_IDLEN) != 0))
1837                         continue;
1838
1839                 /*
1840                  * If we get to this point, the user definitely wants
1841                  * information on this bus.  So tell the caller to copy the
1842                  * data out.
1843                  */
1844                 retval |= DM_RET_COPY;
1845
1846                 /*
1847                  * If the return action has been set to descend, then we
1848                  * know that we've already seen a non-bus matching
1849                  * expression, therefore we need to further descend the tree.
1850                  * This won't change by continuing around the loop, so we
1851                  * go ahead and return.  If we haven't seen a non-bus
1852                  * matching expression, we keep going around the loop until
1853                  * we exhaust the matching expressions.  We'll set the stop
1854                  * flag once we fall out of the loop.
1855                  */
1856                 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1857                         return(retval);
1858         }
1859
1860         /*
1861          * If the return action hasn't been set to descend yet, that means
1862          * we haven't seen anything other than bus matching patterns.  So
1863          * tell the caller to stop descending the tree -- the user doesn't
1864          * want to match against lower level tree elements.
1865          */
1866         if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1867                 retval |= DM_RET_STOP;
1868
1869         return(retval);
1870 }
1871
1872 static dev_match_ret
1873 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1874                struct cam_ed *device)
1875 {
1876         dev_match_ret retval;
1877         int i;
1878
1879         retval = DM_RET_NONE;
1880
1881         /*
1882          * If we aren't given something to match against, that's an error.
1883          */
1884         if (device == NULL)
1885                 return(DM_RET_ERROR);
1886
1887         /*
1888          * If there are no match entries, then this device matches no
1889          * matter what.
1890          */
1891         if ((patterns == NULL) || (num_patterns == 0))
1892                 return(DM_RET_DESCEND | DM_RET_COPY);
1893
1894         for (i = 0; i < num_patterns; i++) {
1895                 struct device_match_pattern *cur_pattern;
1896
1897                 /*
1898                  * If the pattern in question isn't for a device node, we
1899                  * aren't interested.
1900                  */
1901                 if (patterns[i].type != DEV_MATCH_DEVICE) {
1902                         if ((patterns[i].type == DEV_MATCH_PERIPH)
1903                          && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1904                                 retval |= DM_RET_DESCEND;
1905                         continue;
1906                 }
1907
1908                 cur_pattern = &patterns[i].pattern.device_pattern;
1909
1910                 /*
1911                  * If they want to match any device node, we give them any
1912                  * device node.
1913                  */
1914                 if (cur_pattern->flags == DEV_MATCH_ANY) {
1915                         /* set the copy flag */
1916                         retval |= DM_RET_COPY;
1917
1918
1919                         /*
1920                          * If we've already decided on an action, go ahead
1921                          * and return.
1922                          */
1923                         if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1924                                 return(retval);
1925                 }
1926
1927                 /*
1928                  * Not sure why someone would do this...
1929                  */
1930                 if (cur_pattern->flags == DEV_MATCH_NONE)
1931                         continue;
1932
1933                 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1934                  && (cur_pattern->path_id != device->target->bus->path_id))
1935                         continue;
1936
1937                 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1938                  && (cur_pattern->target_id != device->target->target_id))
1939                         continue;
1940
1941                 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1942                  && (cur_pattern->target_lun != device->lun_id))
1943                         continue;
1944
1945                 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1946                  && (cam_quirkmatch((caddr_t)&device->inq_data,
1947                                     (caddr_t)&cur_pattern->inq_pat,
1948                                     1, sizeof(cur_pattern->inq_pat),
1949                                     scsi_static_inquiry_match) == NULL))
1950                         continue;
1951
1952                 /*
1953                  * If we get to this point, the user definitely wants
1954                  * information on this device.  So tell the caller to copy
1955                  * the data out.
1956                  */
1957                 retval |= DM_RET_COPY;
1958
1959                 /*
1960                  * If the return action has been set to descend, then we
1961                  * know that we've already seen a peripheral matching
1962                  * expression, therefore we need to further descend the tree.
1963                  * This won't change by continuing around the loop, so we
1964                  * go ahead and return.  If we haven't seen a peripheral
1965                  * matching expression, we keep going around the loop until
1966                  * we exhaust the matching expressions.  We'll set the stop
1967                  * flag once we fall out of the loop.
1968                  */
1969                 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1970                         return(retval);
1971         }
1972
1973         /*
1974          * If the return action hasn't been set to descend yet, that means
1975          * we haven't seen any peripheral matching patterns.  So tell the
1976          * caller to stop descending the tree -- the user doesn't want to
1977          * match against lower level tree elements.
1978          */
1979         if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1980                 retval |= DM_RET_STOP;
1981
1982         return(retval);
1983 }
1984
1985 /*
1986  * Match a single peripheral against any number of match patterns.
1987  */
1988 static dev_match_ret
1989 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1990                struct cam_periph *periph)
1991 {
1992         dev_match_ret retval;
1993         int i;
1994
1995         /*
1996          * If we aren't given something to match against, that's an error.
1997          */
1998         if (periph == NULL)
1999                 return(DM_RET_ERROR);
2000
2001         /*
2002          * If there are no match entries, then this peripheral matches no
2003          * matter what.
2004          */
2005         if ((patterns == NULL) || (num_patterns == 0))
2006                 return(DM_RET_STOP | DM_RET_COPY);
2007
2008         /*
2009          * There aren't any nodes below a peripheral node, so there's no
2010          * reason to descend the tree any further.
2011          */
2012         retval = DM_RET_STOP;
2013
2014         for (i = 0; i < num_patterns; i++) {
2015                 struct periph_match_pattern *cur_pattern;
2016
2017                 /*
2018                  * If the pattern in question isn't for a peripheral, we
2019                  * aren't interested.
2020                  */
2021                 if (patterns[i].type != DEV_MATCH_PERIPH)
2022                         continue;
2023
2024                 cur_pattern = &patterns[i].pattern.periph_pattern;
2025
2026                 /*
2027                  * If they want to match on anything, then we will do so.
2028                  */
2029                 if (cur_pattern->flags == PERIPH_MATCH_ANY) {
2030                         /* set the copy flag */
2031                         retval |= DM_RET_COPY;
2032
2033                         /*
2034                          * We've already set the return action to stop,
2035                          * since there are no nodes below peripherals in
2036                          * the tree.
2037                          */
2038                         return(retval);
2039                 }
2040
2041                 /*
2042                  * Not sure why someone would do this...
2043                  */
2044                 if (cur_pattern->flags == PERIPH_MATCH_NONE)
2045                         continue;
2046
2047                 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
2048                  && (cur_pattern->path_id != periph->path->bus->path_id))
2049                         continue;
2050
2051                 /*
2052                  * For the target and lun id's, we have to make sure the
2053                  * target and lun pointers aren't NULL.  The xpt peripheral
2054                  * has a wildcard target and device.
2055                  */
2056                 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
2057                  && ((periph->path->target == NULL)
2058                  ||(cur_pattern->target_id != periph->path->target->target_id)))
2059                         continue;
2060
2061                 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
2062                  && ((periph->path->device == NULL)
2063                  || (cur_pattern->target_lun != periph->path->device->lun_id)))
2064                         continue;
2065
2066                 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
2067                  && (cur_pattern->unit_number != periph->unit_number))
2068                         continue;
2069
2070                 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
2071                  && (strncmp(cur_pattern->periph_name, periph->periph_name,
2072                              DEV_IDLEN) != 0))
2073                         continue;
2074
2075                 /*
2076                  * If we get to this point, the user definitely wants
2077                  * information on this peripheral.  So tell the caller to
2078                  * copy the data out.
2079                  */
2080                 retval |= DM_RET_COPY;
2081
2082                 /*
2083                  * The return action has already been set to stop, since
2084                  * peripherals don't have any nodes below them in the EDT.
2085                  */
2086                 return(retval);
2087         }
2088
2089         /*
2090          * If we get to this point, the peripheral that was passed in
2091          * doesn't match any of the patterns.
2092          */
2093         return(retval);
2094 }
2095
2096 static int
2097 xptedtbusfunc(struct cam_eb *bus, void *arg)
2098 {
2099         struct ccb_dev_match *cdm;
2100         dev_match_ret retval;
2101
2102         cdm = (struct ccb_dev_match *)arg;
2103
2104         /*
2105          * If our position is for something deeper in the tree, that means
2106          * that we've already seen this node.  So, we keep going down.
2107          */
2108         if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2109          && (cdm->pos.cookie.bus == bus)
2110          && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2111          && (cdm->pos.cookie.target != NULL))
2112                 retval = DM_RET_DESCEND;
2113         else
2114                 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
2115
2116         /*
2117          * If we got an error, bail out of the search.
2118          */
2119         if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2120                 cdm->status = CAM_DEV_MATCH_ERROR;
2121                 return(0);
2122         }
2123
2124         /*
2125          * If the copy flag is set, copy this bus out.
2126          */
2127         if (retval & DM_RET_COPY) {
2128                 int spaceleft, j;
2129
2130                 spaceleft = cdm->match_buf_len - (cdm->num_matches *
2131                         sizeof(struct dev_match_result));
2132
2133                 /*
2134                  * If we don't have enough space to put in another
2135                  * match result, save our position and tell the
2136                  * user there are more devices to check.
2137                  */
2138                 if (spaceleft < sizeof(struct dev_match_result)) {
2139                         bzero(&cdm->pos, sizeof(cdm->pos));
2140                         cdm->pos.position_type =
2141                                 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
2142
2143                         cdm->pos.cookie.bus = bus;
2144                         cdm->pos.generations[CAM_BUS_GENERATION]=
2145                                 xsoftc.bus_generation;
2146                         cdm->status = CAM_DEV_MATCH_MORE;
2147                         return(0);
2148                 }
2149                 j = cdm->num_matches;
2150                 cdm->num_matches++;
2151                 cdm->matches[j].type = DEV_MATCH_BUS;
2152                 cdm->matches[j].result.bus_result.path_id = bus->path_id;
2153                 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
2154                 cdm->matches[j].result.bus_result.unit_number =
2155                         bus->sim->unit_number;
2156                 strncpy(cdm->matches[j].result.bus_result.dev_name,
2157                         bus->sim->sim_name, DEV_IDLEN);
2158         }
2159
2160         /*
2161          * If the user is only interested in busses, there's no
2162          * reason to descend to the next level in the tree.
2163          */
2164         if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2165                 return(1);
2166
2167         /*
2168          * If there is a target generation recorded, check it to
2169          * make sure the target list hasn't changed.
2170          */
2171         if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2172          && (bus == cdm->pos.cookie.bus)
2173          && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2174          && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
2175          && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
2176              bus->generation)) {
2177                 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2178                 return(0);
2179         }
2180
2181         if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2182          && (cdm->pos.cookie.bus == bus)
2183          && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2184          && (cdm->pos.cookie.target != NULL))
2185                 return(xpttargettraverse(bus,
2186                                         (struct cam_et *)cdm->pos.cookie.target,
2187                                          xptedttargetfunc, arg));
2188         else
2189                 return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
2190 }
2191
2192 static int
2193 xptedttargetfunc(struct cam_et *target, void *arg)
2194 {
2195         struct ccb_dev_match *cdm;
2196
2197         cdm = (struct ccb_dev_match *)arg;
2198
2199         /*
2200          * If there is a device list generation recorded, check it to
2201          * make sure the device list hasn't changed.
2202          */
2203         if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2204          && (cdm->pos.cookie.bus == target->bus)
2205          && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2206          && (cdm->pos.cookie.target == target)
2207          && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2208          && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
2209          && (cdm->pos.generations[CAM_DEV_GENERATION] !=
2210              target->generation)) {
2211                 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2212                 return(0);
2213         }
2214
2215         if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2216          && (cdm->pos.cookie.bus == target->bus)
2217          && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2218          && (cdm->pos.cookie.target == target)
2219          && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2220          && (cdm->pos.cookie.device != NULL))
2221                 return(xptdevicetraverse(target,
2222                                         (struct cam_ed *)cdm->pos.cookie.device,
2223                                          xptedtdevicefunc, arg));
2224         else
2225                 return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
2226 }
2227
2228 static int
2229 xptedtdevicefunc(struct cam_ed *device, void *arg)
2230 {
2231
2232         struct ccb_dev_match *cdm;
2233         dev_match_ret retval;
2234
2235         cdm = (struct ccb_dev_match *)arg;
2236
2237         /*
2238          * If our position is for something deeper in the tree, that means
2239          * that we've already seen this node.  So, we keep going down.
2240          */
2241         if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2242          && (cdm->pos.cookie.device == device)
2243          && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2244          && (cdm->pos.cookie.periph != NULL))
2245                 retval = DM_RET_DESCEND;
2246         else
2247                 retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
2248                                         device);
2249
2250         if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2251                 cdm->status = CAM_DEV_MATCH_ERROR;
2252                 return(0);
2253         }
2254
2255         /*
2256          * If the copy flag is set, copy this device out.
2257          */
2258         if (retval & DM_RET_COPY) {
2259                 int spaceleft, j;
2260
2261                 spaceleft = cdm->match_buf_len - (cdm->num_matches *
2262                         sizeof(struct dev_match_result));
2263
2264                 /*
2265                  * If we don't have enough space to put in another
2266                  * match result, save our position and tell the
2267                  * user there are more devices to check.
2268                  */
2269                 if (spaceleft < sizeof(struct dev_match_result)) {
2270                         bzero(&cdm->pos, sizeof(cdm->pos));
2271                         cdm->pos.position_type =
2272                                 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2273                                 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
2274
2275                         cdm->pos.cookie.bus = device->target->bus;
2276                         cdm->pos.generations[CAM_BUS_GENERATION]=
2277                                 xsoftc.bus_generation;
2278                         cdm->pos.cookie.target = device->target;
2279                         cdm->pos.generations[CAM_TARGET_GENERATION] =
2280                                 device->target->bus->generation;
2281                         cdm->pos.cookie.device = device;
2282                         cdm->pos.generations[CAM_DEV_GENERATION] =
2283                                 device->target->generation;
2284                         cdm->status = CAM_DEV_MATCH_MORE;
2285                         return(0);
2286                 }
2287                 j = cdm->num_matches;
2288                 cdm->num_matches++;
2289                 cdm->matches[j].type = DEV_MATCH_DEVICE;
2290                 cdm->matches[j].result.device_result.path_id =
2291                         device->target->bus->path_id;
2292                 cdm->matches[j].result.device_result.target_id =
2293                         device->target->target_id;
2294                 cdm->matches[j].result.device_result.target_lun =
2295                         device->lun_id;
2296                 bcopy(&device->inq_data,
2297                       &cdm->matches[j].result.device_result.inq_data,
2298                       sizeof(struct scsi_inquiry_data));
2299
2300                 /* Let the user know whether this device is unconfigured */
2301                 if (device->flags & CAM_DEV_UNCONFIGURED)
2302                         cdm->matches[j].result.device_result.flags =
2303                                 DEV_RESULT_UNCONFIGURED;
2304                 else
2305                         cdm->matches[j].result.device_result.flags =
2306                                 DEV_RESULT_NOFLAG;
2307         }
2308
2309         /*
2310          * If the user isn't interested in peripherals, don't descend
2311          * the tree any further.
2312          */
2313         if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2314                 return(1);
2315
2316         /*
2317          * If there is a peripheral list generation recorded, make sure
2318          * it hasn't changed.
2319          */
2320         if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2321          && (device->target->bus == cdm->pos.cookie.bus)
2322          && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2323          && (device->target == cdm->pos.cookie.target)
2324          && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2325          && (device == cdm->pos.cookie.device)
2326          && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2327          && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2328          && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2329              device->generation)){
2330                 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2331                 return(0);
2332         }
2333
2334         if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2335          && (cdm->pos.cookie.bus == device->target->bus)
2336          && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2337          && (cdm->pos.cookie.target == device->target)
2338          && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2339          && (cdm->pos.cookie.device == device)
2340          && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2341          && (cdm->pos.cookie.periph != NULL))
2342                 return(xptperiphtraverse(device,
2343                                 (struct cam_periph *)cdm->pos.cookie.periph,
2344                                 xptedtperiphfunc, arg));
2345         else
2346                 return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
2347 }
2348
2349 static int
2350 xptedtperiphfunc(struct cam_periph *periph, void *arg)
2351 {
2352         struct ccb_dev_match *cdm;
2353         dev_match_ret retval;
2354
2355         cdm = (struct ccb_dev_match *)arg;
2356
2357         retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2358
2359         if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2360                 cdm->status = CAM_DEV_MATCH_ERROR;
2361                 return(0);
2362         }
2363
2364         /*
2365          * If the copy flag is set, copy this peripheral out.
2366          */
2367         if (retval & DM_RET_COPY) {
2368                 int spaceleft, j;
2369
2370                 spaceleft = cdm->match_buf_len - (cdm->num_matches *
2371                         sizeof(struct dev_match_result));
2372
2373                 /*
2374                  * If we don't have enough space to put in another
2375                  * match result, save our position and tell the
2376                  * user there are more devices to check.
2377                  */
2378                 if (spaceleft < sizeof(struct dev_match_result)) {
2379                         bzero(&cdm->pos, sizeof(cdm->pos));
2380                         cdm->pos.position_type =
2381                                 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2382                                 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
2383                                 CAM_DEV_POS_PERIPH;
2384
2385                         cdm->pos.cookie.bus = periph->path->bus;
2386                         cdm->pos.generations[CAM_BUS_GENERATION]=
2387                                 xsoftc.bus_generation;
2388                         cdm->pos.cookie.target = periph->path->target;
2389                         cdm->pos.generations[CAM_TARGET_GENERATION] =
2390                                 periph->path->bus->generation;
2391                         cdm->pos.cookie.device = periph->path->device;
2392                         cdm->pos.generations[CAM_DEV_GENERATION] =
2393                                 periph->path->target->generation;
2394                         cdm->pos.cookie.periph = periph;
2395                         cdm->pos.generations[CAM_PERIPH_GENERATION] =
2396                                 periph->path->device->generation;
2397                         cdm->status = CAM_DEV_MATCH_MORE;
2398                         return(0);
2399                 }
2400
2401                 j = cdm->num_matches;
2402                 cdm->num_matches++;
2403                 cdm->matches[j].type = DEV_MATCH_PERIPH;
2404                 cdm->matches[j].result.periph_result.path_id =
2405                         periph->path->bus->path_id;
2406                 cdm->matches[j].result.periph_result.target_id =
2407                         periph->path->target->target_id;
2408                 cdm->matches[j].result.periph_result.target_lun =
2409                         periph->path->device->lun_id;
2410                 cdm->matches[j].result.periph_result.unit_number =
2411                         periph->unit_number;
2412                 strncpy(cdm->matches[j].result.periph_result.periph_name,
2413                         periph->periph_name, DEV_IDLEN);
2414         }
2415
2416         return(1);
2417 }
2418
2419 static int
2420 xptedtmatch(struct ccb_dev_match *cdm)
2421 {
2422         int ret;
2423
2424         cdm->num_matches = 0;
2425
2426         /*
2427          * Check the bus list generation.  If it has changed, the user
2428          * needs to reset everything and start over.
2429          */
2430         if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2431          && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
2432          && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) {
2433                 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2434                 return(0);
2435         }
2436
2437         if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2438          && (cdm->pos.cookie.bus != NULL))
2439                 ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
2440                                      xptedtbusfunc, cdm);
2441         else
2442                 ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
2443
2444         /*
2445          * If we get back 0, that means that we had to stop before fully
2446          * traversing the EDT.  It also means that one of the subroutines
2447          * has set the status field to the proper value.  If we get back 1,
2448          * we've fully traversed the EDT and copied out any matching entries.
2449          */
2450         if (ret == 1)
2451                 cdm->status = CAM_DEV_MATCH_LAST;
2452
2453         return(ret);
2454 }
2455
2456 static int
2457 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
2458 {
2459         struct ccb_dev_match *cdm;
2460
2461         cdm = (struct ccb_dev_match *)arg;
2462
2463         if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2464          && (cdm->pos.cookie.pdrv == pdrv)
2465          && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2466          && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2467          && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2468              (*pdrv)->generation)) {
2469                 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2470                 return(0);
2471         }
2472
2473         if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2474          && (cdm->pos.cookie.pdrv == pdrv)
2475          && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2476          && (cdm->pos.cookie.periph != NULL))
2477                 return(xptpdperiphtraverse(pdrv,
2478                                 (struct cam_periph *)cdm->pos.cookie.periph,
2479                                 xptplistperiphfunc, arg));
2480         else
2481                 return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
2482 }
2483
2484 static int
2485 xptplistperiphfunc(struct cam_periph *periph, void *arg)
2486 {
2487         struct ccb_dev_match *cdm;
2488         dev_match_ret retval;
2489
2490         cdm = (struct ccb_dev_match *)arg;
2491
2492         retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2493
2494         if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2495                 cdm->status = CAM_DEV_MATCH_ERROR;
2496                 return(0);
2497         }
2498
2499         /*
2500          * If the copy flag is set, copy this peripheral out.
2501          */
2502         if (retval & DM_RET_COPY) {
2503                 int spaceleft, j;
2504
2505                 spaceleft = cdm->match_buf_len - (cdm->num_matches *
2506                         sizeof(struct dev_match_result));
2507
2508                 /*
2509                  * If we don't have enough space to put in another
2510                  * match result, save our position and tell the
2511                  * user there are more devices to check.
2512                  */
2513                 if (spaceleft < sizeof(struct dev_match_result)) {
2514                         struct periph_driver **pdrv;
2515
2516                         pdrv = NULL;
2517                         bzero(&cdm->pos, sizeof(cdm->pos));
2518                         cdm->pos.position_type =
2519                                 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2520                                 CAM_DEV_POS_PERIPH;
2521
2522                         /*
2523                          * This may look a bit non-sensical, but it is
2524                          * actually quite logical.  There are very few
2525                          * peripheral drivers, and bloating every peripheral
2526                          * structure with a pointer back to its parent
2527                          * peripheral driver linker set entry would cost
2528                          * more in the long run than doing this quick lookup.
2529                          */
2530                         for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
2531                                 if (strcmp((*pdrv)->driver_name,
2532                                     periph->periph_name) == 0)
2533                                         break;
2534                         }
2535
2536                         if (*pdrv == NULL) {
2537                                 cdm->status = CAM_DEV_MATCH_ERROR;
2538                                 return(0);
2539                         }
2540
2541                         cdm->pos.cookie.pdrv = pdrv;
2542                         /*
2543                          * The periph generation slot does double duty, as
2544                          * does the periph pointer slot.  They are used for
2545                          * both edt and pdrv lookups and positioning.
2546                          */
2547                         cdm->pos.cookie.periph = periph;
2548                         cdm->pos.generations[CAM_PERIPH_GENERATION] =
2549                                 (*pdrv)->generation;
2550                         cdm->status = CAM_DEV_MATCH_MORE;
2551                         return(0);
2552                 }
2553
2554                 j = cdm->num_matches;
2555                 cdm->num_matches++;
2556                 cdm->matches[j].type = DEV_MATCH_PERIPH;
2557                 cdm->matches[j].result.periph_result.path_id =
2558                         periph->path->bus->path_id;
2559
2560                 /*
2561                  * The transport layer peripheral doesn't have a target or
2562                  * lun.
2563                  */
2564                 if (periph->path->target)
2565                         cdm->matches[j].result.periph_result.target_id =
2566                                 periph->path->target->target_id;
2567                 else
2568                         cdm->matches[j].result.periph_result.target_id = -1;
2569
2570                 if (periph->path->device)
2571                         cdm->matches[j].result.periph_result.target_lun =
2572                                 periph->path->device->lun_id;
2573                 else
2574                         cdm->matches[j].result.periph_result.target_lun = -1;
2575
2576                 cdm->matches[j].result.periph_result.unit_number =
2577                         periph->unit_number;
2578                 strncpy(cdm->matches[j].result.periph_result.periph_name,
2579                         periph->periph_name, DEV_IDLEN);
2580         }
2581
2582         return(1);
2583 }
2584
2585 static int
2586 xptperiphlistmatch(struct ccb_dev_match *cdm)
2587 {
2588         int ret;
2589
2590         cdm->num_matches = 0;
2591
2592         /*
2593          * At this point in the edt traversal function, we check the bus
2594          * list generation to make sure that no busses have been added or
2595          * removed since the user last sent a XPT_DEV_MATCH ccb through.
2596          * For the peripheral driver list traversal function, however, we
2597          * don't have to worry about new peripheral driver types coming or
2598          * going; they're in a linker set, and therefore can't change
2599          * without a recompile.
2600          */
2601
2602         if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2603          && (cdm->pos.cookie.pdrv != NULL))
2604                 ret = xptpdrvtraverse(
2605                                 (struct periph_driver **)cdm->pos.cookie.pdrv,
2606                                 xptplistpdrvfunc, cdm);
2607         else
2608                 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2609
2610         /*
2611          * If we get back 0, that means that we had to stop before fully
2612          * traversing the peripheral driver tree.  It also means that one of
2613          * the subroutines has set the status field to the proper value.  If
2614          * we get back 1, we've fully traversed the EDT and copied out any
2615          * matching entries.
2616          */
2617         if (ret == 1)
2618                 cdm->status = CAM_DEV_MATCH_LAST;
2619
2620         return(ret);
2621 }
2622
2623 static int
2624 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2625 {
2626         struct cam_eb *bus, *next_bus;
2627         int retval;
2628
2629         retval = 1;
2630
2631         lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
2632         for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses));
2633              bus != NULL;
2634              bus = next_bus) {
2635                 next_bus = TAILQ_NEXT(bus, links);
2636
2637                 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
2638                 CAM_SIM_LOCK(bus->sim);
2639                 retval = tr_func(bus, arg);
2640                 CAM_SIM_UNLOCK(bus->sim);
2641                 if (retval == 0)
2642                         return(retval);
2643                 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
2644         }
2645         lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
2646
2647         return(retval);
2648 }
2649
2650 static int
2651 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2652                   xpt_targetfunc_t *tr_func, void *arg)
2653 {
2654         struct cam_et *target, *next_target;
2655         int retval;
2656
2657         retval = 1;
2658         for (target = (start_target ? start_target :
2659                        TAILQ_FIRST(&bus->et_entries));
2660              target != NULL; target = next_target) {
2661
2662                 next_target = TAILQ_NEXT(target, links);
2663
2664                 retval = tr_func(target, arg);
2665
2666                 if (retval == 0)
2667                         return(retval);
2668         }
2669
2670         return(retval);
2671 }
2672
2673 static int
2674 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2675                   xpt_devicefunc_t *tr_func, void *arg)
2676 {
2677         struct cam_ed *device, *next_device;
2678         int retval;
2679
2680         retval = 1;
2681         for (device = (start_device ? start_device :
2682                        TAILQ_FIRST(&target->ed_entries));
2683              device != NULL;
2684              device = next_device) {
2685
2686                 next_device = TAILQ_NEXT(device, links);
2687
2688                 retval = tr_func(device, arg);
2689
2690                 if (retval == 0)
2691                         return(retval);
2692         }
2693
2694         return(retval);
2695 }
2696
2697 static int
2698 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2699                   xpt_periphfunc_t *tr_func, void *arg)
2700 {
2701         struct cam_periph *periph, *next_periph;
2702         int retval;
2703
2704         retval = 1;
2705
2706         for (periph = (start_periph ? start_periph :
2707                        SLIST_FIRST(&device->periphs));
2708              periph != NULL;
2709              periph = next_periph) {
2710
2711                 next_periph = SLIST_NEXT(periph, periph_links);
2712
2713                 retval = tr_func(periph, arg);
2714                 if (retval == 0)
2715                         return(retval);
2716         }
2717
2718         return(retval);
2719 }
2720
2721 static int
2722 xptpdrvtraverse(struct periph_driver **start_pdrv,
2723                 xpt_pdrvfunc_t *tr_func, void *arg)
2724 {
2725         struct periph_driver **pdrv;
2726         int retval;
2727
2728         retval = 1;
2729
2730         /*
2731          * We don't traverse the peripheral driver list like we do the
2732          * other lists, because it is a linker set, and therefore cannot be
2733          * changed during runtime.  If the peripheral driver list is ever
2734          * re-done to be something other than a linker set (i.e. it can
2735          * change while the system is running), the list traversal should
2736          * be modified to work like the other traversal functions.
2737          */
2738         for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2739              *pdrv != NULL; pdrv++) {
2740                 retval = tr_func(pdrv, arg);
2741
2742                 if (retval == 0)
2743                         return(retval);
2744         }
2745
2746         return(retval);
2747 }
2748
2749 static int
2750 xptpdperiphtraverse(struct periph_driver **pdrv,
2751                     struct cam_periph *start_periph,
2752                     xpt_periphfunc_t *tr_func, void *arg)
2753 {
2754         struct cam_periph *periph, *next_periph;
2755         int retval;
2756
2757         retval = 1;
2758
2759         for (periph = (start_periph ? start_periph :
2760              TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2761              periph = next_periph) {
2762
2763                 next_periph = TAILQ_NEXT(periph, unit_links);
2764
2765                 retval = tr_func(periph, arg);
2766                 if (retval == 0)
2767                         return(retval);
2768         }
2769         return(retval);
2770 }
2771
2772 static int
2773 xptdefbusfunc(struct cam_eb *bus, void *arg)
2774 {
2775         struct xpt_traverse_config *tr_config;
2776
2777         tr_config = (struct xpt_traverse_config *)arg;
2778
2779         if (tr_config->depth == XPT_DEPTH_BUS) {
2780                 xpt_busfunc_t *tr_func;
2781
2782                 tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2783
2784                 return(tr_func(bus, tr_config->tr_arg));
2785         } else
2786                 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2787 }
2788
2789 static int
2790 xptdeftargetfunc(struct cam_et *target, void *arg)
2791 {
2792         struct xpt_traverse_config *tr_config;
2793
2794         tr_config = (struct xpt_traverse_config *)arg;
2795
2796         if (tr_config->depth == XPT_DEPTH_TARGET) {
2797                 xpt_targetfunc_t *tr_func;
2798
2799                 tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2800
2801                 return(tr_func(target, tr_config->tr_arg));
2802         } else
2803                 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2804 }
2805
2806 static int
2807 xptdefdevicefunc(struct cam_ed *device, void *arg)
2808 {
2809         struct xpt_traverse_config *tr_config;
2810
2811         tr_config = (struct xpt_traverse_config *)arg;
2812
2813         if (tr_config->depth == XPT_DEPTH_DEVICE) {
2814                 xpt_devicefunc_t *tr_func;
2815
2816                 tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2817
2818                 return(tr_func(device, tr_config->tr_arg));
2819         } else
2820                 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2821 }
2822
2823 static int
2824 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2825 {
2826         struct xpt_traverse_config *tr_config;
2827         xpt_periphfunc_t *tr_func;
2828
2829         tr_config = (struct xpt_traverse_config *)arg;
2830
2831         tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2832
2833         /*
2834          * Unlike the other default functions, we don't check for depth
2835          * here.  The peripheral driver level is the last level in the EDT,
2836          * so if we're here, we should execute the function in question.
2837          */
2838         return(tr_func(periph, tr_config->tr_arg));
2839 }
2840
2841 /*
2842  * Execute the given function for every bus in the EDT.
2843  */
2844 static int
2845 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2846 {
2847         struct xpt_traverse_config tr_config;
2848
2849         tr_config.depth = XPT_DEPTH_BUS;
2850         tr_config.tr_func = tr_func;
2851         tr_config.tr_arg = arg;
2852
2853         return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2854 }
2855
2856 /*
2857  * Execute the given function for every device in the EDT.
2858  */
2859 static int
2860 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2861 {
2862         struct xpt_traverse_config tr_config;
2863
2864         tr_config.depth = XPT_DEPTH_DEVICE;
2865         tr_config.tr_func = tr_func;
2866         tr_config.tr_arg = arg;
2867
2868         return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2869 }
2870
2871 static int
2872 xptsetasyncfunc(struct cam_ed *device, void *arg)
2873 {
2874         struct cam_path path;
2875         struct ccb_getdev cgd;
2876         struct async_node *cur_entry;
2877
2878         cur_entry = (struct async_node *)arg;
2879
2880         /*
2881          * Don't report unconfigured devices (Wildcard devs,
2882          * devices only for target mode, device instances
2883          * that have been invalidated but are waiting for
2884          * their last reference count to be released).
2885          */
2886         if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2887                 return (1);
2888
2889         xpt_compile_path(&path,
2890                          NULL,
2891                          device->target->bus->path_id,
2892                          device->target->target_id,
2893                          device->lun_id);
2894         xpt_setup_ccb(&cgd.ccb_h, &path, /*priority*/1);
2895         cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2896         xpt_action((union ccb *)&cgd);
2897         cur_entry->callback(cur_entry->callback_arg,
2898                             AC_FOUND_DEVICE,
2899                             &path, &cgd);
2900         xpt_release_path(&path);
2901
2902         return(1);
2903 }
2904
2905 static int
2906 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2907 {
2908         struct cam_path path;
2909         struct ccb_pathinq cpi;
2910         struct async_node *cur_entry;
2911
2912         cur_entry = (struct async_node *)arg;
2913
2914         xpt_compile_path(&path, /*periph*/NULL,
2915                          bus->sim->path_id,
2916                          CAM_TARGET_WILDCARD,
2917                          CAM_LUN_WILDCARD);
2918         xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
2919         cpi.ccb_h.func_code = XPT_PATH_INQ;
2920         xpt_action((union ccb *)&cpi);
2921         cur_entry->callback(cur_entry->callback_arg,
2922                             AC_PATH_REGISTERED,
2923                             &path, &cpi);
2924         xpt_release_path(&path);
2925
2926         return(1);
2927 }
2928
2929 static void
2930 xpt_action_sasync_cb(void *context, int pending)
2931 {
2932         struct async_node *cur_entry;
2933         struct xpt_task *task;
2934         uint32_t added;
2935
2936         task = (struct xpt_task *)context;
2937         cur_entry = (struct async_node *)task->data1;
2938         added = task->data2;
2939
2940         if ((added & AC_FOUND_DEVICE) != 0) {
2941                 /*
2942                  * Get this peripheral up to date with all
2943                  * the currently existing devices.
2944                  */
2945                 xpt_for_all_devices(xptsetasyncfunc, cur_entry);
2946         }
2947         if ((added & AC_PATH_REGISTERED) != 0) {
2948                 /*
2949                  * Get this peripheral up to date with all
2950                  * the currently existing busses.
2951                  */
2952                 xpt_for_all_busses(xptsetasyncbusfunc, cur_entry);
2953         }
2954         kfree(task, M_CAMXPT);
2955 }
2956
2957 void
2958 xpt_action(union ccb *start_ccb)
2959 {
2960         CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2961
2962         start_ccb->ccb_h.status = CAM_REQ_INPROG;
2963
2964         switch (start_ccb->ccb_h.func_code) {
2965         case XPT_SCSI_IO:
2966         case XPT_TRIM:
2967         {
2968                 struct cam_ed *device;
2969 #ifdef CAMDEBUG
2970                 char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
2971                 struct cam_path *path;
2972
2973                 path = start_ccb->ccb_h.path;
2974 #endif
2975
2976                 /*
2977                  * For the sake of compatibility with SCSI-1
2978                  * devices that may not understand the identify
2979                  * message, we include lun information in the
2980                  * second byte of all commands.  SCSI-1 specifies
2981                  * that luns are a 3 bit value and reserves only 3
2982                  * bits for lun information in the CDB.  Later
2983                  * revisions of the SCSI spec allow for more than 8
2984                  * luns, but have deprecated lun information in the
2985                  * CDB.  So, if the lun won't fit, we must omit.
2986                  *
2987                  * Also be aware that during initial probing for devices,
2988                  * the inquiry information is unknown but initialized to 0.
2989                  * This means that this code will be exercised while probing
2990                  * devices with an ANSI revision greater than 2.
2991                  */
2992                 device = start_ccb->ccb_h.path->device;
2993                 if (device->protocol_version <= SCSI_REV_2
2994                  && start_ccb->ccb_h.target_lun < 8
2995                  && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2996
2997                         start_ccb->csio.cdb_io.cdb_bytes[1] |=
2998                             start_ccb->ccb_h.target_lun << 5;
2999                 }
3000                 start_ccb->csio.scsi_status = SCSI_STATUS_OK;
3001                 CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n",
3002                           scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0],
3003                                        &path->device->inq_data),
3004                           scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes,
3005                                           cdb_str, sizeof(cdb_str))));
3006                 /* FALLTHROUGH */
3007         }
3008         case XPT_TARGET_IO:
3009         case XPT_CONT_TARGET_IO:
3010                 start_ccb->csio.sense_resid = 0;
3011                 start_ccb->csio.resid = 0;
3012                 /* FALLTHROUGH */
3013         case XPT_RESET_DEV:
3014         case XPT_ENG_EXEC:
3015         {
3016                 struct cam_path *path;
3017                 struct cam_sim *sim;
3018                 int runq;
3019
3020                 path = start_ccb->ccb_h.path;
3021
3022                 sim = path->bus->sim;
3023                 if (sim == &cam_dead_sim) {
3024                         /* The SIM has gone; just execute the CCB directly. */
3025                         cam_ccbq_send_ccb(&path->device->ccbq, start_ccb);
3026                         (*(sim->sim_action))(sim, start_ccb);
3027                         break;
3028                 }
3029
3030                 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
3031                 if (path->device->qfrozen_cnt == 0)
3032                         runq = xpt_schedule_dev_sendq(path->bus, path->device);
3033                 else
3034                         runq = 0;
3035                 if (runq != 0)
3036                         xpt_run_dev_sendq(path->bus);
3037                 break;
3038         }
3039         case XPT_SET_TRAN_SETTINGS:
3040         {
3041                 xpt_set_transfer_settings(&start_ccb->cts,
3042                                           start_ccb->ccb_h.path->device,
3043                                           /*async_update*/FALSE);
3044                 break;
3045         }
3046         case XPT_CALC_GEOMETRY:
3047         {
3048                 struct cam_sim *sim;
3049
3050                 /* Filter out garbage */
3051                 if (start_ccb->ccg.block_size == 0
3052                  || start_ccb->ccg.volume_size == 0) {
3053                         start_ccb->ccg.cylinders = 0;
3054                         start_ccb->ccg.heads = 0;
3055                         start_ccb->ccg.secs_per_track = 0;
3056                         start_ccb->ccb_h.status = CAM_REQ_CMP;
3057                         break;
3058                 }
3059                 sim = start_ccb->ccb_h.path->bus->sim;
3060                 (*(sim->sim_action))(sim, start_ccb);
3061                 break;
3062         }
3063         case XPT_ABORT:
3064         {
3065                 union ccb* abort_ccb;
3066
3067                 abort_ccb = start_ccb->cab.abort_ccb;
3068                 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
3069
3070                         if (abort_ccb->ccb_h.pinfo.index >= 0) {
3071                                 struct cam_ccbq *ccbq;
3072
3073                                 ccbq = &abort_ccb->ccb_h.path->device->ccbq;
3074                                 cam_ccbq_remove_ccb(ccbq, abort_ccb);
3075                                 abort_ccb->ccb_h.status =
3076                                     CAM_REQ_ABORTED|CAM_DEV_QFRZN;
3077                                 xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
3078                                 xpt_done(abort_ccb);
3079                                 start_ccb->ccb_h.status = CAM_REQ_CMP;
3080                                 break;
3081                         }
3082                         if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
3083                          && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
3084                                 /*
3085                                  * We've caught this ccb en route to
3086                                  * the SIM.  Flag it for abort and the
3087                                  * SIM will do so just before starting
3088                                  * real work on the CCB.
3089                                  */
3090                                 abort_ccb->ccb_h.status =
3091                                     CAM_REQ_ABORTED|CAM_DEV_QFRZN;
3092                                 xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
3093                                 start_ccb->ccb_h.status = CAM_REQ_CMP;
3094                                 break;
3095                         }
3096                 }
3097                 if (XPT_FC_IS_QUEUED(abort_ccb)
3098                  && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
3099                         /*
3100                          * It's already completed but waiting
3101                          * for our SWI to get to it.
3102                          */
3103                         start_ccb->ccb_h.status = CAM_UA_ABORT;
3104                         break;
3105                 }
3106                 /*
3107                  * If we weren't able to take care of the abort request
3108                  * in the XPT, pass the request down to the SIM for processing.
3109                  */
3110                 /* FALLTHROUGH */
3111         }
3112         case XPT_ACCEPT_TARGET_IO:
3113         case XPT_EN_LUN:
3114         case XPT_IMMED_NOTIFY:
3115         case XPT_NOTIFY_ACK:
3116         case XPT_GET_TRAN_SETTINGS:
3117         case XPT_RESET_BUS:
3118         {
3119                 struct cam_sim *sim;
3120
3121                 sim = start_ccb->ccb_h.path->bus->sim;
3122                 (*(sim->sim_action))(sim, start_ccb);
3123                 break;
3124         }
3125         case XPT_PATH_INQ:
3126         {
3127                 struct cam_sim *sim;
3128
3129                 sim = start_ccb->ccb_h.path->bus->sim;
3130                 (*(sim->sim_action))(sim, start_ccb);
3131                 break;
3132         }
3133         case XPT_PATH_STATS:
3134                 start_ccb->cpis.last_reset =
3135                         start_ccb->ccb_h.path->bus->last_reset;
3136                 start_ccb->ccb_h.status = CAM_REQ_CMP;
3137                 break;
3138         case XPT_GDEV_TYPE:
3139         {
3140                 struct cam_ed *dev;
3141
3142                 dev = start_ccb->ccb_h.path->device;
3143                 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
3144                         start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
3145                 } else {
3146                         struct ccb_getdev *cgd;
3147
3148                         cgd = &start_ccb->cgd;
3149                         cgd->inq_data = dev->inq_data;
3150                         cgd->ccb_h.status = CAM_REQ_CMP;
3151                         cgd->serial_num_len = dev->serial_num_len;
3152                         if ((dev->serial_num_len > 0)
3153                          && (dev->serial_num != NULL))
3154                                 bcopy(dev->serial_num, cgd->serial_num,
3155                                       dev->serial_num_len);
3156                 }
3157                 break;
3158         }
3159         case XPT_GDEV_STATS:
3160         {
3161                 struct cam_ed *dev;
3162
3163                 dev = start_ccb->ccb_h.path->device;
3164                 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
3165                         start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
3166                 } else {
3167                         struct ccb_getdevstats *cgds;
3168                         struct cam_eb *bus;
3169                         struct cam_et *tar;
3170
3171                         cgds = &start_ccb->cgds;
3172                         bus = cgds->ccb_h.path->bus;
3173                         tar = cgds->ccb_h.path->target;
3174                         cgds->dev_openings = dev->ccbq.dev_openings;
3175                         cgds->dev_active = dev->ccbq.dev_active;
3176                         cgds->devq_openings = dev->ccbq.devq_openings;
3177                         cgds->devq_queued = dev->ccbq.queue.entries;
3178                         cgds->held = dev->ccbq.held;
3179                         cgds->last_reset = tar->last_reset;
3180                         cgds->maxtags = dev->quirk->maxtags;
3181                         cgds->mintags = dev->quirk->mintags;
3182                         if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
3183                                 cgds->last_reset = bus->last_reset;
3184                         cgds->ccb_h.status = CAM_REQ_CMP;
3185                 }
3186                 break;
3187         }
3188         case XPT_GDEVLIST:
3189         {
3190                 struct cam_periph       *nperiph;
3191                 struct periph_list      *periph_head;
3192                 struct ccb_getdevlist   *cgdl;
3193                 u_int                   i;
3194                 struct cam_ed           *device;
3195                 int                     found;
3196
3197
3198                 found = 0;
3199
3200                 /*
3201                  * Don't want anyone mucking with our data.
3202                  */
3203                 device = start_ccb->ccb_h.path->device;
3204                 periph_head = &device->periphs;
3205                 cgdl = &start_ccb->cgdl;
3206
3207                 /*
3208                  * Check and see if the list has changed since the user
3209                  * last requested a list member.  If so, tell them that the
3210                  * list has changed, and therefore they need to start over
3211                  * from the beginning.
3212                  */
3213                 if ((cgdl->index != 0) &&
3214                     (cgdl->generation != device->generation)) {
3215                         cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
3216                         break;
3217                 }
3218
3219                 /*
3220                  * Traverse the list of peripherals and attempt to find
3221                  * the requested peripheral.
3222                  */
3223                 for (nperiph = SLIST_FIRST(periph_head), i = 0;
3224                      (nperiph != NULL) && (i <= cgdl->index);
3225                      nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
3226                         if (i == cgdl->index) {
3227                                 strncpy(cgdl->periph_name,
3228                                         nperiph->periph_name,
3229                                         DEV_IDLEN);
3230                                 cgdl->unit_number = nperiph->unit_number;
3231                                 found = 1;
3232                         }
3233                 }
3234                 if (found == 0) {
3235                         cgdl->status = CAM_GDEVLIST_ERROR;
3236                         break;
3237                 }
3238
3239                 if (nperiph == NULL)
3240                         cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
3241                 else
3242                         cgdl->status = CAM_GDEVLIST_MORE_DEVS;
3243
3244                 cgdl->index++;
3245                 cgdl->generation = device->generation;
3246
3247                 cgdl->ccb_h.status = CAM_REQ_CMP;
3248                 break;
3249         }
3250         case XPT_DEV_MATCH:
3251         {
3252                 dev_pos_type position_type;
3253                 struct ccb_dev_match *cdm;
3254                 int ret;
3255
3256                 cdm = &start_ccb->cdm;
3257
3258                 /*
3259                  * There are two ways of getting at information in the EDT.
3260                  * The first way is via the primary EDT tree.  It starts
3261                  * with a list of busses, then a list of targets on a bus,
3262                  * then devices/luns on a target, and then peripherals on a
3263                  * device/lun.  The "other" way is by the peripheral driver
3264                  * lists.  The peripheral driver lists are organized by
3265                  * peripheral driver.  (obviously)  So it makes sense to
3266                  * use the peripheral driver list if the user is looking
3267                  * for something like "da1", or all "da" devices.  If the
3268                  * user is looking for something on a particular bus/target
3269                  * or lun, it's generally better to go through the EDT tree.
3270                  */
3271
3272                 if (cdm->pos.position_type != CAM_DEV_POS_NONE)
3273                         position_type = cdm->pos.position_type;
3274                 else {
3275                         u_int i;
3276
3277                         position_type = CAM_DEV_POS_NONE;
3278
3279                         for (i = 0; i < cdm->num_patterns; i++) {
3280                                 if ((cdm->patterns[i].type == DEV_MATCH_BUS)
3281                                  ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
3282                                         position_type = CAM_DEV_POS_EDT;
3283                                         break;
3284                                 }
3285                         }
3286
3287                         if (cdm->num_patterns == 0)
3288                                 position_type = CAM_DEV_POS_EDT;
3289                         else if (position_type == CAM_DEV_POS_NONE)
3290                                 position_type = CAM_DEV_POS_PDRV;
3291                 }
3292
3293                 switch(position_type & CAM_DEV_POS_TYPEMASK) {
3294                 case CAM_DEV_POS_EDT:
3295                         ret = xptedtmatch(cdm);
3296                         break;
3297                 case CAM_DEV_POS_PDRV:
3298                         ret = xptperiphlistmatch(cdm);
3299                         break;
3300                 default:
3301                         cdm->status = CAM_DEV_MATCH_ERROR;
3302                         break;
3303                 }
3304
3305                 if (cdm->status == CAM_DEV_MATCH_ERROR)
3306                         start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
3307                 else
3308                         start_ccb->ccb_h.status = CAM_REQ_CMP;
3309
3310                 break;
3311         }
3312         case XPT_SASYNC_CB:
3313         {
3314                 struct ccb_setasync *csa;
3315                 struct async_node *cur_entry;
3316                 struct async_list *async_head;
3317                 u_int32_t added;
3318
3319                 csa = &start_ccb->csa;
3320                 added = csa->event_enable;
3321                 async_head = &csa->ccb_h.path->device->asyncs;
3322
3323                 /*
3324                  * If there is already an entry for us, simply
3325                  * update it.
3326                  */
3327                 cur_entry = SLIST_FIRST(async_head);
3328                 while (cur_entry != NULL) {
3329                         if ((cur_entry->callback_arg == csa->callback_arg)
3330                          && (cur_entry->callback == csa->callback))
3331                                 break;
3332                         cur_entry = SLIST_NEXT(cur_entry, links);
3333                 }
3334
3335                 if (cur_entry != NULL) {
3336                         /*
3337                          * If the request has no flags set,
3338                          * remove the entry.
3339                          */
3340                         added &= ~cur_entry->event_enable;
3341                         if (csa->event_enable == 0) {
3342                                 SLIST_REMOVE(async_head, cur_entry,
3343                                              async_node, links);
3344                                 atomic_add_int(
3345                                         &csa->ccb_h.path->device->refcount, -1);
3346                                 kfree(cur_entry, M_CAMXPT);
3347                         } else {
3348                                 cur_entry->event_enable = csa->event_enable;
3349                         }
3350                 } else {
3351                         cur_entry = kmalloc(sizeof(*cur_entry), M_CAMXPT,
3352                                            M_INTWAIT);
3353                         cur_entry->event_enable = csa->event_enable;
3354                         cur_entry->callback_arg = csa->callback_arg;
3355                         cur_entry->callback = csa->callback;
3356                         SLIST_INSERT_HEAD(async_head, cur_entry, links);
3357                         atomic_add_int(&csa->ccb_h.path->device->refcount, 1);
3358                 }
3359
3360                 /*
3361                  * Need to decouple this operation via a taskqueue so that
3362                  * the locking doesn't become a mess.
3363                  */
3364                 if ((added & (AC_FOUND_DEVICE | AC_PATH_REGISTERED)) != 0) {
3365                         struct xpt_task *task;
3366
3367                         task = kmalloc(sizeof(struct xpt_task), M_CAMXPT,
3368                                       M_INTWAIT);
3369
3370                         TASK_INIT(&task->task, 0, xpt_action_sasync_cb, task);
3371                         task->data1 = cur_entry;
3372                         task->data2 = added;
3373                         taskqueue_enqueue(taskqueue_thread[mycpuid],
3374                                           &task->task);
3375                 }
3376
3377                 start_ccb->ccb_h.status = CAM_REQ_CMP;
3378                 break;
3379         }
3380         case XPT_REL_SIMQ:
3381         {
3382                 struct ccb_relsim *crs;
3383                 struct cam_ed *dev;
3384
3385                 crs = &start_ccb->crs;
3386                 dev = crs->ccb_h.path->device;
3387                 if (dev == NULL) {
3388
3389                         crs->ccb_h.status = CAM_DEV_NOT_THERE;
3390                         break;
3391                 }
3392
3393                 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
3394
3395                         if (INQ_DATA_TQ_ENABLED(&dev->inq_data)) {
3396                                 /* Don't ever go below one opening */
3397                                 if (crs->openings > 0) {
3398                                         xpt_dev_ccbq_resize(crs->ccb_h.path,
3399                                                             crs->openings);
3400
3401                                         if (bootverbose) {
3402                                                 xpt_print(crs->ccb_h.path,
3403                                                     "tagged openings now %d\n",
3404                                                     crs->openings);
3405                                         }
3406                                 }
3407                         }
3408                 }
3409
3410                 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
3411
3412                         if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
3413
3414                                 /*
3415                                  * Just extend the old timeout and decrement
3416                                  * the freeze count so that a single timeout
3417                                  * is sufficient for releasing the queue.
3418                                  */
3419                                 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3420                                 callout_stop(&dev->callout);
3421                         } else {
3422
3423                                 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3424                         }
3425
3426                         callout_reset(&dev->callout,
3427                                       (crs->release_timeout * hz) / 1000, 
3428                                       xpt_release_devq_timeout, dev);
3429
3430                         dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
3431
3432                 }
3433
3434                 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
3435
3436                         if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
3437                                 /*
3438                                  * Decrement the freeze count so that a single
3439                                  * completion is still sufficient to unfreeze
3440                                  * the queue.
3441                                  */
3442                                 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3443                         } else {
3444
3445                                 dev->flags |= CAM_DEV_REL_ON_COMPLETE;
3446                                 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3447                         }
3448                 }
3449
3450                 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
3451
3452                         if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
3453                          || (dev->ccbq.dev_active == 0)) {
3454
3455                                 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3456                         } else {
3457
3458                                 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
3459                                 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3460                         }
3461                 }
3462                 
3463                 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) {
3464
3465                         xpt_release_devq(crs->ccb_h.path, /*count*/1,
3466                                          /*run_queue*/TRUE);
3467                 }
3468                 start_ccb->crs.qfrozen_cnt = dev->qfrozen_cnt;
3469                 start_ccb->ccb_h.status = CAM_REQ_CMP;
3470                 break;
3471         }
3472         case XPT_SCAN_BUS:
3473                 xpt_scan_bus(start_ccb->ccb_h.path->periph, start_ccb);
3474                 break;
3475         case XPT_SCAN_LUN:
3476                 xpt_scan_lun(start_ccb->ccb_h.path->periph,
3477                              start_ccb->ccb_h.path, start_ccb->crcn.flags,
3478                              start_ccb);
3479                 break;
3480         case XPT_DEBUG: {
3481 #ifdef CAMDEBUG
3482 #ifdef CAM_DEBUG_DELAY
3483                 cam_debug_delay = CAM_DEBUG_DELAY;
3484 #endif
3485                 cam_dflags = start_ccb->cdbg.flags;
3486                 if (cam_dpath != NULL) {
3487                         xpt_free_path(cam_dpath);
3488                         cam_dpath = NULL;
3489                 }
3490
3491                 if (cam_dflags != CAM_DEBUG_NONE) {
3492                         if (xpt_create_path(&cam_dpath, xpt_periph,
3493                                             start_ccb->ccb_h.path_id,
3494                                             start_ccb->ccb_h.target_id,
3495                                             start_ccb->ccb_h.target_lun) !=
3496                                             CAM_REQ_CMP) {
3497                                 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3498                                 cam_dflags = CAM_DEBUG_NONE;
3499                         } else {
3500                                 start_ccb->ccb_h.status = CAM_REQ_CMP;
3501                                 xpt_print(cam_dpath, "debugging flags now %x\n",
3502                                     cam_dflags);
3503                         }
3504                 } else {
3505                         cam_dpath = NULL;
3506                         start_ccb->ccb_h.status = CAM_REQ_CMP;
3507                 }
3508 #else /* !CAMDEBUG */
3509                 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3510 #endif /* CAMDEBUG */
3511                 break;
3512         }
3513         case XPT_NOOP:
3514                 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3515                         xpt_freeze_devq(start_ccb->ccb_h.path, 1);
3516                 start_ccb->ccb_h.status = CAM_REQ_CMP;
3517                 break;
3518         default:
3519         case XPT_SDEV_TYPE:
3520         case XPT_TERM_IO:
3521         case XPT_ENG_INQ:
3522                 /* XXX Implement */
3523                 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3524                 break;
3525         }
3526 }
3527
3528 void
3529 xpt_polled_action(union ccb *start_ccb)
3530 {
3531         u_int32_t timeout;
3532         struct    cam_sim *sim;
3533         struct    cam_devq *devq;
3534         struct    cam_ed *dev;
3535
3536         timeout = start_ccb->ccb_h.timeout;
3537         sim = start_ccb->ccb_h.path->bus->sim;
3538         devq = sim->devq;
3539         dev = start_ccb->ccb_h.path->device;
3540
3541         sim_lock_assert_owned(sim->lock);
3542
3543         /*
3544          * Steal an opening so that no other queued requests
3545          * can get it before us while we simulate interrupts.
3546          */
3547         dev->ccbq.devq_openings--;
3548         dev->ccbq.dev_openings--;
3549
3550         while(((devq && devq->send_openings <= 0) || dev->ccbq.dev_openings < 0)
3551            && (--timeout > 0)) {
3552                 DELAY(1000);
3553                 (*(sim->sim_poll))(sim);
3554                 camisr_runqueue(sim);
3555         }
3556
3557         dev->ccbq.devq_openings++;
3558         dev->ccbq.dev_openings++;
3559
3560         if (timeout != 0) {
3561                 xpt_action(start_ccb);
3562                 while(--timeout > 0) {
3563                         (*(sim->sim_poll))(sim);
3564                         camisr_runqueue(sim);
3565                         if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
3566                             != CAM_REQ_INPROG)
3567                                 break;
3568                         DELAY(1000);
3569                 }
3570                 if (timeout == 0) {
3571                         /*
3572                          * XXX Is it worth adding a sim_timeout entry
3573                          * point so we can attempt recovery?  If
3574                          * this is only used for dumps, I don't think
3575                          * it is.
3576                          */
3577                         start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3578                 }
3579         } else {
3580                 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3581         }
3582 }
3583
3584 /*
3585  * Schedule a peripheral driver to receive a ccb when it's
3586  * target device has space for more transactions.
3587  */
3588 void
3589 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
3590 {
3591         struct cam_ed *device;
3592         union ccb *work_ccb;
3593         int runq;
3594
3595         sim_lock_assert_owned(perph->sim->lock);
3596
3597         CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3598         device = perph->path->device;
3599         if (periph_is_queued(perph)) {
3600                 /* Simply reorder based on new priority */
3601                 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3602                           ("   change priority to %d\n", new_priority));
3603                 if (new_priority < perph->pinfo.priority) {
3604                         camq_change_priority(&device->drvq,
3605                                              perph->pinfo.index,
3606                                              new_priority);
3607                 }
3608                 runq = 0;
3609         } else if (perph->path->bus->sim == &cam_dead_sim) {
3610                 /* The SIM is gone so just call periph_start directly. */
3611                 work_ccb = xpt_get_ccb(perph->path->device);
3612                 if (work_ccb == NULL)
3613                         return; /* XXX */
3614                 xpt_setup_ccb(&work_ccb->ccb_h, perph->path, new_priority);
3615                 perph->pinfo.priority = new_priority;
3616                 perph->periph_start(perph, work_ccb);
3617                 return;
3618         } else {
3619                 /* New entry on the queue */
3620                 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3621                           ("   added periph to queue\n"));
3622                 perph->pinfo.priority = new_priority;
3623                 perph->pinfo.generation = ++device->drvq.generation;
3624                 camq_insert(&device->drvq, &perph->pinfo);
3625                 runq = xpt_schedule_dev_allocq(perph->path->bus, device);
3626         }
3627         if (runq != 0) {
3628                 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3629                           ("   calling xpt_run_devq\n"));
3630                 xpt_run_dev_allocq(perph->path->bus);
3631         }
3632 }
3633
3634
3635 /*
3636  * Schedule a device to run on a given queue.
3637  * If the device was inserted as a new entry on the queue,
3638  * return 1 meaning the device queue should be run. If we
3639  * were already queued, implying someone else has already
3640  * started the queue, return 0 so the caller doesn't attempt
3641  * to run the queue.
3642  */
3643 static int
3644 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3645                  u_int32_t new_priority)
3646 {
3647         int retval;
3648         u_int32_t old_priority;
3649
3650         CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3651
3652         old_priority = pinfo->priority;
3653
3654         /*
3655          * Are we already queued?
3656          */
3657         if (pinfo->index != CAM_UNQUEUED_INDEX) {
3658                 /* Simply reorder based on new priority */
3659                 if (new_priority < old_priority) {
3660                         camq_change_priority(queue, pinfo->index,
3661                                              new_priority);
3662                         CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3663                                         ("changed priority to %d\n",
3664                                          new_priority));
3665                 }
3666                 retval = 0;
3667         } else {
3668                 /* New entry on the queue */
3669                 if (new_priority < old_priority)
3670                         pinfo->priority = new_priority;
3671
3672                 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3673                                 ("Inserting onto queue\n"));
3674                 pinfo->generation = ++queue->generation;
3675                 camq_insert(queue, pinfo);
3676                 retval = 1;
3677         }
3678         return (retval);
3679 }
3680
3681 static void
3682 xpt_run_dev_allocq(struct cam_eb *bus)
3683 {
3684         struct  cam_devq *devq;
3685
3686         if ((devq = bus->sim->devq) == NULL) {
3687                 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq: NULL devq\n"));
3688                 return;
3689         }
3690         CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n"));
3691
3692         CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3693                         ("   qfrozen_cnt == 0x%x, entries == %d, "
3694                          "openings == %d, active == %d\n",
3695                          devq->alloc_queue.qfrozen_cnt,
3696                          devq->alloc_queue.entries,
3697                          devq->alloc_openings,
3698                          devq->alloc_active));
3699
3700         devq->alloc_queue.qfrozen_cnt++;
3701         while ((devq->alloc_queue.entries > 0)
3702             && (devq->alloc_openings > 0)
3703             && (devq->alloc_queue.qfrozen_cnt <= 1)) {
3704                 struct  cam_ed_qinfo *qinfo;
3705                 struct  cam_ed *device;
3706                 union   ccb *work_ccb;
3707                 struct  cam_periph *drv;
3708                 struct  camq *drvq;
3709
3710                 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
3711                                                            CAMQ_HEAD);
3712                 device = qinfo->device;
3713
3714                 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3715                                 ("running device %p\n", device));
3716
3717                 drvq = &device->drvq;
3718
3719 #ifdef CAMDEBUG
3720                 if (drvq->entries <= 0) {
3721                         panic("xpt_run_dev_allocq: "
3722                               "Device on queue without any work to do");
3723                 }
3724 #endif
3725                 if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3726                         devq->alloc_openings--;
3727                         devq->alloc_active++;
3728                         drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3729                         xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3730                                       drv->pinfo.priority);
3731                         CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3732                                         ("calling periph start\n"));
3733                         drv->periph_start(drv, work_ccb);
3734                 } else {
3735                         /*
3736                          * Malloc failure in alloc_ccb
3737                          */
3738                         /*
3739                          * XXX add us to a list to be run from free_ccb
3740                          * if we don't have any ccbs active on this
3741                          * device queue otherwise we may never get run
3742                          * again.
3743                          */
3744                         break;
3745                 }
3746
3747                 if (drvq->entries > 0) {
3748                         /* We have more work.  Attempt to reschedule */
3749                         xpt_schedule_dev_allocq(bus, device);
3750                 }
3751         }
3752         devq->alloc_queue.qfrozen_cnt--;
3753 }
3754
3755 static void
3756 xpt_run_dev_sendq(struct cam_eb *bus)
3757 {
3758         struct  cam_devq *devq;
3759
3760         if ((devq = bus->sim->devq) == NULL) {
3761                 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq: NULL devq\n"));
3762                 return;
3763         }
3764         CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n"));
3765
3766         devq->send_queue.qfrozen_cnt++;
3767         while ((devq->send_queue.entries > 0)
3768             && (devq->send_openings > 0)) {
3769                 struct  cam_ed_qinfo *qinfo;
3770                 struct  cam_ed *device;
3771                 union ccb *work_ccb;
3772                 struct  cam_sim *sim;
3773
3774                 if (devq->send_queue.qfrozen_cnt > 1) {
3775                         break;
3776                 }
3777
3778                 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3779                                                            CAMQ_HEAD);
3780                 device = qinfo->device;
3781
3782                 /*
3783                  * If the device has been "frozen", don't attempt
3784                  * to run it.
3785                  */
3786                 if (device->qfrozen_cnt > 0) {
3787                         continue;
3788                 }
3789
3790                 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3791                                 ("running device %p\n", device));
3792
3793                 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3794                 if (work_ccb == NULL) {
3795                         kprintf("device on run queue with no ccbs???\n");
3796                         continue;
3797                 }
3798
3799                 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3800
3801                         lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
3802                         if (xsoftc.num_highpower <= 0) {
3803                                 /*
3804                                  * We got a high power command, but we
3805                                  * don't have any available slots.  Freeze
3806                                  * the device queue until we have a slot
3807                                  * available.
3808                                  */
3809                                 device->qfrozen_cnt++;
3810                                 STAILQ_INSERT_TAIL(&xsoftc.highpowerq,
3811                                                    &work_ccb->ccb_h,
3812                                                    xpt_links.stqe);
3813
3814                                 lockmgr(&