Add the DragonFly cvs id and perform general cleanups on cvs/rcs/sccs ids. Most
[dragonfly.git] / sbin / growfs / growfs.c
1 /*
2  * Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz
3  * Copyright (c) 1980, 1989, 1993 The Regents of the University of California.
4  * All rights reserved.
5  * 
6  * This code is derived from software contributed to Berkeley by
7  * Christoph Herrmann and Thomas-Henning von Kamptz, Munich and Frankfurt.
8  * 
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgment:
19  *      This product includes software developed by the University of
20  *      California, Berkeley and its contributors, as well as Christoph
21  *      Herrmann and Thomas-Henning von Kamptz.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  * 
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  * $TSHeader: src/sbin/growfs/growfs.c,v 1.5 2000/12/12 19:31:00 tomsoft Exp $
39  *
40  * @(#) Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz Copyright (c) 1980, 1989, 1993 The Regents of the University of California. All rights reserved.
41  * $FreeBSD: src/sbin/growfs/growfs.c,v 1.4.2.2 2001/08/14 12:45:11 chm Exp $
42  * $DragonFly: src/sbin/growfs/growfs.c,v 1.2 2003/06/17 04:27:33 dillon Exp $
43  */
44
45 /* ********************************************************** INCLUDES ***** */
46 #include <sys/param.h>
47 #include <sys/disklabel.h>
48 #include <sys/ioctl.h>
49 #include <sys/stat.h>
50
51 #include <stdio.h>
52 #include <paths.h>
53 #include <ctype.h>
54 #include <err.h>
55 #include <fcntl.h>
56 #include <stdlib.h>
57 #include <string.h>
58 #include <unistd.h>
59 #include <ufs/ufs/dinode.h>
60 #include <ufs/ffs/fs.h>
61
62 #include "debug.h"
63
64 /* *************************************************** GLOBALS & TYPES ***** */
65 #ifdef FS_DEBUG
66 int     _dbg_lvl_ = (DL_INFO);  /* DL_TRC */
67 #endif /* FS_DEBUG */
68
69 static union {
70         struct fs       fs;
71         char    pad[SBSIZE];
72 } fsun1, fsun2;
73 #define sblock  fsun1.fs        /* the new superblock */
74 #define osblock fsun2.fs        /* the old superblock */
75
76 static union {
77         struct cg       cg;
78         char    pad[MAXBSIZE];
79 } cgun1, cgun2;
80 #define acg     cgun1.cg        /* a cylinder cgroup (new) */
81 #define aocg    cgun2.cg        /* an old cylinder group */
82
83 static char     ablk[MAXBSIZE];         /* a block */
84 static char     i1blk[MAXBSIZE];        /* some indirect blocks */
85 static char     i2blk[MAXBSIZE];
86 static char     i3blk[MAXBSIZE];
87
88         /* where to write back updated blocks */
89 static daddr_t  in_src, i1_src, i2_src, i3_src;
90
91         /* what object contains the reference */
92 enum pointer_source {
93         GFS_PS_INODE,
94         GFS_PS_IND_BLK_LVL1,
95         GFS_PS_IND_BLK_LVL2,
96         GFS_PS_IND_BLK_LVL3
97 };
98
99 static struct csum      *fscs;          /* cylinder summary */
100
101 static struct dinode    zino[MAXBSIZE/sizeof(struct dinode)]; /* some inodes */
102
103 /*
104  * An  array of elements of type struct gfs_bpp describes all blocks  to
105  * be relocated in order to free the space needed for the cylinder group
106  * summary for all cylinder groups located in the first cylinder group.
107  */
108 struct gfs_bpp {
109         daddr_t old;            /* old block number */
110         daddr_t new;            /* new block number */
111 #define GFS_FL_FIRST    1
112 #define GFS_FL_LAST     2
113         unsigned int    flags;  /* special handling required */
114         int     found;          /* how many references were updated */
115 };
116
117 /* ******************************************************** PROTOTYPES ***** */
118 static void     growfs(int, int, unsigned int);
119 static void     rdfs(daddr_t, size_t, void *, int);
120 static void     wtfs(daddr_t, size_t, void *, int, unsigned int);
121 static daddr_t  alloc(void);
122 static int      charsperline(void);
123 static void     usage(void);
124 static int      isblock(struct fs *, unsigned char *, int);
125 static void     clrblock(struct fs *, unsigned char *, int);
126 static void     setblock(struct fs *, unsigned char *, int);
127 static void     initcg(int, time_t, int, unsigned int);
128 static void     updjcg(int, time_t, int, int, unsigned int);
129 static void     updcsloc(time_t, int, int, unsigned int);
130 static struct disklabel *get_disklabel(int);
131 static void     return_disklabel(int, struct disklabel *, unsigned int);
132 static struct dinode    *ginode(ino_t, int, int);
133 static void     frag_adjust(daddr_t, int);
134 static void     cond_bl_upd(ufs_daddr_t *, struct gfs_bpp *,
135     enum pointer_source, int, unsigned int);
136 static void     updclst(int);
137 static void     updrefs(int, ino_t, struct gfs_bpp *, int, int, unsigned int);
138
139 /* ************************************************************ growfs ***** */
140 /*
141  * Here  we actually start growing the filesystem. We basically  read  the
142  * cylinder  summary  from the first cylinder group as we want  to  update
143  * this  on  the fly during our various operations. First  we  handle  the
144  * changes in the former last cylinder group. Afterwards we create all new
145  * cylinder  groups.  Now  we handle the  cylinder  group  containing  the
146  * cylinder  summary  which  might result in a  relocation  of  the  whole
147  * structure.  In the end we write back the updated cylinder summary,  the
148  * new superblock, and slightly patched versions of the super block
149  * copies.
150  */
151 static void
152 growfs(int fsi, int fso, unsigned int Nflag)
153 {
154         DBG_FUNC("growfs")
155         int     i;
156         int     cylno, j;
157         time_t  utime;
158         int     width;
159         char    tmpbuf[100];
160 #ifdef FSIRAND
161         static int      randinit=0;
162
163         DBG_ENTER;
164
165         if (!randinit) {
166                 randinit = 1;
167                 srandomdev();
168         }
169 #else /* not FSIRAND */
170
171         DBG_ENTER;
172
173 #endif /* FSIRAND */
174         time(&utime);
175
176         /*
177          * Get the cylinder summary into the memory.
178          */
179         fscs = (struct csum *)calloc((size_t)1, (size_t)sblock.fs_cssize);
180         if(fscs == NULL) {
181                 errx(1, "calloc failed");
182         }
183         for (i = 0; i < osblock.fs_cssize; i += osblock.fs_bsize) {
184                 rdfs(fsbtodb(&osblock, osblock.fs_csaddr +
185                     numfrags(&osblock, i)), (size_t)MIN(osblock.fs_cssize - i,
186                     osblock.fs_bsize), (void *)(((char *)fscs)+i), fsi);
187         }
188
189 #ifdef FS_DEBUG
190 {
191         struct csum     *dbg_csp;
192         int     dbg_csc;
193         char    dbg_line[80];
194
195         dbg_csp=fscs;
196         for(dbg_csc=0; dbg_csc<osblock.fs_ncg; dbg_csc++) {
197                 snprintf(dbg_line, sizeof(dbg_line),
198                     "%d. old csum in old location", dbg_csc);
199                 DBG_DUMP_CSUM(&osblock,
200                     dbg_line,
201                     dbg_csp++);
202         }
203 }
204 #endif /* FS_DEBUG */
205         DBG_PRINT0("fscs read\n");
206
207         /*
208          * Do all needed changes in the former last cylinder group.
209          */
210         updjcg(osblock.fs_ncg-1, utime, fsi, fso, Nflag);
211
212         /*
213          * Dump out summary information about file system.
214          */
215         printf("growfs:\t%d sectors in %d %s of %d tracks, %d sectors\n",
216             sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl,
217             "cylinders", sblock.fs_ntrak, sblock.fs_nsect);
218 #define B2MBFACTOR (1 / (1024.0 * 1024.0))
219         printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n",
220             (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
221             sblock.fs_ncg, sblock.fs_cpg,
222             (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
223             sblock.fs_ipg);
224 #undef B2MBFACTOR
225
226         /*
227          * Now build the cylinders group blocks and
228          * then print out indices of cylinder groups.
229          */
230         printf("super-block backups (for fsck -b #) at:\n");
231         i = 0;
232         width = charsperline();
233
234         /*
235          * Iterate for only the new cylinder groups.
236          */
237         for (cylno = osblock.fs_ncg; cylno < sblock.fs_ncg; cylno++) {
238                 initcg(cylno, utime, fso, Nflag);
239                 j = sprintf(tmpbuf, " %d%s",
240                     (int)fsbtodb(&sblock, cgsblock(&sblock, cylno)),
241                     cylno < (sblock.fs_ncg-1) ? "," : "" );
242                 if (i + j >= width) {
243                         printf("\n");
244                         i = 0;
245                 }
246                 i += j;
247                 printf("%s", tmpbuf);
248                 fflush(stdout);
249         }
250         printf("\n");
251
252         /*
253          * Do all needed changes in the first cylinder group.
254          * allocate blocks in new location
255          */
256         updcsloc(utime, fsi, fso, Nflag);
257
258         /*
259          * Now write the cylinder summary back to disk.
260          */
261         for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) {
262                 wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
263                     (size_t)MIN(sblock.fs_cssize - i, sblock.fs_bsize),
264                     (void *)(((char *)fscs) + i), fso, Nflag);
265         }
266         DBG_PRINT0("fscs written\n");
267
268 #ifdef FS_DEBUG
269 {
270         struct csum     *dbg_csp;
271         int     dbg_csc;
272         char    dbg_line[80];
273
274         dbg_csp=fscs;
275         for(dbg_csc=0; dbg_csc<sblock.fs_ncg; dbg_csc++) {
276                 snprintf(dbg_line, sizeof(dbg_line),
277                     "%d. new csum in new location", dbg_csc);
278                 DBG_DUMP_CSUM(&sblock,
279                     dbg_line,
280                     dbg_csp++);
281         }
282 }
283 #endif /* FS_DEBUG */
284
285         /*
286          * Now write the new superblock back to disk.
287          */
288         sblock.fs_time = utime;
289         wtfs((daddr_t)(SBOFF / DEV_BSIZE), (size_t)SBSIZE, (void *)&sblock,
290             fso, Nflag);
291         DBG_PRINT0("sblock written\n");
292         DBG_DUMP_FS(&sblock,
293             "new initial sblock");
294
295         /*
296          * Clean up the dynamic fields in our superblock copies.
297          */
298         sblock.fs_fmod = 0;
299         sblock.fs_clean = 1;
300         sblock.fs_ronly = 0;
301         sblock.fs_cgrotor = 0;
302         sblock.fs_state = 0;
303         memset((void *)&sblock.fs_fsmnt, 0, sizeof(sblock.fs_fsmnt));
304         sblock.fs_flags &= FS_DOSOFTDEP;
305
306         /*
307          * XXX
308          * The following fields are currently distributed from the  superblock
309          * to the copies:
310          *     fs_minfree
311          *     fs_rotdelay
312          *     fs_maxcontig
313          *     fs_maxbpg
314          *     fs_minfree,
315          *     fs_optim
316          *     fs_flags regarding SOFTPDATES
317          *
318          * We probably should rather change the summary for the cylinder group
319          * statistics here to the value of what would be in there, if the file
320          * system were created initially with the new size. Therefor we  still
321          * need to find an easy way of calculating that.
322          * Possibly we can try to read the first superblock copy and apply the
323          * "diffed" stats between the old and new superblock by still  copying
324          * certain parameters onto that.
325          */
326
327         /*
328          * Write out the duplicate super blocks.
329          */
330         for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
331                 wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
332                     (size_t)SBSIZE, (void *)&sblock, fso, Nflag);
333         }
334         DBG_PRINT0("sblock copies written\n");
335         DBG_DUMP_FS(&sblock,
336             "new other sblocks");
337
338         DBG_LEAVE;
339         return;
340 }
341
342 /* ************************************************************ initcg ***** */
343 /*
344  * This creates a new cylinder group structure, for more details please  see
345  * the  source of newfs(8), as this function is taken over almost unchanged.
346  * As  this  is  never called for the  first  cylinder  group,  the  special
347  * provisions for that case are removed here.
348  */
349 static void
350 initcg(int cylno, time_t utime, int fso, unsigned int Nflag)
351 {
352         DBG_FUNC("initcg")
353         daddr_t cbase, d, dlower, dupper, dmax, blkno;
354         int i;
355         register struct csum *cs;
356 #ifdef FSIRAND
357         int j;
358 #endif
359
360         DBG_ENTER;
361
362         /*
363          * Determine block bounds for cylinder group.
364          */
365         cbase = cgbase(&sblock, cylno);
366         dmax = cbase + sblock.fs_fpg;
367         if (dmax > sblock.fs_size) {
368                 dmax = sblock.fs_size;
369         }
370         dlower = cgsblock(&sblock, cylno) - cbase;
371         dupper = cgdmin(&sblock, cylno) - cbase;
372         if (cylno == 0) { /* XXX fscs may be relocated */
373                 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
374         }
375         cs = fscs + cylno;
376         memset(&acg, 0, (size_t)sblock.fs_cgsize);
377         acg.cg_time = utime;
378         acg.cg_magic = CG_MAGIC;
379         acg.cg_cgx = cylno;
380         if (cylno == sblock.fs_ncg - 1) {
381                 acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
382         } else {
383                 acg.cg_ncyl = sblock.fs_cpg;
384         }
385         acg.cg_niblk = sblock.fs_ipg;
386         acg.cg_ndblk = dmax - cbase;
387         if (sblock.fs_contigsumsize > 0) {
388                 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
389         }
390         acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
391         acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t);
392         acg.cg_iusedoff = acg.cg_boff +
393             sblock.fs_cpg * sblock.fs_nrpos * sizeof(u_int16_t);
394         acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
395         if (sblock.fs_contigsumsize <= 0) {
396                 acg.cg_nextfreeoff = acg.cg_freeoff +
397                     howmany(sblock.fs_cpg* sblock.fs_spc/ NSPF(&sblock), NBBY);
398         } else {
399                 acg.cg_clustersumoff = acg.cg_freeoff + howmany
400                     (sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY) -
401                     sizeof(u_int32_t);
402                 acg.cg_clustersumoff =
403                     roundup(acg.cg_clustersumoff, sizeof(u_int32_t));
404                 acg.cg_clusteroff = acg.cg_clustersumoff +
405                     (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
406                 acg.cg_nextfreeoff = acg.cg_clusteroff + howmany
407                     (sblock.fs_cpg * sblock.fs_spc / NSPB(&sblock), NBBY);
408         }
409         if (acg.cg_nextfreeoff-(int)(&acg.cg_firstfield) > sblock.fs_cgsize) {
410                 /*
411                  * XXX This should never happen as we would have had that panic
412                  *     already on filesystem creation
413                  */
414                 errx(37, "panic: cylinder group too big");
415         }
416         acg.cg_cs.cs_nifree += sblock.fs_ipg;
417         if (cylno == 0)
418                 for (i = 0; (size_t)i < ROOTINO; i++) {
419                         setbit(cg_inosused(&acg), i);
420                         acg.cg_cs.cs_nifree--;
421                 }
422         for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag) {
423 #ifdef FSIRAND
424                 for (j = 0; j < sblock.fs_bsize / sizeof(struct dinode); j++) {
425                         zino[j].di_gen = random();
426                 }
427 #endif
428                 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
429                     (size_t)sblock.fs_bsize, (void *)zino, fso, Nflag);
430         }
431         for (d = 0; d < dlower; d += sblock.fs_frag) {
432                 blkno = d / sblock.fs_frag;
433                 setblock(&sblock, cg_blksfree(&acg), blkno);
434                 if (sblock.fs_contigsumsize > 0) {
435                         setbit(cg_clustersfree(&acg), blkno);
436                 }
437                 acg.cg_cs.cs_nbfree++;
438                 cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
439                 cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
440                     [cbtorpos(&sblock, d)]++;
441         }
442         sblock.fs_dsize += dlower;
443         sblock.fs_dsize += acg.cg_ndblk - dupper;
444         if ((i = dupper % sblock.fs_frag)) {
445                 acg.cg_frsum[sblock.fs_frag - i]++;
446                 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
447                         setbit(cg_blksfree(&acg), dupper);
448                         acg.cg_cs.cs_nffree++;
449                 }
450         }
451         for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) {
452                 blkno = d / sblock.fs_frag;
453                 setblock(&sblock, cg_blksfree(&acg), blkno);
454                 if (sblock.fs_contigsumsize > 0) {
455                         setbit(cg_clustersfree(&acg), blkno);
456                 }
457                 acg.cg_cs.cs_nbfree++;
458                 cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
459                 cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
460                     [cbtorpos(&sblock, d)]++;
461                 d += sblock.fs_frag;
462         }
463         if (d < dmax - cbase) {
464                 acg.cg_frsum[dmax - cbase - d]++;
465                 for (; d < dmax - cbase; d++) {
466                         setbit(cg_blksfree(&acg), d);
467                         acg.cg_cs.cs_nffree++;
468                 }
469         }
470         if (sblock.fs_contigsumsize > 0) {
471                 int32_t *sump = cg_clustersum(&acg);
472                 u_char  *mapp = cg_clustersfree(&acg);
473                 int     map = *mapp++;
474                 int     bit = 1;
475                 int     run = 0;
476
477                 for (i = 0; i < acg.cg_nclusterblks; i++) {
478                         if ((map & bit) != 0) {
479                                 run++;
480                         } else if (run != 0) {
481                                 if (run > sblock.fs_contigsumsize) {
482                                         run = sblock.fs_contigsumsize;
483                                 }
484                                 sump[run]++;
485                                 run = 0;
486                         }
487                         if ((i & (NBBY - 1)) != (NBBY - 1)) {
488                                 bit <<= 1;
489                         } else {
490                                 map = *mapp++;
491                                 bit = 1;
492                         }
493                 }
494                 if (run != 0) {
495                         if (run > sblock.fs_contigsumsize) {
496                                 run = sblock.fs_contigsumsize;
497                         }
498                         sump[run]++;
499                 }
500         }
501         sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
502         sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
503         sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
504         sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
505         *cs = acg.cg_cs;
506         wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
507             (size_t)sblock.fs_bsize, (void *)&acg, fso, Nflag);
508         DBG_DUMP_CG(&sblock,
509             "new cg",
510             &acg);
511
512         DBG_LEAVE;
513         return;
514 }
515
516 /* ******************************************************* frag_adjust ***** */
517 /*
518  * Here  we add or subtract (sign +1/-1) the available fragments in  a  given
519  * block to or from the fragment statistics. By subtracting before and adding
520  * after  an operation on the free frag map we can easy update  the  fragment
521  * statistic, which seems to be otherwise an rather complex operation.
522  */
523 static void
524 frag_adjust(daddr_t frag, int sign)
525 {
526         DBG_FUNC("frag_adjust")
527         int fragsize;
528         int f;
529
530         DBG_ENTER;
531
532         fragsize=0;
533         /*
534          * Here frag only needs to point to any fragment in the block we want
535          * to examine.
536          */
537         for(f=rounddown(frag, sblock.fs_frag); 
538             f<roundup(frag+1, sblock.fs_frag);
539             f++) {
540                 /*
541                  * Count contiguos free fragments.
542                  */
543                 if(isset(cg_blksfree(&acg), f)) {
544                         fragsize++;
545                 } else {
546                         if(fragsize && fragsize<sblock.fs_frag) {
547                                 /*
548                                  * We found something in between.
549                                  */
550                                 acg.cg_frsum[fragsize]+=sign;
551                                 DBG_PRINT2("frag_adjust [%d]+=%d\n",
552                                     fragsize,
553                                     sign);
554                         }
555                         fragsize=0;
556                 }
557         }
558         if(fragsize && fragsize<sblock.fs_frag) {
559                 /*
560                  * We found something.
561                  */
562                 acg.cg_frsum[fragsize]+=sign;
563                 DBG_PRINT2("frag_adjust [%d]+=%d\n",
564                     fragsize,
565                     sign);
566         }
567         DBG_PRINT2("frag_adjust [[%d]]+=%d\n",
568             fragsize,
569             sign);
570
571         DBG_LEAVE;
572         return;
573 }
574
575 /* ******************************************************* cond_bl_upd ***** */
576 /*
577  * Here we conditionally update a pointer to a fragment. We check for all
578  * relocated blocks if any of it's fragments is referenced by the current
579  * field,  and update the pointer to the respective fragment in  our  new
580  * block.  If  we find a reference we write back the  block  immediately,
581  * as there is no easy way for our general block reading engine to figure
582  * out if a write back operation is needed.
583  */
584 static void
585 cond_bl_upd(ufs_daddr_t *block, struct gfs_bpp *field,
586     enum pointer_source source, int fso, unsigned int Nflag)
587 {
588         DBG_FUNC("cond_bl_upd")
589         struct gfs_bpp  *f;
590         char *src;
591         daddr_t dst=0;
592
593         DBG_ENTER;
594
595         f=field;
596         while(f->old) { /* for all old blocks */
597                 if(*block/sblock.fs_frag == f->old) {
598                         /*
599                          * The fragment is part of the block, so update.
600                          */
601                         *block=(f->new*sblock.fs_frag+(*block%sblock.fs_frag));
602                         f->found++;
603                         DBG_PRINT3("scg (%d->%d)[%d] reference updated\n",
604                             f->old,
605                             f->new,
606                             *block%sblock.fs_frag);
607
608                         /* Write the block back to disk immediately */
609                         switch (source) {
610                         case GFS_PS_INODE:
611                                 src=ablk;
612                                 dst=in_src;
613                                 break;
614                         case GFS_PS_IND_BLK_LVL1:
615                                 src=i1blk;
616                                 dst=i1_src;
617                                 break;
618                         case GFS_PS_IND_BLK_LVL2:
619                                 src=i2blk;
620                                 dst=i2_src;
621                                 break;
622                         case GFS_PS_IND_BLK_LVL3:
623                                 src=i3blk;
624                                 dst=i3_src;
625                                 break;
626                         default:        /* error */
627                                 src=NULL;
628                                 break;
629                         }
630                         if(src) {
631                                 /*
632                                  * XXX  If src is not of type inode we have to
633                                  *      implement  copy on write here in  case
634                                  *      of active snapshots.
635                                  */
636                                 wtfs(dst, (size_t)sblock.fs_bsize, (void *)src,
637                                     fso, Nflag);
638                         }
639
640                         /*
641                          * The same block can't be found again in this loop.
642                          */
643                         break;
644                 }
645                 f++;
646         }
647
648         DBG_LEAVE;
649         return;
650 }
651
652 /* ************************************************************ updjcg ***** */
653 /*
654  * Here we do all needed work for the former last cylinder group. It has to be
655  * changed  in  any case, even if the filesystem ended exactly on the  end  of
656  * this  group, as there is some slightly inconsistent handling of the  number
657  * of cylinders in the cylinder group. We start again by reading the  cylinder
658  * group from disk. If the last block was not fully available, we first handle
659  * the  missing  fragments, then we handle all new full blocks  in  that  file
660  * system  and  finally we handle the new last fragmented block  in  the  file
661  * system.  We again have to handle the fragment statistics rotational  layout
662  * tables and cluster summary during all those operations.
663  */
664 static void
665 updjcg(int cylno, time_t utime, int fsi, int fso, unsigned int Nflag)
666 {
667         DBG_FUNC("updjcg")
668         daddr_t cbase, dmax, dupper;
669         struct csum     *cs;
670         int     i,k;
671         int     j=0;
672
673         DBG_ENTER;
674
675         /*
676          * Read the former last (joining) cylinder group from disk, and make
677          * a copy.
678          */
679         rdfs(fsbtodb(&osblock, cgtod(&osblock, cylno)),
680             (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
681         DBG_PRINT0("jcg read\n");
682         DBG_DUMP_CG(&sblock,
683             "old joining cg",
684             &aocg);
685
686         memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
687
688         /*
689          * If  the  cylinder  group had already it's  new  final  size  almost
690          * nothing is to be done ... except:
691          * For some reason the value of cg_ncyl in the last cylinder group has
692          * to  be  zero instead of fs_cpg. As this is now no longer  the  last
693          * cylinder group we have to change that value now to fs_cpg.
694          */ 
695
696         if(cgbase(&osblock, cylno+1) == osblock.fs_size) {
697                 acg.cg_ncyl=sblock.fs_cpg;
698
699                 wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
700                     (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
701                 DBG_PRINT0("jcg written\n");
702                 DBG_DUMP_CG(&sblock,
703                     "new joining cg",
704                     &acg);
705
706                 DBG_LEAVE;
707                 return;
708         }
709
710         /*
711          * Set up some variables needed later.
712          */
713         cbase = cgbase(&sblock, cylno);
714         dmax = cbase + sblock.fs_fpg;
715         if (dmax > sblock.fs_size)
716                 dmax = sblock.fs_size;
717         dupper = cgdmin(&sblock, cylno) - cbase;
718         if (cylno == 0) { /* XXX fscs may be relocated */
719                 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
720         }
721
722         /*
723          * Set pointer to the cylinder summary for our cylinder group.
724          */
725         cs = fscs + cylno;
726
727         /*
728          * Touch the cylinder group, update all fields in the cylinder group as
729          * needed, update the free space in the superblock.
730          */
731         acg.cg_time = utime;
732         if (cylno == sblock.fs_ncg - 1) {
733                 /*
734                  * This is still the last cylinder group.
735                  */
736                 acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
737         } else {
738                 acg.cg_ncyl = sblock.fs_cpg;
739         }
740         DBG_PRINT4("jcg dbg: %d %u %d %u\n",
741             cylno,
742             sblock.fs_ncg,
743             acg.cg_ncyl,
744             sblock.fs_cpg);
745         acg.cg_ndblk = dmax - cbase;
746         sblock.fs_dsize += acg.cg_ndblk-aocg.cg_ndblk;
747         if (sblock.fs_contigsumsize > 0) {
748                 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
749         }
750
751         /*
752          * Now  we have to update the free fragment bitmap for our new  free
753          * space.  There again we have to handle the fragmentation and  also
754          * the  rotational  layout tables and the cluster summary.  This  is
755          * also  done per fragment for the first new block if the  old  file
756          * system end was not on a block boundary, per fragment for the  new
757          * last block if the new file system end is not on a block boundary,
758          * and per block for all space in between.
759          *
760          * Handle the first new block here if it was partially available
761          * before.
762          */
763         if(osblock.fs_size % sblock.fs_frag) {
764                 if(roundup(osblock.fs_size, sblock.fs_frag)<=sblock.fs_size) {
765                         /*
766                          * The new space is enough to fill at least this
767                          * block
768                          */
769                         j=0;
770                         for(i=roundup(osblock.fs_size-cbase, sblock.fs_frag)-1;
771                             i>=osblock.fs_size-cbase;
772                             i--) {
773                                 setbit(cg_blksfree(&acg), i);
774                                 acg.cg_cs.cs_nffree++;
775                                 j++;
776                         }
777
778                         /*
779                          * Check  if the fragment just created could join  an
780                          * already existing fragment at the former end of the
781                          * file system.
782                          */
783                         if(isblock(&sblock, cg_blksfree(&acg),
784                             ((osblock.fs_size - cgbase(&sblock, cylno))/
785                             sblock.fs_frag))) {
786                                 /*
787                                  * The block is now completely available
788                                  */
789                                 DBG_PRINT0("block was\n");
790                                 acg.cg_frsum[osblock.fs_size%sblock.fs_frag]--;
791                                 acg.cg_cs.cs_nbfree++;
792                                 acg.cg_cs.cs_nffree-=sblock.fs_frag;
793                                 k=rounddown(osblock.fs_size-cbase,
794                                     sblock.fs_frag);
795                                 cg_blktot(&acg)[cbtocylno(&sblock, k)]++;
796                                 cg_blks(&sblock, &acg, cbtocylno(&sblock, k))
797                                     [cbtorpos(&sblock, k)]++;
798                                 updclst((osblock.fs_size-cbase)/sblock.fs_frag);
799                         } else {
800                                 /*
801                                  * Lets rejoin a possible partially growed
802                                  * fragment.
803                                  */
804                                 k=0;
805                                 while(isset(cg_blksfree(&acg), i) &&
806                                     (i>=rounddown(osblock.fs_size-cbase,
807                                     sblock.fs_frag))) {
808                                         i--;
809                                         k++;
810                                 }
811                                 if(k) {
812                                         acg.cg_frsum[k]--;
813                                 }
814                                 acg.cg_frsum[k+j]++;
815                         }
816                 } else {
817                         /*
818                          * We only grow by some fragments within this last
819                          * block.
820                          */
821                         for(i=sblock.fs_size-cbase-1;
822                                 i>=osblock.fs_size-cbase;
823                                 i--) {
824                                 setbit(cg_blksfree(&acg), i);
825                                 acg.cg_cs.cs_nffree++;
826                                 j++;
827                         }
828                         /*
829                          * Lets rejoin a possible partially growed fragment.
830                          */
831                         k=0;
832                         while(isset(cg_blksfree(&acg), i) &&
833                             (i>=rounddown(osblock.fs_size-cbase,
834                             sblock.fs_frag))) {
835                                 i--;
836                                 k++;
837                         }
838                         if(k) {
839                                 acg.cg_frsum[k]--;
840                         }
841                         acg.cg_frsum[k+j]++;
842                 }
843         }
844
845         /*
846          * Handle all new complete blocks here.
847          */
848         for(i=roundup(osblock.fs_size-cbase, sblock.fs_frag);
849             i+sblock.fs_frag<=dmax-cbase;       /* XXX <= or only < ? */
850             i+=sblock.fs_frag) {
851                 j = i / sblock.fs_frag;
852                 setblock(&sblock, cg_blksfree(&acg), j);
853                 updclst(j);
854                 acg.cg_cs.cs_nbfree++;
855                 cg_blktot(&acg)[cbtocylno(&sblock, i)]++;
856                 cg_blks(&sblock, &acg, cbtocylno(&sblock, i))
857                     [cbtorpos(&sblock, i)]++;
858         }
859
860         /*
861          * Handle the last new block if there are stll some new fragments left.
862          * Here  we don't have to bother about the cluster summary or the  even
863          * the rotational layout table.
864          */
865         if (i < (dmax - cbase)) {
866                 acg.cg_frsum[dmax - cbase - i]++;
867                 for (; i < dmax - cbase; i++) {
868                         setbit(cg_blksfree(&acg), i);
869                         acg.cg_cs.cs_nffree++;
870                 }
871         }
872
873         sblock.fs_cstotal.cs_nffree +=
874             (acg.cg_cs.cs_nffree - aocg.cg_cs.cs_nffree);
875         sblock.fs_cstotal.cs_nbfree +=
876             (acg.cg_cs.cs_nbfree - aocg.cg_cs.cs_nbfree);
877         /*
878          * The following statistics are not changed here:
879          *     sblock.fs_cstotal.cs_ndir
880          *     sblock.fs_cstotal.cs_nifree
881          * As the statistics for this cylinder group are ready, copy it to
882          * the summary information array.
883          */
884         *cs = acg.cg_cs;
885
886         /*
887          * Write the updated "joining" cylinder group back to disk.
888          */
889         wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)), (size_t)sblock.fs_cgsize,
890             (void *)&acg, fso, Nflag);
891         DBG_PRINT0("jcg written\n");
892         DBG_DUMP_CG(&sblock,
893             "new joining cg",
894             &acg);
895
896         DBG_LEAVE;
897         return;
898 }
899
900 /* ********************************************************** updcsloc ***** */
901 /*
902  * Here  we update the location of the cylinder summary. We have  two  possible
903  * ways of growing the cylinder summary.
904  * (1)  We can try to grow the summary in the current location, and  relocate
905  *      possibly used blocks within the current cylinder group.
906  * (2)  Alternatively we can relocate the whole cylinder summary to the first
907  *      new completely empty cylinder group. Once the cylinder summary is  no
908  *      longer in the beginning of the first cylinder group you should  never
909  *      use  a version of fsck which is not aware of the possibility to  have
910  *      this structure in a non standard place.
911  * Option (1) is considered to be less intrusive to the structure of the  file-
912  * system. So we try to stick to that whenever possible. If there is not enough
913  * space  in the cylinder group containing the cylinder summary we have to  use
914  * method  (2). In case of active snapshots in the filesystem we  probably  can
915  * completely avoid implementing copy on write if we stick to method (2) only.
916  */
917 static void
918 updcsloc(time_t utime, int fsi, int fso, unsigned int Nflag)
919 {
920         DBG_FUNC("updcsloc")
921         struct csum     *cs;
922         int     ocscg, ncscg;
923         int     blocks;
924         daddr_t cbase, dupper, odupper, d, f, g;
925         int     ind;
926         int     cylno, inc;
927         struct gfs_bpp  *bp;
928         int     i, l;
929         int     lcs=0;
930         int     block;
931
932         DBG_ENTER;
933
934         if(howmany(sblock.fs_cssize, sblock.fs_fsize) ==
935             howmany(osblock.fs_cssize, osblock.fs_fsize)) {
936                 /*
937                  * No new fragment needed.
938                  */
939                 DBG_LEAVE;
940                 return;
941         }
942         ocscg=dtog(&osblock, osblock.fs_csaddr);
943         cs=fscs+ocscg;
944         blocks = 1+howmany(sblock.fs_cssize, sblock.fs_bsize)-
945             howmany(osblock.fs_cssize, osblock.fs_bsize);
946
947         /*
948          * Read original cylinder group from disk, and make a copy.
949          * XXX  If Nflag is set in some very rare cases we now miss
950          *      some changes done in updjcg by reading the unmodified
951          *      block from disk.
952          */
953         rdfs(fsbtodb(&osblock, cgtod(&osblock, ocscg)),
954             (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
955         DBG_PRINT0("oscg read\n");
956         DBG_DUMP_CG(&sblock,
957             "old summary cg",
958             &aocg);
959
960         memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
961
962         /*
963          * Touch the cylinder group, set up local variables needed later
964          * and update the superblock.
965          */
966         acg.cg_time = utime;
967
968         /*
969          * XXX  In the case of having active snapshots we may need much more
970          *      blocks for the copy on write. We need each block twice,  and
971          *      also  up to 8*3 blocks for indirect blocks for all  possible
972          *      references.
973          */
974         if(/*((int)sblock.fs_time&0x3)>0||*/ cs->cs_nbfree < blocks) {
975                 /*
976                  * There  is  not enough space in the old cylinder  group  to
977                  * relocate  all blocks as needed, so we relocate  the  whole
978                  * cylinder  group summary to a new group. We try to use  the
979                  * first complete new cylinder group just created. Within the
980                  * cylinder  group we allign the area immediately  after  the
981                  * cylinder  group  information location in order  to  be  as
982                  * close as possible to the original implementation of ffs.
983                  *
984                  * First  we have to make sure we'll find enough space in  the
985                  * new  cylinder  group. If not, then we  currently  give  up.
986                  * We  start  with freeing everything which was  used  by  the
987                  * fragments of the old cylinder summary in the current group.
988                  * Now  we write back the group meta data, read in the  needed
989                  * meta data from the new cylinder group, and start allocating
990                  * within  that  group. Here we can assume, the  group  to  be
991                  * completely empty. Which makes the handling of fragments and
992                  * clusters a lot easier.
993                  */
994                 DBG_TRC;
995                 if(sblock.fs_ncg-osblock.fs_ncg < 2) {
996                         errx(2, "panic: not enough space");
997                 }
998
999                 /*
1000                  * Point "d" to the first fragment not used by the cylinder
1001                  * summary.
1002                  */
1003                 d=osblock.fs_csaddr+(osblock.fs_cssize/osblock.fs_fsize);
1004
1005                 /*
1006                  * Set up last cluster size ("lcs") already here. Calculate
1007                  * the size for the trailing cluster just behind where  "d"
1008                  * points to.
1009                  */
1010                 if(sblock.fs_contigsumsize > 0) {
1011                         for(block=howmany(d%sblock.fs_fpg, sblock.fs_frag),
1012                             lcs=0; lcs<sblock.fs_contigsumsize;
1013                             block++, lcs++) {
1014                                 if(isclr(cg_clustersfree(&acg), block)){
1015                                         break;
1016                                 }
1017                         }
1018                 }
1019
1020                 /*
1021                  * Point "d" to the last frag used by the cylinder summary.
1022                  */
1023                 d--;
1024
1025                 DBG_PRINT1("d=%d\n",
1026                     d);
1027                 if((d+1)%sblock.fs_frag) {
1028                         /*
1029                          * The end of the cylinder summary is not a complete
1030                          * block.
1031                          */
1032                         DBG_TRC;
1033                         frag_adjust(d%sblock.fs_fpg, -1);
1034                         for(; (d+1)%sblock.fs_frag; d--) {
1035                                 DBG_PRINT1("d=%d\n",
1036                                     d);
1037                                 setbit(cg_blksfree(&acg), d%sblock.fs_fpg);
1038                                 acg.cg_cs.cs_nffree++;
1039                                 sblock.fs_cstotal.cs_nffree++;
1040                         }
1041                         /*
1042                          * Point  "d" to the last fragment of the  last
1043                          * (incomplete) block of the clinder summary.
1044                          */
1045                         d++;
1046                         frag_adjust(d%sblock.fs_fpg, 1);
1047
1048                         if(isblock(&sblock, cg_blksfree(&acg),
1049                             (d%sblock.fs_fpg)/sblock.fs_frag)) {
1050                                 DBG_PRINT1("d=%d\n",
1051                                     d);
1052                                 acg.cg_cs.cs_nffree-=sblock.fs_frag;
1053                                 acg.cg_cs.cs_nbfree++;
1054                                 sblock.fs_cstotal.cs_nffree-=sblock.fs_frag;
1055                                 sblock.fs_cstotal.cs_nbfree++;
1056                                 cg_blktot(&acg)[cbtocylno(&sblock,
1057                                     d%sblock.fs_fpg)]++;
1058                                 cg_blks(&sblock, &acg, cbtocylno(&sblock,
1059                                     d%sblock.fs_fpg))[cbtorpos(&sblock,
1060                                     d%sblock.fs_fpg)]++;
1061                                 if(sblock.fs_contigsumsize > 0) {
1062                                         setbit(cg_clustersfree(&acg),
1063                                             (d%sblock.fs_fpg)/sblock.fs_frag);
1064                                         if(lcs < sblock.fs_contigsumsize) {
1065                                                 if(lcs) {
1066                                                         cg_clustersum(&acg)
1067                                                             [lcs]--;
1068                                                 }
1069                                                 lcs++;
1070                                                 cg_clustersum(&acg)[lcs]++;
1071                                         }
1072                                 }
1073                         }
1074                         /*
1075                          * Point "d" to the first fragment of the block before
1076                          * the last incomplete block.
1077                          */
1078                         d--;
1079                 }
1080
1081                 DBG_PRINT1("d=%d\n",
1082                     d);
1083                 for(d=rounddown(d, sblock.fs_frag); d >= osblock.fs_csaddr;
1084                     d-=sblock.fs_frag) {
1085                         DBG_TRC;
1086                         DBG_PRINT1("d=%d\n",
1087                             d);
1088                         setblock(&sblock, cg_blksfree(&acg),
1089                             (d%sblock.fs_fpg)/sblock.fs_frag);
1090                         acg.cg_cs.cs_nbfree++;
1091                         sblock.fs_cstotal.cs_nbfree++;
1092                         cg_blktot(&acg)[cbtocylno(&sblock, d%sblock.fs_fpg)]++;
1093                         cg_blks(&sblock, &acg, cbtocylno(&sblock,
1094                             d%sblock.fs_fpg))[cbtorpos(&sblock,
1095                             d%sblock.fs_fpg)]++;
1096                         if(sblock.fs_contigsumsize > 0) {
1097                                 setbit(cg_clustersfree(&acg),
1098                                     (d%sblock.fs_fpg)/sblock.fs_frag);
1099                                 /*
1100                                  * The last cluster size is already set up.
1101                                  */
1102                                 if(lcs < sblock.fs_contigsumsize) {
1103                                         if(lcs) {
1104                                                 cg_clustersum(&acg)[lcs]--;
1105                                         }
1106                                         lcs++;
1107                                         cg_clustersum(&acg)[lcs]++;
1108                                 }
1109                         }
1110                 }
1111                 *cs = acg.cg_cs;
1112
1113                 /*
1114                  * Now write the former cylinder group containing the cylinder
1115                  * summary back to disk.
1116                  */
1117                 wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)),
1118                     (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
1119                 DBG_PRINT0("oscg written\n");
1120                 DBG_DUMP_CG(&sblock,
1121                     "old summary cg",
1122                     &acg);
1123
1124                 /*
1125                  * Find the beginning of the new cylinder group containing the
1126                  * cylinder summary.
1127                  */
1128                 sblock.fs_csaddr=cgdmin(&sblock, osblock.fs_ncg);
1129                 ncscg=dtog(&sblock, sblock.fs_csaddr);
1130                 cs=fscs+ncscg;
1131
1132
1133                 /*
1134                  * If Nflag is specified, we would now read random data instead
1135                  * of an empty cg structure from disk. So we can't simulate that
1136                  * part for now.
1137                  */
1138                 if(Nflag) {
1139                         DBG_PRINT0("nscg update skipped\n");
1140                         DBG_LEAVE;
1141                         return;
1142                 }
1143
1144                 /*
1145                  * Read the future cylinder group containing the cylinder
1146                  * summary from disk, and make a copy.
1147                  */
1148                 rdfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
1149                     (size_t)sblock.fs_cgsize, (void *)&aocg, fsi);
1150                 DBG_PRINT0("nscg read\n");
1151                 DBG_DUMP_CG(&sblock,
1152                     "new summary cg",
1153                     &aocg);
1154
1155                 memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
1156
1157                 /*
1158                  * Allocate all complete blocks used by the new cylinder
1159                  * summary.
1160                  */
1161                 for(d=sblock.fs_csaddr; d+sblock.fs_frag <=
1162                     sblock.fs_csaddr+(sblock.fs_cssize/sblock.fs_fsize);
1163                     d+=sblock.fs_frag) {
1164                         clrblock(&sblock, cg_blksfree(&acg),
1165                             (d%sblock.fs_fpg)/sblock.fs_frag);
1166                         acg.cg_cs.cs_nbfree--;
1167                         sblock.fs_cstotal.cs_nbfree--;
1168                         cg_blktot(&acg)[cbtocylno(&sblock, d%sblock.fs_fpg)]--;
1169                         cg_blks(&sblock, &acg, cbtocylno(&sblock,
1170                             d%sblock.fs_fpg))[cbtorpos(&sblock,
1171                             d%sblock.fs_fpg)]--;
1172                         if(sblock.fs_contigsumsize > 0) {
1173                                 clrbit(cg_clustersfree(&acg),
1174                                     (d%sblock.fs_fpg)/sblock.fs_frag);
1175                         }
1176                 }
1177
1178                 /*
1179                  * Allocate all fragments used by the cylinder summary in the
1180                  * last block.
1181                  */
1182                 if(d<sblock.fs_csaddr+(sblock.fs_cssize/sblock.fs_fsize)) {
1183                         for(; d-sblock.fs_csaddr<
1184                             sblock.fs_cssize/sblock.fs_fsize;
1185                             d++) {
1186                                 clrbit(cg_blksfree(&acg), d%sblock.fs_fpg);
1187                                 acg.cg_cs.cs_nffree--;
1188                                 sblock.fs_cstotal.cs_nffree--;
1189                         }
1190                         acg.cg_cs.cs_nbfree--;
1191                         acg.cg_cs.cs_nffree+=sblock.fs_frag;
1192                         sblock.fs_cstotal.cs_nbfree--;
1193                         sblock.fs_cstotal.cs_nffree+=sblock.fs_frag;
1194                         cg_blktot(&acg)[cbtocylno(&sblock, d%sblock.fs_fpg)]--;
1195                         cg_blks(&sblock, &acg, cbtocylno(&sblock,
1196                             d%sblock.fs_fpg))[cbtorpos(&sblock,
1197                             d%sblock.fs_fpg)]--;
1198                         if(sblock.fs_contigsumsize > 0) {
1199                                 clrbit(cg_clustersfree(&acg),
1200                                     (d%sblock.fs_fpg)/sblock.fs_frag);
1201                         }
1202
1203                         frag_adjust(d%sblock.fs_fpg, +1);
1204                 }
1205                 /*
1206                  * XXX  Handle the cluster statistics here in the case  this
1207                  *      cylinder group is now almost full, and the remaining
1208                  *      space is less then the maximum cluster size. This is
1209                  *      probably not needed, as you would hardly find a file
1210                  *      system which has only MAXCSBUFS+FS_MAXCONTIG of free
1211                  *      space right behind the cylinder group information in
1212                  *      any new cylinder group.
1213                  */
1214
1215                 /*
1216                  * Update our statistics in the cylinder summary.
1217                  */
1218                 *cs = acg.cg_cs;
1219
1220                 /*
1221                  * Write the new cylinder group containing the cylinder summary
1222                  * back to disk.
1223                  */
1224                 wtfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
1225                     (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
1226                 DBG_PRINT0("nscg written\n");
1227                 DBG_DUMP_CG(&sblock,
1228                     "new summary cg",
1229                     &acg);
1230
1231                 DBG_LEAVE;
1232                 return;
1233         }
1234         /*
1235          * We have got enough of space in the current cylinder group, so we
1236          * can relocate just a few blocks, and let the summary  information
1237          * grow in place where it is right now.
1238          */
1239         DBG_TRC;
1240
1241         cbase = cgbase(&osblock, ocscg);        /* old and new are equal */
1242         dupper = sblock.fs_csaddr - cbase +
1243             howmany(sblock.fs_cssize, sblock.fs_fsize);
1244         odupper = osblock.fs_csaddr - cbase +
1245             howmany(osblock.fs_cssize, osblock.fs_fsize);
1246
1247         sblock.fs_dsize -= dupper-odupper;
1248
1249         /*
1250          * Allocate the space for the array of blocks to be relocated.
1251          */
1252         bp=(struct gfs_bpp *)malloc(((dupper-odupper)/sblock.fs_frag+2)*
1253             sizeof(struct gfs_bpp));
1254         if(bp == NULL) {
1255                 errx(1, "malloc failed");
1256         }
1257         memset((char *)bp, 0, ((dupper-odupper)/sblock.fs_frag+2)*
1258             sizeof(struct gfs_bpp));
1259
1260         /*
1261          * Lock all new frags needed for the cylinder group summary. This  is
1262          * done per fragment in the first and last block of the new  required
1263          * area, and per block for all other blocks.
1264          *
1265          * Handle the first new  block here (but only if some fragments where
1266          * already used for the cylinder summary).
1267          */
1268         ind=0;
1269         frag_adjust(odupper, -1);
1270         for(d=odupper; ((d<dupper)&&(d%sblock.fs_frag)); d++) {
1271                 DBG_PRINT1("scg first frag check loop d=%d\n",
1272                     d);
1273                 if(isclr(cg_blksfree(&acg), d)) {
1274                         if (!ind) {
1275                                 bp[ind].old=d/sblock.fs_frag;
1276                                 bp[ind].flags|=GFS_FL_FIRST;
1277                                 if(roundup(d, sblock.fs_frag) >= dupper) {
1278                                         bp[ind].flags|=GFS_FL_LAST;
1279                                 }
1280                                 ind++;
1281                         }
1282                 } else {
1283                         clrbit(cg_blksfree(&acg), d);
1284                         acg.cg_cs.cs_nffree--;
1285                         sblock.fs_cstotal.cs_nffree--;
1286                 }
1287                 /*
1288                  * No cluster handling is needed here, as there was at least
1289                  * one  fragment in use by the cylinder summary in  the  old
1290                  * file system.
1291                  * No block-free counter handling here as this block was not
1292                  * a free block.
1293                  */
1294         }
1295         frag_adjust(odupper, 1);
1296
1297         /*
1298          * Handle all needed complete blocks here.
1299          */
1300         for(; d+sblock.fs_frag<=dupper; d+=sblock.fs_frag) {
1301                 DBG_PRINT1("scg block check loop d=%d\n",
1302                     d);
1303                 if(!isblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag)) {
1304                         for(f=d; f<d+sblock.fs_frag; f++) {
1305                                 if(isset(cg_blksfree(&aocg), f)) {
1306                                         acg.cg_cs.cs_nffree--;
1307                                         sblock.fs_cstotal.cs_nffree--;
1308                                 }
1309                         }
1310                         clrblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag);
1311                         bp[ind].old=d/sblock.fs_frag;
1312                         ind++;
1313                 } else {
1314                         clrblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag);
1315                         acg.cg_cs.cs_nbfree--;
1316                         sblock.fs_cstotal.cs_nbfree--;
1317                         cg_blktot(&acg)[cbtocylno(&sblock, d)]--;
1318                         cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
1319                             [cbtorpos(&sblock, d)]--;
1320                         if(sblock.fs_contigsumsize > 0) {
1321                                 clrbit(cg_clustersfree(&acg), d/sblock.fs_frag);
1322                                 for(lcs=0, l=(d/sblock.fs_frag)+1;
1323                                     lcs<sblock.fs_contigsumsize;
1324                                     l++, lcs++ ) {
1325                                         if(isclr(cg_clustersfree(&acg),l)){
1326                                                 break;
1327                                         }
1328                                 }
1329                                 if(lcs < sblock.fs_contigsumsize) {
1330                                         cg_clustersum(&acg)[lcs+1]--;
1331                                         if(lcs) {
1332                                                 cg_clustersum(&acg)[lcs]++;
1333                                         }
1334                                 }
1335                         }
1336                 }
1337                 /*
1338                  * No fragment counter handling is needed here, as this finally
1339                  * doesn't change after the relocation.
1340                  */
1341         }
1342
1343         /*
1344          * Handle all fragments needed in the last new affected block.
1345          */
1346         if(d<dupper) {
1347                 frag_adjust(dupper-1, -1);
1348
1349                 if(isblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag)) {
1350                         acg.cg_cs.cs_nbfree--;
1351                         sblock.fs_cstotal.cs_nbfree--;
1352                         acg.cg_cs.cs_nffree+=sblock.fs_frag;
1353                         sblock.fs_cstotal.cs_nffree+=sblock.fs_frag;
1354                         cg_blktot(&acg)[cbtocylno(&sblock, d)]--;
1355                         cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
1356                             [cbtorpos(&sblock, d)]--;
1357                         if(sblock.fs_contigsumsize > 0) {
1358                                 clrbit(cg_clustersfree(&acg), d/sblock.fs_frag);
1359                                 for(lcs=0, l=(d/sblock.fs_frag)+1;
1360                                     lcs<sblock.fs_contigsumsize;
1361                                     l++, lcs++ ) {
1362                                         if(isclr(cg_clustersfree(&acg),l)){
1363                                                 break;
1364                                         }
1365                                 }
1366                                 if(lcs < sblock.fs_contigsumsize) {
1367                                         cg_clustersum(&acg)[lcs+1]--;
1368                                         if(lcs) {
1369                                                 cg_clustersum(&acg)[lcs]++;
1370                                         }
1371                                 }
1372                         }
1373                 }
1374
1375                 for(; d<dupper; d++) {
1376                         DBG_PRINT1("scg second frag check loop d=%d\n",
1377                             d);
1378                         if(isclr(cg_blksfree(&acg), d)) {
1379                                 bp[ind].old=d/sblock.fs_frag;
1380                                 bp[ind].flags|=GFS_FL_LAST;
1381                         } else {
1382                                 clrbit(cg_blksfree(&acg), d);
1383                                 acg.cg_cs.cs_nffree--;
1384                                 sblock.fs_cstotal.cs_nffree--;
1385                         }
1386                 }
1387                 if(bp[ind].flags & GFS_FL_LAST) { /* we have to advance here */
1388                         ind++;
1389                 }
1390                 frag_adjust(dupper-1, 1);
1391         }
1392
1393         /*
1394          * If we found a block to relocate just do so.
1395          */
1396         if(ind) {
1397                 for(i=0; i<ind; i++) {
1398                         if(!bp[i].old) { /* no more blocks listed */
1399                                 /*
1400                                  * XXX  A relative blocknumber should not be
1401                                  *      zero,   which  is   not   explicitly
1402                                  *      guaranteed by our code.
1403                                  */
1404                                 break;
1405                         }
1406                         /*
1407                          * Allocate a complete block in the same (current)
1408                          * cylinder group.
1409                          */
1410                         bp[i].new=alloc()/sblock.fs_frag;
1411
1412                         /*
1413                          * There is no frag_adjust() needed for the new block
1414                          * as it will have no fragments yet :-).
1415                          */
1416                         for(f=bp[i].old*sblock.fs_frag,
1417                             g=bp[i].new*sblock.fs_frag;
1418                             f<(bp[i].old+1)*sblock.fs_frag;
1419                             f++, g++) {
1420                                 if(isset(cg_blksfree(&aocg), f)) {
1421                                         setbit(cg_blksfree(&acg), g);
1422                                         acg.cg_cs.cs_nffree++;
1423                                         sblock.fs_cstotal.cs_nffree++;
1424                                 }
1425                         }
1426
1427                         /*
1428                          * Special handling is required if this was the  first
1429                          * block. We have to consider the fragments which were
1430                          * used by the cylinder summary in the original  block
1431                          * which  re to be free in the copy of our  block.  We
1432                          * have  to be careful if this first block happens  to
1433                          * be also the last block to be relocated.
1434                          */
1435                         if(bp[i].flags & GFS_FL_FIRST) {
1436                                 for(f=bp[i].old*sblock.fs_frag,
1437                                     g=bp[i].new*sblock.fs_frag;
1438                                     f<odupper;
1439                                     f++, g++) {
1440                                         setbit(cg_blksfree(&acg), g);
1441                                         acg.cg_cs.cs_nffree++;
1442                                         sblock.fs_cstotal.cs_nffree++;
1443                                 }
1444                                 if(!(bp[i].flags & GFS_FL_LAST)) {
1445                                         frag_adjust(bp[i].new*sblock.fs_frag,1);
1446                                 }
1447                                 
1448                         }
1449
1450                         /*
1451                          * Special handling is required if this is the last
1452                          * block to be relocated.
1453                          */
1454                         if(bp[i].flags & GFS_FL_LAST) {
1455                                 frag_adjust(bp[i].new*sblock.fs_frag, 1);
1456                                 frag_adjust(bp[i].old*sblock.fs_frag, -1);
1457                                 for(f=dupper;
1458                                     f<roundup(dupper, sblock.fs_frag);
1459                                     f++) {
1460                                         if(isclr(cg_blksfree(&acg), f)) {
1461                                                 setbit(cg_blksfree(&acg), f);
1462                                                 acg.cg_cs.cs_nffree++;
1463                                                 sblock.fs_cstotal.cs_nffree++;
1464                                         }
1465                                 }
1466                                 frag_adjust(bp[i].old*sblock.fs_frag, 1);
1467                         }
1468
1469                         /*
1470                          * !!! Attach the cylindergroup offset here. 
1471                          */
1472                         bp[i].old+=cbase/sblock.fs_frag;
1473                         bp[i].new+=cbase/sblock.fs_frag;
1474
1475                         /*
1476                          * Copy the content of the block.
1477                          */
1478                         /*
1479                          * XXX  Here we will have to implement a copy on write
1480                          *      in the case we have any active snapshots.
1481                          */
1482                         rdfs(fsbtodb(&sblock, bp[i].old*sblock.fs_frag),
1483                             (size_t)sblock.fs_bsize, (void *)&ablk, fsi);
1484                         wtfs(fsbtodb(&sblock, bp[i].new*sblock.fs_frag),
1485                             (size_t)sblock.fs_bsize, (void *)&ablk, fso, Nflag);
1486                         DBG_DUMP_HEX(&sblock,
1487                             "copied full block",
1488                             (unsigned char *)&ablk);
1489
1490                         DBG_PRINT2("scg (%d->%d) block relocated\n",
1491                             bp[i].old,
1492                             bp[i].new);
1493                 }
1494
1495                 /*
1496                  * Now we have to update all references to any fragment which
1497                  * belongs  to any block relocated. We iterate now  over  all
1498                  * cylinder  groups,  within those over all non  zero  length 
1499                  * inodes.
1500                  */
1501                 for(cylno=0; cylno<osblock.fs_ncg; cylno++) {
1502                         DBG_PRINT1("scg doing cg (%d)\n",
1503                             cylno);
1504                         for(inc=osblock.fs_ipg-1 ; inc>=0 ; inc--) {
1505                                 updrefs(cylno, (ino_t)inc, bp, fsi, fso, Nflag);
1506                         }
1507                 }
1508
1509                 /*
1510                  * All inodes are checked, now make sure the number of
1511                  * references found make sense.
1512                  */
1513                 for(i=0; i<ind; i++) {
1514                         if(!bp[i].found || (bp[i].found>sblock.fs_frag)) {
1515                                 warnx("error: %d refs found for block %d.",
1516                                     bp[i].found, bp[i].old);
1517                         }
1518
1519                 }
1520         }
1521         /*
1522          * The following statistics are not changed here:
1523          *     sblock.fs_cstotal.cs_ndir
1524          *     sblock.fs_cstotal.cs_nifree
1525          * The following statistics were already updated on the fly:
1526          *     sblock.fs_cstotal.cs_nffree
1527          *     sblock.fs_cstotal.cs_nbfree
1528          * As the statistics for this cylinder group are ready, copy it to
1529          * the summary information array.
1530          */
1531
1532         *cs = acg.cg_cs;
1533
1534         /*
1535          * Write summary cylinder group back to disk.
1536          */
1537         wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)), (size_t)sblock.fs_cgsize,
1538             (void *)&acg, fso, Nflag);
1539         DBG_PRINT0("scg written\n");
1540         DBG_DUMP_CG(&sblock,
1541             "new summary cg",
1542             &acg);
1543
1544         DBG_LEAVE;
1545         return;
1546 }
1547
1548 /* ************************************************************** rdfs ***** */
1549 /*
1550  * Here we read some block(s) from disk.
1551  */
1552 static void
1553 rdfs(daddr_t bno, size_t size, void *bf, int fsi)
1554 {
1555         DBG_FUNC("rdfs")
1556         ssize_t n;
1557
1558         DBG_ENTER;
1559
1560         if (lseek(fsi, (off_t)bno * DEV_BSIZE, 0) < 0) {
1561                 err(33, "rdfs: seek error: %ld", (long)bno);
1562         }
1563         n = read(fsi, bf, size);
1564         if (n != (ssize_t)size) {
1565                 err(34, "rdfs: read error: %ld", (long)bno);
1566         }
1567
1568         DBG_LEAVE;
1569         return;
1570 }
1571
1572 /* ************************************************************** wtfs ***** */
1573 /*
1574  * Here we write some block(s) to disk.
1575  */
1576 static void
1577 wtfs(daddr_t bno, size_t size, void *bf, int fso, unsigned int Nflag)
1578 {
1579         DBG_FUNC("wtfs")
1580         ssize_t n;
1581
1582         DBG_ENTER;
1583
1584         if (Nflag) {
1585                 DBG_LEAVE;
1586                 return;
1587         }
1588         if (lseek(fso, (off_t)bno * DEV_BSIZE, SEEK_SET) < 0) {
1589                 err(35, "wtfs: seek error: %ld", (long)bno);
1590         }
1591         n = write(fso, bf, size);
1592         if (n != (ssize_t)size) {
1593                 err(36, "wtfs: write error: %ld", (long)bno);
1594         }
1595
1596         DBG_LEAVE;
1597         return;
1598 }
1599
1600 /* ************************************************************* alloc ***** */
1601 /*
1602  * Here we allocate a free block in the current cylinder group. It is assumed,
1603  * that  acg contains the current cylinder group. As we may take a block  from
1604  * somewhere in the filesystem we have to handle cluster summary here.
1605  */
1606 static daddr_t
1607 alloc(void)
1608 {
1609         DBG_FUNC("alloc")
1610         daddr_t d, blkno;
1611         int     lcs1, lcs2;
1612         int     l;
1613         int     csmin, csmax;
1614         int     dlower, dupper, dmax;
1615
1616         DBG_ENTER;
1617
1618         if (acg.cg_magic != CG_MAGIC) {
1619                 warnx("acg: bad magic number");
1620                 DBG_LEAVE;
1621                 return (0);
1622         }
1623         if (acg.cg_cs.cs_nbfree == 0) {
1624                 warnx("error: cylinder group ran out of space");
1625                 DBG_LEAVE;
1626                 return (0);
1627         }
1628         /*
1629          * We start seeking for free blocks only from the space available after
1630          * the  end of the new grown cylinder summary. Otherwise we allocate  a
1631          * block here which we have to relocate a couple of seconds later again
1632          * again, and we are not prepared to to this anyway.
1633          */
1634         blkno=-1;
1635         dlower=cgsblock(&sblock, acg.cg_cgx)-cgbase(&sblock, acg.cg_cgx);
1636         dupper=cgdmin(&sblock, acg.cg_cgx)-cgbase(&sblock, acg.cg_cgx);
1637         dmax=cgbase(&sblock, acg.cg_cgx)+sblock.fs_fpg;
1638         if (dmax > sblock.fs_size) {
1639                 dmax = sblock.fs_size;
1640         }
1641         dmax-=cgbase(&sblock, acg.cg_cgx); /* retransform into cg */
1642         csmin=sblock.fs_csaddr-cgbase(&sblock, acg.cg_cgx);
1643         csmax=csmin+howmany(sblock.fs_cssize, sblock.fs_fsize);
1644         DBG_PRINT3("seek range: dl=%d, du=%d, dm=%d\n",
1645             dlower,
1646             dupper,
1647             dmax);
1648         DBG_PRINT2("range cont: csmin=%d, csmax=%d\n",
1649             csmin,
1650             csmax);
1651
1652         for(d=0; (d<dlower && blkno==-1); d+=sblock.fs_frag) {
1653                 if(d>=csmin && d<=csmax) {
1654                         continue;
1655                 }
1656                 if(isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock,
1657                     d))) {
1658                         blkno = fragstoblks(&sblock, d);/* Yeah found a block */
1659                         break;
1660                 }
1661         }
1662         for(d=dupper; (d<dmax && blkno==-1); d+=sblock.fs_frag) {
1663                 if(d>=csmin && d<=csmax) {
1664                         continue;
1665                 }
1666                 if(isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock,
1667                     d))) {
1668                         blkno = fragstoblks(&sblock, d);/* Yeah found a block */
1669                         break;
1670                 }
1671         }
1672         if(blkno==-1) {
1673                 warnx("internal error: couldn't find promised block in cg");
1674                 DBG_LEAVE;
1675                 return (0);
1676         }
1677
1678         /*
1679          * This is needed if the block was found already in the first loop.
1680          */
1681         d=blkstofrags(&sblock, blkno);
1682
1683         clrblock(&sblock, cg_blksfree(&acg), blkno);
1684         if (sblock.fs_contigsumsize > 0) {
1685                 /*
1686                  * Handle the cluster allocation bitmap.
1687                  */
1688                 clrbit(cg_clustersfree(&acg), blkno);
1689                 /*
1690                  * We  possibly have split a cluster here, so we have  to  do
1691                  * recalculate the sizes of the remaining cluster halves now,
1692                  * and use them for updating the cluster summary information.
1693                  *
1694                  * Lets start with the blocks before our allocated block ...
1695                  */
1696                 for(lcs1=0, l=blkno-1; lcs1<sblock.fs_contigsumsize;
1697                     l--, lcs1++ ) {
1698                         if(isclr(cg_clustersfree(&acg),l)){
1699                                 break;
1700                         }
1701                 }
1702                 /*
1703                  * ... and continue with the blocks right after our allocated
1704                  * block.
1705                  */
1706                 for(lcs2=0, l=blkno+1; lcs2<sblock.fs_contigsumsize;
1707                     l++, lcs2++ ) {
1708                         if(isclr(cg_clustersfree(&acg),l)){
1709                                 break;
1710                         }
1711                 }
1712
1713                 /*
1714                  * Now update all counters.
1715                  */
1716                 cg_clustersum(&acg)[MIN(lcs1+lcs2+1,sblock.fs_contigsumsize)]--;
1717                 if(lcs1) {
1718                         cg_clustersum(&acg)[lcs1]++;
1719                 }
1720                 if(lcs2) {
1721                         cg_clustersum(&acg)[lcs2]++;
1722                 }
1723         }
1724         /*
1725          * Update all statistics based on blocks.
1726          */
1727         acg.cg_cs.cs_nbfree--;
1728         sblock.fs_cstotal.cs_nbfree--;
1729         cg_blktot(&acg)[cbtocylno(&sblock, d)]--;
1730         cg_blks(&sblock, &acg, cbtocylno(&sblock, d))[cbtorpos(&sblock, d)]--;
1731
1732         DBG_LEAVE;
1733         return (d);
1734 }
1735
1736 /* *********************************************************** isblock ***** */
1737 /*
1738  * Here  we check if all frags of a block are free. For more details  again
1739  * please see the source of newfs(8), as this function is taken over almost
1740  * unchanged.
1741  */
1742 static int
1743 isblock(struct fs *fs, unsigned char *cp, int h)
1744 {
1745         DBG_FUNC("isblock")
1746         unsigned char   mask;
1747
1748         DBG_ENTER;
1749
1750         switch (fs->fs_frag) {
1751         case 8:
1752                 DBG_LEAVE;
1753                 return (cp[h] == 0xff);
1754         case 4:
1755                 mask = 0x0f << ((h & 0x1) << 2);
1756                 DBG_LEAVE;
1757                 return ((cp[h >> 1] & mask) == mask);
1758         case 2:
1759                 mask = 0x03 << ((h & 0x3) << 1);
1760                 DBG_LEAVE;
1761                 return ((cp[h >> 2] & mask) == mask);
1762         case 1:
1763                 mask = 0x01 << (h & 0x7);
1764                 DBG_LEAVE;
1765                 return ((cp[h >> 3] & mask) == mask);
1766         default:
1767                 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1768                 DBG_LEAVE;
1769                 return (0);
1770         }
1771 }
1772
1773 /* ********************************************************** clrblock ***** */
1774 /*
1775  * Here we allocate a complete block in the block map. For more details again
1776  * please  see the source of newfs(8), as this function is taken over  almost
1777  * unchanged.
1778  */
1779 static void
1780 clrblock(struct fs *fs, unsigned char *cp, int h)
1781 {
1782         DBG_FUNC("clrblock")
1783
1784         DBG_ENTER;
1785
1786         switch ((fs)->fs_frag) {
1787         case 8:
1788                 cp[h] = 0;
1789                 break;
1790         case 4:
1791                 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1792                 break;
1793         case 2:
1794                 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1795                 break;
1796         case 1:
1797                 cp[h >> 3] &= ~(0x01 << (h & 0x7));
1798                 break;
1799         default:
1800                 warnx("clrblock bad fs_frag %d", fs->fs_frag);
1801                 break;
1802         }
1803
1804         DBG_LEAVE;
1805         return;
1806 }
1807
1808 /* ********************************************************** setblock ***** */
1809 /*
1810  * Here we free a complete block in the free block map. For more details again
1811  * please  see the source of newfs(8), as this function is taken  over  almost
1812  * unchanged.
1813  */
1814 static void
1815 setblock(struct fs *fs, unsigned char *cp, int h)
1816 {
1817         DBG_FUNC("setblock")
1818
1819         DBG_ENTER;
1820
1821         switch (fs->fs_frag) {
1822         case 8:
1823                 cp[h] = 0xff;
1824                 break;
1825         case 4:
1826                 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1827                 break;
1828         case 2:
1829                 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1830                 break;
1831         case 1:
1832                 cp[h >> 3] |= (0x01 << (h & 0x7));
1833                 break;
1834         default:
1835                 warnx("setblock bad fs_frag %d", fs->fs_frag);
1836                 break;
1837         }
1838
1839         DBG_LEAVE;
1840         return;
1841 }
1842
1843 /* ************************************************************ ginode ***** */
1844 /*
1845  * This function provides access to an individual inode. We find out in which
1846  * block  the  requested inode is located, read it from disk if  needed,  and
1847  * return  the pointer into that block. We maintain a cache of one  block  to
1848  * not  read the same block again and again if we iterate linearly  over  all
1849  * inodes.
1850  */
1851 static struct dinode *
1852 ginode(ino_t inumber, int fsi, int cg)
1853 {
1854         DBG_FUNC("ginode")
1855         ufs_daddr_t     iblk;
1856         static ino_t    startinum=0;    /* first inode in cached block */
1857         struct dinode   *pi;
1858
1859         DBG_ENTER;
1860
1861         pi=(struct dinode *)(void *)ablk;
1862         inumber+=(cg * sblock.fs_ipg);
1863         if (startinum == 0 || inumber < startinum ||
1864             inumber >= startinum + INOPB(&sblock)) {
1865                 /*
1866                  * The block needed is not cached, so we have to read it from
1867                  * disk now.
1868                  */
1869                 iblk = ino_to_fsba(&sblock, inumber);
1870                 in_src=fsbtodb(&sblock, iblk);
1871                 rdfs(in_src, (size_t)sblock.fs_bsize, (void *)&ablk, fsi);
1872                 startinum = (inumber / INOPB(&sblock)) * INOPB(&sblock);
1873         }
1874
1875         DBG_LEAVE;
1876         return (&(pi[inumber % INOPB(&sblock)]));
1877 }
1878
1879 /* ****************************************************** charsperline ***** */
1880 /*
1881  * Figure out how many lines our current terminal has. For more details again
1882  * please  see the source of newfs(8), as this function is taken over  almost
1883  * unchanged.
1884  */
1885 static int
1886 charsperline(void)
1887 {
1888         DBG_FUNC("charsperline")
1889         int     columns;
1890         char    *cp;
1891         struct winsize  ws;
1892
1893         DBG_ENTER;
1894
1895         columns = 0;
1896         if (ioctl(0, TIOCGWINSZ, &ws) != -1) {
1897                 columns = ws.ws_col;
1898         }
1899         if (columns == 0 && (cp = getenv("COLUMNS"))) {
1900                 columns = atoi(cp);
1901         }
1902         if (columns == 0) {
1903                 columns = 80;   /* last resort */
1904         }
1905
1906         DBG_LEAVE;
1907         return columns;
1908 }
1909
1910 /* ************************************************************** main ***** */
1911 /*
1912  * growfs(8)  is a utility which allows to increase the size of  an  existing
1913  * ufs filesystem. Currently this can only be done on unmounted file  system.
1914  * It  recognizes some command line options to specify the new desired  size,
1915  * and  it does some basic checkings. The old file system size is  determined
1916  * and  after some more checks like we can really access the new  last  block
1917  * on the disk etc. we calculate the new parameters for the superblock. After
1918  * having  done  this we just call growfs() which will do  the  work.  Before
1919  * we finish the only thing left is to update the disklabel.
1920  * We still have to provide support for snapshots. Therefore we first have to
1921  * understand  what data structures are always replicated in the snapshot  on
1922  * creation,  for all other blocks we touch during our procedure, we have  to
1923  * keep the old blocks unchanged somewhere available for the snapshots. If we
1924  * are lucky, then we only have to handle our blocks to be relocated in  that
1925  * way.
1926  * Also  we  have to consider in what order we actually update  the  critical
1927  * data structures of the filesystem to make sure, that in case of a disaster
1928  * fsck(8) is still able to restore any lost data.
1929  * The  foreseen last step then will be to provide for growing  even  mounted
1930  * file  systems. There we have to extend the mount() system call to  provide
1931  * userland access to the file system locking facility.
1932  */
1933 int
1934 main(int argc, char **argv)
1935 {
1936         DBG_FUNC("main")
1937         char    *device, *special, *cp;
1938         char    ch;
1939         unsigned int    size=0;
1940         size_t  len;
1941         unsigned int    Nflag=0;
1942         int     ExpertFlag=0;
1943         struct stat     st;
1944         struct disklabel        *lp;
1945         struct partition        *pp;
1946         int     fsi,fso;
1947         char    reply[5];
1948 #ifdef FSMAXSNAP
1949         int     j;
1950 #endif /* FSMAXSNAP */
1951
1952         DBG_ENTER;
1953
1954         while((ch=getopt(argc, argv, "Ns:vy")) != -1) {
1955                 switch(ch) {
1956                 case 'N':
1957                         Nflag=1;
1958                         break;
1959                 case 's':
1960                         size=(size_t)atol(optarg);
1961                         if(size<1) {
1962                                 usage();
1963                         }
1964                         break;
1965                 case 'v': /* for compatibility to newfs */
1966                         break;
1967                 case 'y':
1968                         ExpertFlag=1;
1969                         break;
1970                 case '?':
1971                         /* FALLTHROUGH */
1972                 default:
1973                         usage();
1974                 }
1975         }
1976         argc -= optind;
1977         argv += optind;
1978
1979         if(argc != 1) {
1980                 usage();
1981         }
1982         device=*argv;
1983
1984         /*
1985          * Now try to guess the (raw)device name.
1986          */
1987         if (0 == strrchr(device, '/')) {
1988                 /*
1989                  * No path prefix was given, so try in that order:
1990                  *     /dev/r%s
1991                  *     /dev/%s
1992                  *     /dev/vinum/r%s
1993                  *     /dev/vinum/%s.
1994                  * 
1995                  * FreeBSD now doesn't distinguish between raw and  block
1996                  * devices any longer, but it should still work this way.
1997                  */
1998                 len=strlen(device)+strlen(_PATH_DEV)+2+strlen("vinum/");
1999                 special=(char *)malloc(len);
2000                 if(special == NULL) {
2001                         errx(1, "malloc failed");
2002                 }
2003                 snprintf(special, len, "%sr%s", _PATH_DEV, device);
2004                 if (stat(special, &st) == -1) {
2005                         snprintf(special, len, "%s%s", _PATH_DEV, device);
2006                         if (stat(special, &st) == -1) {
2007                                 snprintf(special, len, "%svinum/r%s",
2008                                     _PATH_DEV, device);
2009                                 if (stat(special, &st) == -1) {
2010                                         /* For now this is the 'last resort' */
2011                                         snprintf(special, len, "%svinum/%s",
2012                                             _PATH_DEV, device);
2013                                 }
2014                         }
2015                 }
2016                 device = special;
2017         }
2018
2019         /*
2020          * Try to access our devices for writing ...
2021          */
2022         if (Nflag) {
2023                 fso = -1;
2024         } else {
2025                 fso = open(device, O_WRONLY);
2026                 if (fso < 0) {
2027                         err(1, "%s", device);
2028                 }
2029         }
2030
2031         /*
2032          * ... and reading.
2033          */
2034         fsi = open(device, O_RDONLY);
2035         if (fsi < 0) {
2036                 err(1, "%s", device);
2037         }
2038
2039         /*
2040          * Try  to read a label and gess the slice if not  specified.  This
2041          * code  should guess the right thing and avaid to bother the  user
2042          * user with the task of specifying the option -v on vinum volumes.
2043          */
2044         cp=device+strlen(device)-1;
2045         lp = get_disklabel(fsi);
2046         if(lp->d_type == DTYPE_VINUM) {
2047                 pp = &lp->d_partitions[0];
2048         } else if (isdigit(*cp)) {
2049                 pp = &lp->d_partitions[2];
2050         } else if (*cp>='a' && *cp<='h') {
2051                 pp = &lp->d_partitions[*cp - 'a'];
2052         } else {
2053                 errx(1, "unknown device");
2054         }
2055
2056         /*
2057          * Check if that partition looks suited for growing a file system.
2058          */
2059         if (pp->p_size < 1) {
2060                 errx(1, "partition is unavailable");
2061         }
2062         if (pp->p_fstype != FS_BSDFFS) {
2063                 errx(1, "partition not 4.2BSD");
2064         }
2065
2066         /*
2067          * Read the current superblock, and take a backup.
2068          */
2069         rdfs((daddr_t)(SBOFF/DEV_BSIZE), (size_t)SBSIZE, (void *)&(osblock),
2070             fsi);
2071         if (osblock.fs_magic != FS_MAGIC) {
2072                 errx(1, "superblock not recognized");
2073         }
2074         memcpy((void *)&fsun1, (void *)&fsun2, sizeof(fsun2));
2075
2076         DBG_OPEN("/tmp/growfs.debug"); /* already here we need a superblock */
2077         DBG_DUMP_FS(&sblock,
2078             "old sblock");
2079
2080         /*
2081          * Determine size to grow to. Default to the full size specified in
2082          * the disk label.
2083          */
2084         sblock.fs_size = dbtofsb(&osblock, pp->p_size);
2085         if (size != 0) {
2086                 if (size > pp->p_size){
2087                         errx(1, "There is not enough space (%d < %d)",
2088                             pp->p_size, size);
2089                 }
2090                 sblock.fs_size = dbtofsb(&osblock, size);       
2091         }
2092
2093         /*
2094          * Are we really growing ?
2095          */
2096         if(osblock.fs_size >= sblock.fs_size) {
2097                 errx(1, "we are not growing (%d->%d)", osblock.fs_size,
2098                     sblock.fs_size);
2099         }
2100
2101
2102 #ifdef FSMAXSNAP
2103         /*
2104          * Check if we find an active snapshot.
2105          */
2106         if(ExpertFlag == 0) {
2107                 for(j=0; j<FSMAXSNAP; j++) {
2108                         if(sblock.fs_snapinum[j]) {
2109                                 errx(1, "active snapshot found in filesystem\n"
2110                                     "   please remove all snapshots before "
2111                                     "using growfs\n");
2112                         }
2113                         if(!sblock.fs_snapinum[j]) { /* list is dense */
2114                                 break;
2115                         }
2116                 }
2117         }
2118 #endif
2119
2120         if (ExpertFlag == 0 && Nflag == 0) {
2121                 printf("We strongly recommend you to make a backup "
2122                     "before growing the Filesystem\n\n"
2123                     " Did you backup your data (Yes/No) ? ");
2124                 fgets(reply, (int)sizeof(reply), stdin);
2125                 if (strcmp(reply, "Yes\n")){
2126                         printf("\n Nothing done \n");
2127                         exit (0);
2128                 }               
2129         }
2130
2131         printf("new filesystemsize is: %d frags\n", sblock.fs_size);
2132
2133         /*
2134          * Try to access our new last block in the filesystem. Even if we
2135          * later on realize we have to abort our operation, on that block
2136          * there should be no data, so we can't destroy something yet.
2137          */
2138         wtfs((daddr_t)pp->p_size-1, (size_t)DEV_BSIZE, (void *)&sblock, fso,
2139             Nflag);
2140
2141         /*
2142          * Now calculate new superblock values and check for reasonable
2143          * bound for new file system size:
2144          *     fs_size:    is derived from label or user input
2145          *     fs_dsize:   should get updated in the routines creating or
2146          *                 updating the cylinder groups on the fly
2147          *     fs_cstotal: should get updated in the routines creating or
2148          *                 updating the cylinder groups
2149          */
2150
2151         /*
2152          * Update the number of cylinders in the filesystem.
2153          */
2154         sblock.fs_ncyl = sblock.fs_size * NSPF(&sblock) / sblock.fs_spc;
2155         if (sblock.fs_size * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) {
2156                 sblock.fs_ncyl++;
2157         }
2158
2159         /*
2160          * Update the number of cylinder groups in the filesystem.
2161          */
2162         sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg;
2163         if (sblock.fs_ncyl % sblock.fs_cpg) {
2164                 sblock.fs_ncg++;
2165         }
2166
2167         if ((sblock.fs_size - (sblock.fs_ncg-1) * sblock.fs_fpg) <
2168             sblock.fs_fpg && cgdmin(&sblock, (sblock.fs_ncg-1))-
2169             cgbase(&sblock, (sblock.fs_ncg-1)) > (sblock.fs_size -
2170             (sblock.fs_ncg-1) * sblock.fs_fpg )) {
2171                 /*
2172                  * The space in the new last cylinder group is too small,
2173                  * so revert back.
2174                  */
2175                 sblock.fs_ncg--;
2176 #if 1 /* this is a bit more safe */
2177                 sblock.fs_ncyl = sblock.fs_ncg * sblock.fs_cpg;
2178 #else
2179                 sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
2180 #endif
2181                 sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
2182                 printf( "Warning: %d sector(s) cannot be allocated.\n",
2183                     (sblock.fs_size-(sblock.fs_ncg)*sblock.fs_fpg) *
2184                     NSPF(&sblock));
2185                 sblock.fs_size = sblock.fs_ncyl * sblock.fs_spc / NSPF(&sblock);
2186         }
2187
2188         /*
2189          * Update the space for the cylinder group summary information in the
2190          * respective cylinder group data area.
2191          */
2192         sblock.fs_cssize =
2193             fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
2194         
2195         if(osblock.fs_size >= sblock.fs_size) {
2196                 errx(1, "not enough new space");
2197         }
2198
2199         DBG_PRINT0("sblock calculated\n");
2200
2201         /*
2202          * Ok, everything prepared, so now let's do the tricks.
2203          */
2204         growfs(fsi, fso, Nflag);
2205
2206         /*
2207          * Update the disk label.
2208          */
2209         pp->p_fsize = sblock.fs_fsize;
2210         pp->p_frag = sblock.fs_frag;
2211         pp->p_cpg = sblock.fs_cpg;
2212
2213         return_disklabel(fso, lp, Nflag);
2214         DBG_PRINT0("label rewritten\n");
2215
2216         close(fsi);
2217         if(fso>-1) close(fso);
2218
2219         DBG_CLOSE;
2220
2221         DBG_LEAVE;
2222         return 0;
2223 }
2224
2225 /* ************************************************** return_disklabel ***** */
2226 /*
2227  * Write the updated disklabel back to disk.
2228  */
2229 static void
2230 return_disklabel(int fd, struct disklabel *lp, unsigned int Nflag)
2231 {
2232         DBG_FUNC("return_disklabel")
2233         u_short sum;
2234         u_short *ptr;
2235
2236         DBG_ENTER;
2237
2238         if(!lp) {
2239                 DBG_LEAVE;
2240                 return;
2241         }
2242         if(!Nflag) {
2243                 lp->d_checksum=0;
2244                 sum = 0;
2245                 ptr=(u_short *)lp;
2246
2247                 /*
2248                  * recalculate checksum
2249                  */
2250                 while(ptr < (u_short *)&lp->d_partitions[lp->d_npartitions]) {
2251                         sum ^= *ptr++;
2252                 }
2253                 lp->d_checksum=sum;
2254
2255                 if (ioctl(fd, DIOCWDINFO, (char *)lp) < 0) {
2256                         errx(1, "DIOCWDINFO failed");
2257                 }
2258         }
2259         free(lp);
2260
2261         DBG_LEAVE;
2262         return ;
2263 }
2264
2265 /* ***************************************************** get_disklabel ***** */
2266 /*
2267  * Read the disklabel from disk.
2268  */
2269 static struct disklabel *
2270 get_disklabel(int fd)
2271 {
2272         DBG_FUNC("get_disklabel")
2273         static struct   disklabel *lab;
2274
2275         DBG_ENTER;
2276
2277         lab=(struct disklabel *)malloc(sizeof(struct disklabel));
2278         if (!lab) {
2279                 errx(1, "malloc failed");
2280         }
2281         if (ioctl(fd, DIOCGDINFO, (char *)lab) < 0) {
2282                 errx(1, "DIOCGDINFO failed");
2283         }
2284
2285         DBG_LEAVE;
2286         return (lab);
2287 }
2288
2289
2290 /* ************************************************************* usage ***** */
2291 /*
2292  * Dump a line of usage.
2293  */
2294 static void
2295 usage(void)
2296 {       
2297         DBG_FUNC("usage")
2298
2299         DBG_ENTER;
2300
2301         fprintf(stderr, "usage: growfs [-Ny] [-s size] special\n");
2302
2303         DBG_LEAVE;
2304         exit(1);
2305 }
2306
2307 /* *********************************************************** updclst ***** */
2308 /*
2309  * This updates most paramters and the bitmap related to cluster. We have to
2310  * assume, that sblock, osblock, acg are set up.
2311  */
2312 static void
2313 updclst(int block)
2314 {       
2315         DBG_FUNC("updclst")
2316         static int      lcs=0;
2317
2318         DBG_ENTER;
2319
2320         if(sblock.fs_contigsumsize < 1) { /* no clustering */
2321                 return;
2322         }
2323         /*
2324          * update cluster allocation map
2325          */
2326         setbit(cg_clustersfree(&acg), block);
2327
2328         /*
2329          * update cluster summary table
2330          */
2331         if(!lcs) {
2332                 /*
2333                  * calculate size for the trailing cluster
2334                  */
2335                 for(block--; lcs<sblock.fs_contigsumsize; block--, lcs++ ) {
2336                         if(isclr(cg_clustersfree(&acg), block)){
2337                                 break;
2338                         }
2339                 }
2340         } 
2341         if(lcs < sblock.fs_contigsumsize) {
2342                 if(lcs) {
2343                         cg_clustersum(&acg)[lcs]--;
2344                 }
2345                 lcs++;
2346                 cg_clustersum(&acg)[lcs]++;
2347         }
2348
2349         DBG_LEAVE;
2350         return;
2351 }
2352
2353 /* *********************************************************** updrefs ***** */
2354 /*
2355  * This updates all references to relocated blocks for the given inode.  The
2356  * inode is given as number within the cylinder group, and the number of the
2357  * cylinder group.
2358  */
2359 static void
2360 updrefs(int cg, ino_t in, struct gfs_bpp *bp, int fsi, int fso, unsigned int
2361     Nflag)
2362 {       
2363         DBG_FUNC("updrefs")
2364         unsigned int    ictr, ind2ctr, ind3ctr;
2365         ufs_daddr_t     *iptr, *ind2ptr, *ind3ptr;
2366         struct dinode   *ino;
2367         int     remaining_blocks;
2368
2369         DBG_ENTER;
2370
2371         /*
2372          * XXX We should skip unused inodes even from beeing read from disk
2373          *     here by using the bitmap.
2374          */
2375         ino=ginode(in, fsi, cg);
2376         if(!((ino->di_mode & IFMT)==IFDIR || (ino->di_mode & IFMT)==IFREG ||
2377             (ino->di_mode & IFMT)==IFLNK)) {
2378                 DBG_LEAVE;
2379                 return; /* only check DIR, FILE, LINK */
2380         }
2381         if(((ino->di_mode & IFMT)==IFLNK) && (ino->di_size<MAXSYMLINKLEN)) {
2382                 DBG_LEAVE;
2383                 return; /* skip short symlinks */
2384         }
2385         if(!ino->di_size) {
2386                 DBG_LEAVE;
2387                 return; /* skip empty file */
2388         }
2389         if(!ino->di_blocks) {
2390                 DBG_LEAVE;
2391                 return; /* skip empty swiss cheesy file or old fastlink */
2392         }
2393         DBG_PRINT2("scg checking inode (%d in %d)\n",
2394             in,
2395             cg);
2396
2397         /*
2398          * Start checking all direct blocks.
2399          */
2400         remaining_blocks=howmany(ino->di_size, sblock.fs_bsize);
2401         for(ictr=0; ictr < MIN(NDADDR, (unsigned int)remaining_blocks);
2402             ictr++) {
2403                 iptr=&(ino->di_db[ictr]);
2404                 if(*iptr) {
2405                         cond_bl_upd(iptr, bp, GFS_PS_INODE, fso, Nflag);
2406                 }
2407         }
2408         DBG_PRINT0("~~scg direct blocks checked\n");
2409
2410         remaining_blocks-=NDADDR;
2411         if(remaining_blocks<0) {
2412                 DBG_LEAVE;
2413                 return;
2414         }
2415         if(ino->di_ib[0]) {
2416                 /*
2417                  * Start checking first indirect block
2418                  */
2419                 cond_bl_upd(&(ino->di_ib[0]), bp, GFS_PS_INODE, fso, Nflag);
2420                 i1_src=fsbtodb(&sblock, ino->di_ib[0]);
2421                 rdfs(i1_src, (size_t)sblock.fs_bsize, (void *)&i1blk, fsi);
2422                 for(ictr=0; ictr < MIN(howmany(sblock.fs_bsize,
2423                     sizeof(ufs_daddr_t)), (unsigned int)remaining_blocks);
2424                     ictr++) {
2425                         iptr=&((ufs_daddr_t *)(void *)&i1blk)[ictr];
2426                         if(*iptr) {
2427                                 cond_bl_upd(iptr, bp, GFS_PS_IND_BLK_LVL1,
2428                                     fso, Nflag);
2429                         }
2430                 }
2431         }
2432         DBG_PRINT0("scg indirect_1 blocks checked\n");
2433
2434         remaining_blocks-= howmany(sblock.fs_bsize, sizeof(ufs_daddr_t));
2435         if(remaining_blocks<0) {
2436                 DBG_LEAVE;
2437                 return;
2438         }
2439         if(ino->di_ib[1]) {
2440                 /*
2441                  * Start checking second indirect block
2442                  */
2443                 cond_bl_upd(&(ino->di_ib[1]), bp, GFS_PS_INODE, fso, Nflag);
2444                 i2_src=fsbtodb(&sblock, ino->di_ib[1]);
2445                 rdfs(i2_src, (size_t)sblock.fs_bsize, (void *)&i2blk, fsi);
2446                 for(ind2ctr=0; ind2ctr < howmany(sblock.fs_bsize,
2447                     sizeof(ufs_daddr_t)); ind2ctr++) {
2448                         ind2ptr=&((ufs_daddr_t *)(void *)&i2blk)[ind2ctr];
2449                         if(!*ind2ptr) {
2450                                 continue;
2451                         }
2452                         cond_bl_upd(ind2ptr, bp, GFS_PS_IND_BLK_LVL2, fso,
2453                             Nflag);
2454                         i1_src=fsbtodb(&sblock, *ind2ptr);
2455                         rdfs(i1_src, (size_t)sblock.fs_bsize, (void *)&i1blk,
2456                             fsi);
2457                         for(ictr=0; ictr<MIN(howmany((unsigned int)
2458                             sblock.fs_bsize, sizeof(ufs_daddr_t)),
2459                             (unsigned int)remaining_blocks); ictr++) {
2460                                 iptr=&((ufs_daddr_t *)(void *)&i1blk)[ictr];
2461                                 if(*iptr) {
2462                                         cond_bl_upd(iptr, bp,
2463                                             GFS_PS_IND_BLK_LVL1, fso, Nflag);
2464                                 }
2465                         }
2466                 }
2467         }
2468         DBG_PRINT0("scg indirect_2 blocks checked\n");
2469
2470 #define SQUARE(a) ((a)*(a))
2471         remaining_blocks-=SQUARE(howmany(sblock.fs_bsize, sizeof(ufs_daddr_t)));
2472 #undef SQUARE
2473         if(remaining_blocks<0) {
2474                 DBG_LEAVE;
2475                 return;
2476         }
2477                         
2478         if(ino->di_ib[2]) {
2479                 /*
2480                  * Start checking third indirect block
2481                  */
2482                 cond_bl_upd(&(ino->di_ib[2]), bp, GFS_PS_INODE, fso, Nflag);
2483                 i3_src=fsbtodb(&sblock, ino->di_ib[2]);
2484                 rdfs(i3_src, (size_t)sblock.fs_bsize, (void *)&i3blk, fsi);
2485                 for(ind3ctr=0; ind3ctr < howmany(sblock.fs_bsize,
2486                     sizeof(ufs_daddr_t)); ind3ctr ++) {
2487                         ind3ptr=&((ufs_daddr_t *)(void *)&i3blk)[ind3ctr];
2488                         if(!*ind3ptr) {
2489                                 continue;
2490                         }
2491                         cond_bl_upd(ind3ptr, bp, GFS_PS_IND_BLK_LVL3, fso,
2492                             Nflag);
2493                         i2_src=fsbtodb(&sblock, *ind3ptr);
2494                         rdfs(i2_src, (size_t)sblock.fs_bsize, (void *)&i2blk,
2495                             fsi);
2496                         for(ind2ctr=0; ind2ctr < howmany(sblock.fs_bsize,
2497                             sizeof(ufs_daddr_t)); ind2ctr ++) {
2498                                 ind2ptr=&((ufs_daddr_t *)(void *)&i2blk)
2499                                     [ind2ctr];
2500                                 if(!*ind2ptr) {
2501                                         continue;
2502                                 }
2503                                 cond_bl_upd(ind2ptr, bp, GFS_PS_IND_BLK_LVL2,
2504                                     fso, Nflag);
2505                                 i1_src=fsbtodb(&sblock, *ind2ptr);
2506                                 rdfs(i1_src, (size_t)sblock.fs_bsize,
2507                                     (void *)&i1blk, fsi);
2508                                 for(ictr=0; ictr < MIN(howmany(sblock.fs_bsize,
2509                                     sizeof(ufs_daddr_t)),
2510                                     (unsigned int)remaining_blocks); ictr++) {
2511                                         iptr=&((ufs_daddr_t *)(void *)&i1blk)
2512                                             [ictr];
2513                                         if(*iptr) {
2514                                                 cond_bl_upd(iptr, bp,
2515                                                     GFS_PS_IND_BLK_LVL1, fso,
2516                                                     Nflag);
2517                                         }
2518                                 }
2519                         }
2520                 }
2521         }
2522
2523         DBG_PRINT0("scg indirect_3 blocks checked\n");
2524
2525         DBG_LEAVE;
2526         return;
2527 }
2528