drm/i915: drop WaSetupGtModeTdRowDispatch:snb
[dragonfly.git] / sys / dev / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
37  * but keeps the logic simple. Indeed, the whole purpose of this macro is just
38  * to give some inclination as to some of the magic values used in the various
39  * workarounds!
40  */
41 #define CACHELINE_BYTES 64
42
43 static inline int __ring_space(int head, int tail, int size)
44 {
45         int space = head - (tail + I915_RING_FREE_SPACE);
46         if (space < 0)
47                 space += size;
48         return space;
49 }
50
51 static inline int ring_space(struct intel_ringbuffer *ringbuf)
52 {
53         return __ring_space(ringbuf->head & HEAD_ADDR, ringbuf->tail, ringbuf->size);
54 }
55
56 static bool intel_ring_stopped(struct intel_engine_cs *ring)
57 {
58         struct drm_i915_private *dev_priv = ring->dev->dev_private;
59         return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
60 }
61
62 void __intel_ring_advance(struct intel_engine_cs *ring)
63 {
64         struct intel_ringbuffer *ringbuf = ring->buffer;
65         ringbuf->tail &= ringbuf->size - 1;
66         if (intel_ring_stopped(ring))
67                 return;
68         ring->write_tail(ring, ringbuf->tail);
69 }
70
71 static int
72 gen2_render_ring_flush(struct intel_engine_cs *ring,
73                        u32      invalidate_domains,
74                        u32      flush_domains)
75 {
76         u32 cmd;
77         int ret;
78
79         cmd = MI_FLUSH;
80         if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
81                 cmd |= MI_NO_WRITE_FLUSH;
82
83         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
84                 cmd |= MI_READ_FLUSH;
85
86         ret = intel_ring_begin(ring, 2);
87         if (ret)
88                 return ret;
89
90         intel_ring_emit(ring, cmd);
91         intel_ring_emit(ring, MI_NOOP);
92         intel_ring_advance(ring);
93
94         return 0;
95 }
96
97 static int
98 gen4_render_ring_flush(struct intel_engine_cs *ring,
99                        u32      invalidate_domains,
100                        u32      flush_domains)
101 {
102         struct drm_device *dev = ring->dev;
103         u32 cmd;
104         int ret;
105
106         /*
107          * read/write caches:
108          *
109          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
110          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
111          * also flushed at 2d versus 3d pipeline switches.
112          *
113          * read-only caches:
114          *
115          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
116          * MI_READ_FLUSH is set, and is always flushed on 965.
117          *
118          * I915_GEM_DOMAIN_COMMAND may not exist?
119          *
120          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
121          * invalidated when MI_EXE_FLUSH is set.
122          *
123          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
124          * invalidated with every MI_FLUSH.
125          *
126          * TLBs:
127          *
128          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
129          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
130          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
131          * are flushed at any MI_FLUSH.
132          */
133
134         cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
135         if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
136                 cmd &= ~MI_NO_WRITE_FLUSH;
137         if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
138                 cmd |= MI_EXE_FLUSH;
139
140         if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
141             (IS_G4X(dev) || IS_GEN5(dev)))
142                 cmd |= MI_INVALIDATE_ISP;
143
144         ret = intel_ring_begin(ring, 2);
145         if (ret)
146                 return ret;
147
148         intel_ring_emit(ring, cmd);
149         intel_ring_emit(ring, MI_NOOP);
150         intel_ring_advance(ring);
151
152         return 0;
153 }
154
155 /**
156  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
157  * implementing two workarounds on gen6.  From section 1.4.7.1
158  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
159  *
160  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
161  * produced by non-pipelined state commands), software needs to first
162  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
163  * 0.
164  *
165  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
166  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
167  *
168  * And the workaround for these two requires this workaround first:
169  *
170  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
171  * BEFORE the pipe-control with a post-sync op and no write-cache
172  * flushes.
173  *
174  * And this last workaround is tricky because of the requirements on
175  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
176  * volume 2 part 1:
177  *
178  *     "1 of the following must also be set:
179  *      - Render Target Cache Flush Enable ([12] of DW1)
180  *      - Depth Cache Flush Enable ([0] of DW1)
181  *      - Stall at Pixel Scoreboard ([1] of DW1)
182  *      - Depth Stall ([13] of DW1)
183  *      - Post-Sync Operation ([13] of DW1)
184  *      - Notify Enable ([8] of DW1)"
185  *
186  * The cache flushes require the workaround flush that triggered this
187  * one, so we can't use it.  Depth stall would trigger the same.
188  * Post-sync nonzero is what triggered this second workaround, so we
189  * can't use that one either.  Notify enable is IRQs, which aren't
190  * really our business.  That leaves only stall at scoreboard.
191  */
192 static int
193 intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
194 {
195         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
196         int ret;
197
198
199         ret = intel_ring_begin(ring, 6);
200         if (ret)
201                 return ret;
202
203         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
204         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
205                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
206         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
207         intel_ring_emit(ring, 0); /* low dword */
208         intel_ring_emit(ring, 0); /* high dword */
209         intel_ring_emit(ring, MI_NOOP);
210         intel_ring_advance(ring);
211
212         ret = intel_ring_begin(ring, 6);
213         if (ret)
214                 return ret;
215
216         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
217         intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
218         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
219         intel_ring_emit(ring, 0);
220         intel_ring_emit(ring, 0);
221         intel_ring_emit(ring, MI_NOOP);
222         intel_ring_advance(ring);
223
224         return 0;
225 }
226
227 static int
228 gen6_render_ring_flush(struct intel_engine_cs *ring,
229                          u32 invalidate_domains, u32 flush_domains)
230 {
231         u32 flags = 0;
232         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
233         int ret;
234
235         /* Force SNB workarounds for PIPE_CONTROL flushes */
236         ret = intel_emit_post_sync_nonzero_flush(ring);
237         if (ret)
238                 return ret;
239
240         /* Just flush everything.  Experiments have shown that reducing the
241          * number of bits based on the write domains has little performance
242          * impact.
243          */
244         if (flush_domains) {
245                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
246                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
247                 /*
248                  * Ensure that any following seqno writes only happen
249                  * when the render cache is indeed flushed.
250                  */
251                 flags |= PIPE_CONTROL_CS_STALL;
252         }
253         if (invalidate_domains) {
254                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
255                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
256                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
257                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
258                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
259                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
260                 /*
261                  * TLB invalidate requires a post-sync write.
262                  */
263                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
264         }
265
266         ret = intel_ring_begin(ring, 4);
267         if (ret)
268                 return ret;
269
270         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
271         intel_ring_emit(ring, flags);
272         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
273         intel_ring_emit(ring, 0);
274         intel_ring_advance(ring);
275
276         return 0;
277 }
278
279 static int
280 gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
281 {
282         int ret;
283
284         ret = intel_ring_begin(ring, 4);
285         if (ret)
286                 return ret;
287
288         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
289         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
290                               PIPE_CONTROL_STALL_AT_SCOREBOARD);
291         intel_ring_emit(ring, 0);
292         intel_ring_emit(ring, 0);
293         intel_ring_advance(ring);
294
295         return 0;
296 }
297
298 static int gen7_ring_fbc_flush(struct intel_engine_cs *ring, u32 value)
299 {
300         int ret;
301
302         if (!ring->fbc_dirty)
303                 return 0;
304
305         ret = intel_ring_begin(ring, 6);
306         if (ret)
307                 return ret;
308         /* WaFbcNukeOn3DBlt:ivb/hsw */
309         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
310         intel_ring_emit(ring, MSG_FBC_REND_STATE);
311         intel_ring_emit(ring, value);
312         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
313         intel_ring_emit(ring, MSG_FBC_REND_STATE);
314         intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
315         intel_ring_advance(ring);
316
317         ring->fbc_dirty = false;
318         return 0;
319 }
320
321 static int
322 gen7_render_ring_flush(struct intel_engine_cs *ring,
323                        u32 invalidate_domains, u32 flush_domains)
324 {
325         u32 flags = 0;
326         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
327         int ret;
328
329         /*
330          * Ensure that any following seqno writes only happen when the render
331          * cache is indeed flushed.
332          *
333          * Workaround: 4th PIPE_CONTROL command (except the ones with only
334          * read-cache invalidate bits set) must have the CS_STALL bit set. We
335          * don't try to be clever and just set it unconditionally.
336          */
337         flags |= PIPE_CONTROL_CS_STALL;
338
339         /* Just flush everything.  Experiments have shown that reducing the
340          * number of bits based on the write domains has little performance
341          * impact.
342          */
343         if (flush_domains) {
344                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
345                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
346         }
347         if (invalidate_domains) {
348                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
349                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
350                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
351                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
352                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
353                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
354                 /*
355                  * TLB invalidate requires a post-sync write.
356                  */
357                 flags |= PIPE_CONTROL_QW_WRITE;
358                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
359
360                 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
361
362                 /* Workaround: we must issue a pipe_control with CS-stall bit
363                  * set before a pipe_control command that has the state cache
364                  * invalidate bit set. */
365                 gen7_render_ring_cs_stall_wa(ring);
366         }
367
368         ret = intel_ring_begin(ring, 4);
369         if (ret)
370                 return ret;
371
372         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
373         intel_ring_emit(ring, flags);
374         intel_ring_emit(ring, scratch_addr);
375         intel_ring_emit(ring, 0);
376         intel_ring_advance(ring);
377
378         if (!invalidate_domains && flush_domains)
379                 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
380
381         return 0;
382 }
383
384 static int
385 gen8_emit_pipe_control(struct intel_engine_cs *ring,
386                        u32 flags, u32 scratch_addr)
387 {
388         int ret;
389
390         ret = intel_ring_begin(ring, 6);
391         if (ret)
392                 return ret;
393
394         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
395         intel_ring_emit(ring, flags);
396         intel_ring_emit(ring, scratch_addr);
397         intel_ring_emit(ring, 0);
398         intel_ring_emit(ring, 0);
399         intel_ring_emit(ring, 0);
400         intel_ring_advance(ring);
401
402         return 0;
403 }
404
405 static int
406 gen8_render_ring_flush(struct intel_engine_cs *ring,
407                        u32 invalidate_domains, u32 flush_domains)
408 {
409         u32 flags = 0;
410         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
411         int ret;
412
413         flags |= PIPE_CONTROL_CS_STALL;
414
415         if (flush_domains) {
416                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
417                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
418         }
419         if (invalidate_domains) {
420                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
421                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
422                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
423                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
424                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
425                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
426                 flags |= PIPE_CONTROL_QW_WRITE;
427                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
428
429                 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
430                 ret = gen8_emit_pipe_control(ring,
431                                              PIPE_CONTROL_CS_STALL |
432                                              PIPE_CONTROL_STALL_AT_SCOREBOARD,
433                                              0);
434                 if (ret)
435                         return ret;
436         }
437
438         return gen8_emit_pipe_control(ring, flags, scratch_addr);
439 }
440
441 static void ring_write_tail(struct intel_engine_cs *ring,
442                             u32 value)
443 {
444         struct drm_i915_private *dev_priv = ring->dev->dev_private;
445         I915_WRITE_TAIL(ring, value);
446 }
447
448 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
449 {
450         struct drm_i915_private *dev_priv = ring->dev->dev_private;
451         u64 acthd;
452
453         if (INTEL_INFO(ring->dev)->gen >= 8)
454                 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
455                                          RING_ACTHD_UDW(ring->mmio_base));
456         else if (INTEL_INFO(ring->dev)->gen >= 4)
457                 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
458         else
459                 acthd = I915_READ(ACTHD);
460
461         return acthd;
462 }
463
464 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
465 {
466         struct drm_i915_private *dev_priv = ring->dev->dev_private;
467         u32 addr;
468
469         addr = dev_priv->status_page_dmah->busaddr;
470         if (INTEL_INFO(ring->dev)->gen >= 4)
471                 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
472         I915_WRITE(HWS_PGA, addr);
473 }
474
475 static bool stop_ring(struct intel_engine_cs *ring)
476 {
477         struct drm_i915_private *dev_priv = to_i915(ring->dev);
478
479         if (!IS_GEN2(ring->dev)) {
480                 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
481                 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
482                         DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
483                         return false;
484                 }
485         }
486
487         I915_WRITE_CTL(ring, 0);
488         I915_WRITE_HEAD(ring, 0);
489         ring->write_tail(ring, 0);
490
491         if (!IS_GEN2(ring->dev)) {
492                 (void)I915_READ_CTL(ring);
493                 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
494         }
495
496         return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
497 }
498
499 static int init_ring_common(struct intel_engine_cs *ring)
500 {
501         struct drm_device *dev = ring->dev;
502         struct drm_i915_private *dev_priv = dev->dev_private;
503         struct intel_ringbuffer *ringbuf = ring->buffer;
504         struct drm_i915_gem_object *obj = ringbuf->obj;
505         int ret = 0;
506
507         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
508
509         if (!stop_ring(ring)) {
510                 /* G45 ring initialization often fails to reset head to zero */
511                 DRM_DEBUG_KMS("%s head not reset to zero "
512                               "ctl %08x head %08x tail %08x start %08x\n",
513                               ring->name,
514                               I915_READ_CTL(ring),
515                               I915_READ_HEAD(ring),
516                               I915_READ_TAIL(ring),
517                               I915_READ_START(ring));
518
519                 if (!stop_ring(ring)) {
520                         DRM_ERROR("failed to set %s head to zero "
521                                   "ctl %08x head %08x tail %08x start %08x\n",
522                                   ring->name,
523                                   I915_READ_CTL(ring),
524                                   I915_READ_HEAD(ring),
525                                   I915_READ_TAIL(ring),
526                                   I915_READ_START(ring));
527                         ret = -EIO;
528                         goto out;
529                 }
530         }
531
532         if (I915_NEED_GFX_HWS(dev))
533                 intel_ring_setup_status_page(ring);
534         else
535                 ring_setup_phys_status_page(ring);
536
537         /* Enforce ordering by reading HEAD register back */
538         I915_READ_HEAD(ring);
539
540         /* Initialize the ring. This must happen _after_ we've cleared the ring
541          * registers with the above sequence (the readback of the HEAD registers
542          * also enforces ordering), otherwise the hw might lose the new ring
543          * register values. */
544         I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
545         I915_WRITE_CTL(ring,
546                         ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
547                         | RING_VALID);
548
549         /* If the head is still not zero, the ring is dead */
550         if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
551                      I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
552                      (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
553                 DRM_ERROR("%s initialization failed "
554                           "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
555                           ring->name,
556                           I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
557                           I915_READ_HEAD(ring), I915_READ_TAIL(ring),
558                           I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
559                 ret = -EIO;
560                 goto out;
561         }
562
563         if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
564                 i915_kernel_lost_context(ring->dev);
565         else {
566                 ringbuf->head = I915_READ_HEAD(ring);
567                 ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
568                 ringbuf->space = ring_space(ringbuf);
569                 ringbuf->last_retired_head = -1;
570         }
571
572         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
573
574 out:
575         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
576
577         return ret;
578 }
579
580 static int
581 init_pipe_control(struct intel_engine_cs *ring)
582 {
583         int ret;
584
585         if (ring->scratch.obj)
586                 return 0;
587
588         ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
589         if (ring->scratch.obj == NULL) {
590                 DRM_ERROR("Failed to allocate seqno page\n");
591                 ret = -ENOMEM;
592                 goto err;
593         }
594
595         ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
596         if (ret)
597                 goto err_unref;
598
599         ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
600         if (ret)
601                 goto err_unref;
602
603         ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
604         ring->scratch.cpu_page = kmap(ring->scratch.obj->pages[0]);
605         if (ring->scratch.cpu_page == NULL) {
606                 ret = -ENOMEM;
607                 goto err_unpin;
608         }
609
610         DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
611                          ring->name, ring->scratch.gtt_offset);
612         return 0;
613
614 err_unpin:
615         i915_gem_object_ggtt_unpin(ring->scratch.obj);
616 err_unref:
617         drm_gem_object_unreference(&ring->scratch.obj->base);
618 err:
619         return ret;
620 }
621
622 static int init_render_ring(struct intel_engine_cs *ring)
623 {
624         struct drm_device *dev = ring->dev;
625         struct drm_i915_private *dev_priv = dev->dev_private;
626         int ret = init_ring_common(ring);
627         if (ret)
628                 return ret;
629
630         /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
631         if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
632                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
633
634         /* We need to disable the AsyncFlip performance optimisations in order
635          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
636          * programmed to '1' on all products.
637          *
638          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
639          */
640         if (INTEL_INFO(dev)->gen >= 6)
641                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
642
643         /* Required for the hardware to program scanline values for waiting */
644         /* WaEnableFlushTlbInvalidationMode:snb */
645         if (INTEL_INFO(dev)->gen == 6)
646                 I915_WRITE(GFX_MODE,
647                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
648
649         /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
650         if (IS_GEN7(dev))
651                 I915_WRITE(GFX_MODE_GEN7,
652                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
653                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
654
655         if (INTEL_INFO(dev)->gen >= 5) {
656                 ret = init_pipe_control(ring);
657                 if (ret)
658                         return ret;
659         }
660
661         if (IS_GEN6(dev)) {
662                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
663                  * "If this bit is set, STCunit will have LRA as replacement
664                  *  policy. [...] This bit must be reset.  LRA replacement
665                  *  policy is not supported."
666                  */
667                 I915_WRITE(CACHE_MODE_0,
668                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
669         }
670
671         if (INTEL_INFO(dev)->gen >= 6)
672                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
673
674         if (HAS_L3_DPF(dev))
675                 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
676
677         return ret;
678 }
679
680 static void render_ring_cleanup(struct intel_engine_cs *ring)
681 {
682         struct drm_device *dev = ring->dev;
683         struct drm_i915_private *dev_priv = dev->dev_private;
684
685         if (dev_priv->semaphore_obj) {
686                 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
687                 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
688                 dev_priv->semaphore_obj = NULL;
689         }
690
691         if (ring->scratch.obj == NULL)
692                 return;
693
694         if (INTEL_INFO(dev)->gen >= 5) {
695                 kunmap(ring->scratch.obj->pages[0]);
696                 i915_gem_object_ggtt_unpin(ring->scratch.obj);
697         }
698
699         drm_gem_object_unreference(&ring->scratch.obj->base);
700         ring->scratch.obj = NULL;
701 }
702
703 static int gen8_rcs_signal(struct intel_engine_cs *signaller,
704                            unsigned int num_dwords)
705 {
706 #define MBOX_UPDATE_DWORDS 8
707         struct drm_device *dev = signaller->dev;
708         struct drm_i915_private *dev_priv = dev->dev_private;
709         struct intel_engine_cs *waiter;
710         int i, ret, num_rings;
711
712         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
713         num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
714 #undef MBOX_UPDATE_DWORDS
715
716         ret = intel_ring_begin(signaller, num_dwords);
717         if (ret)
718                 return ret;
719
720         for_each_ring(waiter, dev_priv, i) {
721                 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
722                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
723                         continue;
724
725                 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
726                 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
727                                            PIPE_CONTROL_QW_WRITE |
728                                            PIPE_CONTROL_FLUSH_ENABLE);
729                 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
730                 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
731                 intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
732                 intel_ring_emit(signaller, 0);
733                 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
734                                            MI_SEMAPHORE_TARGET(waiter->id));
735                 intel_ring_emit(signaller, 0);
736         }
737
738         return 0;
739 }
740
741 static int gen8_xcs_signal(struct intel_engine_cs *signaller,
742                            unsigned int num_dwords)
743 {
744 #define MBOX_UPDATE_DWORDS 6
745         struct drm_device *dev = signaller->dev;
746         struct drm_i915_private *dev_priv = dev->dev_private;
747         struct intel_engine_cs *waiter;
748         int i, ret, num_rings;
749
750         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
751         num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
752 #undef MBOX_UPDATE_DWORDS
753
754         ret = intel_ring_begin(signaller, num_dwords);
755         if (ret)
756                 return ret;
757
758         for_each_ring(waiter, dev_priv, i) {
759                 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
760                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
761                         continue;
762
763                 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
764                                            MI_FLUSH_DW_OP_STOREDW);
765                 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
766                                            MI_FLUSH_DW_USE_GTT);
767                 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
768                 intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
769                 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
770                                            MI_SEMAPHORE_TARGET(waiter->id));
771                 intel_ring_emit(signaller, 0);
772         }
773
774         return 0;
775 }
776
777 static int gen6_signal(struct intel_engine_cs *signaller,
778                        unsigned int num_dwords)
779 {
780         struct drm_device *dev = signaller->dev;
781         struct drm_i915_private *dev_priv = dev->dev_private;
782         struct intel_engine_cs *useless;
783         int i, ret, num_rings;
784
785 #define MBOX_UPDATE_DWORDS 3
786         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
787         num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
788 #undef MBOX_UPDATE_DWORDS
789
790         ret = intel_ring_begin(signaller, num_dwords);
791         if (ret)
792                 return ret;
793
794         for_each_ring(useless, dev_priv, i) {
795                 u32 mbox_reg = signaller->semaphore.mbox.signal[i];
796                 if (mbox_reg != GEN6_NOSYNC) {
797                         intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
798                         intel_ring_emit(signaller, mbox_reg);
799                         intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
800                 }
801         }
802
803         /* If num_dwords was rounded, make sure the tail pointer is correct */
804         if (num_rings % 2 == 0)
805                 intel_ring_emit(signaller, MI_NOOP);
806
807         return 0;
808 }
809
810 /**
811  * gen6_add_request - Update the semaphore mailbox registers
812  * 
813  * @ring - ring that is adding a request
814  * @seqno - return seqno stuck into the ring
815  *
816  * Update the mailbox registers in the *other* rings with the current seqno.
817  * This acts like a signal in the canonical semaphore.
818  */
819 static int
820 gen6_add_request(struct intel_engine_cs *ring)
821 {
822         int ret;
823
824         if (ring->semaphore.signal)
825                 ret = ring->semaphore.signal(ring, 4);
826         else
827                 ret = intel_ring_begin(ring, 4);
828
829         if (ret)
830                 return ret;
831
832         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
833         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
834         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
835         intel_ring_emit(ring, MI_USER_INTERRUPT);
836         __intel_ring_advance(ring);
837
838         return 0;
839 }
840
841 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
842                                               u32 seqno)
843 {
844         struct drm_i915_private *dev_priv = dev->dev_private;
845         return dev_priv->last_seqno < seqno;
846 }
847
848 /**
849  * intel_ring_sync - sync the waiter to the signaller on seqno
850  *
851  * @waiter - ring that is waiting
852  * @signaller - ring which has, or will signal
853  * @seqno - seqno which the waiter will block on
854  */
855
856 static int
857 gen8_ring_sync(struct intel_engine_cs *waiter,
858                struct intel_engine_cs *signaller,
859                u32 seqno)
860 {
861         struct drm_i915_private *dev_priv = waiter->dev->dev_private;
862         int ret;
863
864         ret = intel_ring_begin(waiter, 4);
865         if (ret)
866                 return ret;
867
868         intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
869                                 MI_SEMAPHORE_GLOBAL_GTT |
870                                 MI_SEMAPHORE_POLL |
871                                 MI_SEMAPHORE_SAD_GTE_SDD);
872         intel_ring_emit(waiter, seqno);
873         intel_ring_emit(waiter,
874                         lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
875         intel_ring_emit(waiter,
876                         upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
877         intel_ring_advance(waiter);
878         return 0;
879 }
880
881 static int
882 gen6_ring_sync(struct intel_engine_cs *waiter,
883                struct intel_engine_cs *signaller,
884                u32 seqno)
885 {
886         u32 dw1 = MI_SEMAPHORE_MBOX |
887                   MI_SEMAPHORE_COMPARE |
888                   MI_SEMAPHORE_REGISTER;
889         u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
890         int ret;
891
892         /* Throughout all of the GEM code, seqno passed implies our current
893          * seqno is >= the last seqno executed. However for hardware the
894          * comparison is strictly greater than.
895          */
896         seqno -= 1;
897
898         WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
899
900         ret = intel_ring_begin(waiter, 4);
901         if (ret)
902                 return ret;
903
904         /* If seqno wrap happened, omit the wait with no-ops */
905         if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
906                 intel_ring_emit(waiter, dw1 | wait_mbox);
907                 intel_ring_emit(waiter, seqno);
908                 intel_ring_emit(waiter, 0);
909                 intel_ring_emit(waiter, MI_NOOP);
910         } else {
911                 intel_ring_emit(waiter, MI_NOOP);
912                 intel_ring_emit(waiter, MI_NOOP);
913                 intel_ring_emit(waiter, MI_NOOP);
914                 intel_ring_emit(waiter, MI_NOOP);
915         }
916         intel_ring_advance(waiter);
917
918         return 0;
919 }
920
921 #define PIPE_CONTROL_FLUSH(ring__, addr__)                                      \
922 do {                                                                    \
923         intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |                \
924                  PIPE_CONTROL_DEPTH_STALL);                             \
925         intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);                    \
926         intel_ring_emit(ring__, 0);                                                     \
927         intel_ring_emit(ring__, 0);                                                     \
928 } while (0)
929
930 static int
931 pc_render_add_request(struct intel_engine_cs *ring)
932 {
933         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
934         int ret;
935
936         /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
937          * incoherent with writes to memory, i.e. completely fubar,
938          * so we need to use PIPE_NOTIFY instead.
939          *
940          * However, we also need to workaround the qword write
941          * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
942          * memory before requesting an interrupt.
943          */
944         ret = intel_ring_begin(ring, 32);
945         if (ret)
946                 return ret;
947
948         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
949                         PIPE_CONTROL_WRITE_FLUSH |
950                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
951         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
952         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
953         intel_ring_emit(ring, 0);
954         PIPE_CONTROL_FLUSH(ring, scratch_addr);
955         scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
956         PIPE_CONTROL_FLUSH(ring, scratch_addr);
957         scratch_addr += 2 * CACHELINE_BYTES;
958         PIPE_CONTROL_FLUSH(ring, scratch_addr);
959         scratch_addr += 2 * CACHELINE_BYTES;
960         PIPE_CONTROL_FLUSH(ring, scratch_addr);
961         scratch_addr += 2 * CACHELINE_BYTES;
962         PIPE_CONTROL_FLUSH(ring, scratch_addr);
963         scratch_addr += 2 * CACHELINE_BYTES;
964         PIPE_CONTROL_FLUSH(ring, scratch_addr);
965
966         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
967                         PIPE_CONTROL_WRITE_FLUSH |
968                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
969                         PIPE_CONTROL_NOTIFY);
970         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
971         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
972         intel_ring_emit(ring, 0);
973         __intel_ring_advance(ring);
974
975         return 0;
976 }
977
978 static u32
979 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
980 {
981         /* Workaround to force correct ordering between irq and seqno writes on
982          * ivb (and maybe also on snb) by reading from a CS register (like
983          * ACTHD) before reading the status page. */
984         if (!lazy_coherency) {
985                 struct drm_i915_private *dev_priv = ring->dev->dev_private;
986                 POSTING_READ(RING_ACTHD(ring->mmio_base));
987         }
988
989         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
990 }
991
992 static u32
993 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
994 {
995         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
996 }
997
998 static void
999 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1000 {
1001         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1002 }
1003
1004 static u32
1005 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1006 {
1007         return ring->scratch.cpu_page[0];
1008 }
1009
1010 static void
1011 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1012 {
1013         ring->scratch.cpu_page[0] = seqno;
1014 }
1015
1016 static bool
1017 gen5_ring_get_irq(struct intel_engine_cs *ring)
1018 {
1019         struct drm_device *dev = ring->dev;
1020         struct drm_i915_private *dev_priv = dev->dev_private;
1021
1022         if (!dev->irq_enabled)
1023                 return false;
1024
1025         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1026         if (ring->irq_refcount++ == 0)
1027                 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1028         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1029
1030         return true;
1031 }
1032
1033 static void
1034 gen5_ring_put_irq(struct intel_engine_cs *ring)
1035 {
1036         struct drm_device *dev = ring->dev;
1037         struct drm_i915_private *dev_priv = dev->dev_private;
1038
1039         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1040         if (--ring->irq_refcount == 0)
1041                 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1042         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1043 }
1044
1045 static bool
1046 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1047 {
1048         struct drm_device *dev = ring->dev;
1049         struct drm_i915_private *dev_priv = dev->dev_private;
1050
1051         if (!dev->irq_enabled)
1052                 return false;
1053
1054         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1055         if (ring->irq_refcount++ == 0) {
1056                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1057                 I915_WRITE(IMR, dev_priv->irq_mask);
1058                 POSTING_READ(IMR);
1059         }
1060         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1061
1062         return true;
1063 }
1064
1065 static void
1066 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1067 {
1068         struct drm_device *dev = ring->dev;
1069         struct drm_i915_private *dev_priv = dev->dev_private;
1070
1071         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1072         if (--ring->irq_refcount == 0) {
1073                 dev_priv->irq_mask |= ring->irq_enable_mask;
1074                 I915_WRITE(IMR, dev_priv->irq_mask);
1075                 POSTING_READ(IMR);
1076         }
1077         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1078 }
1079
1080 static bool
1081 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1082 {
1083         struct drm_device *dev = ring->dev;
1084         struct drm_i915_private *dev_priv = dev->dev_private;
1085
1086         if (!dev->irq_enabled)
1087                 return false;
1088
1089         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1090         if (ring->irq_refcount++ == 0) {
1091                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1092                 I915_WRITE16(IMR, dev_priv->irq_mask);
1093                 POSTING_READ16(IMR);
1094         }
1095         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1096
1097         return true;
1098 }
1099
1100 static void
1101 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1102 {
1103         struct drm_device *dev = ring->dev;
1104         struct drm_i915_private *dev_priv = dev->dev_private;
1105
1106         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1107         if (--ring->irq_refcount == 0) {
1108                 dev_priv->irq_mask |= ring->irq_enable_mask;
1109                 I915_WRITE16(IMR, dev_priv->irq_mask);
1110                 POSTING_READ16(IMR);
1111         }
1112         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1113 }
1114
1115 void intel_ring_setup_status_page(struct intel_engine_cs *ring)
1116 {
1117         struct drm_device *dev = ring->dev;
1118         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1119         u32 mmio = 0;
1120
1121         /* The ring status page addresses are no longer next to the rest of
1122          * the ring registers as of gen7.
1123          */
1124         if (IS_GEN7(dev)) {
1125                 switch (ring->id) {
1126                 case RCS:
1127                         mmio = RENDER_HWS_PGA_GEN7;
1128                         break;
1129                 case BCS:
1130                         mmio = BLT_HWS_PGA_GEN7;
1131                         break;
1132                 /*
1133                  * VCS2 actually doesn't exist on Gen7. Only shut up
1134                  * gcc switch check warning
1135                  */
1136                 case VCS2:
1137                 case VCS:
1138                         mmio = BSD_HWS_PGA_GEN7;
1139                         break;
1140                 case VECS:
1141                         mmio = VEBOX_HWS_PGA_GEN7;
1142                         break;
1143                 }
1144         } else if (IS_GEN6(ring->dev)) {
1145                 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
1146         } else {
1147                 /* XXX: gen8 returns to sanity */
1148                 mmio = RING_HWS_PGA(ring->mmio_base);
1149         }
1150
1151         I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
1152         POSTING_READ(mmio);
1153
1154         /*
1155          * Flush the TLB for this page
1156          *
1157          * FIXME: These two bits have disappeared on gen8, so a question
1158          * arises: do we still need this and if so how should we go about
1159          * invalidating the TLB?
1160          */
1161         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
1162                 u32 reg = RING_INSTPM(ring->mmio_base);
1163
1164                 /* ring should be idle before issuing a sync flush*/
1165                 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1166
1167                 I915_WRITE(reg,
1168                            _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
1169                                               INSTPM_SYNC_FLUSH));
1170                 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
1171                              1000))
1172                         DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
1173                                   ring->name);
1174         }
1175 }
1176
1177 static int
1178 bsd_ring_flush(struct intel_engine_cs *ring,
1179                u32     invalidate_domains,
1180                u32     flush_domains)
1181 {
1182         int ret;
1183
1184         ret = intel_ring_begin(ring, 2);
1185         if (ret)
1186                 return ret;
1187
1188         intel_ring_emit(ring, MI_FLUSH);
1189         intel_ring_emit(ring, MI_NOOP);
1190         intel_ring_advance(ring);
1191         return 0;
1192 }
1193
1194 static int
1195 i9xx_add_request(struct intel_engine_cs *ring)
1196 {
1197         int ret;
1198
1199         ret = intel_ring_begin(ring, 4);
1200         if (ret)
1201                 return ret;
1202
1203         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1204         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1205         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1206         intel_ring_emit(ring, MI_USER_INTERRUPT);
1207         __intel_ring_advance(ring);
1208
1209         return 0;
1210 }
1211
1212 static bool
1213 gen6_ring_get_irq(struct intel_engine_cs *ring)
1214 {
1215         struct drm_device *dev = ring->dev;
1216         struct drm_i915_private *dev_priv = dev->dev_private;
1217
1218         if (!dev->irq_enabled)
1219                return false;
1220
1221         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1222         if (ring->irq_refcount++ == 0) {
1223                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1224                         I915_WRITE_IMR(ring,
1225                                        ~(ring->irq_enable_mask |
1226                                          GT_PARITY_ERROR(dev)));
1227                 else
1228                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1229                 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1230         }
1231         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1232
1233         return true;
1234 }
1235
1236 static void
1237 gen6_ring_put_irq(struct intel_engine_cs *ring)
1238 {
1239         struct drm_device *dev = ring->dev;
1240         struct drm_i915_private *dev_priv = dev->dev_private;
1241
1242         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1243         if (--ring->irq_refcount == 0) {
1244                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1245                         I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1246                 else
1247                         I915_WRITE_IMR(ring, ~0);
1248                 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1249         }
1250         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1251 }
1252
1253 static bool
1254 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1255 {
1256         struct drm_device *dev = ring->dev;
1257         struct drm_i915_private *dev_priv = dev->dev_private;
1258
1259         if (!dev->irq_enabled)
1260                 return false;
1261
1262         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1263         if (ring->irq_refcount++ == 0) {
1264                 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1265                 gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1266         }
1267         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1268
1269         return true;
1270 }
1271
1272 static void
1273 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1274 {
1275         struct drm_device *dev = ring->dev;
1276         struct drm_i915_private *dev_priv = dev->dev_private;
1277
1278         if (!dev->irq_enabled)
1279                 return;
1280
1281         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1282         if (--ring->irq_refcount == 0) {
1283                 I915_WRITE_IMR(ring, ~0);
1284                 gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1285         }
1286         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1287 }
1288
1289 static bool
1290 gen8_ring_get_irq(struct intel_engine_cs *ring)
1291 {
1292         struct drm_device *dev = ring->dev;
1293         struct drm_i915_private *dev_priv = dev->dev_private;
1294
1295         if (!dev->irq_enabled)
1296                 return false;
1297
1298         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1299         if (ring->irq_refcount++ == 0) {
1300                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1301                         I915_WRITE_IMR(ring,
1302                                        ~(ring->irq_enable_mask |
1303                                          GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1304                 } else {
1305                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1306                 }
1307                 POSTING_READ(RING_IMR(ring->mmio_base));
1308         }
1309         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1310
1311         return true;
1312 }
1313
1314 static void
1315 gen8_ring_put_irq(struct intel_engine_cs *ring)
1316 {
1317         struct drm_device *dev = ring->dev;
1318         struct drm_i915_private *dev_priv = dev->dev_private;
1319
1320         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1321         if (--ring->irq_refcount == 0) {
1322                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1323                         I915_WRITE_IMR(ring,
1324                                        ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1325                 } else {
1326                         I915_WRITE_IMR(ring, ~0);
1327                 }
1328                 POSTING_READ(RING_IMR(ring->mmio_base));
1329         }
1330         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1331 }
1332
1333 static int
1334 i965_dispatch_execbuffer(struct intel_engine_cs *ring,
1335                          u64 offset, u32 length,
1336                          unsigned flags)
1337 {
1338         int ret;
1339
1340         ret = intel_ring_begin(ring, 2);
1341         if (ret)
1342                 return ret;
1343
1344         intel_ring_emit(ring,
1345                         MI_BATCH_BUFFER_START |
1346                         MI_BATCH_GTT |
1347                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1348         intel_ring_emit(ring, offset);
1349         intel_ring_advance(ring);
1350
1351         return 0;
1352 }
1353
1354 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1355 #define I830_BATCH_LIMIT (256*1024)
1356 #define I830_TLB_ENTRIES (2)
1357 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1358 static int
1359 i830_dispatch_execbuffer(struct intel_engine_cs *ring,
1360                                 u64 offset, u32 len,
1361                                 unsigned flags)
1362 {
1363         u32 cs_offset = ring->scratch.gtt_offset;
1364         int ret;
1365
1366         ret = intel_ring_begin(ring, 6);
1367         if (ret)
1368                 return ret;
1369
1370         /* Evict the invalid PTE TLBs */
1371         intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1372         intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1373         intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1374         intel_ring_emit(ring, cs_offset);
1375         intel_ring_emit(ring, 0xdeadbeef);
1376         intel_ring_emit(ring, MI_NOOP);
1377         intel_ring_advance(ring);
1378
1379         if ((flags & I915_DISPATCH_PINNED) == 0) {
1380                 if (len > I830_BATCH_LIMIT)
1381                         return -ENOSPC;
1382
1383                 ret = intel_ring_begin(ring, 6 + 2);
1384                 if (ret)
1385                         return ret;
1386
1387                 /* Blit the batch (which has now all relocs applied) to the
1388                  * stable batch scratch bo area (so that the CS never
1389                  * stumbles over its tlb invalidation bug) ...
1390                  */
1391                 intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1392                 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1393                 intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1394                 intel_ring_emit(ring, cs_offset);
1395                 intel_ring_emit(ring, 4096);
1396                 intel_ring_emit(ring, offset);
1397
1398                 intel_ring_emit(ring, MI_FLUSH);
1399                 intel_ring_emit(ring, MI_NOOP);
1400                 intel_ring_advance(ring);
1401
1402                 /* ... and execute it. */
1403                 offset = cs_offset;
1404         }
1405
1406         ret = intel_ring_begin(ring, 4);
1407         if (ret)
1408                 return ret;
1409
1410         intel_ring_emit(ring, MI_BATCH_BUFFER);
1411         intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1412         intel_ring_emit(ring, offset + len - 8);
1413         intel_ring_emit(ring, MI_NOOP);
1414         intel_ring_advance(ring);
1415
1416         return 0;
1417 }
1418
1419 static int
1420 i915_dispatch_execbuffer(struct intel_engine_cs *ring,
1421                          u64 offset, u32 len,
1422                          unsigned flags)
1423 {
1424         int ret;
1425
1426         ret = intel_ring_begin(ring, 2);
1427         if (ret)
1428                 return ret;
1429
1430         intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1431         intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1432         intel_ring_advance(ring);
1433
1434         return 0;
1435 }
1436
1437 static void cleanup_status_page(struct intel_engine_cs *ring)
1438 {
1439         struct drm_i915_gem_object *obj;
1440
1441         obj = ring->status_page.obj;
1442         if (obj == NULL)
1443                 return;
1444
1445         kunmap(obj->pages[0]);
1446         i915_gem_object_ggtt_unpin(obj);
1447         drm_gem_object_unreference(&obj->base);
1448         ring->status_page.obj = NULL;
1449 }
1450
1451 static int init_status_page(struct intel_engine_cs *ring)
1452 {
1453         struct drm_i915_gem_object *obj;
1454
1455         if ((obj = ring->status_page.obj) == NULL) {
1456                 unsigned flags;
1457                 int ret;
1458
1459                 obj = i915_gem_alloc_object(ring->dev, 4096);
1460                 if (obj == NULL) {
1461                         DRM_ERROR("Failed to allocate status page\n");
1462                         return -ENOMEM;
1463                 }
1464
1465                 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1466                 if (ret)
1467                         goto err_unref;
1468
1469                 flags = 0;
1470                 if (!HAS_LLC(ring->dev))
1471                         /* On g33, we cannot place HWS above 256MiB, so
1472                          * restrict its pinning to the low mappable arena.
1473                          * Though this restriction is not documented for
1474                          * gen4, gen5, or byt, they also behave similarly
1475                          * and hang if the HWS is placed at the top of the
1476                          * GTT. To generalise, it appears that all !llc
1477                          * platforms have issues with us placing the HWS
1478                          * above the mappable region (even though we never
1479                          * actualy map it).
1480                          */
1481                         flags |= PIN_MAPPABLE;
1482                 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1483                 if (ret) {
1484 err_unref:
1485                         drm_gem_object_unreference(&obj->base);
1486                         return ret;
1487                 }
1488
1489                 ring->status_page.obj = obj;
1490         }
1491
1492         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1493         ring->status_page.page_addr = kmap(obj->pages[0]);
1494         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1495
1496         DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1497                         ring->name, ring->status_page.gfx_addr);
1498
1499         return 0;
1500 }
1501
1502 static int init_phys_status_page(struct intel_engine_cs *ring)
1503 {
1504         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1505
1506         if (!dev_priv->status_page_dmah) {
1507                 dev_priv->status_page_dmah =
1508                         drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1509                 if (!dev_priv->status_page_dmah)
1510                         return -ENOMEM;
1511         }
1512
1513         ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1514         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1515
1516         return 0;
1517 }
1518
1519 static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1520 {
1521         if (!ringbuf->obj)
1522                 return;
1523
1524         iounmap(ringbuf->virtual_start, ringbuf->size);
1525         i915_gem_object_ggtt_unpin(ringbuf->obj);
1526         drm_gem_object_unreference(&ringbuf->obj->base);
1527         ringbuf->obj = NULL;
1528 }
1529
1530 static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
1531                                       struct intel_ringbuffer *ringbuf)
1532 {
1533         struct drm_i915_gem_object *obj;
1534         int ret;
1535
1536         if (ringbuf->obj)
1537                 return 0;
1538
1539         obj = NULL;
1540         if (!HAS_LLC(dev))
1541                 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
1542         if (obj == NULL)
1543                 obj = i915_gem_alloc_object(dev, ringbuf->size);
1544         if (obj == NULL)
1545                 return -ENOMEM;
1546
1547         /* mark ring buffers as read-only from GPU side by default */
1548         obj->gt_ro = 1;
1549
1550         ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1551         if (ret)
1552                 goto err_unref;
1553
1554         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1555         if (ret)
1556                 goto err_unpin;
1557
1558         ringbuf->virtual_start =
1559                 ioremap_wc(dev->agp->base + i915_gem_obj_ggtt_offset(obj),
1560                                 ringbuf->size);
1561         if (ringbuf->virtual_start == NULL) {
1562                 ret = -EINVAL;
1563                 goto err_unpin;
1564         }
1565
1566         ringbuf->obj = obj;
1567         return 0;
1568
1569 err_unpin:
1570         i915_gem_object_ggtt_unpin(obj);
1571 err_unref:
1572         drm_gem_object_unreference(&obj->base);
1573         return ret;
1574 }
1575
1576 static int intel_init_ring_buffer(struct drm_device *dev,
1577                                   struct intel_engine_cs *ring)
1578 {
1579         struct intel_ringbuffer *ringbuf = ring->buffer;
1580         int ret;
1581
1582         if (ringbuf == NULL) {
1583                 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1584                 if (!ringbuf)
1585                         return -ENOMEM;
1586                 ring->buffer = ringbuf;
1587         }
1588
1589         ring->dev = dev;
1590         INIT_LIST_HEAD(&ring->active_list);
1591         INIT_LIST_HEAD(&ring->request_list);
1592         ringbuf->size = 32 * PAGE_SIZE;
1593         memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
1594
1595         init_waitqueue_head(&ring->irq_queue);
1596
1597         if (I915_NEED_GFX_HWS(dev)) {
1598                 ret = init_status_page(ring);
1599                 if (ret)
1600                         goto error;
1601         } else {
1602                 BUG_ON(ring->id != RCS);
1603                 ret = init_phys_status_page(ring);
1604                 if (ret)
1605                         goto error;
1606         }
1607
1608         ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1609         if (ret) {
1610                 DRM_ERROR("Failed to allocate ringbuffer %s: %d\n", ring->name, ret);
1611                 goto error;
1612         }
1613
1614         /* Workaround an erratum on the i830 which causes a hang if
1615          * the TAIL pointer points to within the last 2 cachelines
1616          * of the buffer.
1617          */
1618         ringbuf->effective_size = ringbuf->size;
1619         if (IS_I830(dev) || IS_845G(dev))
1620                 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
1621
1622         ret = i915_cmd_parser_init_ring(ring);
1623         if (ret)
1624                 goto error;
1625
1626         ret = ring->init(ring);
1627         if (ret)
1628                 goto error;
1629
1630         return 0;
1631
1632 error:
1633         kfree(ringbuf);
1634         ring->buffer = NULL;
1635         return ret;
1636 }
1637
1638 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
1639 {
1640         struct drm_i915_private *dev_priv = to_i915(ring->dev);
1641         struct intel_ringbuffer *ringbuf = ring->buffer;
1642
1643         if (!intel_ring_initialized(ring))
1644                 return;
1645
1646         intel_stop_ring_buffer(ring);
1647         WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
1648
1649         intel_destroy_ringbuffer_obj(ringbuf);
1650         ring->preallocated_lazy_request = NULL;
1651         ring->outstanding_lazy_seqno = 0;
1652
1653         if (ring->cleanup)
1654                 ring->cleanup(ring);
1655
1656         cleanup_status_page(ring);
1657
1658         i915_cmd_parser_fini_ring(ring);
1659
1660         kfree(ringbuf);
1661         ring->buffer = NULL;
1662 }
1663
1664 static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
1665 {
1666         struct intel_ringbuffer *ringbuf = ring->buffer;
1667         struct drm_i915_gem_request *request;
1668         u32 seqno = 0;
1669         int ret;
1670
1671         if (ringbuf->last_retired_head != -1) {
1672                 ringbuf->head = ringbuf->last_retired_head;
1673                 ringbuf->last_retired_head = -1;
1674
1675                 ringbuf->space = ring_space(ringbuf);
1676                 if (ringbuf->space >= n)
1677                         return 0;
1678         }
1679
1680         list_for_each_entry(request, &ring->request_list, list) {
1681                 if (__ring_space(request->tail, ringbuf->tail, ringbuf->size) >= n) {
1682                         seqno = request->seqno;
1683                         break;
1684                 }
1685         }
1686
1687         if (seqno == 0)
1688                 return -ENOSPC;
1689
1690         ret = i915_wait_seqno(ring, seqno);
1691         if (ret)
1692                 return ret;
1693
1694         i915_gem_retire_requests_ring(ring);
1695         ringbuf->head = ringbuf->last_retired_head;
1696         ringbuf->last_retired_head = -1;
1697
1698         ringbuf->space = ring_space(ringbuf);
1699         return 0;
1700 }
1701
1702 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
1703 {
1704         struct drm_device *dev = ring->dev;
1705         struct drm_i915_private *dev_priv = dev->dev_private;
1706         struct intel_ringbuffer *ringbuf = ring->buffer;
1707         unsigned long end;
1708         int ret;
1709
1710         ret = intel_ring_wait_request(ring, n);
1711         if (ret != -ENOSPC)
1712                 return ret;
1713
1714         /* force the tail write in case we have been skipping them */
1715         __intel_ring_advance(ring);
1716
1717         /* With GEM the hangcheck timer should kick us out of the loop,
1718          * leaving it early runs the risk of corrupting GEM state (due
1719          * to running on almost untested codepaths). But on resume
1720          * timers don't work yet, so prevent a complete hang in that
1721          * case by choosing an insanely large timeout. */
1722         end = jiffies + 60 * HZ;
1723
1724         trace_i915_ring_wait_begin(ring);
1725         do {
1726                 ringbuf->head = I915_READ_HEAD(ring);
1727                 ringbuf->space = ring_space(ringbuf);
1728                 if (ringbuf->space >= n) {
1729                         ret = 0;
1730                         break;
1731                 }
1732
1733 #if 0
1734                 if (!drm_core_check_feature(dev, DRIVER_MODESET) &&
1735                     dev->primary->master) {
1736                         struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1737                         if (master_priv->sarea_priv)
1738                                 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1739                 }
1740 #else
1741                 if (dev_priv->sarea_priv)
1742                         dev_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1743 #endif
1744
1745
1746                 msleep(1);
1747
1748 #if 0
1749                 if (dev_priv->mm.interruptible && signal_pending(current)) {
1750                         ret = -ERESTARTSYS;
1751                         break;
1752                 }
1753 #endif
1754
1755                 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1756                                            dev_priv->mm.interruptible);
1757                 if (ret)
1758                         break;
1759
1760                 if (time_after(jiffies, end)) {
1761                         ret = -EBUSY;
1762                         break;
1763                 }
1764         } while (1);
1765         trace_i915_ring_wait_end(ring);
1766         return ret;
1767 }
1768
1769 static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
1770 {
1771         uint32_t __iomem *virt;
1772         struct intel_ringbuffer *ringbuf = ring->buffer;
1773         int rem = ringbuf->size - ringbuf->tail;
1774
1775         if (ringbuf->space < rem) {
1776                 int ret = ring_wait_for_space(ring, rem);
1777                 if (ret)
1778                         return ret;
1779         }
1780
1781         virt = (unsigned int *)((char *)ringbuf->virtual_start + ringbuf->tail);
1782         rem /= 4;
1783         while (rem--)
1784                 iowrite32(MI_NOOP, virt++);
1785
1786         ringbuf->tail = 0;
1787         ringbuf->space = ring_space(ringbuf);
1788
1789         return 0;
1790 }
1791
1792 int intel_ring_idle(struct intel_engine_cs *ring)
1793 {
1794         u32 seqno;
1795         int ret;
1796
1797         /* We need to add any requests required to flush the objects and ring */
1798         if (ring->outstanding_lazy_seqno) {
1799                 ret = i915_add_request(ring, NULL);
1800                 if (ret)
1801                         return ret;
1802         }
1803
1804         /* Wait upon the last request to be completed */
1805         if (list_empty(&ring->request_list))
1806                 return 0;
1807
1808         seqno = list_entry(ring->request_list.prev,
1809                            struct drm_i915_gem_request,
1810                            list)->seqno;
1811
1812         return i915_wait_seqno(ring, seqno);
1813 }
1814
1815 static int
1816 intel_ring_alloc_seqno(struct intel_engine_cs *ring)
1817 {
1818         if (ring->outstanding_lazy_seqno)
1819                 return 0;
1820
1821         if (ring->preallocated_lazy_request == NULL) {
1822                 struct drm_i915_gem_request *request;
1823
1824                 request = kmalloc(sizeof(*request), M_DRM, M_WAITOK);
1825                 if (request == NULL)
1826                         return -ENOMEM;
1827
1828                 ring->preallocated_lazy_request = request;
1829         }
1830
1831         return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
1832 }
1833
1834 static int __intel_ring_prepare(struct intel_engine_cs *ring,
1835                                 int bytes)
1836 {
1837         struct intel_ringbuffer *ringbuf = ring->buffer;
1838         int ret;
1839
1840         if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
1841                 ret = intel_wrap_ring_buffer(ring);
1842                 if (unlikely(ret))
1843                         return ret;
1844         }
1845
1846         if (unlikely(ringbuf->space < bytes)) {
1847                 ret = ring_wait_for_space(ring, bytes);
1848                 if (unlikely(ret))
1849                         return ret;
1850         }
1851
1852         return 0;
1853 }
1854
1855 int intel_ring_begin(struct intel_engine_cs *ring,
1856                      int num_dwords)
1857 {
1858         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1859         int ret;
1860
1861         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1862                                    dev_priv->mm.interruptible);
1863         if (ret)
1864                 return ret;
1865
1866         ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
1867         if (ret)
1868                 return ret;
1869
1870         /* Preallocate the olr before touching the ring */
1871         ret = intel_ring_alloc_seqno(ring);
1872         if (ret)
1873                 return ret;
1874
1875         ring->buffer->space -= num_dwords * sizeof(uint32_t);
1876         return 0;
1877 }
1878
1879 /* Align the ring tail to a cacheline boundary */
1880 int intel_ring_cacheline_align(struct intel_engine_cs *ring)
1881 {
1882         int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
1883         int ret;
1884
1885         if (num_dwords == 0)
1886                 return 0;
1887
1888         num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
1889         ret = intel_ring_begin(ring, num_dwords);
1890         if (ret)
1891                 return ret;
1892
1893         while (num_dwords--)
1894                 intel_ring_emit(ring, MI_NOOP);
1895
1896         intel_ring_advance(ring);
1897
1898         return 0;
1899 }
1900
1901 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
1902 {
1903         struct drm_device *dev = ring->dev;
1904         struct drm_i915_private *dev_priv = dev->dev_private;
1905
1906         BUG_ON(ring->outstanding_lazy_seqno);
1907
1908         if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
1909                 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
1910                 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
1911                 if (HAS_VEBOX(dev))
1912                         I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
1913         }
1914
1915         ring->set_seqno(ring, seqno);
1916         ring->hangcheck.seqno = seqno;
1917 }
1918
1919 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
1920                                      u32 value)
1921 {
1922         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1923
1924        /* Every tail move must follow the sequence below */
1925
1926         /* Disable notification that the ring is IDLE. The GT
1927          * will then assume that it is busy and bring it out of rc6.
1928          */
1929         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1930                    _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1931
1932         /* Clear the context id. Here be magic! */
1933         I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1934
1935         /* Wait for the ring not to be idle, i.e. for it to wake up. */
1936         if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1937                       GEN6_BSD_SLEEP_INDICATOR) == 0,
1938                      50))
1939                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1940
1941         /* Now that the ring is fully powered up, update the tail */
1942         I915_WRITE_TAIL(ring, value);
1943         POSTING_READ(RING_TAIL(ring->mmio_base));
1944
1945         /* Let the ring send IDLE messages to the GT again,
1946          * and so let it sleep to conserve power when idle.
1947          */
1948         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1949                    _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1950 }
1951
1952 static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
1953                                u32 invalidate, u32 flush)
1954 {
1955         uint32_t cmd;
1956         int ret;
1957
1958         ret = intel_ring_begin(ring, 4);
1959         if (ret)
1960                 return ret;
1961
1962         cmd = MI_FLUSH_DW;
1963         if (INTEL_INFO(ring->dev)->gen >= 8)
1964                 cmd += 1;
1965         /*
1966          * Bspec vol 1c.5 - video engine command streamer:
1967          * "If ENABLED, all TLBs will be invalidated once the flush
1968          * operation is complete. This bit is only valid when the
1969          * Post-Sync Operation field is a value of 1h or 3h."
1970          */
1971         if (invalidate & I915_GEM_GPU_DOMAINS)
1972                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1973                         MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1974         intel_ring_emit(ring, cmd);
1975         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1976         if (INTEL_INFO(ring->dev)->gen >= 8) {
1977                 intel_ring_emit(ring, 0); /* upper addr */
1978                 intel_ring_emit(ring, 0); /* value */
1979         } else  {
1980                 intel_ring_emit(ring, 0);
1981                 intel_ring_emit(ring, MI_NOOP);
1982         }
1983         intel_ring_advance(ring);
1984         return 0;
1985 }
1986
1987 static int
1988 gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
1989                               u64 offset, u32 len,
1990                               unsigned flags)
1991 {
1992         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1993         bool ppgtt = dev_priv->mm.aliasing_ppgtt != NULL &&
1994                 !(flags & I915_DISPATCH_SECURE);
1995         int ret;
1996
1997         ret = intel_ring_begin(ring, 4);
1998         if (ret)
1999                 return ret;
2000
2001         /* FIXME(BDW): Address space and security selectors. */
2002         intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
2003         intel_ring_emit(ring, lower_32_bits(offset));
2004         intel_ring_emit(ring, upper_32_bits(offset));
2005         intel_ring_emit(ring, MI_NOOP);
2006         intel_ring_advance(ring);
2007
2008         return 0;
2009 }
2010
2011 static int
2012 hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2013                               u64 offset, u32 len,
2014                               unsigned flags)
2015 {
2016         int ret;
2017
2018         ret = intel_ring_begin(ring, 2);
2019         if (ret)
2020                 return ret;
2021
2022         intel_ring_emit(ring,
2023                         MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
2024                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
2025         /* bit0-7 is the length on GEN6+ */
2026         intel_ring_emit(ring, offset);
2027         intel_ring_advance(ring);
2028
2029         return 0;
2030 }
2031
2032 static int
2033 gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2034                               u64 offset, u32 len,
2035                               unsigned flags)
2036 {
2037         int ret;
2038
2039         ret = intel_ring_begin(ring, 2);
2040         if (ret)
2041                 return ret;
2042
2043         intel_ring_emit(ring,
2044                         MI_BATCH_BUFFER_START |
2045                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
2046         /* bit0-7 is the length on GEN6+ */
2047         intel_ring_emit(ring, offset);
2048         intel_ring_advance(ring);
2049
2050         return 0;
2051 }
2052
2053 /* Blitter support (SandyBridge+) */
2054
2055 static int gen6_ring_flush(struct intel_engine_cs *ring,
2056                            u32 invalidate, u32 flush)
2057 {
2058         struct drm_device *dev = ring->dev;
2059         uint32_t cmd;
2060         int ret;
2061
2062         ret = intel_ring_begin(ring, 4);
2063         if (ret)
2064                 return ret;
2065
2066         cmd = MI_FLUSH_DW;
2067         if (INTEL_INFO(ring->dev)->gen >= 8)
2068                 cmd += 1;
2069         /*
2070          * Bspec vol 1c.3 - blitter engine command streamer:
2071          * "If ENABLED, all TLBs will be invalidated once the flush
2072          * operation is complete. This bit is only valid when the
2073          * Post-Sync Operation field is a value of 1h or 3h."
2074          */
2075         if (invalidate & I915_GEM_DOMAIN_RENDER)
2076                 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
2077                         MI_FLUSH_DW_OP_STOREDW;
2078         intel_ring_emit(ring, cmd);
2079         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2080         if (INTEL_INFO(ring->dev)->gen >= 8) {
2081                 intel_ring_emit(ring, 0); /* upper addr */
2082                 intel_ring_emit(ring, 0); /* value */
2083         } else  {
2084                 intel_ring_emit(ring, 0);
2085                 intel_ring_emit(ring, MI_NOOP);
2086         }
2087         intel_ring_advance(ring);
2088
2089         if (IS_GEN7(dev) && !invalidate && flush)
2090                 return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
2091
2092         return 0;
2093 }
2094
2095 int intel_init_render_ring_buffer(struct drm_device *dev)
2096 {
2097         struct drm_i915_private *dev_priv = dev->dev_private;
2098         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2099         struct drm_i915_gem_object *obj;
2100         int ret;
2101
2102         ring->name = "render ring";
2103         ring->id = RCS;
2104         ring->mmio_base = RENDER_RING_BASE;
2105
2106         if (INTEL_INFO(dev)->gen >= 8) {
2107                 if (i915_semaphore_is_enabled(dev)) {
2108                         obj = i915_gem_alloc_object(dev, 4096);
2109                         if (obj == NULL) {
2110                                 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2111                                 i915.semaphores = 0;
2112                         } else {
2113                                 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2114                                 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2115                                 if (ret != 0) {
2116                                         drm_gem_object_unreference(&obj->base);
2117                                         DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2118                                         i915.semaphores = 0;
2119                                 } else
2120                                         dev_priv->semaphore_obj = obj;
2121                         }
2122                 }
2123                 ring->add_request = gen6_add_request;
2124                 ring->flush = gen8_render_ring_flush;
2125                 ring->irq_get = gen8_ring_get_irq;
2126                 ring->irq_put = gen8_ring_put_irq;
2127                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2128                 ring->get_seqno = gen6_ring_get_seqno;
2129                 ring->set_seqno = ring_set_seqno;
2130                 if (i915_semaphore_is_enabled(dev)) {
2131                         WARN_ON(!dev_priv->semaphore_obj);
2132                         ring->semaphore.sync_to = gen8_ring_sync;
2133                         ring->semaphore.signal = gen8_rcs_signal;
2134                         GEN8_RING_SEMAPHORE_INIT;
2135                 }
2136         } else if (INTEL_INFO(dev)->gen >= 6) {
2137                 ring->add_request = gen6_add_request;
2138                 ring->flush = gen7_render_ring_flush;
2139                 if (INTEL_INFO(dev)->gen == 6)
2140                         ring->flush = gen6_render_ring_flush;
2141                 ring->irq_get = gen6_ring_get_irq;
2142                 ring->irq_put = gen6_ring_put_irq;
2143                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2144                 ring->get_seqno = gen6_ring_get_seqno;
2145                 ring->set_seqno = ring_set_seqno;
2146                 if (i915_semaphore_is_enabled(dev)) {
2147                         ring->semaphore.sync_to = gen6_ring_sync;
2148                         ring->semaphore.signal = gen6_signal;
2149                         /*
2150                          * The current semaphore is only applied on pre-gen8
2151                          * platform.  And there is no VCS2 ring on the pre-gen8
2152                          * platform. So the semaphore between RCS and VCS2 is
2153                          * initialized as INVALID.  Gen8 will initialize the
2154                          * sema between VCS2 and RCS later.
2155                          */
2156                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2157                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2158                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2159                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2160                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2161                         ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2162                         ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2163                         ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2164                         ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2165                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2166                 }
2167         } else if (IS_GEN5(dev)) {
2168                 ring->add_request = pc_render_add_request;
2169                 ring->flush = gen4_render_ring_flush;
2170                 ring->get_seqno = pc_render_get_seqno;
2171                 ring->set_seqno = pc_render_set_seqno;
2172                 ring->irq_get = gen5_ring_get_irq;
2173                 ring->irq_put = gen5_ring_put_irq;
2174                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2175                                         GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2176         } else {
2177                 ring->add_request = i9xx_add_request;
2178                 if (INTEL_INFO(dev)->gen < 4)
2179                         ring->flush = gen2_render_ring_flush;
2180                 else
2181                         ring->flush = gen4_render_ring_flush;
2182                 ring->get_seqno = ring_get_seqno;
2183                 ring->set_seqno = ring_set_seqno;
2184                 if (IS_GEN2(dev)) {
2185                         ring->irq_get = i8xx_ring_get_irq;
2186                         ring->irq_put = i8xx_ring_put_irq;
2187                 } else {
2188                         ring->irq_get = i9xx_ring_get_irq;
2189                         ring->irq_put = i9xx_ring_put_irq;
2190                 }
2191                 ring->irq_enable_mask = I915_USER_INTERRUPT;
2192         }
2193         ring->write_tail = ring_write_tail;
2194
2195         if (IS_HASWELL(dev))
2196                 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2197         else if (IS_GEN8(dev))
2198                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2199         else if (INTEL_INFO(dev)->gen >= 6)
2200                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2201         else if (INTEL_INFO(dev)->gen >= 4)
2202                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2203         else if (IS_I830(dev) || IS_845G(dev))
2204                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2205         else
2206                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2207         ring->init = init_render_ring;
2208         ring->cleanup = render_ring_cleanup;
2209
2210         /* Workaround batchbuffer to combat CS tlb bug. */
2211         if (HAS_BROKEN_CS_TLB(dev)) {
2212                 obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2213                 if (obj == NULL) {
2214                         DRM_ERROR("Failed to allocate batch bo\n");
2215                         return -ENOMEM;
2216                 }
2217
2218                 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2219                 if (ret != 0) {
2220                         drm_gem_object_unreference(&obj->base);
2221                         DRM_ERROR("Failed to ping batch bo\n");
2222                         return ret;
2223                 }
2224
2225                 ring->scratch.obj = obj;
2226                 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2227         }
2228
2229         return intel_init_ring_buffer(dev, ring);
2230 }
2231
2232 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
2233 {
2234         struct drm_i915_private *dev_priv = dev->dev_private;
2235         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2236         struct intel_ringbuffer *ringbuf = ring->buffer;
2237         int ret;
2238
2239         if (ringbuf == NULL) {
2240                 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2241                 if (!ringbuf)
2242                         return -ENOMEM;
2243                 ring->buffer = ringbuf;
2244         }
2245
2246         ring->name = "render ring";
2247         ring->id = RCS;
2248         ring->mmio_base = RENDER_RING_BASE;
2249
2250         if (INTEL_INFO(dev)->gen >= 6) {
2251                 /* non-kms not supported on gen6+ */
2252                 ret = -ENODEV;
2253                 goto err_ringbuf;
2254         }
2255
2256         /* Note: gem is not supported on gen5/ilk without kms (the corresponding
2257          * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
2258          * the special gen5 functions. */
2259         ring->add_request = i9xx_add_request;
2260         if (INTEL_INFO(dev)->gen < 4)
2261                 ring->flush = gen2_render_ring_flush;
2262         else
2263                 ring->flush = gen4_render_ring_flush;
2264         ring->get_seqno = ring_get_seqno;
2265         ring->set_seqno = ring_set_seqno;
2266         if (IS_GEN2(dev)) {
2267                 ring->irq_get = i8xx_ring_get_irq;
2268                 ring->irq_put = i8xx_ring_put_irq;
2269         } else {
2270                 ring->irq_get = i9xx_ring_get_irq;
2271                 ring->irq_put = i9xx_ring_put_irq;
2272         }
2273         ring->irq_enable_mask = I915_USER_INTERRUPT;
2274         ring->write_tail = ring_write_tail;
2275         if (INTEL_INFO(dev)->gen >= 4)
2276                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2277         else if (IS_I830(dev) || IS_845G(dev))
2278                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2279         else
2280                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2281         ring->init = init_render_ring;
2282         ring->cleanup = render_ring_cleanup;
2283
2284         ring->dev = dev;
2285         INIT_LIST_HEAD(&ring->active_list);
2286         INIT_LIST_HEAD(&ring->request_list);
2287
2288         ringbuf->size = size;
2289         ringbuf->effective_size = ringbuf->size;
2290         if (IS_I830(ring->dev) || IS_845G(ring->dev))
2291                 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
2292
2293         ringbuf->virtual_start = ioremap_wc(start, size);
2294         if (ringbuf->virtual_start == NULL) {
2295                 DRM_ERROR("can not ioremap virtual address for"
2296                           " ring buffer\n");
2297                 ret = -ENOMEM;
2298                 goto err_ringbuf;
2299         }
2300
2301         if (!I915_NEED_GFX_HWS(dev)) {
2302                 ret = init_phys_status_page(ring);
2303                 if (ret)
2304                         goto err_vstart;
2305         }
2306
2307         return 0;
2308
2309 err_vstart:
2310         pmap_unmapdev((vm_offset_t)ring->buffer->virtual_start, size);
2311 err_ringbuf:
2312         kfree(ringbuf);
2313         ring->buffer = NULL;
2314         return ret;
2315 }
2316
2317 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2318 {
2319         struct drm_i915_private *dev_priv = dev->dev_private;
2320         struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2321
2322         ring->name = "bsd ring";
2323         ring->id = VCS;
2324
2325         ring->write_tail = ring_write_tail;
2326         if (INTEL_INFO(dev)->gen >= 6) {
2327                 ring->mmio_base = GEN6_BSD_RING_BASE;
2328                 /* gen6 bsd needs a special wa for tail updates */
2329                 if (IS_GEN6(dev))
2330                         ring->write_tail = gen6_bsd_ring_write_tail;
2331                 ring->flush = gen6_bsd_ring_flush;
2332                 ring->add_request = gen6_add_request;
2333                 ring->get_seqno = gen6_ring_get_seqno;
2334                 ring->set_seqno = ring_set_seqno;
2335                 if (INTEL_INFO(dev)->gen >= 8) {
2336                         ring->irq_enable_mask =
2337                                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2338                         ring->irq_get = gen8_ring_get_irq;
2339                         ring->irq_put = gen8_ring_put_irq;
2340                         ring->dispatch_execbuffer =
2341                                 gen8_ring_dispatch_execbuffer;
2342                         if (i915_semaphore_is_enabled(dev)) {
2343                                 ring->semaphore.sync_to = gen8_ring_sync;
2344                                 ring->semaphore.signal = gen8_xcs_signal;
2345                                 GEN8_RING_SEMAPHORE_INIT;
2346                         }
2347                 } else {
2348                         ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2349                         ring->irq_get = gen6_ring_get_irq;
2350                         ring->irq_put = gen6_ring_put_irq;
2351                         ring->dispatch_execbuffer =
2352                                 gen6_ring_dispatch_execbuffer;
2353                         if (i915_semaphore_is_enabled(dev)) {
2354                                 ring->semaphore.sync_to = gen6_ring_sync;
2355                                 ring->semaphore.signal = gen6_signal;
2356                                 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2357                                 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2358                                 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2359                                 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2360                                 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2361                                 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2362                                 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2363                                 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2364                                 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2365                                 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2366                         }
2367                 }
2368         } else {
2369                 ring->mmio_base = BSD_RING_BASE;
2370                 ring->flush = bsd_ring_flush;
2371                 ring->add_request = i9xx_add_request;
2372                 ring->get_seqno = ring_get_seqno;
2373                 ring->set_seqno = ring_set_seqno;
2374                 if (IS_GEN5(dev)) {
2375                         ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2376                         ring->irq_get = gen5_ring_get_irq;
2377                         ring->irq_put = gen5_ring_put_irq;
2378                 } else {
2379                         ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2380                         ring->irq_get = i9xx_ring_get_irq;
2381                         ring->irq_put = i9xx_ring_put_irq;
2382                 }
2383                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2384         }
2385         ring->init = init_ring_common;
2386
2387         return intel_init_ring_buffer(dev, ring);
2388 }
2389
2390 /**
2391  * Initialize the second BSD ring for Broadwell GT3.
2392  * It is noted that this only exists on Broadwell GT3.
2393  */
2394 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2395 {
2396         struct drm_i915_private *dev_priv = dev->dev_private;
2397         struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2398
2399         if ((INTEL_INFO(dev)->gen != 8)) {
2400                 DRM_ERROR("No dual-BSD ring on non-BDW machine\n");
2401                 return -EINVAL;
2402         }
2403
2404         ring->name = "bsd2 ring";
2405         ring->id = VCS2;
2406
2407         ring->write_tail = ring_write_tail;
2408         ring->mmio_base = GEN8_BSD2_RING_BASE;
2409         ring->flush = gen6_bsd_ring_flush;
2410         ring->add_request = gen6_add_request;
2411         ring->get_seqno = gen6_ring_get_seqno;
2412         ring->set_seqno = ring_set_seqno;
2413         ring->irq_enable_mask =
2414                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2415         ring->irq_get = gen8_ring_get_irq;
2416         ring->irq_put = gen8_ring_put_irq;
2417         ring->dispatch_execbuffer =
2418                         gen8_ring_dispatch_execbuffer;
2419         if (i915_semaphore_is_enabled(dev)) {
2420                 ring->semaphore.sync_to = gen8_ring_sync;
2421                 ring->semaphore.signal = gen8_xcs_signal;
2422                 GEN8_RING_SEMAPHORE_INIT;
2423         }
2424         ring->init = init_ring_common;
2425
2426         return intel_init_ring_buffer(dev, ring);
2427 }
2428
2429 int intel_init_blt_ring_buffer(struct drm_device *dev)
2430 {
2431         struct drm_i915_private *dev_priv = dev->dev_private;
2432         struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2433
2434         ring->name = "blitter ring";
2435         ring->id = BCS;
2436
2437         ring->mmio_base = BLT_RING_BASE;
2438         ring->write_tail = ring_write_tail;
2439         ring->flush = gen6_ring_flush;
2440         ring->add_request = gen6_add_request;
2441         ring->get_seqno = gen6_ring_get_seqno;
2442         ring->set_seqno = ring_set_seqno;
2443         if (INTEL_INFO(dev)->gen >= 8) {
2444                 ring->irq_enable_mask =
2445                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2446                 ring->irq_get = gen8_ring_get_irq;
2447                 ring->irq_put = gen8_ring_put_irq;
2448                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2449                 if (i915_semaphore_is_enabled(dev)) {
2450                         ring->semaphore.sync_to = gen8_ring_sync;
2451                         ring->semaphore.signal = gen8_xcs_signal;
2452                         GEN8_RING_SEMAPHORE_INIT;
2453                 }
2454         } else {
2455                 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2456                 ring->irq_get = gen6_ring_get_irq;
2457                 ring->irq_put = gen6_ring_put_irq;
2458                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2459                 if (i915_semaphore_is_enabled(dev)) {
2460                         ring->semaphore.signal = gen6_signal;
2461                         ring->semaphore.sync_to = gen6_ring_sync;
2462                         /*
2463                          * The current semaphore is only applied on pre-gen8
2464                          * platform.  And there is no VCS2 ring on the pre-gen8
2465                          * platform. So the semaphore between BCS and VCS2 is
2466                          * initialized as INVALID.  Gen8 will initialize the
2467                          * sema between BCS and VCS2 later.
2468                          */
2469                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2470                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2471                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2472                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2473                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2474                         ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2475                         ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2476                         ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2477                         ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2478                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2479                 }
2480         }
2481         ring->init = init_ring_common;
2482
2483         return intel_init_ring_buffer(dev, ring);
2484 }
2485
2486 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2487 {
2488         struct drm_i915_private *dev_priv = dev->dev_private;
2489         struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2490
2491         ring->name = "video enhancement ring";
2492         ring->id = VECS;
2493
2494         ring->mmio_base = VEBOX_RING_BASE;
2495         ring->write_tail = ring_write_tail;
2496         ring->flush = gen6_ring_flush;
2497         ring->add_request = gen6_add_request;
2498         ring->get_seqno = gen6_ring_get_seqno;
2499         ring->set_seqno = ring_set_seqno;
2500
2501         if (INTEL_INFO(dev)->gen >= 8) {
2502                 ring->irq_enable_mask =
2503                         GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2504                 ring->irq_get = gen8_ring_get_irq;
2505                 ring->irq_put = gen8_ring_put_irq;
2506                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2507                 if (i915_semaphore_is_enabled(dev)) {
2508                         ring->semaphore.sync_to = gen8_ring_sync;
2509                         ring->semaphore.signal = gen8_xcs_signal;
2510                         GEN8_RING_SEMAPHORE_INIT;
2511                 }
2512         } else {
2513                 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2514                 ring->irq_get = hsw_vebox_get_irq;
2515                 ring->irq_put = hsw_vebox_put_irq;
2516                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2517                 if (i915_semaphore_is_enabled(dev)) {
2518                         ring->semaphore.sync_to = gen6_ring_sync;
2519                         ring->semaphore.signal = gen6_signal;
2520                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2521                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2522                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2523                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2524                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2525                         ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2526                         ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2527                         ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2528                         ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2529                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2530                 }
2531         }
2532         ring->init = init_ring_common;
2533
2534         return intel_init_ring_buffer(dev, ring);
2535 }
2536
2537 int
2538 intel_ring_flush_all_caches(struct intel_engine_cs *ring)
2539 {
2540         int ret;
2541
2542         if (!ring->gpu_caches_dirty)
2543                 return 0;
2544
2545         ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2546         if (ret)
2547                 return ret;
2548
2549         trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2550
2551         ring->gpu_caches_dirty = false;
2552         return 0;
2553 }
2554
2555 int
2556 intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
2557 {
2558         uint32_t flush_domains;
2559         int ret;
2560
2561         flush_domains = 0;
2562         if (ring->gpu_caches_dirty)
2563                 flush_domains = I915_GEM_GPU_DOMAINS;
2564
2565         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2566         if (ret)
2567                 return ret;
2568
2569         trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2570
2571         ring->gpu_caches_dirty = false;
2572         return 0;
2573 }
2574
2575 void
2576 intel_stop_ring_buffer(struct intel_engine_cs *ring)
2577 {
2578         int ret;
2579
2580         if (!intel_ring_initialized(ring))
2581                 return;
2582
2583         ret = intel_ring_idle(ring);
2584         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2585                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2586                           ring->name, ret);
2587
2588         stop_ring(ring);
2589 }