kernel: Use the new auto-created sysctl ctx/tree in various drivers.
[dragonfly.git] / sys / dev / virtual / virtio / net / if_vtnet.c
1 /*-
2  * Copyright (c) 2011, Bryan Venteicher <bryanv@daemoninthecloset.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26
27 /* Driver for VirtIO network devices. */
28
29 #include <sys/cdefs.h>
30
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/kernel.h>
34 #include <sys/sockio.h>
35 #include <sys/mbuf.h>
36 #include <sys/malloc.h>
37 #include <sys/module.h>
38 #include <sys/socket.h>
39 #include <sys/sysctl.h>
40 #include <sys/taskqueue.h>
41 #include <sys/random.h>
42 #include <sys/sglist.h>
43 #include <sys/serialize.h>
44 #include <sys/bus.h>
45 #include <sys/rman.h>
46
47 #include <net/ethernet.h>
48 #include <net/if.h>
49 #include <net/if_arp.h>
50 #include <net/if_dl.h>
51 #include <net/if_types.h>
52 #include <net/if_media.h>
53 #include <net/vlan/if_vlan_var.h>
54 #include <net/vlan/if_vlan_ether.h>
55 #include <net/ifq_var.h>
56
57 #include <net/bpf.h>
58
59 #include <netinet/in_systm.h>
60 #include <netinet/in.h>
61 #include <netinet/ip.h>
62 #include <netinet/ip6.h>
63 #include <netinet/udp.h>
64 #include <netinet/tcp.h>
65 #include <netinet/sctp.h>
66
67 #include <dev/virtual/virtio/virtio/virtio.h>
68 #include <dev/virtual/virtio/virtio/virtqueue.h>
69
70 #include "virtio_net.h"
71 #include "virtio_if.h"
72
73 struct vtnet_statistics {
74         unsigned long           mbuf_alloc_failed;
75
76         unsigned long           rx_frame_too_large;
77         unsigned long           rx_enq_replacement_failed;
78         unsigned long           rx_mergeable_failed;
79         unsigned long           rx_csum_bad_ethtype;
80         unsigned long           rx_csum_bad_start;
81         unsigned long           rx_csum_bad_ipproto;
82         unsigned long           rx_csum_bad_offset;
83         unsigned long           rx_csum_failed;
84         unsigned long           rx_csum_offloaded;
85         unsigned long           rx_task_rescheduled;
86
87         unsigned long           tx_csum_offloaded;
88         unsigned long           tx_tso_offloaded;
89         unsigned long           tx_csum_bad_ethtype;
90         unsigned long           tx_tso_bad_ethtype;
91         unsigned long           tx_task_rescheduled;
92 };
93
94 struct vtnet_softc {
95         device_t                vtnet_dev;
96         struct ifnet            *vtnet_ifp;
97         struct lwkt_serialize   vtnet_slz;
98
99         uint32_t                vtnet_flags;
100 #define VTNET_FLAG_LINK         0x0001
101 #define VTNET_FLAG_SUSPENDED    0x0002
102 #define VTNET_FLAG_CTRL_VQ      0x0004
103 #define VTNET_FLAG_CTRL_RX      0x0008
104 #define VTNET_FLAG_VLAN_FILTER  0x0010
105 #define VTNET_FLAG_TSO_ECN      0x0020
106 #define VTNET_FLAG_MRG_RXBUFS   0x0040
107 #define VTNET_FLAG_LRO_NOMRG    0x0080
108
109         struct virtqueue        *vtnet_rx_vq;
110         struct virtqueue        *vtnet_tx_vq;
111         struct virtqueue        *vtnet_ctrl_vq;
112
113         struct vtnet_tx_header  *vtnet_txhdrarea;
114         uint32_t                vtnet_txhdridx;
115         struct vtnet_mac_filter *vtnet_macfilter;
116
117         int                     vtnet_hdr_size;
118         int                     vtnet_tx_size;
119         int                     vtnet_rx_size;
120         int                     vtnet_rx_process_limit;
121         int                     vtnet_rx_mbuf_size;
122         int                     vtnet_rx_mbuf_count;
123         int                     vtnet_if_flags;
124         int                     vtnet_watchdog_timer;
125         uint64_t                vtnet_features;
126
127         struct task             vtnet_cfgchg_task;
128
129         struct vtnet_statistics vtnet_stats;
130
131         struct callout          vtnet_tick_ch;
132
133         eventhandler_tag        vtnet_vlan_attach;
134         eventhandler_tag        vtnet_vlan_detach;
135
136         struct ifmedia          vtnet_media;
137         /*
138          * Fake media type; the host does not provide us with
139          * any real media information.
140          */
141 #define VTNET_MEDIATYPE         (IFM_ETHER | IFM_1000_T | IFM_FDX)
142         char                    vtnet_hwaddr[ETHER_ADDR_LEN];
143
144         /*
145          * During reset, the host's VLAN filtering table is lost. The
146          * array below is used to restore all the VLANs configured on
147          * this interface after a reset.
148          */
149 #define VTNET_VLAN_SHADOW_SIZE  (4096 / 32)
150         int                     vtnet_nvlans;
151         uint32_t                vtnet_vlan_shadow[VTNET_VLAN_SHADOW_SIZE];
152
153         char                    vtnet_mtx_name[16];
154 };
155
156 /*
157  * When mergeable buffers are not negotiated, the vtnet_rx_header structure
158  * below is placed at the beginning of the mbuf data. Use 4 bytes of pad to
159  * both keep the VirtIO header and the data non-contiguous and to keep the
160  * frame's payload 4 byte aligned.
161  *
162  * When mergeable buffers are negotiated, the host puts the VirtIO header in
163  * the beginning of the first mbuf's data.
164  */
165 #define VTNET_RX_HEADER_PAD     4
166 struct vtnet_rx_header {
167         struct virtio_net_hdr   vrh_hdr;
168         char                    vrh_pad[VTNET_RX_HEADER_PAD];
169 } __packed;
170
171 /*
172  * For each outgoing frame, the vtnet_tx_header below is allocated from
173  * the vtnet_tx_header_zone.
174  */
175 struct vtnet_tx_header {
176         union {
177                 struct virtio_net_hdr           hdr;
178                 struct virtio_net_hdr_mrg_rxbuf mhdr;
179         } vth_uhdr;
180
181         struct mbuf             *vth_mbuf;
182 };
183
184 MALLOC_DEFINE(M_VTNET, "VTNET_TX", "Outgoing VTNET TX frame header");
185
186 /*
187  * The VirtIO specification does not place a limit on the number of MAC
188  * addresses the guest driver may request to be filtered. In practice,
189  * the host is constrained by available resources. To simplify this driver,
190  * impose a reasonably high limit of MAC addresses we will filter before
191  * falling back to promiscuous or all-multicast modes.
192  */
193 #define VTNET_MAX_MAC_ENTRIES   128
194
195 struct vtnet_mac_table {
196         uint32_t                nentries;
197         uint8_t                 macs[VTNET_MAX_MAC_ENTRIES][ETHER_ADDR_LEN];
198 } __packed;
199
200 struct vtnet_mac_filter {
201         struct vtnet_mac_table  vmf_unicast;
202         uint32_t                vmf_pad; /* Make tables non-contiguous. */
203         struct vtnet_mac_table  vmf_multicast;
204 };
205
206 #define VTNET_WATCHDOG_TIMEOUT  5
207 #define VTNET_CSUM_OFFLOAD      (CSUM_TCP | CSUM_UDP)// | CSUM_SCTP)
208
209 /* Features desired/implemented by this driver. */
210 #define VTNET_FEATURES          \
211     (VIRTIO_NET_F_MAC           | \
212      VIRTIO_NET_F_STATUS        | \
213      VIRTIO_NET_F_CTRL_VQ       | \
214      VIRTIO_NET_F_CTRL_RX       | \
215      VIRTIO_NET_F_CTRL_VLAN     | \
216      VIRTIO_NET_F_CSUM          | \
217      VIRTIO_NET_F_HOST_TSO4     | \
218      VIRTIO_NET_F_HOST_TSO6     | \
219      VIRTIO_NET_F_HOST_ECN      | \
220      VIRTIO_NET_F_GUEST_CSUM    | \
221      VIRTIO_NET_F_GUEST_TSO4    | \
222      VIRTIO_NET_F_GUEST_TSO6    | \
223      VIRTIO_NET_F_GUEST_ECN     | \
224      VIRTIO_NET_F_MRG_RXBUF)
225
226 /*
227  * The VIRTIO_NET_F_GUEST_TSO[46] features permit the host to send us
228  * frames larger than 1514 bytes. We do not yet support software LRO
229  * via tcp_lro_rx().
230  */
231 #define VTNET_LRO_FEATURES (VIRTIO_NET_F_GUEST_TSO4 | \
232                             VIRTIO_NET_F_GUEST_TSO6 | VIRTIO_NET_F_GUEST_ECN)
233
234 #define VTNET_MAX_MTU           65536
235 #define VTNET_MAX_RX_SIZE       65550
236
237 /*
238  * Used to preallocate the Vq indirect descriptors. The first segment
239  * is reserved for the header.
240  */
241 #define VTNET_MIN_RX_SEGS       2
242 #define VTNET_MAX_RX_SEGS       34
243 #define VTNET_MAX_TX_SEGS       34
244
245 #define IFCAP_TSO4              0x00100 /* can do TCP Segmentation Offload */
246 #define IFCAP_TSO6              0x00200 /* can do TCP6 Segmentation Offload */
247 #define IFCAP_LRO               0x00400 /* can do Large Receive Offload */
248 #define IFCAP_VLAN_HWFILTER     0x10000 /* interface hw can filter vlan tag */
249 #define IFCAP_VLAN_HWTSO        0x40000 /* can do IFCAP_TSO on VLANs */
250
251
252 /*
253  * Assert we can receive and transmit the maximum with regular
254  * size clusters.
255  */
256 CTASSERT(((VTNET_MAX_RX_SEGS - 1) * MCLBYTES) >= VTNET_MAX_RX_SIZE);
257 CTASSERT(((VTNET_MAX_TX_SEGS - 1) * MCLBYTES) >= VTNET_MAX_MTU);
258
259 /*
260  * Determine how many mbufs are in each receive buffer. For LRO without
261  * mergeable descriptors, we must allocate an mbuf chain large enough to
262  * hold both the vtnet_rx_header and the maximum receivable data.
263  */
264 #define VTNET_NEEDED_RX_MBUFS(_sc)                                      \
265         ((_sc)->vtnet_flags & VTNET_FLAG_LRO_NOMRG) == 0 ? 1 :          \
266         howmany(sizeof(struct vtnet_rx_header) + VTNET_MAX_RX_SIZE,     \
267         (_sc)->vtnet_rx_mbuf_size)
268
269 static int      vtnet_modevent(module_t, int, void *);
270
271 static int      vtnet_probe(device_t);
272 static int      vtnet_attach(device_t);
273 static int      vtnet_detach(device_t);
274 static int      vtnet_suspend(device_t);
275 static int      vtnet_resume(device_t);
276 static int      vtnet_shutdown(device_t);
277 static int      vtnet_config_change(device_t);
278
279 static void     vtnet_negotiate_features(struct vtnet_softc *);
280 static int      vtnet_alloc_virtqueues(struct vtnet_softc *);
281 static void     vtnet_get_hwaddr(struct vtnet_softc *);
282 static void     vtnet_set_hwaddr(struct vtnet_softc *);
283 static int      vtnet_is_link_up(struct vtnet_softc *);
284 static void     vtnet_update_link_status(struct vtnet_softc *);
285 #if 0
286 static void     vtnet_watchdog(struct vtnet_softc *);
287 #endif
288 static void     vtnet_config_change_task(void *, int);
289 static int      vtnet_change_mtu(struct vtnet_softc *, int);
290 static int      vtnet_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
291
292 static int      vtnet_init_rx_vq(struct vtnet_softc *);
293 static void     vtnet_free_rx_mbufs(struct vtnet_softc *);
294 static void     vtnet_free_tx_mbufs(struct vtnet_softc *);
295 static void     vtnet_free_ctrl_vq(struct vtnet_softc *);
296
297 static struct mbuf * vtnet_alloc_rxbuf(struct vtnet_softc *, int,
298                     struct mbuf **);
299 static int      vtnet_replace_rxbuf(struct vtnet_softc *,
300                     struct mbuf *, int);
301 static int      vtnet_newbuf(struct vtnet_softc *);
302 static void     vtnet_discard_merged_rxbuf(struct vtnet_softc *, int);
303 static void     vtnet_discard_rxbuf(struct vtnet_softc *, struct mbuf *);
304 static int      vtnet_enqueue_rxbuf(struct vtnet_softc *, struct mbuf *);
305 static void     vtnet_vlan_tag_remove(struct mbuf *);
306 static int      vtnet_rx_csum(struct vtnet_softc *, struct mbuf *,
307                     struct virtio_net_hdr *);
308 static int      vtnet_rxeof_merged(struct vtnet_softc *, struct mbuf *, int);
309 static int      vtnet_rxeof(struct vtnet_softc *, int, int *);
310 static void     vtnet_rx_intr_task(void *);
311 static int      vtnet_rx_vq_intr(void *);
312
313 static void     vtnet_txeof(struct vtnet_softc *);
314 static struct mbuf * vtnet_tx_offload(struct vtnet_softc *, struct mbuf *,
315                     struct virtio_net_hdr *);
316 static int      vtnet_enqueue_txbuf(struct vtnet_softc *, struct mbuf **,
317                     struct vtnet_tx_header *);
318 static int      vtnet_encap(struct vtnet_softc *, struct mbuf **);
319 static void     vtnet_start_locked(struct ifnet *, struct ifaltq_subque *);
320 static void     vtnet_start(struct ifnet *, struct ifaltq_subque *);
321 static void     vtnet_tick(void *);
322 static void     vtnet_tx_intr_task(void *);
323 static int      vtnet_tx_vq_intr(void *);
324
325 static void     vtnet_stop(struct vtnet_softc *);
326 static int      vtnet_reinit(struct vtnet_softc *);
327 static void     vtnet_init_locked(struct vtnet_softc *);
328 static void     vtnet_init(void *);
329
330 static void     vtnet_exec_ctrl_cmd(struct vtnet_softc *, void *,
331                     struct sglist *, int, int);
332
333 static void     vtnet_rx_filter(struct vtnet_softc *sc);
334 static int      vtnet_ctrl_rx_cmd(struct vtnet_softc *, int, int);
335 static int      vtnet_set_promisc(struct vtnet_softc *, int);
336 static int      vtnet_set_allmulti(struct vtnet_softc *, int);
337 static void     vtnet_rx_filter_mac(struct vtnet_softc *);
338
339 static int      vtnet_exec_vlan_filter(struct vtnet_softc *, int, uint16_t);
340 static void     vtnet_rx_filter_vlan(struct vtnet_softc *);
341 static void     vtnet_set_vlan_filter(struct vtnet_softc *, int, uint16_t);
342 static void     vtnet_register_vlan(void *, struct ifnet *, uint16_t);
343 static void     vtnet_unregister_vlan(void *, struct ifnet *, uint16_t);
344
345 static int      vtnet_ifmedia_upd(struct ifnet *);
346 static void     vtnet_ifmedia_sts(struct ifnet *, struct ifmediareq *);
347
348 static void     vtnet_add_statistics(struct vtnet_softc *);
349
350 static int      vtnet_enable_rx_intr(struct vtnet_softc *);
351 static int      vtnet_enable_tx_intr(struct vtnet_softc *);
352 static void     vtnet_disable_rx_intr(struct vtnet_softc *);
353 static void     vtnet_disable_tx_intr(struct vtnet_softc *);
354
355 /* Tunables. */
356 static int vtnet_csum_disable = 0;
357 TUNABLE_INT("hw.vtnet.csum_disable", &vtnet_csum_disable);
358 static int vtnet_tso_disable = 1;
359 TUNABLE_INT("hw.vtnet.tso_disable", &vtnet_tso_disable);
360 static int vtnet_lro_disable = 1;
361 TUNABLE_INT("hw.vtnet.lro_disable", &vtnet_lro_disable);
362
363 /*
364  * Reducing the number of transmit completed interrupts can
365  * improve performance. To do so, the define below keeps the
366  * Tx vq interrupt disabled and adds calls to vtnet_txeof()
367  * in the start and watchdog paths. The price to pay for this
368  * is the m_free'ing of transmitted mbufs may be delayed until
369  * the watchdog fires.
370  */
371 #define VTNET_TX_INTR_MODERATION
372
373 static struct virtio_feature_desc vtnet_feature_desc[] = {
374         { VIRTIO_NET_F_CSUM,            "TxChecksum"    },
375         { VIRTIO_NET_F_GUEST_CSUM,      "RxChecksum"    },
376         { VIRTIO_NET_F_MAC,             "MacAddress"    },
377         { VIRTIO_NET_F_GSO,             "TxAllGSO"      },
378         { VIRTIO_NET_F_GUEST_TSO4,      "RxTSOv4"       },
379         { VIRTIO_NET_F_GUEST_TSO6,      "RxTSOv6"       },
380         { VIRTIO_NET_F_GUEST_ECN,       "RxECN"         },
381         { VIRTIO_NET_F_GUEST_UFO,       "RxUFO"         },
382         { VIRTIO_NET_F_HOST_TSO4,       "TxTSOv4"       },
383         { VIRTIO_NET_F_HOST_TSO6,       "TxTSOv6"       },
384         { VIRTIO_NET_F_HOST_ECN,        "TxTSOECN"      },
385         { VIRTIO_NET_F_HOST_UFO,        "TxUFO"         },
386         { VIRTIO_NET_F_MRG_RXBUF,       "MrgRxBuf"      },
387         { VIRTIO_NET_F_STATUS,          "Status"        },
388         { VIRTIO_NET_F_CTRL_VQ,         "ControlVq"     },
389         { VIRTIO_NET_F_CTRL_RX,         "RxMode"        },
390         { VIRTIO_NET_F_CTRL_VLAN,       "VLanFilter"    },
391         { VIRTIO_NET_F_CTRL_RX_EXTRA,   "RxModeExtra"   },
392         { VIRTIO_NET_F_MQ,              "RFS"           },
393         { 0, NULL }
394 };
395
396 static device_method_t vtnet_methods[] = {
397         /* Device methods. */
398         DEVMETHOD(device_probe,         vtnet_probe),
399         DEVMETHOD(device_attach,        vtnet_attach),
400         DEVMETHOD(device_detach,        vtnet_detach),
401         DEVMETHOD(device_suspend,       vtnet_suspend),
402         DEVMETHOD(device_resume,        vtnet_resume),
403         DEVMETHOD(device_shutdown,      vtnet_shutdown),
404
405         /* VirtIO methods. */
406         DEVMETHOD(virtio_config_change, vtnet_config_change),
407
408         { 0, 0 }
409 };
410
411 static driver_t vtnet_driver = {
412         "vtnet",
413         vtnet_methods,
414         sizeof(struct vtnet_softc)
415 };
416
417 static devclass_t vtnet_devclass;
418
419 DRIVER_MODULE(vtnet, virtio_pci, vtnet_driver, vtnet_devclass,
420               vtnet_modevent, 0);
421 MODULE_VERSION(vtnet, 1);
422 MODULE_DEPEND(vtnet, virtio, 1, 1, 1);
423
424 static int
425 vtnet_modevent(module_t mod, int type, void *unused)
426 {
427         int error;
428
429         error = 0;
430
431         switch (type) {
432         case MOD_LOAD:
433                 break;
434         case MOD_UNLOAD:
435                 break;
436         case MOD_SHUTDOWN:
437                 break;
438         default:
439                 error = EOPNOTSUPP;
440                 break;
441         }
442
443         return (error);
444 }
445
446 static int
447 vtnet_probe(device_t dev)
448 {
449         if (virtio_get_device_type(dev) != VIRTIO_ID_NETWORK)
450                 return (ENXIO);
451
452         device_set_desc(dev, "VirtIO Networking Adapter");
453
454         return (BUS_PROBE_DEFAULT);
455 }
456
457 static int
458 vtnet_attach(device_t dev)
459 {
460         struct vtnet_softc *sc;
461         struct ifnet *ifp;
462         int tx_size, error;
463
464         sc = device_get_softc(dev);
465         sc->vtnet_dev = dev;
466
467         lwkt_serialize_init(&sc->vtnet_slz);
468         callout_init(&sc->vtnet_tick_ch);
469
470         ifmedia_init(&sc->vtnet_media, IFM_IMASK, vtnet_ifmedia_upd,
471                      vtnet_ifmedia_sts);
472         ifmedia_add(&sc->vtnet_media, VTNET_MEDIATYPE, 0, NULL);
473         ifmedia_set(&sc->vtnet_media, VTNET_MEDIATYPE);
474
475         vtnet_add_statistics(sc);
476
477         virtio_set_feature_desc(dev, vtnet_feature_desc);
478         vtnet_negotiate_features(sc);
479
480         if (virtio_with_feature(dev, VIRTIO_NET_F_MRG_RXBUF)) {
481                 sc->vtnet_flags |= VTNET_FLAG_MRG_RXBUFS;
482                 sc->vtnet_hdr_size = sizeof(struct virtio_net_hdr_mrg_rxbuf);
483         } else {
484                 sc->vtnet_hdr_size = sizeof(struct virtio_net_hdr);
485         }
486
487         sc->vtnet_rx_mbuf_size = MCLBYTES;
488         sc->vtnet_rx_mbuf_count = VTNET_NEEDED_RX_MBUFS(sc);
489
490         if (virtio_with_feature(dev, VIRTIO_NET_F_CTRL_VQ)) {
491                 sc->vtnet_flags |= VTNET_FLAG_CTRL_VQ;
492
493                 if (virtio_with_feature(dev, VIRTIO_NET_F_CTRL_RX))
494                         sc->vtnet_flags |= VTNET_FLAG_CTRL_RX;
495                 if (virtio_with_feature(dev, VIRTIO_NET_F_CTRL_VLAN))
496                         sc->vtnet_flags |= VTNET_FLAG_VLAN_FILTER;
497         }
498
499         vtnet_get_hwaddr(sc);
500
501         error = vtnet_alloc_virtqueues(sc);
502         if (error) {
503                 device_printf(dev, "cannot allocate virtqueues\n");
504                 goto fail;
505         }
506
507         ifp = sc->vtnet_ifp = if_alloc(IFT_ETHER);
508         if (ifp == NULL) {
509                 device_printf(dev, "cannot allocate ifnet structure\n");
510                 error = ENOSPC;
511                 goto fail;
512         }
513
514         ifp->if_softc = sc;
515         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
516         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
517         ifp->if_init = vtnet_init;
518         ifp->if_start = vtnet_start;
519         ifp->if_ioctl = vtnet_ioctl;
520
521         sc->vtnet_rx_size = virtqueue_size(sc->vtnet_rx_vq);
522         sc->vtnet_rx_process_limit = sc->vtnet_rx_size;
523
524         tx_size = virtqueue_size(sc->vtnet_tx_vq);
525         sc->vtnet_tx_size = tx_size;
526         sc->vtnet_txhdridx = 0;
527         sc->vtnet_txhdrarea = contigmalloc(
528             ((sc->vtnet_tx_size / 2) + 1) * sizeof(struct vtnet_tx_header),
529             M_VTNET, M_WAITOK, 0, BUS_SPACE_MAXADDR, 4, 0);
530         if (sc->vtnet_txhdrarea == NULL) {
531                 device_printf(dev, "cannot contigmalloc the tx headers\n");
532                 goto fail;
533         }
534         sc->vtnet_macfilter = contigmalloc(
535             sizeof(struct vtnet_mac_filter),
536             M_DEVBUF, M_WAITOK, 0, BUS_SPACE_MAXADDR, 4, 0);
537         if (sc->vtnet_macfilter == NULL) {
538                 device_printf(dev,
539                     "cannot contigmalloc the mac filter table\n");
540                 goto fail;
541         }
542         ifq_set_maxlen(&ifp->if_snd, tx_size - 1);
543         ifq_set_ready(&ifp->if_snd);
544
545         ether_ifattach(ifp, sc->vtnet_hwaddr, NULL);
546
547         if (virtio_with_feature(dev, VIRTIO_NET_F_STATUS)){
548                 //ifp->if_capabilities |= IFCAP_LINKSTATE;
549                  kprintf("add dynamic link state\n");
550         }
551
552         /* Tell the upper layer(s) we support long frames. */
553         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
554         ifp->if_capabilities |= IFCAP_JUMBO_MTU | IFCAP_VLAN_MTU;
555
556         if (virtio_with_feature(dev, VIRTIO_NET_F_CSUM)) {
557                 ifp->if_capabilities |= IFCAP_TXCSUM;
558
559                 if (virtio_with_feature(dev, VIRTIO_NET_F_HOST_TSO4))
560                         ifp->if_capabilities |= IFCAP_TSO4;
561                 if (virtio_with_feature(dev, VIRTIO_NET_F_HOST_TSO6))
562                         ifp->if_capabilities |= IFCAP_TSO6;
563                 if (ifp->if_capabilities & IFCAP_TSO)
564                         ifp->if_capabilities |= IFCAP_VLAN_HWTSO;
565
566                 if (virtio_with_feature(dev, VIRTIO_NET_F_HOST_ECN))
567                         sc->vtnet_flags |= VTNET_FLAG_TSO_ECN;
568         }
569
570         if (virtio_with_feature(dev, VIRTIO_NET_F_GUEST_CSUM)) {
571                 ifp->if_capabilities |= IFCAP_RXCSUM;
572
573                 if (virtio_with_feature(dev, VIRTIO_NET_F_GUEST_TSO4) ||
574                     virtio_with_feature(dev, VIRTIO_NET_F_GUEST_TSO6))
575                         ifp->if_capabilities |= IFCAP_LRO;
576         }
577
578         if (ifp->if_capabilities & IFCAP_HWCSUM) {
579                 /*
580                  * VirtIO does not support VLAN tagging, but we can fake
581                  * it by inserting and removing the 802.1Q header during
582                  * transmit and receive. We are then able to do checksum
583                  * offloading of VLAN frames.
584                  */
585                 ifp->if_capabilities |=
586                         IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM;
587         }
588
589         ifp->if_capenable = ifp->if_capabilities;
590
591         /*
592          * Capabilities after here are not enabled by default.
593          */
594
595         if (sc->vtnet_flags & VTNET_FLAG_VLAN_FILTER) {
596                 ifp->if_capabilities |= IFCAP_VLAN_HWFILTER;
597
598                 sc->vtnet_vlan_attach = EVENTHANDLER_REGISTER(vlan_config,
599                     vtnet_register_vlan, sc, EVENTHANDLER_PRI_FIRST);
600                 sc->vtnet_vlan_detach = EVENTHANDLER_REGISTER(vlan_unconfig,
601                     vtnet_unregister_vlan, sc, EVENTHANDLER_PRI_FIRST);
602         }
603
604         TASK_INIT(&sc->vtnet_cfgchg_task, 0, vtnet_config_change_task, sc);
605
606         error = virtio_setup_intr(dev, &sc->vtnet_slz);
607         if (error) {
608                 device_printf(dev, "cannot setup virtqueue interrupts\n");
609                 ether_ifdetach(ifp);
610                 goto fail;
611         }
612
613         /*
614          * Device defaults to promiscuous mode for backwards
615          * compatibility. Turn it off if possible.
616          */
617         if (sc->vtnet_flags & VTNET_FLAG_CTRL_RX) {
618                 lwkt_serialize_enter(&sc->vtnet_slz);
619                 if (vtnet_set_promisc(sc, 0) != 0) {
620                         ifp->if_flags |= IFF_PROMISC;
621                         device_printf(dev,
622                             "cannot disable promiscuous mode\n");
623                 }
624                 lwkt_serialize_exit(&sc->vtnet_slz);
625         } else
626                 ifp->if_flags |= IFF_PROMISC;
627
628 fail:
629         if (error)
630                 vtnet_detach(dev);
631
632         return (error);
633 }
634
635 static int
636 vtnet_detach(device_t dev)
637 {
638         struct vtnet_softc *sc;
639         struct ifnet *ifp;
640
641         sc = device_get_softc(dev);
642         ifp = sc->vtnet_ifp;
643
644         if (device_is_attached(dev)) {
645                 lwkt_serialize_enter(&sc->vtnet_slz);
646                 vtnet_stop(sc);
647                 lwkt_serialize_exit(&sc->vtnet_slz);
648
649                 callout_stop(&sc->vtnet_tick_ch);
650                 taskqueue_drain(taskqueue_swi, &sc->vtnet_cfgchg_task);
651
652                 ether_ifdetach(ifp);
653         }
654
655         if (sc->vtnet_vlan_attach != NULL) {
656                 EVENTHANDLER_DEREGISTER(vlan_config, sc->vtnet_vlan_attach);
657                 sc->vtnet_vlan_attach = NULL;
658         }
659         if (sc->vtnet_vlan_detach != NULL) {
660                 EVENTHANDLER_DEREGISTER(vlan_unconfg, sc->vtnet_vlan_detach);
661                 sc->vtnet_vlan_detach = NULL;
662         }
663
664         if (ifp) {
665                 if_free(ifp);
666                 sc->vtnet_ifp = NULL;
667         }
668
669         if (sc->vtnet_rx_vq != NULL)
670                 vtnet_free_rx_mbufs(sc);
671         if (sc->vtnet_tx_vq != NULL)
672                 vtnet_free_tx_mbufs(sc);
673         if (sc->vtnet_ctrl_vq != NULL)
674                 vtnet_free_ctrl_vq(sc);
675
676         if (sc->vtnet_txhdrarea != NULL) {
677                 contigfree(sc->vtnet_txhdrarea,
678                     ((sc->vtnet_tx_size / 2) + 1) *
679                     sizeof(struct vtnet_tx_header), M_VTNET);
680                 sc->vtnet_txhdrarea = NULL;
681         }
682         if (sc->vtnet_macfilter != NULL) {
683                 contigfree(sc->vtnet_macfilter,
684                     sizeof(struct vtnet_mac_filter), M_DEVBUF);
685                 sc->vtnet_macfilter = NULL;
686         }
687
688         ifmedia_removeall(&sc->vtnet_media);
689
690         return (0);
691 }
692
693 static int
694 vtnet_suspend(device_t dev)
695 {
696         struct vtnet_softc *sc;
697
698         sc = device_get_softc(dev);
699
700         lwkt_serialize_enter(&sc->vtnet_slz);
701         vtnet_stop(sc);
702         sc->vtnet_flags |= VTNET_FLAG_SUSPENDED;
703         lwkt_serialize_exit(&sc->vtnet_slz);
704
705         return (0);
706 }
707
708 static int
709 vtnet_resume(device_t dev)
710 {
711         struct vtnet_softc *sc;
712         struct ifnet *ifp;
713
714         sc = device_get_softc(dev);
715         ifp = sc->vtnet_ifp;
716
717         lwkt_serialize_enter(&sc->vtnet_slz);
718         if (ifp->if_flags & IFF_UP)
719                 vtnet_init_locked(sc);
720         sc->vtnet_flags &= ~VTNET_FLAG_SUSPENDED;
721         lwkt_serialize_exit(&sc->vtnet_slz);
722
723         return (0);
724 }
725
726 static int
727 vtnet_shutdown(device_t dev)
728 {
729
730         /*
731          * Suspend already does all of what we need to
732          * do here; we just never expect to be resumed.
733          */
734         return (vtnet_suspend(dev));
735 }
736
737 static int
738 vtnet_config_change(device_t dev)
739 {
740         struct vtnet_softc *sc;
741
742         sc = device_get_softc(dev);
743
744         taskqueue_enqueue(taskqueue_thread[mycpuid], &sc->vtnet_cfgchg_task);
745
746         return (1);
747 }
748
749 static void
750 vtnet_negotiate_features(struct vtnet_softc *sc)
751 {
752         device_t dev;
753         uint64_t mask, features;
754
755         dev = sc->vtnet_dev;
756         mask = 0;
757
758         if (vtnet_csum_disable)
759                 mask |= VIRTIO_NET_F_CSUM | VIRTIO_NET_F_GUEST_CSUM;
760
761         /*
762          * TSO and LRO are only available when their corresponding
763          * checksum offload feature is also negotiated.
764          */
765
766         if (vtnet_csum_disable || vtnet_tso_disable)
767                 mask |= VIRTIO_NET_F_HOST_TSO4 | VIRTIO_NET_F_HOST_TSO6 |
768                     VIRTIO_NET_F_HOST_ECN;
769
770         if (vtnet_csum_disable || vtnet_lro_disable)
771                 mask |= VTNET_LRO_FEATURES;
772
773         features = VTNET_FEATURES & ~mask;
774         features |= VIRTIO_F_NOTIFY_ON_EMPTY;
775         sc->vtnet_features = virtio_negotiate_features(dev, features);
776 }
777
778 static int
779 vtnet_alloc_virtqueues(struct vtnet_softc *sc)
780 {
781         device_t dev;
782         struct vq_alloc_info vq_info[3];
783         int nvqs, rxsegs;
784
785         dev = sc->vtnet_dev;
786         nvqs = 2;
787
788         /*
789          * Indirect descriptors are not needed for the Rx
790          * virtqueue when mergeable buffers are negotiated.
791          * The header is placed inline with the data, not
792          * in a separate descriptor, and mbuf clusters are
793          * always physically contiguous.
794          */
795         if ((sc->vtnet_flags & VTNET_FLAG_MRG_RXBUFS) == 0) {
796                 rxsegs = sc->vtnet_flags & VTNET_FLAG_LRO_NOMRG ?
797                     VTNET_MAX_RX_SEGS : VTNET_MIN_RX_SEGS;
798         } else
799                 rxsegs = 0;
800
801         VQ_ALLOC_INFO_INIT(&vq_info[0], rxsegs,
802             vtnet_rx_vq_intr, sc, &sc->vtnet_rx_vq,
803             "%s receive", device_get_nameunit(dev));
804
805         VQ_ALLOC_INFO_INIT(&vq_info[1], VTNET_MAX_TX_SEGS,
806             vtnet_tx_vq_intr, sc, &sc->vtnet_tx_vq,
807             "%s transmit", device_get_nameunit(dev));
808
809         if (sc->vtnet_flags & VTNET_FLAG_CTRL_VQ) {
810                 nvqs++;
811
812                 VQ_ALLOC_INFO_INIT(&vq_info[2], 0, NULL, NULL,
813                     &sc->vtnet_ctrl_vq, "%s control",
814                     device_get_nameunit(dev));
815         }
816
817         return (virtio_alloc_virtqueues(dev, 0, nvqs, vq_info));
818 }
819
820 static void
821 vtnet_get_hwaddr(struct vtnet_softc *sc)
822 {
823         device_t dev;
824
825         dev = sc->vtnet_dev;
826
827         if (virtio_with_feature(dev, VIRTIO_NET_F_MAC)) {
828                 virtio_read_device_config(dev,
829                     offsetof(struct virtio_net_config, mac),
830                     sc->vtnet_hwaddr, ETHER_ADDR_LEN);
831         } else {
832                 /* Generate random locally administered unicast address. */
833                 sc->vtnet_hwaddr[0] = 0xB2;
834                 karc4rand(&sc->vtnet_hwaddr[1], ETHER_ADDR_LEN - 1);
835
836                 vtnet_set_hwaddr(sc);
837         }
838 }
839
840 static void
841 vtnet_set_hwaddr(struct vtnet_softc *sc)
842 {
843         device_t dev;
844
845         dev = sc->vtnet_dev;
846
847         virtio_write_device_config(dev,
848             offsetof(struct virtio_net_config, mac),
849             sc->vtnet_hwaddr, ETHER_ADDR_LEN);
850 }
851
852 static int
853 vtnet_is_link_up(struct vtnet_softc *sc)
854 {
855         device_t dev;
856         struct ifnet *ifp;
857         uint16_t status;
858
859         dev = sc->vtnet_dev;
860         ifp = sc->vtnet_ifp;
861
862         ASSERT_SERIALIZED(&sc->vtnet_slz);
863
864         status = virtio_read_dev_config_2(dev,
865                         offsetof(struct virtio_net_config, status));
866
867         return ((status & VIRTIO_NET_S_LINK_UP) != 0);
868 }
869
870 static void
871 vtnet_update_link_status(struct vtnet_softc *sc)
872 {
873         device_t dev;
874         struct ifnet *ifp;
875         struct ifaltq_subque *ifsq;
876         int link;
877
878         dev = sc->vtnet_dev;
879         ifp = sc->vtnet_ifp;
880         ifsq = ifq_get_subq_default(&ifp->if_snd);
881
882         link = vtnet_is_link_up(sc);
883
884         if (link && ((sc->vtnet_flags & VTNET_FLAG_LINK) == 0)) {
885                 sc->vtnet_flags |= VTNET_FLAG_LINK;
886                 if (bootverbose)
887                         device_printf(dev, "Link is up\n");
888                 ifp->if_link_state = LINK_STATE_UP;
889                 if_link_state_change(ifp);
890                 if (!ifsq_is_empty(ifsq))
891                         vtnet_start_locked(ifp, ifsq);
892         } else if (!link && (sc->vtnet_flags & VTNET_FLAG_LINK)) {
893                 sc->vtnet_flags &= ~VTNET_FLAG_LINK;
894                 if (bootverbose)
895                         device_printf(dev, "Link is down\n");
896
897                 ifp->if_link_state = LINK_STATE_DOWN;
898                 if_link_state_change(ifp);
899         }
900 }
901
902 #if 0
903 static void
904 vtnet_watchdog(struct vtnet_softc *sc)
905 {
906         struct ifnet *ifp;
907
908         ifp = sc->vtnet_ifp;
909
910 #ifdef VTNET_TX_INTR_MODERATION
911         vtnet_txeof(sc);
912 #endif
913
914         if (sc->vtnet_watchdog_timer == 0 || --sc->vtnet_watchdog_timer)
915                 return;
916
917         if_printf(ifp, "watchdog timeout -- resetting\n");
918 #ifdef VTNET_DEBUG
919         virtqueue_dump(sc->vtnet_tx_vq);
920 #endif
921         ifp->if_oerrors++;
922         ifp->if_flags &= ~IFF_RUNNING;
923         vtnet_init_locked(sc);
924 }
925 #endif
926
927 static void
928 vtnet_config_change_task(void *arg, int pending)
929 {
930         struct vtnet_softc *sc;
931
932         sc = arg;
933
934         lwkt_serialize_enter(&sc->vtnet_slz);
935         vtnet_update_link_status(sc);
936         lwkt_serialize_exit(&sc->vtnet_slz);
937 }
938
939 static int
940 vtnet_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data,struct ucred *cr)
941 {
942         struct vtnet_softc *sc;
943         struct ifreq *ifr;
944         int reinit, mask, error;
945
946         sc = ifp->if_softc;
947         ifr = (struct ifreq *) data;
948         reinit = 0;
949         error = 0;
950
951         switch (cmd) {
952         case SIOCSIFMTU:
953                 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > VTNET_MAX_MTU)
954                         error = EINVAL;
955                 else if (ifp->if_mtu != ifr->ifr_mtu) {
956                         lwkt_serialize_enter(&sc->vtnet_slz);
957                         error = vtnet_change_mtu(sc, ifr->ifr_mtu);
958                         lwkt_serialize_exit(&sc->vtnet_slz);
959                 }
960                 break;
961
962         case SIOCSIFFLAGS:
963                 lwkt_serialize_enter(&sc->vtnet_slz);
964                 if ((ifp->if_flags & IFF_UP) == 0) {
965                         if (ifp->if_flags & IFF_RUNNING)
966                                 vtnet_stop(sc);
967                 } else if (ifp->if_flags & IFF_RUNNING) {
968                         if ((ifp->if_flags ^ sc->vtnet_if_flags) &
969                             (IFF_PROMISC | IFF_ALLMULTI)) {
970                                 if (sc->vtnet_flags & VTNET_FLAG_CTRL_RX)
971                                         vtnet_rx_filter(sc);
972                                 else
973                                         error = ENOTSUP;
974                         }
975                 } else
976                         vtnet_init_locked(sc);
977
978                 if (error == 0)
979                         sc->vtnet_if_flags = ifp->if_flags;
980                 lwkt_serialize_exit(&sc->vtnet_slz);
981                 break;
982
983         case SIOCADDMULTI:
984         case SIOCDELMULTI:
985                 lwkt_serialize_enter(&sc->vtnet_slz);
986                 if ((sc->vtnet_flags & VTNET_FLAG_CTRL_RX) &&
987                     (ifp->if_flags & IFF_RUNNING))
988                         vtnet_rx_filter_mac(sc);
989                 lwkt_serialize_exit(&sc->vtnet_slz);
990                 break;
991
992         case SIOCSIFMEDIA:
993         case SIOCGIFMEDIA:
994                 error = ifmedia_ioctl(ifp, ifr, &sc->vtnet_media, cmd);
995                 break;
996
997         case SIOCSIFCAP:
998                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
999
1000                 lwkt_serialize_enter(&sc->vtnet_slz);
1001
1002                 if (mask & IFCAP_TXCSUM) {
1003                         ifp->if_capenable ^= IFCAP_TXCSUM;
1004                         if (ifp->if_capenable & IFCAP_TXCSUM)
1005                                 ifp->if_hwassist |= VTNET_CSUM_OFFLOAD;
1006                         else
1007                                 ifp->if_hwassist &= ~VTNET_CSUM_OFFLOAD;
1008                 }
1009
1010                 if (mask & IFCAP_TSO4) {
1011                         ifp->if_capenable ^= IFCAP_TSO4;
1012                         if (ifp->if_capenable & IFCAP_TSO4)
1013                                 ifp->if_hwassist |= CSUM_TSO;
1014                         else
1015                                 ifp->if_hwassist &= ~CSUM_TSO;
1016                 }
1017
1018                 if (mask & IFCAP_RXCSUM) {
1019                         ifp->if_capenable ^= IFCAP_RXCSUM;
1020                         reinit = 1;
1021                 }
1022
1023                 if (mask & IFCAP_LRO) {
1024                         ifp->if_capenable ^= IFCAP_LRO;
1025                         reinit = 1;
1026                 }
1027
1028                 if (mask & IFCAP_VLAN_HWFILTER) {
1029                         ifp->if_capenable ^= IFCAP_VLAN_HWFILTER;
1030                         reinit = 1;
1031                 }
1032
1033                 if (mask & IFCAP_VLAN_HWTSO)
1034                         ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1035
1036                 if (mask & IFCAP_VLAN_HWTAGGING)
1037                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1038
1039                 if (reinit && (ifp->if_flags & IFF_RUNNING)) {
1040                         ifp->if_flags &= ~IFF_RUNNING;
1041                         vtnet_init_locked(sc);
1042                 }
1043                 //VLAN_CAPABILITIES(ifp);
1044
1045                 lwkt_serialize_exit(&sc->vtnet_slz);
1046                 break;
1047
1048         default:
1049                 error = ether_ioctl(ifp, cmd, data);
1050                 break;
1051         }
1052
1053         return (error);
1054 }
1055
1056 static int
1057 vtnet_change_mtu(struct vtnet_softc *sc, int new_mtu)
1058 {
1059         struct ifnet *ifp;
1060         int new_frame_size, clsize;
1061
1062         ifp = sc->vtnet_ifp;
1063
1064         if ((sc->vtnet_flags & VTNET_FLAG_MRG_RXBUFS) == 0) {
1065                 new_frame_size = sizeof(struct vtnet_rx_header) +
1066                     sizeof(struct ether_vlan_header) + new_mtu;
1067
1068                 if (new_frame_size > MJUM9BYTES)
1069                         return (EINVAL);
1070
1071                 if (new_frame_size <= MCLBYTES)
1072                         clsize = MCLBYTES;
1073                 else
1074                         clsize = MJUM9BYTES;
1075         } else {
1076                 new_frame_size = sizeof(struct virtio_net_hdr_mrg_rxbuf) +
1077                     sizeof(struct ether_vlan_header) + new_mtu;
1078
1079                 if (new_frame_size <= MCLBYTES)
1080                         clsize = MCLBYTES;
1081                 else
1082                         clsize = MJUMPAGESIZE;
1083         }
1084
1085         sc->vtnet_rx_mbuf_size = clsize;
1086         sc->vtnet_rx_mbuf_count = VTNET_NEEDED_RX_MBUFS(sc);
1087         KASSERT(sc->vtnet_rx_mbuf_count < VTNET_MAX_RX_SEGS,
1088             ("too many rx mbufs: %d", sc->vtnet_rx_mbuf_count));
1089
1090         ifp->if_mtu = new_mtu;
1091
1092         if (ifp->if_flags & IFF_RUNNING) {
1093                 ifp->if_flags &= ~IFF_RUNNING;
1094                 vtnet_init_locked(sc);
1095         }
1096
1097         return (0);
1098 }
1099
1100 static int
1101 vtnet_init_rx_vq(struct vtnet_softc *sc)
1102 {
1103         struct virtqueue *vq;
1104         int nbufs, error;
1105
1106         vq = sc->vtnet_rx_vq;
1107         nbufs = 0;
1108         error = ENOSPC;
1109
1110         while (!virtqueue_full(vq)) {
1111                 if ((error = vtnet_newbuf(sc)) != 0)
1112                         break;
1113                 nbufs++;
1114         }
1115
1116         if (nbufs > 0) {
1117                 virtqueue_notify(vq, &sc->vtnet_slz);
1118
1119                 /*
1120                  * EMSGSIZE signifies the virtqueue did not have enough
1121                  * entries available to hold the last mbuf. This is not
1122                  * an error. We should not get ENOSPC since we check if
1123                  * the virtqueue is full before attempting to add a
1124                  * buffer.
1125                  */
1126                 if (error == EMSGSIZE)
1127                         error = 0;
1128         }
1129
1130         return (error);
1131 }
1132
1133 static void
1134 vtnet_free_rx_mbufs(struct vtnet_softc *sc)
1135 {
1136         struct virtqueue *vq;
1137         struct mbuf *m;
1138         int last;
1139
1140         vq = sc->vtnet_rx_vq;
1141         last = 0;
1142
1143         while ((m = virtqueue_drain(vq, &last)) != NULL)
1144                 m_freem(m);
1145
1146         KASSERT(virtqueue_empty(vq), ("mbufs remaining in Rx Vq"));
1147 }
1148
1149 static void
1150 vtnet_free_tx_mbufs(struct vtnet_softc *sc)
1151 {
1152         struct virtqueue *vq;
1153         struct vtnet_tx_header *txhdr;
1154         int last;
1155
1156         vq = sc->vtnet_tx_vq;
1157         last = 0;
1158
1159         while ((txhdr = virtqueue_drain(vq, &last)) != NULL) {
1160                 m_freem(txhdr->vth_mbuf);
1161         }
1162
1163         KASSERT(virtqueue_empty(vq), ("mbufs remaining in Tx Vq"));
1164 }
1165
1166 static void
1167 vtnet_free_ctrl_vq(struct vtnet_softc *sc)
1168 {
1169         /*
1170          * The control virtqueue is only polled, therefore
1171          * it should already be empty.
1172          */
1173         KASSERT(virtqueue_empty(sc->vtnet_ctrl_vq),
1174                 ("Ctrl Vq not empty"));
1175 }
1176
1177 static struct mbuf *
1178 vtnet_alloc_rxbuf(struct vtnet_softc *sc, int nbufs, struct mbuf **m_tailp)
1179 {
1180         struct mbuf *m_head, *m_tail, *m;
1181         int i, clsize;
1182
1183         clsize = sc->vtnet_rx_mbuf_size;
1184
1185         /*use getcl instead of getjcl. see  if_mxge.c comment line 2398*/
1186         //m_head = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, clsize);
1187         m_head = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR );
1188         if (m_head == NULL)
1189                 goto fail;
1190
1191         m_head->m_len = clsize;
1192         m_tail = m_head;
1193
1194         if (nbufs > 1) {
1195                 KASSERT(sc->vtnet_flags & VTNET_FLAG_LRO_NOMRG,
1196                         ("chained Rx mbuf requested without LRO_NOMRG"));
1197
1198                 for (i = 0; i < nbufs - 1; i++) {
1199                         //m = m_getjcl(M_DONTWAIT, MT_DATA, 0, clsize);
1200                         m = m_getcl(MB_DONTWAIT, MT_DATA, 0);
1201                         if (m == NULL)
1202                                 goto fail;
1203
1204                         m->m_len = clsize;
1205                         m_tail->m_next = m;
1206                         m_tail = m;
1207                 }
1208         }
1209
1210         if (m_tailp != NULL)
1211                 *m_tailp = m_tail;
1212
1213         return (m_head);
1214
1215 fail:
1216         sc->vtnet_stats.mbuf_alloc_failed++;
1217         m_freem(m_head);
1218
1219         return (NULL);
1220 }
1221
1222 static int
1223 vtnet_replace_rxbuf(struct vtnet_softc *sc, struct mbuf *m0, int len0)
1224 {
1225         struct mbuf *m, *m_prev;
1226         struct mbuf *m_new, *m_tail;
1227         int len, clsize, nreplace, error;
1228
1229         m = m0;
1230         m_prev = NULL;
1231         len = len0;
1232
1233         m_tail = NULL;
1234         clsize = sc->vtnet_rx_mbuf_size;
1235         nreplace = 0;
1236
1237         if (m->m_next != NULL)
1238                 KASSERT(sc->vtnet_flags & VTNET_FLAG_LRO_NOMRG,
1239                     ("chained Rx mbuf without LRO_NOMRG"));
1240
1241         /*
1242          * Since LRO_NOMRG mbuf chains are so large, we want to avoid
1243          * allocating an entire chain for each received frame. When
1244          * the received frame's length is less than that of the chain,
1245          * the unused mbufs are reassigned to the new chain.
1246          */
1247         while (len > 0) {
1248                 /*
1249                  * Something is seriously wrong if we received
1250                  * a frame larger than the mbuf chain. Drop it.
1251                  */
1252                 if (m == NULL) {
1253                         sc->vtnet_stats.rx_frame_too_large++;
1254                         return (EMSGSIZE);
1255                 }
1256
1257                 KASSERT(m->m_len == clsize,
1258                     ("mbuf length not expected cluster size: %d",
1259                     m->m_len));
1260
1261                 m->m_len = MIN(m->m_len, len);
1262                 len -= m->m_len;
1263
1264                 m_prev = m;
1265                 m = m->m_next;
1266                 nreplace++;
1267         }
1268
1269         KASSERT(m_prev != NULL, ("m_prev == NULL"));
1270         KASSERT(nreplace <= sc->vtnet_rx_mbuf_count,
1271                 ("too many replacement mbufs: %d/%d", nreplace,
1272                 sc->vtnet_rx_mbuf_count));
1273
1274         m_new = vtnet_alloc_rxbuf(sc, nreplace, &m_tail);
1275         if (m_new == NULL) {
1276                 m_prev->m_len = clsize;
1277                 return (ENOBUFS);
1278         }
1279
1280         /*
1281          * Move unused mbufs, if any, from the original chain
1282          * onto the end of the new chain.
1283          */
1284         if (m_prev->m_next != NULL) {
1285                 m_tail->m_next = m_prev->m_next;
1286                 m_prev->m_next = NULL;
1287         }
1288
1289         error = vtnet_enqueue_rxbuf(sc, m_new);
1290         if (error) {
1291                 /*
1292                  * BAD! We could not enqueue the replacement mbuf chain. We
1293                  * must restore the m0 chain to the original state if it was
1294                  * modified so we can subsequently discard it.
1295                  *
1296                  * NOTE: The replacement is suppose to be an identical copy
1297                  * to the one just dequeued so this is an unexpected error.
1298                  */
1299                 sc->vtnet_stats.rx_enq_replacement_failed++;
1300
1301                 if (m_tail->m_next != NULL) {
1302                         m_prev->m_next = m_tail->m_next;
1303                         m_tail->m_next = NULL;
1304                 }
1305
1306                 m_prev->m_len = clsize;
1307                 m_freem(m_new);
1308         }
1309
1310         return (error);
1311 }
1312
1313 static int
1314 vtnet_newbuf(struct vtnet_softc *sc)
1315 {
1316         struct mbuf *m;
1317         int error;
1318
1319         m = vtnet_alloc_rxbuf(sc, sc->vtnet_rx_mbuf_count, NULL);
1320         if (m == NULL)
1321                 return (ENOBUFS);
1322
1323         error = vtnet_enqueue_rxbuf(sc, m);
1324         if (error)
1325                 m_freem(m);
1326
1327         return (error);
1328 }
1329
1330 static void
1331 vtnet_discard_merged_rxbuf(struct vtnet_softc *sc, int nbufs)
1332 {
1333         struct virtqueue *vq;
1334         struct mbuf *m;
1335
1336         vq = sc->vtnet_rx_vq;
1337
1338         while (--nbufs > 0) {
1339                 if ((m = virtqueue_dequeue(vq, NULL)) == NULL)
1340                         break;
1341                 vtnet_discard_rxbuf(sc, m);
1342         }
1343 }
1344
1345 static void
1346 vtnet_discard_rxbuf(struct vtnet_softc *sc, struct mbuf *m)
1347 {
1348         int error;
1349
1350         /*
1351          * Requeue the discarded mbuf. This should always be
1352          * successful since it was just dequeued.
1353          */
1354         error = vtnet_enqueue_rxbuf(sc, m);
1355         KASSERT(error == 0, ("cannot requeue discarded mbuf"));
1356 }
1357
1358 static int
1359 vtnet_enqueue_rxbuf(struct vtnet_softc *sc, struct mbuf *m)
1360 {
1361         struct sglist sg;
1362         struct sglist_seg segs[VTNET_MAX_RX_SEGS];
1363         struct vtnet_rx_header *rxhdr;
1364         struct virtio_net_hdr *hdr;
1365         uint8_t *mdata;
1366         int offset, error;
1367
1368         ASSERT_SERIALIZED(&sc->vtnet_slz);
1369         if ((sc->vtnet_flags & VTNET_FLAG_LRO_NOMRG) == 0)
1370                 KASSERT(m->m_next == NULL, ("chained Rx mbuf"));
1371
1372         sglist_init(&sg, VTNET_MAX_RX_SEGS, segs);
1373
1374         mdata = mtod(m, uint8_t *);
1375         offset = 0;
1376
1377         if ((sc->vtnet_flags & VTNET_FLAG_MRG_RXBUFS) == 0) {
1378                 rxhdr = (struct vtnet_rx_header *) mdata;
1379                 hdr = &rxhdr->vrh_hdr;
1380                 offset += sizeof(struct vtnet_rx_header);
1381
1382                 error = sglist_append(&sg, hdr, sc->vtnet_hdr_size);
1383                 KASSERT(error == 0, ("cannot add header to sglist"));
1384         }
1385
1386         error = sglist_append(&sg, mdata + offset, m->m_len - offset);
1387         if (error)
1388                 return (error);
1389
1390         if (m->m_next != NULL) {
1391                 error = sglist_append_mbuf(&sg, m->m_next);
1392                 if (error)
1393                         return (error);
1394         }
1395
1396         return (virtqueue_enqueue(sc->vtnet_rx_vq, m, &sg, 0, sg.sg_nseg));
1397 }
1398
1399 static void
1400 vtnet_vlan_tag_remove(struct mbuf *m)
1401 {
1402         struct ether_vlan_header *evl;
1403
1404         evl = mtod(m, struct ether_vlan_header *);
1405
1406         m->m_pkthdr.ether_vlantag = ntohs(evl->evl_tag);
1407         m->m_flags |= M_VLANTAG;
1408
1409         /* Strip the 802.1Q header. */
1410         bcopy((char *) evl, (char *) evl + ETHER_VLAN_ENCAP_LEN,
1411             ETHER_HDR_LEN - ETHER_TYPE_LEN);
1412         m_adj(m, ETHER_VLAN_ENCAP_LEN);
1413 }
1414
1415 /*
1416  * Alternative method of doing receive checksum offloading. Rather
1417  * than parsing the received frame down to the IP header, use the
1418  * csum_offset to determine which CSUM_* flags are appropriate. We
1419  * can get by with doing this only because the checksum offsets are
1420  * unique for the things we care about.
1421  */
1422 static int
1423 vtnet_rx_csum(struct vtnet_softc *sc, struct mbuf *m,
1424     struct virtio_net_hdr *hdr)
1425 {
1426         struct ether_header *eh;
1427         struct ether_vlan_header *evh;
1428         struct udphdr *udp;
1429         int csum_len;
1430         uint16_t eth_type;
1431
1432         csum_len = hdr->csum_start + hdr->csum_offset;
1433
1434         if (csum_len < sizeof(struct ether_header) + sizeof(struct ip))
1435                 return (1);
1436         if (m->m_len < csum_len)
1437                 return (1);
1438
1439         eh = mtod(m, struct ether_header *);
1440         eth_type = ntohs(eh->ether_type);
1441         if (eth_type == ETHERTYPE_VLAN) {
1442                 evh = mtod(m, struct ether_vlan_header *);
1443                 eth_type = ntohs(evh->evl_proto);
1444         }
1445
1446         if (eth_type != ETHERTYPE_IP && eth_type != ETHERTYPE_IPV6) {
1447                 sc->vtnet_stats.rx_csum_bad_ethtype++;
1448                 return (1);
1449         }
1450
1451         /* Use the offset to determine the appropriate CSUM_* flags. */
1452         switch (hdr->csum_offset) {
1453         case offsetof(struct udphdr, uh_sum):
1454                 if (m->m_len < hdr->csum_start + sizeof(struct udphdr))
1455                         return (1);
1456                 udp = (struct udphdr *)(mtod(m, uint8_t *) + hdr->csum_start);
1457                 if (udp->uh_sum == 0)
1458                         return (0);
1459
1460                 /* FALLTHROUGH */
1461
1462         case offsetof(struct tcphdr, th_sum):
1463                 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1464                 m->m_pkthdr.csum_data = 0xFFFF;
1465                 break;
1466
1467         case offsetof(struct sctphdr, checksum):
1468                 //m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
1469                 break;
1470
1471         default:
1472                 sc->vtnet_stats.rx_csum_bad_offset++;
1473                 return (1);
1474         }
1475
1476         sc->vtnet_stats.rx_csum_offloaded++;
1477
1478         return (0);
1479 }
1480
1481 static int
1482 vtnet_rxeof_merged(struct vtnet_softc *sc, struct mbuf *m_head, int nbufs)
1483 {
1484         struct ifnet *ifp;
1485         struct virtqueue *vq;
1486         struct mbuf *m, *m_tail;
1487         int len;
1488
1489         ifp = sc->vtnet_ifp;
1490         vq = sc->vtnet_rx_vq;
1491         m_tail = m_head;
1492
1493         while (--nbufs > 0) {
1494                 m = virtqueue_dequeue(vq, &len);
1495                 if (m == NULL) {
1496                         ifp->if_ierrors++;
1497                         goto fail;
1498                 }
1499
1500                 if (vtnet_newbuf(sc) != 0) {
1501                         ifp->if_iqdrops++;
1502                         vtnet_discard_rxbuf(sc, m);
1503                         if (nbufs > 1)
1504                                 vtnet_discard_merged_rxbuf(sc, nbufs);
1505                         goto fail;
1506                 }
1507
1508                 if (m->m_len < len)
1509                         len = m->m_len;
1510
1511                 m->m_len = len;
1512                 m->m_flags &= ~M_PKTHDR;
1513
1514                 m_head->m_pkthdr.len += len;
1515                 m_tail->m_next = m;
1516                 m_tail = m;
1517         }
1518
1519         return (0);
1520
1521 fail:
1522         sc->vtnet_stats.rx_mergeable_failed++;
1523         m_freem(m_head);
1524
1525         return (1);
1526 }
1527
1528 static int
1529 vtnet_rxeof(struct vtnet_softc *sc, int count, int *rx_npktsp)
1530 {
1531         struct virtio_net_hdr lhdr;
1532         struct ifnet *ifp;
1533         struct virtqueue *vq;
1534         struct mbuf *m;
1535         struct ether_header *eh;
1536         struct virtio_net_hdr *hdr;
1537         struct virtio_net_hdr_mrg_rxbuf *mhdr;
1538         int len, deq, nbufs, adjsz, rx_npkts;
1539
1540         ifp = sc->vtnet_ifp;
1541         vq = sc->vtnet_rx_vq;
1542         hdr = &lhdr;
1543         deq = 0;
1544         rx_npkts = 0;
1545
1546         ASSERT_SERIALIZED(&sc->vtnet_slz);
1547
1548         while (--count >= 0) {
1549                 m = virtqueue_dequeue(vq, &len);
1550                 if (m == NULL)
1551                         break;
1552                 deq++;
1553
1554                 if (len < sc->vtnet_hdr_size + ETHER_HDR_LEN) {
1555                         ifp->if_ierrors++;
1556                         vtnet_discard_rxbuf(sc, m);
1557                         continue;
1558                 }
1559
1560                 if ((sc->vtnet_flags & VTNET_FLAG_MRG_RXBUFS) == 0) {
1561                         nbufs = 1;
1562                         adjsz = sizeof(struct vtnet_rx_header);
1563                         /*
1564                          * Account for our pad between the header and
1565                          * the actual start of the frame.
1566                          */
1567                         len += VTNET_RX_HEADER_PAD;
1568                 } else {
1569                         mhdr = mtod(m, struct virtio_net_hdr_mrg_rxbuf *);
1570                         nbufs = mhdr->num_buffers;
1571                         adjsz = sizeof(struct virtio_net_hdr_mrg_rxbuf);
1572                 }
1573
1574                 if (vtnet_replace_rxbuf(sc, m, len) != 0) {
1575                         ifp->if_iqdrops++;
1576                         vtnet_discard_rxbuf(sc, m);
1577                         if (nbufs > 1)
1578                                 vtnet_discard_merged_rxbuf(sc, nbufs);
1579                         continue;
1580                 }
1581
1582                 m->m_pkthdr.len = len;
1583                 m->m_pkthdr.rcvif = ifp;
1584                 m->m_pkthdr.csum_flags = 0;
1585
1586                 if (nbufs > 1) {
1587                         if (vtnet_rxeof_merged(sc, m, nbufs) != 0)
1588                                 continue;
1589                 }
1590
1591                 ifp->if_ipackets++;
1592
1593                 /*
1594                  * Save copy of header before we strip it. For both mergeable
1595                  * and non-mergeable, the VirtIO header is placed first in the
1596                  * mbuf's data. We no longer need num_buffers, so always use a
1597                  * virtio_net_hdr.
1598                  */
1599                 memcpy(hdr, mtod(m, void *), sizeof(struct virtio_net_hdr));
1600                 m_adj(m, adjsz);
1601
1602                 if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1603                         eh = mtod(m, struct ether_header *);
1604                         if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1605                                 vtnet_vlan_tag_remove(m);
1606
1607                                 /*
1608                                  * With the 802.1Q header removed, update the
1609                                  * checksum starting location accordingly.
1610                                  */
1611                                 if (hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM)
1612                                         hdr->csum_start -=
1613                                             ETHER_VLAN_ENCAP_LEN;
1614                         }
1615                 }
1616
1617                 if (ifp->if_capenable & IFCAP_RXCSUM &&
1618                     hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
1619                         if (vtnet_rx_csum(sc, m, hdr) != 0)
1620                                 sc->vtnet_stats.rx_csum_failed++;
1621                 }
1622
1623                 lwkt_serialize_exit(&sc->vtnet_slz);
1624                 rx_npkts++;
1625                 ifp->if_input(ifp, m, NULL, -1);
1626                 lwkt_serialize_enter(&sc->vtnet_slz);
1627
1628                 /*
1629                  * The interface may have been stopped while we were
1630                  * passing the packet up the network stack.
1631                  */
1632                 if ((ifp->if_flags & IFF_RUNNING) == 0)
1633                         break;
1634         }
1635
1636         virtqueue_notify(vq, &sc->vtnet_slz);
1637
1638         if (rx_npktsp != NULL)
1639                 *rx_npktsp = rx_npkts;
1640
1641         return (count > 0 ? 0 : EAGAIN);
1642 }
1643
1644 static void
1645 vtnet_rx_intr_task(void *arg)
1646 {
1647         struct vtnet_softc *sc;
1648         struct ifnet *ifp;
1649         int more;
1650
1651         sc = arg;
1652         ifp = sc->vtnet_ifp;
1653
1654 next:
1655 //      lwkt_serialize_enter(&sc->vtnet_slz);
1656
1657         if ((ifp->if_flags & IFF_RUNNING) == 0) {
1658                 vtnet_enable_rx_intr(sc);
1659 //              lwkt_serialize_exit(&sc->vtnet_slz);
1660                 return;
1661         }
1662
1663         more = vtnet_rxeof(sc, sc->vtnet_rx_process_limit, NULL);
1664         if (!more && vtnet_enable_rx_intr(sc) != 0) {
1665                 vtnet_disable_rx_intr(sc);
1666                 more = 1;
1667         }
1668
1669 //      lwkt_serialize_exit(&sc->vtnet_slz);
1670
1671         if (more) {
1672                 sc->vtnet_stats.rx_task_rescheduled++;
1673                 goto next;
1674         }
1675 }
1676
1677 static int
1678 vtnet_rx_vq_intr(void *xsc)
1679 {
1680         struct vtnet_softc *sc;
1681
1682         sc = xsc;
1683
1684         vtnet_disable_rx_intr(sc);
1685         vtnet_rx_intr_task(sc);
1686
1687         return (1);
1688 }
1689
1690 static void
1691 vtnet_txeof(struct vtnet_softc *sc)
1692 {
1693         struct virtqueue *vq;
1694         struct ifnet *ifp;
1695         struct vtnet_tx_header *txhdr;
1696         int deq;
1697
1698         vq = sc->vtnet_tx_vq;
1699         ifp = sc->vtnet_ifp;
1700         deq = 0;
1701
1702         ASSERT_SERIALIZED(&sc->vtnet_slz);
1703
1704         while ((txhdr = virtqueue_dequeue(vq, NULL)) != NULL) {
1705                 deq++;
1706                 ifp->if_opackets++;
1707                 m_freem(txhdr->vth_mbuf);
1708         }
1709
1710         if (deq > 0) {
1711                 ifq_clr_oactive(&ifp->if_snd);
1712                 if (virtqueue_empty(vq))
1713                         sc->vtnet_watchdog_timer = 0;
1714         }
1715 }
1716
1717 static struct mbuf *
1718 vtnet_tx_offload(struct vtnet_softc *sc, struct mbuf *m,
1719     struct virtio_net_hdr *hdr)
1720 {
1721         struct ifnet *ifp;
1722         struct ether_header *eh;
1723         struct ether_vlan_header *evh;
1724         struct ip *ip;
1725         struct ip6_hdr *ip6;
1726         struct tcphdr *tcp;
1727         int ip_offset;
1728         uint16_t eth_type, csum_start;
1729         uint8_t ip_proto, gso_type;
1730
1731         ifp = sc->vtnet_ifp;
1732         M_ASSERTPKTHDR(m);
1733
1734         ip_offset = sizeof(struct ether_header);
1735         if (m->m_len < ip_offset) {
1736                 if ((m = m_pullup(m, ip_offset)) == NULL)
1737                         return (NULL);
1738         }
1739
1740         eh = mtod(m, struct ether_header *);
1741         eth_type = ntohs(eh->ether_type);
1742         if (eth_type == ETHERTYPE_VLAN) {
1743                 ip_offset = sizeof(struct ether_vlan_header);
1744                 if (m->m_len < ip_offset) {
1745                         if ((m = m_pullup(m, ip_offset)) == NULL)
1746                                 return (NULL);
1747                 }
1748                 evh = mtod(m, struct ether_vlan_header *);
1749                 eth_type = ntohs(evh->evl_proto);
1750         }
1751
1752         switch (eth_type) {
1753         case ETHERTYPE_IP:
1754                 if (m->m_len < ip_offset + sizeof(struct ip)) {
1755                         m = m_pullup(m, ip_offset + sizeof(struct ip));
1756                         if (m == NULL)
1757                                 return (NULL);
1758                 }
1759
1760                 ip = (struct ip *)(mtod(m, uint8_t *) + ip_offset);
1761                 ip_proto = ip->ip_p;
1762                 csum_start = ip_offset + (ip->ip_hl << 2);
1763                 gso_type = VIRTIO_NET_HDR_GSO_TCPV4;
1764                 break;
1765
1766         case ETHERTYPE_IPV6:
1767                 if (m->m_len < ip_offset + sizeof(struct ip6_hdr)) {
1768                         m = m_pullup(m, ip_offset + sizeof(struct ip6_hdr));
1769                         if (m == NULL)
1770                                 return (NULL);
1771                 }
1772
1773                 ip6 = (struct ip6_hdr *)(mtod(m, uint8_t *) + ip_offset);
1774                 /*
1775                  * XXX Assume no extension headers are present. Presently,
1776                  * this will always be true in the case of TSO, and FreeBSD
1777                  * does not perform checksum offloading of IPv6 yet.
1778                  */
1779                 ip_proto = ip6->ip6_nxt;
1780                 csum_start = ip_offset + sizeof(struct ip6_hdr);
1781                 gso_type = VIRTIO_NET_HDR_GSO_TCPV6;
1782                 break;
1783
1784         default:
1785                 return (m);
1786         }
1787
1788         if (m->m_pkthdr.csum_flags & VTNET_CSUM_OFFLOAD) {
1789                 hdr->flags |= VIRTIO_NET_HDR_F_NEEDS_CSUM;
1790                 hdr->csum_start = csum_start;
1791                 hdr->csum_offset = m->m_pkthdr.csum_data;
1792
1793                 sc->vtnet_stats.tx_csum_offloaded++;
1794         }
1795
1796         if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1797                 if (ip_proto != IPPROTO_TCP)
1798                         return (m);
1799
1800                 if (m->m_len < csum_start + sizeof(struct tcphdr)) {
1801                         m = m_pullup(m, csum_start + sizeof(struct tcphdr));
1802                         if (m == NULL)
1803                                 return (NULL);
1804                 }
1805
1806                 tcp = (struct tcphdr *)(mtod(m, uint8_t *) + csum_start);
1807                 hdr->gso_type = gso_type;
1808                 hdr->hdr_len = csum_start + (tcp->th_off << 2);
1809                 hdr->gso_size = m->m_pkthdr.tso_segsz;
1810
1811                 if (tcp->th_flags & TH_CWR) {
1812                         /*
1813                          * Drop if we did not negotiate VIRTIO_NET_F_HOST_ECN.
1814                          * ECN support is only configurable globally with the
1815                          * net.inet.tcp.ecn.enable sysctl knob.
1816                          */
1817                         if ((sc->vtnet_flags & VTNET_FLAG_TSO_ECN) == 0) {
1818                                 if_printf(ifp, "TSO with ECN not supported "
1819                                     "by host\n");
1820                                 m_freem(m);
1821                                 return (NULL);
1822                         }
1823
1824                         hdr->gso_type |= VIRTIO_NET_HDR_GSO_ECN;
1825                 }
1826
1827                 sc->vtnet_stats.tx_tso_offloaded++;
1828         }
1829
1830         return (m);
1831 }
1832
1833 static int
1834 vtnet_enqueue_txbuf(struct vtnet_softc *sc, struct mbuf **m_head,
1835     struct vtnet_tx_header *txhdr)
1836 {
1837         struct sglist sg;
1838         struct sglist_seg segs[VTNET_MAX_TX_SEGS];
1839         struct virtqueue *vq;
1840         struct mbuf *m;
1841         int collapsed, error;
1842
1843         vq = sc->vtnet_tx_vq;
1844         m = *m_head;
1845         collapsed = 0;
1846
1847         sglist_init(&sg, VTNET_MAX_TX_SEGS, segs);
1848         error = sglist_append(&sg, &txhdr->vth_uhdr, sc->vtnet_hdr_size);
1849         KASSERT(error == 0 && sg.sg_nseg == 1,
1850             ("cannot add header to sglist"));
1851
1852 again:
1853         error = sglist_append_mbuf(&sg, m);
1854         if (error) {
1855                 if (collapsed)
1856                         goto fail;
1857
1858                 //m = m_collapse(m, MB_DONTWAIT, VTNET_MAX_TX_SEGS - 1);
1859                 m = m_defrag(m, MB_DONTWAIT);
1860                 if (m == NULL)
1861                         goto fail;
1862
1863                 *m_head = m;
1864                 collapsed = 1;
1865                 goto again;
1866         }
1867
1868         txhdr->vth_mbuf = m;
1869
1870         return (virtqueue_enqueue(vq, txhdr, &sg, sg.sg_nseg, 0));
1871
1872 fail:
1873         m_freem(*m_head);
1874         *m_head = NULL;
1875
1876         return (ENOBUFS);
1877 }
1878
1879 static struct mbuf *
1880 vtnet_vlan_tag_insert(struct mbuf *m)
1881 {
1882         struct mbuf *n;
1883         struct ether_vlan_header *evl;
1884
1885         if (M_WRITABLE(m) == 0) {
1886                 n = m_dup(m, MB_DONTWAIT);
1887                 m_freem(m);
1888                 if ((m = n) == NULL)
1889                         return (NULL);
1890         }
1891
1892         M_PREPEND(m, ETHER_VLAN_ENCAP_LEN, MB_DONTWAIT);
1893         if (m == NULL)
1894                 return (NULL);
1895         if (m->m_len < sizeof(struct ether_vlan_header)) {
1896                 m = m_pullup(m, sizeof(struct ether_vlan_header));
1897                 if (m == NULL)
1898                         return (NULL);
1899         }
1900
1901         /* Insert 802.1Q header into the existing Ethernet header. */
1902         evl = mtod(m, struct ether_vlan_header *);
1903         bcopy((char *) evl + ETHER_VLAN_ENCAP_LEN,
1904               (char *) evl, ETHER_HDR_LEN - ETHER_TYPE_LEN);
1905         evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
1906         evl->evl_tag = htons(m->m_pkthdr.ether_vlantag);
1907         m->m_flags &= ~M_VLANTAG;
1908
1909         return (m);
1910 }
1911
1912 static int
1913 vtnet_encap(struct vtnet_softc *sc, struct mbuf **m_head)
1914 {
1915         struct vtnet_tx_header *txhdr;
1916         struct virtio_net_hdr *hdr;
1917         struct mbuf *m;
1918         int error;
1919
1920         txhdr = &sc->vtnet_txhdrarea[sc->vtnet_txhdridx];
1921         memset(txhdr, 0, sizeof(struct vtnet_tx_header));
1922
1923         /*
1924          * Always use the non-mergeable header to simplify things. When
1925          * the mergeable feature is negotiated, the num_buffers field
1926          * must be set to zero. We use vtnet_hdr_size later to enqueue
1927          * the correct header size to the host.
1928          */
1929         hdr = &txhdr->vth_uhdr.hdr;
1930         m = *m_head;
1931
1932         error = ENOBUFS;
1933
1934         if (m->m_flags & M_VLANTAG) {
1935                 //m = ether_vlanencap(m, m->m_pkthdr.ether_vtag);
1936                 m = vtnet_vlan_tag_insert(m);
1937                 if ((*m_head = m) == NULL)
1938                         goto fail;
1939                 m->m_flags &= ~M_VLANTAG;
1940         }
1941
1942         if (m->m_pkthdr.csum_flags != 0) {
1943                 m = vtnet_tx_offload(sc, m, hdr);
1944                 if ((*m_head = m) == NULL)
1945                         goto fail;
1946         }
1947
1948         error = vtnet_enqueue_txbuf(sc, m_head, txhdr);
1949         if (error == 0)
1950                 sc->vtnet_txhdridx =
1951                     (sc->vtnet_txhdridx + 1) % ((sc->vtnet_tx_size / 2) + 1);
1952 fail:
1953         return (error);
1954 }
1955
1956 static void
1957 vtnet_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1958 {
1959         struct vtnet_softc *sc;
1960
1961         sc = ifp->if_softc;
1962
1963         ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1964         lwkt_serialize_enter(&sc->vtnet_slz);
1965         vtnet_start_locked(ifp, ifsq);
1966         lwkt_serialize_exit(&sc->vtnet_slz);
1967 }
1968
1969 static void
1970 vtnet_start_locked(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1971 {
1972         struct vtnet_softc *sc;
1973         struct virtqueue *vq;
1974         struct mbuf *m0;
1975         int enq;
1976
1977         sc = ifp->if_softc;
1978         vq = sc->vtnet_tx_vq;
1979         enq = 0;
1980
1981         ASSERT_SERIALIZED(&sc->vtnet_slz);
1982
1983         if ((ifp->if_flags & (IFF_RUNNING)) !=
1984             IFF_RUNNING || ((sc->vtnet_flags & VTNET_FLAG_LINK) == 0))
1985                 return;
1986
1987 #ifdef VTNET_TX_INTR_MODERATION
1988         if (virtqueue_nused(vq) >= sc->vtnet_tx_size / 2)
1989                 vtnet_txeof(sc);
1990 #endif
1991
1992         while (!ifsq_is_empty(ifsq)) {
1993                 if (virtqueue_full(vq)) {
1994                         ifq_set_oactive(&ifp->if_snd);
1995                         break;
1996                 }
1997
1998                 m0 = ifq_dequeue(&ifp->if_snd);
1999                 if (m0 == NULL)
2000                         break;
2001
2002                 if (vtnet_encap(sc, &m0) != 0) {
2003                         if (m0 == NULL)
2004                                 break;
2005                         ifq_prepend(&ifp->if_snd, m0);
2006                         ifq_set_oactive(&ifp->if_snd);
2007                         break;
2008                 }
2009
2010                 enq++;
2011                 ETHER_BPF_MTAP(ifp, m0);
2012         }
2013
2014         if (enq > 0) {
2015                 virtqueue_notify(vq, &sc->vtnet_slz);
2016                 sc->vtnet_watchdog_timer = VTNET_WATCHDOG_TIMEOUT;
2017         }
2018 }
2019
2020 static void
2021 vtnet_tick(void *xsc)
2022 {
2023         struct vtnet_softc *sc;
2024
2025         sc = xsc;
2026
2027 #if 0
2028         ASSERT_SERIALIZED(&sc->vtnet_slz);
2029 #ifdef VTNET_DEBUG
2030         virtqueue_dump(sc->vtnet_rx_vq);
2031         virtqueue_dump(sc->vtnet_tx_vq);
2032 #endif
2033
2034         vtnet_watchdog(sc);
2035         callout_reset(&sc->vtnet_tick_ch, hz, vtnet_tick, sc);
2036 #endif
2037 }
2038
2039 static void
2040 vtnet_tx_intr_task(void *arg)
2041 {
2042         struct vtnet_softc *sc;
2043         struct ifnet *ifp;
2044         struct ifaltq_subque *ifsq;
2045
2046         sc = arg;
2047         ifp = sc->vtnet_ifp;
2048         ifsq = ifq_get_subq_default(&ifp->if_snd);
2049
2050 next:
2051 //      lwkt_serialize_enter(&sc->vtnet_slz);
2052
2053         if ((ifp->if_flags & IFF_RUNNING) == 0) {
2054                 vtnet_enable_tx_intr(sc);
2055 //              lwkt_serialize_exit(&sc->vtnet_slz);
2056                 return;
2057         }
2058
2059         vtnet_txeof(sc);
2060
2061         if (!ifsq_is_empty(ifsq))
2062                 vtnet_start_locked(ifp, ifsq);
2063
2064         if (vtnet_enable_tx_intr(sc) != 0) {
2065                 vtnet_disable_tx_intr(sc);
2066                 sc->vtnet_stats.tx_task_rescheduled++;
2067 //              lwkt_serialize_exit(&sc->vtnet_slz);
2068                 goto next;
2069         }
2070
2071 //      lwkt_serialize_exit(&sc->vtnet_slz);
2072 }
2073
2074 static int
2075 vtnet_tx_vq_intr(void *xsc)
2076 {
2077         struct vtnet_softc *sc;
2078
2079         sc = xsc;
2080
2081         vtnet_disable_tx_intr(sc);
2082         vtnet_tx_intr_task(sc);
2083
2084         return (1);
2085 }
2086
2087 static void
2088 vtnet_stop(struct vtnet_softc *sc)
2089 {
2090         device_t dev;
2091         struct ifnet *ifp;
2092
2093         dev = sc->vtnet_dev;
2094         ifp = sc->vtnet_ifp;
2095
2096         ASSERT_SERIALIZED(&sc->vtnet_slz);
2097
2098         sc->vtnet_watchdog_timer = 0;
2099         callout_stop(&sc->vtnet_tick_ch);
2100         ifq_clr_oactive(&ifp->if_snd);
2101         ifp->if_flags &= ~(IFF_RUNNING);
2102
2103         vtnet_disable_rx_intr(sc);
2104         vtnet_disable_tx_intr(sc);
2105
2106         /*
2107          * Stop the host VirtIO adapter. Note this will reset the host
2108          * adapter's state back to the pre-initialized state, so in
2109          * order to make the device usable again, we must drive it
2110          * through virtio_reinit() and virtio_reinit_complete().
2111          */
2112         virtio_stop(dev);
2113
2114         sc->vtnet_flags &= ~VTNET_FLAG_LINK;
2115
2116         vtnet_free_rx_mbufs(sc);
2117         vtnet_free_tx_mbufs(sc);
2118 }
2119
2120 static int
2121 vtnet_reinit(struct vtnet_softc *sc)
2122 {
2123         struct ifnet *ifp;
2124         uint64_t features;
2125
2126         ifp = sc->vtnet_ifp;
2127         features = sc->vtnet_features;
2128
2129         /*
2130          * Re-negotiate with the host, removing any disabled receive
2131          * features. Transmit features are disabled only on our side
2132          * via if_capenable and if_hwassist.
2133          */
2134
2135         if (ifp->if_capabilities & IFCAP_RXCSUM) {
2136                 if ((ifp->if_capenable & IFCAP_RXCSUM) == 0)
2137                         features &= ~VIRTIO_NET_F_GUEST_CSUM;
2138         }
2139
2140         if (ifp->if_capabilities & IFCAP_LRO) {
2141                 if ((ifp->if_capenable & IFCAP_LRO) == 0)
2142                         features &= ~VTNET_LRO_FEATURES;
2143         }
2144
2145         if (ifp->if_capabilities & IFCAP_VLAN_HWFILTER) {
2146                 if ((ifp->if_capenable & IFCAP_VLAN_HWFILTER) == 0)
2147                         features &= ~VIRTIO_NET_F_CTRL_VLAN;
2148         }
2149
2150         return (virtio_reinit(sc->vtnet_dev, features));
2151 }
2152
2153 static void
2154 vtnet_init_locked(struct vtnet_softc *sc)
2155 {
2156         device_t dev;
2157         struct ifnet *ifp;
2158         int error;
2159
2160         dev = sc->vtnet_dev;
2161         ifp = sc->vtnet_ifp;
2162
2163         ASSERT_SERIALIZED(&sc->vtnet_slz);
2164
2165         if (ifp->if_flags & IFF_RUNNING)
2166                 return;
2167
2168         /* Stop host's adapter, cancel any pending I/O. */
2169         vtnet_stop(sc);
2170
2171         /* Reinitialize the host device. */
2172         error = vtnet_reinit(sc);
2173         if (error) {
2174                 device_printf(dev,
2175                     "reinitialization failed, stopping device...\n");
2176                 vtnet_stop(sc);
2177                 return;
2178         }
2179
2180         /* Update host with assigned MAC address. */
2181         bcopy(IF_LLADDR(ifp), sc->vtnet_hwaddr, ETHER_ADDR_LEN);
2182         vtnet_set_hwaddr(sc);
2183
2184         ifp->if_hwassist = 0;
2185         if (ifp->if_capenable & IFCAP_TXCSUM)
2186                 ifp->if_hwassist |= VTNET_CSUM_OFFLOAD;
2187         if (ifp->if_capenable & IFCAP_TSO4)
2188                 ifp->if_hwassist |= CSUM_TSO;
2189
2190         error = vtnet_init_rx_vq(sc);
2191         if (error) {
2192                 device_printf(dev,
2193                     "cannot allocate mbufs for Rx virtqueue\n");
2194                 vtnet_stop(sc);
2195                 return;
2196         }
2197
2198         if (sc->vtnet_flags & VTNET_FLAG_CTRL_VQ) {
2199                 if (sc->vtnet_flags & VTNET_FLAG_CTRL_RX) {
2200                         /* Restore promiscuous and all-multicast modes. */
2201                         vtnet_rx_filter(sc);
2202
2203                         /* Restore filtered MAC addresses. */
2204                         vtnet_rx_filter_mac(sc);
2205                 }
2206
2207                 /* Restore VLAN filters. */
2208                 if (ifp->if_capenable & IFCAP_VLAN_HWFILTER)
2209                         vtnet_rx_filter_vlan(sc);
2210         }
2211
2212         {
2213                 vtnet_enable_rx_intr(sc);
2214                 vtnet_enable_tx_intr(sc);
2215         }
2216
2217         ifp->if_flags |= IFF_RUNNING;
2218         ifq_clr_oactive(&ifp->if_snd);
2219
2220         virtio_reinit_complete(dev);
2221
2222         vtnet_update_link_status(sc);
2223         callout_reset(&sc->vtnet_tick_ch, hz, vtnet_tick, sc);
2224 }
2225
2226 static void
2227 vtnet_init(void *xsc)
2228 {
2229         struct vtnet_softc *sc;
2230
2231         sc = xsc;
2232
2233         lwkt_serialize_enter(&sc->vtnet_slz);
2234         vtnet_init_locked(sc);
2235         lwkt_serialize_exit(&sc->vtnet_slz);
2236 }
2237
2238 static void
2239 vtnet_exec_ctrl_cmd(struct vtnet_softc *sc, void *cookie,
2240     struct sglist *sg, int readable, int writable)
2241 {
2242         struct virtqueue *vq;
2243         void *c;
2244
2245         vq = sc->vtnet_ctrl_vq;
2246
2247         ASSERT_SERIALIZED(&sc->vtnet_slz);
2248         KASSERT(sc->vtnet_flags & VTNET_FLAG_CTRL_VQ,
2249             ("no control virtqueue"));
2250         KASSERT(virtqueue_empty(vq),
2251             ("control command already enqueued"));
2252
2253         if (virtqueue_enqueue(vq, cookie, sg, readable, writable) != 0)
2254                 return;
2255
2256         virtqueue_notify(vq, &sc->vtnet_slz);
2257
2258         /*
2259          * Poll until the command is complete. Previously, we would
2260          * sleep until the control virtqueue interrupt handler woke
2261          * us up, but dropping the VTNET_MTX leads to serialization
2262          * difficulties.
2263          *
2264          * Furthermore, it appears QEMU/KVM only allocates three MSIX
2265          * vectors. Two of those vectors are needed for the Rx and Tx
2266          * virtqueues. We do not support sharing both a Vq and config
2267          * changed notification on the same MSIX vector.
2268          */
2269         c = virtqueue_poll(vq, NULL);
2270         KASSERT(c == cookie, ("unexpected control command response"));
2271 }
2272
2273 static void
2274 vtnet_rx_filter(struct vtnet_softc *sc)
2275 {
2276         device_t dev;
2277         struct ifnet *ifp;
2278
2279         dev = sc->vtnet_dev;
2280         ifp = sc->vtnet_ifp;
2281
2282         ASSERT_SERIALIZED(&sc->vtnet_slz);
2283         KASSERT(sc->vtnet_flags & VTNET_FLAG_CTRL_RX,
2284             ("CTRL_RX feature not negotiated"));
2285
2286         if (vtnet_set_promisc(sc, ifp->if_flags & IFF_PROMISC) != 0)
2287                 device_printf(dev, "cannot %s promiscuous mode\n",
2288                     ifp->if_flags & IFF_PROMISC ? "enable" : "disable");
2289
2290         if (vtnet_set_allmulti(sc, ifp->if_flags & IFF_ALLMULTI) != 0)
2291                 device_printf(dev, "cannot %s all-multicast mode\n",
2292                     ifp->if_flags & IFF_ALLMULTI ? "enable" : "disable");
2293 }
2294
2295 static int
2296 vtnet_ctrl_rx_cmd(struct vtnet_softc *sc, int cmd, int on)
2297 {
2298         struct virtio_net_ctrl_hdr hdr __aligned(2);
2299         struct sglist_seg segs[3];
2300         struct sglist sg;
2301         uint8_t onoff, ack;
2302         int error;
2303
2304         if ((sc->vtnet_flags & VTNET_FLAG_CTRL_RX) == 0)
2305                 return (ENOTSUP);
2306
2307         error = 0;
2308
2309         hdr.class = VIRTIO_NET_CTRL_RX;
2310         hdr.cmd = cmd;
2311         onoff = !!on;
2312         ack = VIRTIO_NET_ERR;
2313
2314         sglist_init(&sg, 3, segs);
2315         error |= sglist_append(&sg, &hdr, sizeof(struct virtio_net_ctrl_hdr));
2316         error |= sglist_append(&sg, &onoff, sizeof(uint8_t));
2317         error |= sglist_append(&sg, &ack, sizeof(uint8_t));
2318         KASSERT(error == 0 && sg.sg_nseg == 3,
2319             ("error adding Rx filter message to sglist"));
2320
2321         vtnet_exec_ctrl_cmd(sc, &ack, &sg, sg.sg_nseg - 1, 1);
2322
2323         return (ack == VIRTIO_NET_OK ? 0 : EIO);
2324 }
2325
2326 static int
2327 vtnet_set_promisc(struct vtnet_softc *sc, int on)
2328 {
2329
2330         return (vtnet_ctrl_rx_cmd(sc, VIRTIO_NET_CTRL_RX_PROMISC, on));
2331 }
2332
2333 static int
2334 vtnet_set_allmulti(struct vtnet_softc *sc, int on)
2335 {
2336
2337         return (vtnet_ctrl_rx_cmd(sc, VIRTIO_NET_CTRL_RX_ALLMULTI, on));
2338 }
2339
2340 static void
2341 vtnet_rx_filter_mac(struct vtnet_softc *sc)
2342 {
2343         struct virtio_net_ctrl_hdr hdr __aligned(2);
2344         struct vtnet_mac_filter *filter;
2345         struct sglist_seg segs[4];
2346         struct sglist sg;
2347         struct ifnet *ifp;
2348         struct ifaddr *ifa;
2349         struct ifaddr_container *ifac;
2350         struct ifmultiaddr *ifma;
2351         int ucnt, mcnt, promisc, allmulti, error;
2352         uint8_t ack;
2353
2354         ifp = sc->vtnet_ifp;
2355         ucnt = 0;
2356         mcnt = 0;
2357         promisc = 0;
2358         allmulti = 0;
2359         error = 0;
2360
2361         ASSERT_SERIALIZED(&sc->vtnet_slz);
2362         KASSERT(sc->vtnet_flags & VTNET_FLAG_CTRL_RX,
2363             ("CTRL_RX feature not negotiated"));
2364
2365         /* Use the MAC filtering table allocated in vtnet_attach. */
2366         filter = sc->vtnet_macfilter;
2367         memset(filter, 0, sizeof(struct vtnet_mac_filter));
2368
2369         /* Unicast MAC addresses: */
2370         //if_addr_rlock(ifp);
2371         TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
2372                 ifa = ifac->ifa;
2373                 if (ifa->ifa_addr->sa_family != AF_LINK)
2374                         continue;
2375                 else if (ucnt == VTNET_MAX_MAC_ENTRIES)
2376                         break;
2377
2378                 bcopy(LLADDR((struct sockaddr_dl *)ifa->ifa_addr),
2379                     &filter->vmf_unicast.macs[ucnt], ETHER_ADDR_LEN);
2380                 ucnt++;
2381         }
2382         //if_addr_runlock(ifp);
2383
2384         if (ucnt >= VTNET_MAX_MAC_ENTRIES) {
2385                 promisc = 1;
2386                 filter->vmf_unicast.nentries = 0;
2387
2388                 if_printf(ifp, "more than %d MAC addresses assigned, "
2389                     "falling back to promiscuous mode\n",
2390                     VTNET_MAX_MAC_ENTRIES);
2391         } else
2392                 filter->vmf_unicast.nentries = ucnt;
2393
2394         /* Multicast MAC addresses: */
2395         //if_maddr_rlock(ifp);
2396         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2397                 if (ifma->ifma_addr->sa_family != AF_LINK)
2398                         continue;
2399                 else if (mcnt == VTNET_MAX_MAC_ENTRIES)
2400                         break;
2401
2402                 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2403                     &filter->vmf_multicast.macs[mcnt], ETHER_ADDR_LEN);
2404                 mcnt++;
2405         }
2406         //if_maddr_runlock(ifp);
2407
2408         if (mcnt >= VTNET_MAX_MAC_ENTRIES) {
2409                 allmulti = 1;
2410                 filter->vmf_multicast.nentries = 0;
2411
2412                 if_printf(ifp, "more than %d multicast MAC addresses "
2413                     "assigned, falling back to all-multicast mode\n",
2414                     VTNET_MAX_MAC_ENTRIES);
2415         } else
2416                 filter->vmf_multicast.nentries = mcnt;
2417
2418         if (promisc && allmulti)
2419                 goto out;
2420
2421         hdr.class = VIRTIO_NET_CTRL_MAC;
2422         hdr.cmd = VIRTIO_NET_CTRL_MAC_TABLE_SET;
2423         ack = VIRTIO_NET_ERR;
2424
2425         sglist_init(&sg, 4, segs);
2426         error |= sglist_append(&sg, &hdr, sizeof(struct virtio_net_ctrl_hdr));
2427         error |= sglist_append(&sg, &filter->vmf_unicast,
2428             sizeof(struct vtnet_mac_table));
2429         error |= sglist_append(&sg, &filter->vmf_multicast,
2430             sizeof(struct vtnet_mac_table));
2431         error |= sglist_append(&sg, &ack, sizeof(uint8_t));
2432         KASSERT(error == 0 && sg.sg_nseg == 4,
2433             ("error adding MAC filtering message to sglist"));
2434
2435         vtnet_exec_ctrl_cmd(sc, &ack, &sg, sg.sg_nseg - 1, 1);
2436
2437         if (ack != VIRTIO_NET_OK)
2438                 if_printf(ifp, "error setting host MAC filter table\n");
2439
2440 out:
2441         if (promisc)
2442                 if (vtnet_set_promisc(sc, 1) != 0)
2443                         if_printf(ifp, "cannot enable promiscuous mode\n");
2444         if (allmulti)
2445                 if (vtnet_set_allmulti(sc, 1) != 0)
2446                         if_printf(ifp, "cannot enable all-multicast mode\n");
2447 }
2448
2449 static int
2450 vtnet_exec_vlan_filter(struct vtnet_softc *sc, int add, uint16_t tag)
2451 {
2452         struct virtio_net_ctrl_hdr hdr __aligned(2);
2453         struct sglist_seg segs[3];
2454         struct sglist sg;
2455         uint8_t ack;
2456         int error;
2457
2458         hdr.class = VIRTIO_NET_CTRL_VLAN;
2459         hdr.cmd = add ? VIRTIO_NET_CTRL_VLAN_ADD : VIRTIO_NET_CTRL_VLAN_DEL;
2460         ack = VIRTIO_NET_ERR;
2461         error = 0;
2462
2463         sglist_init(&sg, 3, segs);
2464         error |= sglist_append(&sg, &hdr, sizeof(struct virtio_net_ctrl_hdr));
2465         error |= sglist_append(&sg, &tag, sizeof(uint16_t));
2466         error |= sglist_append(&sg, &ack, sizeof(uint8_t));
2467         KASSERT(error == 0 && sg.sg_nseg == 3,
2468             ("error adding VLAN control message to sglist"));
2469
2470         vtnet_exec_ctrl_cmd(sc, &ack, &sg, sg.sg_nseg - 1, 1);
2471
2472         return (ack == VIRTIO_NET_OK ? 0 : EIO);
2473 }
2474
2475 static void
2476 vtnet_rx_filter_vlan(struct vtnet_softc *sc)
2477 {
2478         device_t dev;
2479         uint32_t w, mask;
2480         uint16_t tag;
2481         int i, nvlans, error;
2482
2483         ASSERT_SERIALIZED(&sc->vtnet_slz);
2484         KASSERT(sc->vtnet_flags & VTNET_FLAG_VLAN_FILTER,
2485             ("VLAN_FILTER feature not negotiated"));
2486
2487         dev = sc->vtnet_dev;
2488         nvlans = sc->vtnet_nvlans;
2489         error = 0;
2490
2491         /* Enable filtering for each configured VLAN. */
2492         for (i = 0; i < VTNET_VLAN_SHADOW_SIZE && nvlans > 0; i++) {
2493                 w = sc->vtnet_vlan_shadow[i];
2494                 for (mask = 1, tag = i * 32; w != 0; mask <<= 1, tag++) {
2495                         if ((w & mask) != 0) {
2496                                 w &= ~mask;
2497                                 nvlans--;
2498                                 if (vtnet_exec_vlan_filter(sc, 1, tag) != 0)
2499                                         error++;
2500                         }
2501                 }
2502         }
2503
2504         KASSERT(nvlans == 0, ("VLAN count incorrect"));
2505         if (error)
2506                 device_printf(dev, "cannot restore VLAN filter table\n");
2507 }
2508
2509 static void
2510 vtnet_set_vlan_filter(struct vtnet_softc *sc, int add, uint16_t tag)
2511 {
2512         struct ifnet *ifp;
2513         int idx, bit;
2514
2515         KASSERT(sc->vtnet_flags & VTNET_FLAG_VLAN_FILTER,
2516             ("VLAN_FILTER feature not negotiated"));
2517
2518         if ((tag == 0) || (tag > 4095))
2519                 return;
2520
2521         ifp = sc->vtnet_ifp;
2522         idx = (tag >> 5) & 0x7F;
2523         bit = tag & 0x1F;
2524
2525         lwkt_serialize_enter(&sc->vtnet_slz);
2526
2527         /* Update shadow VLAN table. */
2528         if (add) {
2529                 sc->vtnet_nvlans++;
2530                 sc->vtnet_vlan_shadow[idx] |= (1 << bit);
2531         } else {
2532                 sc->vtnet_nvlans--;
2533                 sc->vtnet_vlan_shadow[idx] &= ~(1 << bit);
2534         }
2535
2536         if (ifp->if_capenable & IFCAP_VLAN_HWFILTER) {
2537                 if (vtnet_exec_vlan_filter(sc, add, tag) != 0) {
2538                         device_printf(sc->vtnet_dev,
2539                             "cannot %s VLAN %d %s the host filter table\n",
2540                             add ? "add" : "remove", tag,
2541                             add ? "to" : "from");
2542                 }
2543         }
2544
2545         lwkt_serialize_exit(&sc->vtnet_slz);
2546 }
2547
2548 static void
2549 vtnet_register_vlan(void *arg, struct ifnet *ifp, uint16_t tag)
2550 {
2551
2552         if (ifp->if_softc != arg)
2553                 return;
2554
2555         vtnet_set_vlan_filter(arg, 1, tag);
2556 }
2557
2558 static void
2559 vtnet_unregister_vlan(void *arg, struct ifnet *ifp, uint16_t tag)
2560 {
2561
2562         if (ifp->if_softc != arg)
2563                 return;
2564
2565         vtnet_set_vlan_filter(arg, 0, tag);
2566 }
2567
2568 static int
2569 vtnet_ifmedia_upd(struct ifnet *ifp)
2570 {
2571         struct vtnet_softc *sc;
2572         struct ifmedia *ifm;
2573
2574         sc = ifp->if_softc;
2575         ifm = &sc->vtnet_media;
2576
2577         if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2578                 return (EINVAL);
2579
2580         return (0);
2581 }
2582
2583 static void
2584 vtnet_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2585 {
2586         struct vtnet_softc *sc;
2587
2588         sc = ifp->if_softc;
2589
2590         ifmr->ifm_status = IFM_AVALID;
2591         ifmr->ifm_active = IFM_ETHER;
2592
2593         lwkt_serialize_enter(&sc->vtnet_slz);
2594         if (vtnet_is_link_up(sc) != 0) {
2595                 ifmr->ifm_status |= IFM_ACTIVE;
2596                 ifmr->ifm_active |= VTNET_MEDIATYPE;
2597         } else
2598                 ifmr->ifm_active |= IFM_NONE;
2599         lwkt_serialize_exit(&sc->vtnet_slz);
2600 }
2601
2602 static void
2603 vtnet_add_statistics(struct vtnet_softc *sc)
2604 {
2605         device_t dev;
2606         struct vtnet_statistics *stats;
2607         struct sysctl_ctx_list *ctx;
2608         struct sysctl_oid *tree;
2609         struct sysctl_oid_list *child;
2610
2611         dev = sc->vtnet_dev;
2612         stats = &sc->vtnet_stats;
2613         ctx = device_get_sysctl_ctx(dev);
2614         tree = device_get_sysctl_tree(dev);
2615         child = SYSCTL_CHILDREN(tree);
2616
2617         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "mbuf_alloc_failed",
2618             CTLFLAG_RD, &stats->mbuf_alloc_failed,
2619             "Mbuf cluster allocation failures");
2620         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_frame_too_large",
2621             CTLFLAG_RD, &stats->rx_frame_too_large,
2622             "Received frame larger than the mbuf chain");
2623         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_enq_replacement_failed",
2624             CTLFLAG_RD, &stats->rx_enq_replacement_failed,
2625             "Enqueuing the replacement receive mbuf failed");
2626         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_mergeable_failed",
2627             CTLFLAG_RD, &stats->rx_mergeable_failed,
2628             "Mergeable buffers receive failures");
2629         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_csum_bad_ethtype",
2630             CTLFLAG_RD, &stats->rx_csum_bad_ethtype,
2631             "Received checksum offloaded buffer with unsupported "
2632             "Ethernet type");
2633         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_csum_bad_start",
2634             CTLFLAG_RD, &stats->rx_csum_bad_start,
2635             "Received checksum offloaded buffer with incorrect start offset");
2636         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_csum_bad_ipproto",
2637             CTLFLAG_RD, &stats->rx_csum_bad_ipproto,
2638             "Received checksum offloaded buffer with incorrect IP protocol");
2639         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_csum_bad_offset",
2640             CTLFLAG_RD, &stats->rx_csum_bad_offset,
2641             "Received checksum offloaded buffer with incorrect offset");
2642         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_csum_failed",
2643             CTLFLAG_RD, &stats->rx_csum_failed,
2644             "Received buffer checksum offload failed");
2645         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_csum_offloaded",
2646             CTLFLAG_RD, &stats->rx_csum_offloaded,
2647             "Received buffer checksum offload succeeded");
2648         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_task_rescheduled",
2649             CTLFLAG_RD, &stats->rx_task_rescheduled,
2650             "Times the receive interrupt task rescheduled itself");
2651
2652         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "tx_csum_offloaded",
2653             CTLFLAG_RD, &stats->tx_csum_offloaded,
2654             "Offloaded checksum of transmitted buffer");
2655         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "tx_tso_offloaded",
2656             CTLFLAG_RD, &stats->tx_tso_offloaded,
2657             "Segmentation offload of transmitted buffer");
2658         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "tx_csum_bad_ethtype",
2659             CTLFLAG_RD, &stats->tx_csum_bad_ethtype,
2660             "Aborted transmit of checksum offloaded buffer with unknown "
2661             "Ethernet type");
2662         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "tx_tso_bad_ethtype",
2663             CTLFLAG_RD, &stats->tx_tso_bad_ethtype,
2664             "Aborted transmit of TSO buffer with unknown Ethernet type");
2665         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "tx_task_rescheduled",
2666             CTLFLAG_RD, &stats->tx_task_rescheduled,
2667             "Times the transmit interrupt task rescheduled itself");
2668 }
2669
2670 static int
2671 vtnet_enable_rx_intr(struct vtnet_softc *sc)
2672 {
2673
2674         return (virtqueue_enable_intr(sc->vtnet_rx_vq));
2675 }
2676
2677 static void
2678 vtnet_disable_rx_intr(struct vtnet_softc *sc)
2679 {
2680
2681         virtqueue_disable_intr(sc->vtnet_rx_vq);
2682 }
2683
2684 static int
2685 vtnet_enable_tx_intr(struct vtnet_softc *sc)
2686 {
2687
2688 #ifdef VTNET_TX_INTR_MODERATION
2689         return (0);
2690 #else
2691         return (virtqueue_enable_intr(sc->vtnet_tx_vq));
2692 #endif
2693 }
2694
2695 static void
2696 vtnet_disable_tx_intr(struct vtnet_softc *sc)
2697 {
2698
2699         virtqueue_disable_intr(sc->vtnet_tx_vq);
2700 }