kernel: fixup accidental whitespace shift in vm_fault_copy_entry commit
[dragonfly.git] / sys / vm / vm_fault.c
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  *
11  *
12  * This code is derived from software contributed to Berkeley by
13  * The Mach Operating System project at Carnegie-Mellon University.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *      This product includes software developed by the University of
26  *      California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
44  *
45  *
46  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47  * All rights reserved.
48  *
49  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
50  *
51  * Permission to use, copy, modify and distribute this software and
52  * its documentation is hereby granted, provided that both the copyright
53  * notice and this permission notice appear in all copies of the
54  * software, derivative works or modified versions, and any portions
55  * thereof, and that both notices appear in supporting documentation.
56  *
57  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
58  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
59  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
60  *
61  * Carnegie Mellon requests users of this software to return to
62  *
63  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
64  *  School of Computer Science
65  *  Carnegie Mellon University
66  *  Pittsburgh PA 15213-3890
67  *
68  * any improvements or extensions that they make and grant Carnegie the
69  * rights to redistribute these changes.
70  *
71  * $FreeBSD: src/sys/vm/vm_fault.c,v 1.108.2.8 2002/02/26 05:49:27 silby Exp $
72  * $DragonFly: src/sys/vm/vm_fault.c,v 1.47 2008/07/01 02:02:56 dillon Exp $
73  */
74
75 /*
76  *      Page fault handling module.
77  */
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/proc.h>
83 #include <sys/vnode.h>
84 #include <sys/resourcevar.h>
85 #include <sys/vmmeter.h>
86 #include <sys/vkernel.h>
87 #include <sys/lock.h>
88 #include <sys/sysctl.h>
89
90 #include <cpu/lwbuf.h>
91
92 #include <vm/vm.h>
93 #include <vm/vm_param.h>
94 #include <vm/pmap.h>
95 #include <vm/vm_map.h>
96 #include <vm/vm_object.h>
97 #include <vm/vm_page.h>
98 #include <vm/vm_pageout.h>
99 #include <vm/vm_kern.h>
100 #include <vm/vm_pager.h>
101 #include <vm/vnode_pager.h>
102 #include <vm/vm_extern.h>
103
104 #include <sys/thread2.h>
105 #include <vm/vm_page2.h>
106
107 struct faultstate {
108         vm_page_t m;
109         vm_object_t object;
110         vm_pindex_t pindex;
111         vm_prot_t prot;
112         vm_page_t first_m;
113         vm_object_t first_object;
114         vm_prot_t first_prot;
115         vm_map_t map;
116         vm_map_entry_t entry;
117         int lookup_still_valid;
118         int hardfault;
119         int fault_flags;
120         int map_generation;
121         boolean_t wired;
122         struct vnode *vp;
123 };
124
125 static int debug_cluster = 0;
126 SYSCTL_INT(_vm, OID_AUTO, debug_cluster, CTLFLAG_RW, &debug_cluster, 0, "");
127 static int vm_shared_fault = 1;
128 SYSCTL_INT(_vm, OID_AUTO, shared_fault, CTLFLAG_RW, &vm_shared_fault, 0,
129            "Allow shared token on vm_object");
130 static long vm_shared_hit = 0;
131 SYSCTL_LONG(_vm, OID_AUTO, shared_hit, CTLFLAG_RW, &vm_shared_hit, 0,
132            "Successful shared faults");
133 static long vm_shared_miss = 0;
134 SYSCTL_LONG(_vm, OID_AUTO, shared_miss, CTLFLAG_RW, &vm_shared_miss, 0,
135            "Successful shared faults");
136
137 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t);
138 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *, vpte_t, int);
139 #if 0
140 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *);
141 #endif
142 static void vm_set_nosync(vm_page_t m, vm_map_entry_t entry);
143 static void vm_prefault(pmap_t pmap, vm_offset_t addra,
144                         vm_map_entry_t entry, int prot, int fault_flags);
145 static void vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
146                         vm_map_entry_t entry, int prot, int fault_flags);
147
148 static __inline void
149 release_page(struct faultstate *fs)
150 {
151         vm_page_deactivate(fs->m);
152         vm_page_wakeup(fs->m);
153         fs->m = NULL;
154 }
155
156 /*
157  * NOTE: Once unlocked any cached fs->entry becomes invalid, any reuse
158  *       requires relocking and then checking the timestamp.
159  *
160  * NOTE: vm_map_lock_read() does not bump fs->map->timestamp so we do
161  *       not have to update fs->map_generation here.
162  *
163  * NOTE: This function can fail due to a deadlock against the caller's
164  *       holding of a vm_page BUSY.
165  */
166 static __inline int
167 relock_map(struct faultstate *fs)
168 {
169         int error;
170
171         if (fs->lookup_still_valid == FALSE && fs->map) {
172                 error = vm_map_lock_read_to(fs->map);
173                 if (error == 0)
174                         fs->lookup_still_valid = TRUE;
175         } else {
176                 error = 0;
177         }
178         return error;
179 }
180
181 static __inline void
182 unlock_map(struct faultstate *fs)
183 {
184         if (fs->lookup_still_valid && fs->map) {
185                 vm_map_lookup_done(fs->map, fs->entry, 0);
186                 fs->lookup_still_valid = FALSE;
187         }
188 }
189
190 /*
191  * Clean up after a successful call to vm_fault_object() so another call
192  * to vm_fault_object() can be made.
193  */
194 static void
195 _cleanup_successful_fault(struct faultstate *fs, int relock)
196 {
197         if (fs->object != fs->first_object) {
198                 vm_page_free(fs->first_m);
199                 vm_object_pip_wakeup(fs->object);
200                 fs->first_m = NULL;
201         }
202         fs->object = fs->first_object;
203         if (relock && fs->lookup_still_valid == FALSE) {
204                 if (fs->map)
205                         vm_map_lock_read(fs->map);
206                 fs->lookup_still_valid = TRUE;
207         }
208 }
209
210 static void
211 _unlock_things(struct faultstate *fs, int dealloc)
212 {
213         _cleanup_successful_fault(fs, 0);
214         if (dealloc) {
215                 /*vm_object_deallocate(fs->first_object);*/
216                 /*fs->first_object = NULL; drop used later on */
217         }
218         unlock_map(fs); 
219         if (fs->vp != NULL) { 
220                 vput(fs->vp);
221                 fs->vp = NULL;
222         }
223 }
224
225 #define unlock_things(fs) _unlock_things(fs, 0)
226 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
227 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1)
228
229 /*
230  * TRYPAGER 
231  *
232  * Determine if the pager for the current object *might* contain the page.
233  *
234  * We only need to try the pager if this is not a default object (default
235  * objects are zero-fill and have no real pager), and if we are not taking
236  * a wiring fault or if the FS entry is wired.
237  */
238 #define TRYPAGER(fs)    \
239                 (fs->object->type != OBJT_DEFAULT && \
240                 (((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired))
241
242 /*
243  * vm_fault:
244  *
245  * Handle a page fault occuring at the given address, requiring the given
246  * permissions, in the map specified.  If successful, the page is inserted
247  * into the associated physical map.
248  *
249  * NOTE: The given address should be truncated to the proper page address.
250  *
251  * KERN_SUCCESS is returned if the page fault is handled; otherwise,
252  * a standard error specifying why the fault is fatal is returned.
253  *
254  * The map in question must be referenced, and remains so.
255  * The caller may hold no locks.
256  * No other requirements.
257  */
258 int
259 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
260 {
261         int result;
262         vm_pindex_t first_pindex;
263         struct faultstate fs;
264         struct lwp *lp;
265         int growstack;
266
267         vm_page_pcpu_cache();
268         fs.hardfault = 0;
269         fs.fault_flags = fault_flags;
270         fs.vp = NULL;
271         growstack = 1;
272
273         if ((lp = curthread->td_lwp) != NULL)
274                 lp->lwp_flags |= LWP_PAGING;
275
276         lwkt_gettoken(&map->token);
277
278 RetryFault:
279         /*
280          * Find the vm_map_entry representing the backing store and resolve
281          * the top level object and page index.  This may have the side
282          * effect of executing a copy-on-write on the map entry and/or
283          * creating a shadow object, but will not COW any actual VM pages.
284          *
285          * On success fs.map is left read-locked and various other fields 
286          * are initialized but not otherwise referenced or locked.
287          *
288          * NOTE!  vm_map_lookup will try to upgrade the fault_type to
289          * VM_FAULT_WRITE if the map entry is a virtual page table and also
290          * writable, so we can set the 'A'accessed bit in the virtual page
291          * table entry.
292          */
293         fs.map = map;
294         result = vm_map_lookup(&fs.map, vaddr, fault_type,
295                                &fs.entry, &fs.first_object,
296                                &first_pindex, &fs.first_prot, &fs.wired);
297
298         /*
299          * If the lookup failed or the map protections are incompatible,
300          * the fault generally fails.  However, if the caller is trying
301          * to do a user wiring we have more work to do.
302          */
303         if (result != KERN_SUCCESS) {
304                 if (result != KERN_PROTECTION_FAILURE ||
305                     (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
306                 {
307                         if (result == KERN_INVALID_ADDRESS && growstack &&
308                             map != &kernel_map && curproc != NULL) {
309                                 result = vm_map_growstack(curproc, vaddr);
310                                 if (result == KERN_SUCCESS) {
311                                         growstack = 0;
312                                         goto RetryFault;
313                                 }
314                                 result = KERN_FAILURE;
315                         }
316                         goto done;
317                 }
318
319                 /*
320                  * If we are user-wiring a r/w segment, and it is COW, then
321                  * we need to do the COW operation.  Note that we don't
322                  * currently COW RO sections now, because it is NOT desirable
323                  * to COW .text.  We simply keep .text from ever being COW'ed
324                  * and take the heat that one cannot debug wired .text sections.
325                  */
326                 result = vm_map_lookup(&fs.map, vaddr,
327                                        VM_PROT_READ|VM_PROT_WRITE|
328                                         VM_PROT_OVERRIDE_WRITE,
329                                        &fs.entry, &fs.first_object,
330                                        &first_pindex, &fs.first_prot,
331                                        &fs.wired);
332                 if (result != KERN_SUCCESS) {
333                         result = KERN_FAILURE;
334                         goto done;
335                 }
336
337                 /*
338                  * If we don't COW now, on a user wire, the user will never
339                  * be able to write to the mapping.  If we don't make this
340                  * restriction, the bookkeeping would be nearly impossible.
341                  *
342                  * XXX We have a shared lock, this will have a MP race but
343                  * I don't see how it can hurt anything.
344                  */
345                 if ((fs.entry->protection & VM_PROT_WRITE) == 0)
346                         fs.entry->max_protection &= ~VM_PROT_WRITE;
347         }
348
349         /*
350          * fs.map is read-locked
351          *
352          * Misc checks.  Save the map generation number to detect races.
353          */
354         fs.map_generation = fs.map->timestamp;
355
356         if (fs.entry->eflags & (MAP_ENTRY_NOFAULT | MAP_ENTRY_KSTACK)) {
357                 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
358                         panic("vm_fault: fault on nofault entry, addr: %p",
359                               (void *)vaddr);
360                 }
361                 if ((fs.entry->eflags & MAP_ENTRY_KSTACK) &&
362                     vaddr >= fs.entry->start &&
363                     vaddr < fs.entry->start + PAGE_SIZE) {
364                         panic("vm_fault: fault on stack guard, addr: %p",
365                               (void *)vaddr);
366                 }
367         }
368
369         /*
370          * A system map entry may return a NULL object.  No object means
371          * no pager means an unrecoverable kernel fault.
372          */
373         if (fs.first_object == NULL) {
374                 panic("vm_fault: unrecoverable fault at %p in entry %p",
375                         (void *)vaddr, fs.entry);
376         }
377
378         /*
379          * Attempt to shortcut the fault if the lookup returns a
380          * terminal object and the page is present.  This allows us
381          * to obtain a shared token on the object instead of an exclusive
382          * token, which theoretically should allow concurrent faults.
383          *
384          * We cannot acquire a shared token on kernel_map, at least not
385          * on i386, because the i386 pmap code uses the kernel_object for
386          * its page table page management, resulting in a shared->exclusive
387          * sequence which will deadlock.  This will not happen normally
388          * anyway, except on well cached pageable kmem (like pipe buffers),
389          * so it should not impact performance.
390          */
391         if (vm_shared_fault &&
392             fs.first_object->backing_object == NULL &&
393             fs.entry->maptype == VM_MAPTYPE_NORMAL &&
394             fs.map != &kernel_map) {
395                 int error;
396                 vm_object_hold_shared(fs.first_object);
397                 /*fs.vp = vnode_pager_lock(fs.first_object);*/
398                 fs.m = vm_page_lookup_busy_try(fs.first_object,
399                                                 first_pindex,
400                                                 TRUE, &error);
401                 if (error == 0 && fs.m) {
402                         /*
403                          * Activate the page and figure out if we can
404                          * short-cut a quick mapping.
405                          *
406                          * WARNING!  We cannot call swap_pager_unswapped()
407                          *           with a shared token!  Note that we
408                          *           have to test fs.first_prot here.
409                          */
410                         vm_page_activate(fs.m);
411                         if (fs.m->valid == VM_PAGE_BITS_ALL &&
412                             ((fs.m->flags & PG_SWAPPED) == 0 ||
413                              (fs.first_prot & VM_PROT_WRITE) == 0 ||
414                              (fs.fault_flags & VM_FAULT_DIRTY) == 0)) {
415                                 fs.lookup_still_valid = TRUE;
416                                 fs.first_m = NULL;
417                                 fs.object = fs.first_object;
418                                 fs.prot = fs.first_prot;
419                                 if (fs.wired)
420                                         fault_type = fs.first_prot;
421                                 if (fs.prot & VM_PROT_WRITE) {
422                                         vm_object_set_writeable_dirty(
423                                                         fs.m->object);
424                                         vm_set_nosync(fs.m, fs.entry);
425                                         if (fs.fault_flags & VM_FAULT_DIRTY) {
426                                                 vm_page_dirty(fs.m);
427                                                 /*XXX*/
428                                                 swap_pager_unswapped(fs.m);
429                                         }
430                                 }
431                                 result = KERN_SUCCESS;
432                                 fault_flags |= VM_FAULT_BURST_QUICK;
433                                 fault_flags &= ~VM_FAULT_BURST;
434                                 ++vm_shared_hit;
435                                 goto quick;
436                         }
437                         vm_page_wakeup(fs.m);
438                         fs.m = NULL;
439                 }
440                 vm_object_drop(fs.first_object); /* XXX drop on shared tok?*/
441         }
442         ++vm_shared_miss;
443
444         /*
445          * Bump the paging-in-progress count to prevent size changes (e.g.
446          * truncation operations) during I/O.  This must be done after
447          * obtaining the vnode lock in order to avoid possible deadlocks.
448          */
449         vm_object_hold(fs.first_object);
450         if (fs.vp == NULL)
451                 fs.vp = vnode_pager_lock(fs.first_object);
452
453         fs.lookup_still_valid = TRUE;
454         fs.first_m = NULL;
455         fs.object = fs.first_object;    /* so unlock_and_deallocate works */
456
457         /*
458          * If the entry is wired we cannot change the page protection.
459          */
460         if (fs.wired)
461                 fault_type = fs.first_prot;
462
463         /*
464          * The page we want is at (first_object, first_pindex), but if the
465          * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
466          * page table to figure out the actual pindex.
467          *
468          * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
469          * ONLY
470          */
471         if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
472                 result = vm_fault_vpagetable(&fs, &first_pindex,
473                                              fs.entry->aux.master_pde,
474                                              fault_type);
475                 if (result == KERN_TRY_AGAIN) {
476                         vm_object_drop(fs.first_object);
477                         goto RetryFault;
478                 }
479                 if (result != KERN_SUCCESS)
480                         goto done;
481         }
482
483         /*
484          * Now we have the actual (object, pindex), fault in the page.  If
485          * vm_fault_object() fails it will unlock and deallocate the FS
486          * data.   If it succeeds everything remains locked and fs->object
487          * will have an additional PIP count if it is not equal to
488          * fs->first_object
489          *
490          * vm_fault_object will set fs->prot for the pmap operation.  It is
491          * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the
492          * page can be safely written.  However, it will force a read-only
493          * mapping for a read fault if the memory is managed by a virtual
494          * page table.
495          */
496         /* BEFORE */
497         result = vm_fault_object(&fs, first_pindex, fault_type);
498
499         if (result == KERN_TRY_AGAIN) {
500                 vm_object_drop(fs.first_object);
501                 goto RetryFault;
502         }
503         if (result != KERN_SUCCESS)
504                 goto done;
505
506 quick:
507         /*
508          * On success vm_fault_object() does not unlock or deallocate, and fs.m
509          * will contain a busied page.
510          *
511          * Enter the page into the pmap and do pmap-related adjustments.
512          */
513         vm_page_flag_set(fs.m, PG_REFERENCED);
514         pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired);
515         mycpu->gd_cnt.v_vm_faults++;
516         if (curthread->td_lwp)
517                 ++curthread->td_lwp->lwp_ru.ru_minflt;
518
519         /*KKASSERT(fs.m->queue == PQ_NONE); page-in op may deactivate page */
520         KKASSERT(fs.m->flags & PG_BUSY);
521
522         /*
523          * If the page is not wired down, then put it where the pageout daemon
524          * can find it.
525          */
526         if (fs.fault_flags & VM_FAULT_WIRE_MASK) {
527                 if (fs.wired)
528                         vm_page_wire(fs.m);
529                 else
530                         vm_page_unwire(fs.m, 1);
531         } else {
532                 vm_page_activate(fs.m);
533         }
534         vm_page_wakeup(fs.m);
535
536         /*
537          * Burst in a few more pages if possible.  The fs.map should still
538          * be locked.  To avoid interlocking against a vnode->getblk
539          * operation we had to be sure to unbusy our primary vm_page above
540          * first.
541          */
542         if (fault_flags & VM_FAULT_BURST) {
543                 if ((fs.fault_flags & VM_FAULT_WIRE_MASK) == 0
544                     && fs.wired == 0) {
545                         vm_prefault(fs.map->pmap, vaddr,
546                                     fs.entry, fs.prot, fault_flags);
547                 }
548         }
549         if (fault_flags & VM_FAULT_BURST_QUICK) {
550                 if ((fs.fault_flags & VM_FAULT_WIRE_MASK) == 0
551                     && fs.wired == 0) {
552                         vm_prefault_quick(fs.map->pmap, vaddr,
553                                           fs.entry, fs.prot, fault_flags);
554                 }
555         }
556
557         /*
558          * Unlock everything, and return
559          */
560         unlock_things(&fs);
561
562         if (curthread->td_lwp) {
563                 if (fs.hardfault) {
564                         curthread->td_lwp->lwp_ru.ru_majflt++;
565                 } else {
566                         curthread->td_lwp->lwp_ru.ru_minflt++;
567                 }
568         }
569
570         /*vm_object_deallocate(fs.first_object);*/
571         /*fs.m = NULL; */
572         /*fs.first_object = NULL; must still drop later */
573
574         result = KERN_SUCCESS;
575 done:
576         if (fs.first_object)
577                 vm_object_drop(fs.first_object);
578         lwkt_reltoken(&map->token);
579         if (lp)
580                 lp->lwp_flags &= ~LWP_PAGING;
581         return (result);
582 }
583
584 /*
585  * Fault in the specified virtual address in the current process map, 
586  * returning a held VM page or NULL.  See vm_fault_page() for more 
587  * information.
588  *
589  * No requirements.
590  */
591 vm_page_t
592 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type, int *errorp)
593 {
594         struct lwp *lp = curthread->td_lwp;
595         vm_page_t m;
596
597         m = vm_fault_page(&lp->lwp_vmspace->vm_map, va, 
598                           fault_type, VM_FAULT_NORMAL, errorp);
599         return(m);
600 }
601
602 /*
603  * Fault in the specified virtual address in the specified map, doing all
604  * necessary manipulation of the object store and all necessary I/O.  Return
605  * a held VM page or NULL, and set *errorp.  The related pmap is not
606  * updated.
607  *
608  * The returned page will be properly dirtied if VM_PROT_WRITE was specified,
609  * and marked PG_REFERENCED as well.
610  *
611  * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an
612  * error will be returned.
613  *
614  * No requirements.
615  */
616 vm_page_t
617 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
618               int fault_flags, int *errorp)
619 {
620         vm_pindex_t first_pindex;
621         struct faultstate fs;
622         int result;
623         vm_prot_t orig_fault_type = fault_type;
624
625         fs.hardfault = 0;
626         fs.fault_flags = fault_flags;
627         KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
628
629         lwkt_gettoken(&map->token);
630
631 RetryFault:
632         /*
633          * Find the vm_map_entry representing the backing store and resolve
634          * the top level object and page index.  This may have the side
635          * effect of executing a copy-on-write on the map entry and/or
636          * creating a shadow object, but will not COW any actual VM pages.
637          *
638          * On success fs.map is left read-locked and various other fields 
639          * are initialized but not otherwise referenced or locked.
640          *
641          * NOTE!  vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
642          * if the map entry is a virtual page table and also writable,
643          * so we can set the 'A'accessed bit in the virtual page table entry.
644          */
645         fs.map = map;
646         result = vm_map_lookup(&fs.map, vaddr, fault_type,
647                                &fs.entry, &fs.first_object,
648                                &first_pindex, &fs.first_prot, &fs.wired);
649
650         if (result != KERN_SUCCESS) {
651                 *errorp = result;
652                 fs.m = NULL;
653                 goto done;
654         }
655
656         /*
657          * fs.map is read-locked
658          *
659          * Misc checks.  Save the map generation number to detect races.
660          */
661         fs.map_generation = fs.map->timestamp;
662
663         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
664                 panic("vm_fault: fault on nofault entry, addr: %lx",
665                     (u_long)vaddr);
666         }
667
668         /*
669          * A system map entry may return a NULL object.  No object means
670          * no pager means an unrecoverable kernel fault.
671          */
672         if (fs.first_object == NULL) {
673                 panic("vm_fault: unrecoverable fault at %p in entry %p",
674                         (void *)vaddr, fs.entry);
675         }
676
677         /*
678          * Make a reference to this object to prevent its disposal while we
679          * are messing with it.  Once we have the reference, the map is free
680          * to be diddled.  Since objects reference their shadows (and copies),
681          * they will stay around as well.
682          *
683          * The reference should also prevent an unexpected collapse of the
684          * parent that might move pages from the current object into the
685          * parent unexpectedly, resulting in corruption.
686          *
687          * Bump the paging-in-progress count to prevent size changes (e.g.
688          * truncation operations) during I/O.  This must be done after
689          * obtaining the vnode lock in order to avoid possible deadlocks.
690          */
691         vm_object_hold(fs.first_object);
692         fs.vp = vnode_pager_lock(fs.first_object);
693
694         fs.lookup_still_valid = TRUE;
695         fs.first_m = NULL;
696         fs.object = fs.first_object;    /* so unlock_and_deallocate works */
697
698         /*
699          * If the entry is wired we cannot change the page protection.
700          */
701         if (fs.wired)
702                 fault_type = fs.first_prot;
703
704         /*
705          * The page we want is at (first_object, first_pindex), but if the
706          * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
707          * page table to figure out the actual pindex.
708          *
709          * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
710          * ONLY
711          */
712         if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
713                 result = vm_fault_vpagetable(&fs, &first_pindex,
714                                              fs.entry->aux.master_pde,
715                                              fault_type);
716                 if (result == KERN_TRY_AGAIN) {
717                         vm_object_drop(fs.first_object);
718                         goto RetryFault;
719                 }
720                 if (result != KERN_SUCCESS) {
721                         *errorp = result;
722                         fs.m = NULL;
723                         goto done;
724                 }
725         }
726
727         /*
728          * Now we have the actual (object, pindex), fault in the page.  If
729          * vm_fault_object() fails it will unlock and deallocate the FS
730          * data.   If it succeeds everything remains locked and fs->object
731          * will have an additinal PIP count if it is not equal to
732          * fs->first_object
733          */
734         fs.m = NULL;
735         result = vm_fault_object(&fs, first_pindex, fault_type);
736
737         if (result == KERN_TRY_AGAIN) {
738                 vm_object_drop(fs.first_object);
739                 goto RetryFault;
740         }
741         if (result != KERN_SUCCESS) {
742                 *errorp = result;
743                 fs.m = NULL;
744                 goto done;
745         }
746
747         if ((orig_fault_type & VM_PROT_WRITE) &&
748             (fs.prot & VM_PROT_WRITE) == 0) {
749                 *errorp = KERN_PROTECTION_FAILURE;
750                 unlock_and_deallocate(&fs);
751                 fs.m = NULL;
752                 goto done;
753         }
754
755         /*
756          * DO NOT UPDATE THE PMAP!!!  This function may be called for
757          * a pmap unrelated to the current process pmap, in which case
758          * the current cpu core will not be listed in the pmap's pm_active
759          * mask.  Thus invalidation interlocks will fail to work properly.
760          *
761          * (for example, 'ps' uses procfs to read program arguments from
762          * each process's stack).
763          *
764          * In addition to the above this function will be called to acquire
765          * a page that might already be faulted in, re-faulting it
766          * continuously is a waste of time.
767          *
768          * XXX could this have been the cause of our random seg-fault
769          *     issues?  procfs accesses user stacks.
770          */
771         vm_page_flag_set(fs.m, PG_REFERENCED);
772 #if 0
773         pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired);
774         mycpu->gd_cnt.v_vm_faults++;
775         if (curthread->td_lwp)
776                 ++curthread->td_lwp->lwp_ru.ru_minflt;
777 #endif
778
779         /*
780          * On success vm_fault_object() does not unlock or deallocate, and fs.m
781          * will contain a busied page.  So we must unlock here after having
782          * messed with the pmap.
783          */
784         unlock_things(&fs);
785
786         /*
787          * Return a held page.  We are not doing any pmap manipulation so do
788          * not set PG_MAPPED.  However, adjust the page flags according to
789          * the fault type because the caller may not use a managed pmapping
790          * (so we don't want to lose the fact that the page will be dirtied
791          * if a write fault was specified).
792          */
793         vm_page_hold(fs.m);
794         vm_page_activate(fs.m);
795         if (fault_type & VM_PROT_WRITE)
796                 vm_page_dirty(fs.m);
797
798         if (curthread->td_lwp) {
799                 if (fs.hardfault) {
800                         curthread->td_lwp->lwp_ru.ru_majflt++;
801                 } else {
802                         curthread->td_lwp->lwp_ru.ru_minflt++;
803                 }
804         }
805
806         /*
807          * Unlock everything, and return the held page.
808          */
809         vm_page_wakeup(fs.m);
810         /*vm_object_deallocate(fs.first_object);*/
811         /*fs.first_object = NULL; */
812         *errorp = 0;
813
814 done:
815         if (fs.first_object)
816                 vm_object_drop(fs.first_object);
817         lwkt_reltoken(&map->token);
818         return(fs.m);
819 }
820
821 /*
822  * Fault in the specified (object,offset), dirty the returned page as
823  * needed.  If the requested fault_type cannot be done NULL and an
824  * error is returned.
825  *
826  * A held (but not busied) page is returned.
827  *
828  * No requirements.
829  */
830 vm_page_t
831 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset,
832                      vm_prot_t fault_type, int fault_flags, int *errorp)
833 {
834         int result;
835         vm_pindex_t first_pindex;
836         struct faultstate fs;
837         struct vm_map_entry entry;
838
839         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
840         bzero(&entry, sizeof(entry));
841         entry.object.vm_object = object;
842         entry.maptype = VM_MAPTYPE_NORMAL;
843         entry.protection = entry.max_protection = fault_type;
844
845         fs.hardfault = 0;
846         fs.fault_flags = fault_flags;
847         fs.map = NULL;
848         KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
849
850 RetryFault:
851         
852         fs.first_object = object;
853         first_pindex = OFF_TO_IDX(offset);
854         fs.entry = &entry;
855         fs.first_prot = fault_type;
856         fs.wired = 0;
857         /*fs.map_generation = 0; unused */
858
859         /*
860          * Make a reference to this object to prevent its disposal while we
861          * are messing with it.  Once we have the reference, the map is free
862          * to be diddled.  Since objects reference their shadows (and copies),
863          * they will stay around as well.
864          *
865          * The reference should also prevent an unexpected collapse of the
866          * parent that might move pages from the current object into the
867          * parent unexpectedly, resulting in corruption.
868          *
869          * Bump the paging-in-progress count to prevent size changes (e.g.
870          * truncation operations) during I/O.  This must be done after
871          * obtaining the vnode lock in order to avoid possible deadlocks.
872          */
873         fs.vp = vnode_pager_lock(fs.first_object);
874
875         fs.lookup_still_valid = TRUE;
876         fs.first_m = NULL;
877         fs.object = fs.first_object;    /* so unlock_and_deallocate works */
878
879 #if 0
880         /* XXX future - ability to operate on VM object using vpagetable */
881         if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
882                 result = vm_fault_vpagetable(&fs, &first_pindex,
883                                              fs.entry->aux.master_pde,
884                                              fault_type);
885                 if (result == KERN_TRY_AGAIN)
886                         goto RetryFault;
887                 if (result != KERN_SUCCESS) {
888                         *errorp = result;
889                         return (NULL);
890                 }
891         }
892 #endif
893
894         /*
895          * Now we have the actual (object, pindex), fault in the page.  If
896          * vm_fault_object() fails it will unlock and deallocate the FS
897          * data.   If it succeeds everything remains locked and fs->object
898          * will have an additinal PIP count if it is not equal to
899          * fs->first_object
900          */
901         result = vm_fault_object(&fs, first_pindex, fault_type);
902
903         if (result == KERN_TRY_AGAIN)
904                 goto RetryFault;
905         if (result != KERN_SUCCESS) {
906                 *errorp = result;
907                 return(NULL);
908         }
909
910         if ((fault_type & VM_PROT_WRITE) && (fs.prot & VM_PROT_WRITE) == 0) {
911                 *errorp = KERN_PROTECTION_FAILURE;
912                 unlock_and_deallocate(&fs);
913                 return(NULL);
914         }
915
916         /*
917          * On success vm_fault_object() does not unlock or deallocate, so we
918          * do it here.  Note that the returned fs.m will be busied.
919          */
920         unlock_things(&fs);
921
922         /*
923          * Return a held page.  We are not doing any pmap manipulation so do
924          * not set PG_MAPPED.  However, adjust the page flags according to
925          * the fault type because the caller may not use a managed pmapping
926          * (so we don't want to lose the fact that the page will be dirtied
927          * if a write fault was specified).
928          */
929         vm_page_hold(fs.m);
930         vm_page_activate(fs.m);
931         if ((fault_type & VM_PROT_WRITE) || (fault_flags & VM_FAULT_DIRTY))
932                 vm_page_dirty(fs.m);
933         if (fault_flags & VM_FAULT_UNSWAP)
934                 swap_pager_unswapped(fs.m);
935
936         /*
937          * Indicate that the page was accessed.
938          */
939         vm_page_flag_set(fs.m, PG_REFERENCED);
940
941         if (curthread->td_lwp) {
942                 if (fs.hardfault) {
943                         curthread->td_lwp->lwp_ru.ru_majflt++;
944                 } else {
945                         curthread->td_lwp->lwp_ru.ru_minflt++;
946                 }
947         }
948
949         /*
950          * Unlock everything, and return the held page.
951          */
952         vm_page_wakeup(fs.m);
953         /*vm_object_deallocate(fs.first_object);*/
954         /*fs.first_object = NULL; */
955
956         *errorp = 0;
957         return(fs.m);
958 }
959
960 /*
961  * Translate the virtual page number (first_pindex) that is relative
962  * to the address space into a logical page number that is relative to the
963  * backing object.  Use the virtual page table pointed to by (vpte).
964  *
965  * This implements an N-level page table.  Any level can terminate the
966  * scan by setting VPTE_PS.   A linear mapping is accomplished by setting
967  * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
968  */
969 static
970 int
971 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex,
972                     vpte_t vpte, int fault_type)
973 {
974         struct lwbuf *lwb;
975         struct lwbuf lwb_cache;
976         int vshift = VPTE_FRAME_END - PAGE_SHIFT; /* index bits remaining */
977         int result = KERN_SUCCESS;
978         vpte_t *ptep;
979
980         ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object));
981         for (;;) {
982                 /*
983                  * We cannot proceed if the vpte is not valid, not readable
984                  * for a read fault, or not writable for a write fault.
985                  */
986                 if ((vpte & VPTE_V) == 0) {
987                         unlock_and_deallocate(fs);
988                         return (KERN_FAILURE);
989                 }
990                 if ((fault_type & VM_PROT_READ) && (vpte & VPTE_R) == 0) {
991                         unlock_and_deallocate(fs);
992                         return (KERN_FAILURE);
993                 }
994                 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_W) == 0) {
995                         unlock_and_deallocate(fs);
996                         return (KERN_FAILURE);
997                 }
998                 if ((vpte & VPTE_PS) || vshift == 0)
999                         break;
1000                 KKASSERT(vshift >= VPTE_PAGE_BITS);
1001
1002                 /*
1003                  * Get the page table page.  Nominally we only read the page
1004                  * table, but since we are actively setting VPTE_M and VPTE_A,
1005                  * tell vm_fault_object() that we are writing it. 
1006                  *
1007                  * There is currently no real need to optimize this.
1008                  */
1009                 result = vm_fault_object(fs, (vpte & VPTE_FRAME) >> PAGE_SHIFT,
1010                                          VM_PROT_READ|VM_PROT_WRITE);
1011                 if (result != KERN_SUCCESS)
1012                         return (result);
1013
1014                 /*
1015                  * Process the returned fs.m and look up the page table
1016                  * entry in the page table page.
1017                  */
1018                 vshift -= VPTE_PAGE_BITS;
1019                 lwb = lwbuf_alloc(fs->m, &lwb_cache);
1020                 ptep = ((vpte_t *)lwbuf_kva(lwb) +
1021                         ((*pindex >> vshift) & VPTE_PAGE_MASK));
1022                 vpte = *ptep;
1023
1024                 /*
1025                  * Page table write-back.  If the vpte is valid for the
1026                  * requested operation, do a write-back to the page table.
1027                  *
1028                  * XXX VPTE_M is not set properly for page directory pages.
1029                  * It doesn't get set in the page directory if the page table
1030                  * is modified during a read access.
1031                  */
1032                 vm_page_activate(fs->m);
1033                 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_V) &&
1034                     (vpte & VPTE_W)) {
1035                         if ((vpte & (VPTE_M|VPTE_A)) != (VPTE_M|VPTE_A)) {
1036                                 atomic_set_long(ptep, VPTE_M | VPTE_A);
1037                                 vm_page_dirty(fs->m);
1038                         }
1039                 }
1040                 if ((fault_type & VM_PROT_READ) && (vpte & VPTE_V) &&
1041                     (vpte & VPTE_R)) {
1042                         if ((vpte & VPTE_A) == 0) {
1043                                 atomic_set_long(ptep, VPTE_A);
1044                                 vm_page_dirty(fs->m);
1045                         }
1046                 }
1047                 lwbuf_free(lwb);
1048                 vm_page_flag_set(fs->m, PG_REFERENCED);
1049                 vm_page_wakeup(fs->m);
1050                 fs->m = NULL;
1051                 cleanup_successful_fault(fs);
1052         }
1053         /*
1054          * Combine remaining address bits with the vpte.
1055          */
1056         /* JG how many bits from each? */
1057         *pindex = ((vpte & VPTE_FRAME) >> PAGE_SHIFT) +
1058                   (*pindex & ((1L << vshift) - 1));
1059         return (KERN_SUCCESS);
1060 }
1061
1062
1063 /*
1064  * This is the core of the vm_fault code.
1065  *
1066  * Do all operations required to fault-in (fs.first_object, pindex).  Run
1067  * through the shadow chain as necessary and do required COW or virtual
1068  * copy operations.  The caller has already fully resolved the vm_map_entry
1069  * and, if appropriate, has created a copy-on-write layer.  All we need to
1070  * do is iterate the object chain.
1071  *
1072  * On failure (fs) is unlocked and deallocated and the caller may return or
1073  * retry depending on the failure code.  On success (fs) is NOT unlocked or
1074  * deallocated, fs.m will contained a resolved, busied page, and fs.object
1075  * will have an additional PIP count if it is not equal to fs.first_object.
1076  *
1077  * fs->first_object must be held on call.
1078  */
1079 static
1080 int
1081 vm_fault_object(struct faultstate *fs,
1082                 vm_pindex_t first_pindex, vm_prot_t fault_type)
1083 {
1084         vm_object_t next_object;
1085         vm_pindex_t pindex;
1086         int error;
1087
1088         ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object));
1089         fs->prot = fs->first_prot;
1090         fs->object = fs->first_object;
1091         pindex = first_pindex;
1092
1093         vm_object_chain_acquire(fs->first_object);
1094         vm_object_pip_add(fs->first_object, 1);
1095
1096         /* 
1097          * If a read fault occurs we try to make the page writable if
1098          * possible.  There are three cases where we cannot make the
1099          * page mapping writable:
1100          *
1101          * (1) The mapping is read-only or the VM object is read-only,
1102          *     fs->prot above will simply not have VM_PROT_WRITE set.
1103          *
1104          * (2) If the mapping is a virtual page table we need to be able
1105          *     to detect writes so we can set VPTE_M in the virtual page
1106          *     table.
1107          *
1108          * (3) If the VM page is read-only or copy-on-write, upgrading would
1109          *     just result in an unnecessary COW fault.
1110          *
1111          * VM_PROT_VPAGED is set if faulting via a virtual page table and
1112          * causes adjustments to the 'M'odify bit to also turn off write
1113          * access to force a re-fault.
1114          */
1115         if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1116                 if ((fault_type & VM_PROT_WRITE) == 0)
1117                         fs->prot &= ~VM_PROT_WRITE;
1118         }
1119
1120         /* vm_object_hold(fs->object); implied b/c object == first_object */
1121
1122         for (;;) {
1123                 /*
1124                  * The entire backing chain from first_object to object
1125                  * inclusive is chainlocked.
1126                  *
1127                  * If the object is dead, we stop here
1128                  */
1129                 if (fs->object->flags & OBJ_DEAD) {
1130                         vm_object_pip_wakeup(fs->first_object);
1131                         vm_object_chain_release_all(fs->first_object,
1132                                                     fs->object);
1133                         if (fs->object != fs->first_object)
1134                                 vm_object_drop(fs->object);
1135                         unlock_and_deallocate(fs);
1136                         return (KERN_PROTECTION_FAILURE);
1137                 }
1138
1139                 /*
1140                  * See if the page is resident.  Wait/Retry if the page is
1141                  * busy (lots of stuff may have changed so we can't continue
1142                  * in that case).
1143                  *
1144                  * We can theoretically allow the soft-busy case on a read
1145                  * fault if the page is marked valid, but since such
1146                  * pages are typically already pmap'd, putting that
1147                  * special case in might be more effort then it is
1148                  * worth.  We cannot under any circumstances mess
1149                  * around with a vm_page_t->busy page except, perhaps,
1150                  * to pmap it.
1151                  */
1152                 fs->m = vm_page_lookup_busy_try(fs->object, pindex,
1153                                                 TRUE, &error);
1154                 if (error) {
1155                         vm_object_pip_wakeup(fs->first_object);
1156                         vm_object_chain_release_all(fs->first_object,
1157                                                     fs->object);
1158                         if (fs->object != fs->first_object)
1159                                 vm_object_drop(fs->object);
1160                         unlock_things(fs);
1161                         vm_page_sleep_busy(fs->m, TRUE, "vmpfw");
1162                         mycpu->gd_cnt.v_intrans++;
1163                         /*vm_object_deallocate(fs->first_object);*/
1164                         /*fs->first_object = NULL;*/
1165                         fs->m = NULL;
1166                         return (KERN_TRY_AGAIN);
1167                 }
1168                 if (fs->m) {
1169                         /*
1170                          * The page is busied for us.
1171                          *
1172                          * If reactivating a page from PQ_CACHE we may have
1173                          * to rate-limit.
1174                          */
1175                         int queue = fs->m->queue;
1176                         vm_page_unqueue_nowakeup(fs->m);
1177
1178                         if ((queue - fs->m->pc) == PQ_CACHE && 
1179                             vm_page_count_severe()) {
1180                                 vm_page_activate(fs->m);
1181                                 vm_page_wakeup(fs->m);
1182                                 fs->m = NULL;
1183                                 vm_object_pip_wakeup(fs->first_object);
1184                                 vm_object_chain_release_all(fs->first_object,
1185                                                             fs->object);
1186                                 if (fs->object != fs->first_object)
1187                                         vm_object_drop(fs->object);
1188                                 unlock_and_deallocate(fs);
1189                                 vm_waitpfault();
1190                                 return (KERN_TRY_AGAIN);
1191                         }
1192
1193                         /*
1194                          * If it still isn't completely valid (readable),
1195                          * or if a read-ahead-mark is set on the VM page,
1196                          * jump to readrest, else we found the page and
1197                          * can return.
1198                          *
1199                          * We can release the spl once we have marked the
1200                          * page busy.
1201                          */
1202                         if (fs->m->object != &kernel_object) {
1203                                 if ((fs->m->valid & VM_PAGE_BITS_ALL) !=
1204                                     VM_PAGE_BITS_ALL) {
1205                                         goto readrest;
1206                                 }
1207                                 if (fs->m->flags & PG_RAM) {
1208                                         if (debug_cluster)
1209                                                 kprintf("R");
1210                                         vm_page_flag_clear(fs->m, PG_RAM);
1211                                         goto readrest;
1212                                 }
1213                         }
1214                         break; /* break to PAGE HAS BEEN FOUND */
1215                 }
1216
1217                 /*
1218                  * Page is not resident, If this is the search termination
1219                  * or the pager might contain the page, allocate a new page.
1220                  */
1221                 if (TRYPAGER(fs) || fs->object == fs->first_object) {
1222                         /*
1223                          * If the page is beyond the object size we fail
1224                          */
1225                         if (pindex >= fs->object->size) {
1226                                 vm_object_pip_wakeup(fs->first_object);
1227                                 vm_object_chain_release_all(fs->first_object,
1228                                                             fs->object);
1229                                 if (fs->object != fs->first_object)
1230                                         vm_object_drop(fs->object);
1231                                 unlock_and_deallocate(fs);
1232                                 return (KERN_PROTECTION_FAILURE);
1233                         }
1234
1235                         /*
1236                          * Allocate a new page for this object/offset pair.
1237                          *
1238                          * It is possible for the allocation to race, so
1239                          * handle the case.
1240                          */
1241                         fs->m = NULL;
1242                         if (!vm_page_count_severe()) {
1243                                 fs->m = vm_page_alloc(fs->object, pindex,
1244                                     ((fs->vp || fs->object->backing_object) ?
1245                                         VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL :
1246                                         VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL |
1247                                         VM_ALLOC_USE_GD | VM_ALLOC_ZERO));
1248                         }
1249                         if (fs->m == NULL) {
1250                                 vm_object_pip_wakeup(fs->first_object);
1251                                 vm_object_chain_release_all(fs->first_object,
1252                                                             fs->object);
1253                                 if (fs->object != fs->first_object)
1254                                         vm_object_drop(fs->object);
1255                                 unlock_and_deallocate(fs);
1256                                 vm_waitpfault();
1257                                 return (KERN_TRY_AGAIN);
1258                         }
1259
1260                         /*
1261                          * Fall through to readrest.  We have a new page which
1262                          * will have to be paged (since m->valid will be 0).
1263                          */
1264                 }
1265
1266 readrest:
1267                 /*
1268                  * We have found an invalid or partially valid page, a
1269                  * page with a read-ahead mark which might be partially or
1270                  * fully valid (and maybe dirty too), or we have allocated
1271                  * a new page.
1272                  *
1273                  * Attempt to fault-in the page if there is a chance that the
1274                  * pager has it, and potentially fault in additional pages
1275                  * at the same time.
1276                  *
1277                  * If TRYPAGER is true then fs.m will be non-NULL and busied
1278                  * for us.
1279                  */
1280                 if (TRYPAGER(fs)) {
1281                         int rv;
1282                         int seqaccess;
1283                         u_char behavior = vm_map_entry_behavior(fs->entry);
1284
1285                         if (behavior == MAP_ENTRY_BEHAV_RANDOM)
1286                                 seqaccess = 0;
1287                         else
1288                                 seqaccess = -1;
1289
1290 #if 0
1291                         /*
1292                          * If sequential access is detected then attempt
1293                          * to deactivate/cache pages behind the scan to
1294                          * prevent resource hogging.
1295                          *
1296                          * Use of PG_RAM to detect sequential access
1297                          * also simulates multi-zone sequential access
1298                          * detection for free.
1299                          *
1300                          * NOTE: Partially valid dirty pages cannot be
1301                          *       deactivated without causing NFS picemeal
1302                          *       writes to barf.
1303                          */
1304                         if ((fs->first_object->type != OBJT_DEVICE) &&
1305                             (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
1306                                 (behavior != MAP_ENTRY_BEHAV_RANDOM &&
1307                                  (fs->m->flags & PG_RAM)))
1308                         ) {
1309                                 vm_pindex_t scan_pindex;
1310                                 int scan_count = 16;
1311
1312                                 if (first_pindex < 16) {
1313                                         scan_pindex = 0;
1314                                         scan_count = 0;
1315                                 } else {
1316                                         scan_pindex = first_pindex - 16;
1317                                         if (scan_pindex < 16)
1318                                                 scan_count = scan_pindex;
1319                                         else
1320                                                 scan_count = 16;
1321                                 }
1322
1323                                 while (scan_count) {
1324                                         vm_page_t mt;
1325
1326                                         mt = vm_page_lookup(fs->first_object,
1327                                                             scan_pindex);
1328                                         if (mt == NULL)
1329                                                 break;
1330                                         if (vm_page_busy_try(mt, TRUE))
1331                                                 goto skip;
1332
1333                                         if (mt->valid != VM_PAGE_BITS_ALL) {
1334                                                 vm_page_wakeup(mt);
1335                                                 break;
1336                                         }
1337                                         if ((mt->flags &
1338                                              (PG_FICTITIOUS | PG_UNMANAGED |
1339                                               PG_NEED_COMMIT)) ||
1340                                             mt->hold_count ||
1341                                             mt->wire_count)  {
1342                                                 vm_page_wakeup(mt);
1343                                                 goto skip;
1344                                         }
1345                                         if (mt->dirty == 0)
1346                                                 vm_page_test_dirty(mt);
1347                                         if (mt->dirty) {
1348                                                 vm_page_protect(mt,
1349                                                                 VM_PROT_NONE);
1350                                                 vm_page_deactivate(mt);
1351                                                 vm_page_wakeup(mt);
1352                                         } else {
1353                                                 vm_page_cache(mt);
1354                                         }
1355 skip:
1356                                         --scan_count;
1357                                         --scan_pindex;
1358                                 }
1359
1360                                 seqaccess = 1;
1361                         }
1362 #endif
1363
1364                         /*
1365                          * Avoid deadlocking against the map when doing I/O.
1366                          * fs.object and the page is PG_BUSY'd.
1367                          *
1368                          * NOTE: Once unlocked, fs->entry can become stale
1369                          *       so this will NULL it out.
1370                          *
1371                          * NOTE: fs->entry is invalid until we relock the
1372                          *       map and verify that the timestamp has not
1373                          *       changed.
1374                          */
1375                         unlock_map(fs);
1376
1377                         /*
1378                          * Acquire the page data.  We still hold a ref on
1379                          * fs.object and the page has been PG_BUSY's.
1380                          *
1381                          * The pager may replace the page (for example, in
1382                          * order to enter a fictitious page into the
1383                          * object).  If it does so it is responsible for
1384                          * cleaning up the passed page and properly setting
1385                          * the new page PG_BUSY.
1386                          *
1387                          * If we got here through a PG_RAM read-ahead
1388                          * mark the page may be partially dirty and thus
1389                          * not freeable.  Don't bother checking to see
1390                          * if the pager has the page because we can't free
1391                          * it anyway.  We have to depend on the get_page
1392                          * operation filling in any gaps whether there is
1393                          * backing store or not.
1394                          */
1395                         rv = vm_pager_get_page(fs->object, &fs->m, seqaccess);
1396
1397                         if (rv == VM_PAGER_OK) {
1398                                 /*
1399                                  * Relookup in case pager changed page. Pager
1400                                  * is responsible for disposition of old page
1401                                  * if moved.
1402                                  *
1403                                  * XXX other code segments do relookups too.
1404                                  * It's a bad abstraction that needs to be
1405                                  * fixed/removed.
1406                                  */
1407                                 fs->m = vm_page_lookup(fs->object, pindex);
1408                                 if (fs->m == NULL) {
1409                                         vm_object_pip_wakeup(fs->first_object);
1410                                         vm_object_chain_release_all(
1411                                                 fs->first_object, fs->object);
1412                                         if (fs->object != fs->first_object)
1413                                                 vm_object_drop(fs->object);
1414                                         unlock_and_deallocate(fs);
1415                                         return (KERN_TRY_AGAIN);
1416                                 }
1417
1418                                 ++fs->hardfault;
1419                                 break; /* break to PAGE HAS BEEN FOUND */
1420                         }
1421
1422                         /*
1423                          * Remove the bogus page (which does not exist at this
1424                          * object/offset); before doing so, we must get back
1425                          * our object lock to preserve our invariant.
1426                          *
1427                          * Also wake up any other process that may want to bring
1428                          * in this page.
1429                          *
1430                          * If this is the top-level object, we must leave the
1431                          * busy page to prevent another process from rushing
1432                          * past us, and inserting the page in that object at
1433                          * the same time that we are.
1434                          */
1435                         if (rv == VM_PAGER_ERROR) {
1436                                 if (curproc) {
1437                                         kprintf("vm_fault: pager read error, "
1438                                                 "pid %d (%s)\n",
1439                                                 curproc->p_pid,
1440                                                 curproc->p_comm);
1441                                 } else {
1442                                         kprintf("vm_fault: pager read error, "
1443                                                 "thread %p (%s)\n",
1444                                                 curthread,
1445                                                 curproc->p_comm);
1446                                 }
1447                         }
1448
1449                         /*
1450                          * Data outside the range of the pager or an I/O error
1451                          *
1452                          * The page may have been wired during the pagein,
1453                          * e.g. by the buffer cache, and cannot simply be
1454                          * freed.  Call vnode_pager_freepage() to deal with it.
1455                          */
1456                         /*
1457                          * XXX - the check for kernel_map is a kludge to work
1458                          * around having the machine panic on a kernel space
1459                          * fault w/ I/O error.
1460                          */
1461                         if (((fs->map != &kernel_map) &&
1462                             (rv == VM_PAGER_ERROR)) || (rv == VM_PAGER_BAD)) {
1463                                 vnode_pager_freepage(fs->m);
1464                                 fs->m = NULL;
1465                                 vm_object_pip_wakeup(fs->first_object);
1466                                 vm_object_chain_release_all(fs->first_object,
1467                                                             fs->object);
1468                                 if (fs->object != fs->first_object)
1469                                         vm_object_drop(fs->object);
1470                                 unlock_and_deallocate(fs);
1471                                 if (rv == VM_PAGER_ERROR)
1472                                         return (KERN_FAILURE);
1473                                 else
1474                                         return (KERN_PROTECTION_FAILURE);
1475                                 /* NOT REACHED */
1476                         }
1477                         if (fs->object != fs->first_object) {
1478                                 vnode_pager_freepage(fs->m);
1479                                 fs->m = NULL;
1480                                 /*
1481                                  * XXX - we cannot just fall out at this
1482                                  * point, m has been freed and is invalid!
1483                                  */
1484                         }
1485                 }
1486
1487                 /*
1488                  * We get here if the object has a default pager (or unwiring) 
1489                  * or the pager doesn't have the page.
1490                  */
1491                 if (fs->object == fs->first_object)
1492                         fs->first_m = fs->m;
1493
1494                 /*
1495                  * Move on to the next object.  The chain lock should prevent
1496                  * the backing_object from getting ripped out from under us.
1497                  */
1498                 if ((next_object = fs->object->backing_object) != NULL) {
1499                         vm_object_hold(next_object);
1500                         vm_object_chain_acquire(next_object);
1501                         KKASSERT(next_object == fs->object->backing_object);
1502                         pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1503                 }
1504
1505                 if (next_object == NULL) {
1506                         /*
1507                          * If there's no object left, fill the page in the top
1508                          * object with zeros.
1509                          */
1510                         if (fs->object != fs->first_object) {
1511                                 if (fs->first_object->backing_object !=
1512                                     fs->object) {
1513                                         vm_object_hold(fs->first_object->backing_object);
1514                                 }
1515                                 vm_object_chain_release_all(
1516                                         fs->first_object->backing_object,
1517                                         fs->object);
1518                                 if (fs->first_object->backing_object !=
1519                                     fs->object) {
1520                                         vm_object_drop(fs->first_object->backing_object);
1521                                 }
1522                                 vm_object_pip_wakeup(fs->object);
1523                                 vm_object_drop(fs->object);
1524                                 fs->object = fs->first_object;
1525                                 pindex = first_pindex;
1526                                 fs->m = fs->first_m;
1527                         }
1528                         fs->first_m = NULL;
1529
1530                         /*
1531                          * Zero the page if necessary and mark it valid.
1532                          */
1533                         if ((fs->m->flags & PG_ZERO) == 0) {
1534                                 vm_page_zero_fill(fs->m);
1535                         } else {
1536 #ifdef PMAP_DEBUG
1537                                 pmap_page_assertzero(VM_PAGE_TO_PHYS(fs->m));
1538 #endif
1539                                 vm_page_flag_clear(fs->m, PG_ZERO);
1540                                 mycpu->gd_cnt.v_ozfod++;
1541                         }
1542                         mycpu->gd_cnt.v_zfod++;
1543                         fs->m->valid = VM_PAGE_BITS_ALL;
1544                         break;  /* break to PAGE HAS BEEN FOUND */
1545                 }
1546                 if (fs->object != fs->first_object) {
1547                         vm_object_pip_wakeup(fs->object);
1548                         vm_object_lock_swap();
1549                         vm_object_drop(fs->object);
1550                 }
1551                 KASSERT(fs->object != next_object,
1552                         ("object loop %p", next_object));
1553                 fs->object = next_object;
1554                 vm_object_pip_add(fs->object, 1);
1555         }
1556
1557         /*
1558          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1559          * is held.]
1560          *
1561          * object still held.
1562          *
1563          * If the page is being written, but isn't already owned by the
1564          * top-level object, we have to copy it into a new page owned by the
1565          * top-level object.
1566          */
1567         KASSERT((fs->m->flags & PG_BUSY) != 0,
1568                 ("vm_fault: not busy after main loop"));
1569
1570         if (fs->object != fs->first_object) {
1571                 /*
1572                  * We only really need to copy if we want to write it.
1573                  */
1574                 if (fault_type & VM_PROT_WRITE) {
1575                         /*
1576                          * This allows pages to be virtually copied from a 
1577                          * backing_object into the first_object, where the 
1578                          * backing object has no other refs to it, and cannot
1579                          * gain any more refs.  Instead of a bcopy, we just 
1580                          * move the page from the backing object to the 
1581                          * first object.  Note that we must mark the page 
1582                          * dirty in the first object so that it will go out 
1583                          * to swap when needed.
1584                          */
1585                         if (
1586                                 /*
1587                                  * Map, if present, has not changed
1588                                  */
1589                                 (fs->map == NULL ||
1590                                 fs->map_generation == fs->map->timestamp) &&
1591                                 /*
1592                                  * Only one shadow object
1593                                  */
1594                                 (fs->object->shadow_count == 1) &&
1595                                 /*
1596                                  * No COW refs, except us
1597                                  */
1598                                 (fs->object->ref_count == 1) &&
1599                                 /*
1600                                  * No one else can look this object up
1601                                  */
1602                                 (fs->object->handle == NULL) &&
1603                                 /*
1604                                  * No other ways to look the object up
1605                                  */
1606                                 ((fs->object->type == OBJT_DEFAULT) ||
1607                                  (fs->object->type == OBJT_SWAP)) &&
1608                                 /*
1609                                  * We don't chase down the shadow chain
1610                                  */
1611                                 (fs->object == fs->first_object->backing_object) &&
1612
1613                                 /*
1614                                  * grab the lock if we need to
1615                                  */
1616                                 (fs->lookup_still_valid ||
1617                                  fs->map == NULL ||
1618                                  lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT) == 0)
1619                             ) {
1620                                 /*
1621                                  * (first_m) and (m) are both busied.  We have
1622                                  * move (m) into (first_m)'s object/pindex
1623                                  * in an atomic fashion, then free (first_m).
1624                                  *
1625                                  * first_object is held so second remove
1626                                  * followed by the rename should wind
1627                                  * up being atomic.  vm_page_free() might
1628                                  * block so we don't do it until after the
1629                                  * rename.
1630                                  */
1631                                 fs->lookup_still_valid = 1;
1632                                 vm_page_protect(fs->first_m, VM_PROT_NONE);
1633                                 vm_page_remove(fs->first_m);
1634                                 vm_page_rename(fs->m, fs->first_object,
1635                                                first_pindex);
1636                                 vm_page_free(fs->first_m);
1637                                 fs->first_m = fs->m;
1638                                 fs->m = NULL;
1639                                 mycpu->gd_cnt.v_cow_optim++;
1640                         } else {
1641                                 /*
1642                                  * Oh, well, lets copy it.
1643                                  *
1644                                  * Why are we unmapping the original page
1645                                  * here?  Well, in short, not all accessors
1646                                  * of user memory go through the pmap.  The
1647                                  * procfs code doesn't have access user memory
1648                                  * via a local pmap, so vm_fault_page*()
1649                                  * can't call pmap_enter().  And the umtx*()
1650                                  * code may modify the COW'd page via a DMAP
1651                                  * or kernel mapping and not via the pmap,
1652                                  * leaving the original page still mapped
1653                                  * read-only into the pmap.
1654                                  *
1655                                  * So we have to remove the page from at
1656                                  * least the current pmap if it is in it.
1657                                  * Just remove it from all pmaps.
1658                                  */
1659                                 vm_page_copy(fs->m, fs->first_m);
1660                                 vm_page_protect(fs->m, VM_PROT_NONE);
1661                                 vm_page_event(fs->m, VMEVENT_COW);
1662                         }
1663
1664                         if (fs->m) {
1665                                 /*
1666                                  * We no longer need the old page or object.
1667                                  */
1668                                 release_page(fs);
1669                         }
1670
1671                         /*
1672                          * We intend to revert to first_object, undo the
1673                          * chain lock through to that.
1674                          */
1675                         if (fs->first_object->backing_object != fs->object)
1676                                 vm_object_hold(fs->first_object->backing_object);
1677                         vm_object_chain_release_all(
1678                                         fs->first_object->backing_object,
1679                                         fs->object);
1680                         if (fs->first_object->backing_object != fs->object)
1681                                 vm_object_drop(fs->first_object->backing_object);
1682
1683                         /*
1684                          * fs->object != fs->first_object due to above 
1685                          * conditional
1686                          */
1687                         vm_object_pip_wakeup(fs->object);
1688                         vm_object_drop(fs->object);
1689
1690                         /*
1691                          * Only use the new page below...
1692                          */
1693
1694                         mycpu->gd_cnt.v_cow_faults++;
1695                         fs->m = fs->first_m;
1696                         fs->object = fs->first_object;
1697                         pindex = first_pindex;
1698                 } else {
1699                         /*
1700                          * If it wasn't a write fault avoid having to copy
1701                          * the page by mapping it read-only.
1702                          */
1703                         fs->prot &= ~VM_PROT_WRITE;
1704                 }
1705         }
1706
1707         /*
1708          * Relock the map if necessary, then check the generation count.
1709          * relock_map() will update fs->timestamp to account for the
1710          * relocking if necessary.
1711          *
1712          * If the count has changed after relocking then all sorts of
1713          * crap may have happened and we have to retry.
1714          *
1715          * NOTE: The relock_map() can fail due to a deadlock against
1716          *       the vm_page we are holding BUSY.
1717          */
1718         if (fs->lookup_still_valid == FALSE && fs->map) {
1719                 if (relock_map(fs) ||
1720                     fs->map->timestamp != fs->map_generation) {
1721                         release_page(fs);
1722                         vm_object_pip_wakeup(fs->first_object);
1723                         vm_object_chain_release_all(fs->first_object,
1724                                                     fs->object);
1725                         if (fs->object != fs->first_object)
1726                                 vm_object_drop(fs->object);
1727                         unlock_and_deallocate(fs);
1728                         return (KERN_TRY_AGAIN);
1729                 }
1730         }
1731
1732         /*
1733          * If the fault is a write, we know that this page is being
1734          * written NOW so dirty it explicitly to save on pmap_is_modified()
1735          * calls later.
1736          *
1737          * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
1738          * if the page is already dirty to prevent data written with
1739          * the expectation of being synced from not being synced.
1740          * Likewise if this entry does not request NOSYNC then make
1741          * sure the page isn't marked NOSYNC.  Applications sharing
1742          * data should use the same flags to avoid ping ponging.
1743          *
1744          * Also tell the backing pager, if any, that it should remove
1745          * any swap backing since the page is now dirty.
1746          */
1747         vm_page_activate(fs->m);
1748         if (fs->prot & VM_PROT_WRITE) {
1749                 vm_object_set_writeable_dirty(fs->m->object);
1750                 vm_set_nosync(fs->m, fs->entry);
1751                 if (fs->fault_flags & VM_FAULT_DIRTY) {
1752                         vm_page_dirty(fs->m);
1753                         swap_pager_unswapped(fs->m);
1754                 }
1755         }
1756
1757         vm_object_pip_wakeup(fs->first_object);
1758         vm_object_chain_release_all(fs->first_object, fs->object);
1759         if (fs->object != fs->first_object)
1760                 vm_object_drop(fs->object);
1761
1762         /*
1763          * Page had better still be busy.  We are still locked up and 
1764          * fs->object will have another PIP reference if it is not equal
1765          * to fs->first_object.
1766          */
1767         KASSERT(fs->m->flags & PG_BUSY,
1768                 ("vm_fault: page %p not busy!", fs->m));
1769
1770         /*
1771          * Sanity check: page must be completely valid or it is not fit to
1772          * map into user space.  vm_pager_get_pages() ensures this.
1773          */
1774         if (fs->m->valid != VM_PAGE_BITS_ALL) {
1775                 vm_page_zero_invalid(fs->m, TRUE);
1776                 kprintf("Warning: page %p partially invalid on fault\n", fs->m);
1777         }
1778         vm_page_flag_clear(fs->m, PG_ZERO);
1779
1780         return (KERN_SUCCESS);
1781 }
1782
1783 /*
1784  * Wire down a range of virtual addresses in a map.  The entry in question
1785  * should be marked in-transition and the map must be locked.  We must
1786  * release the map temporarily while faulting-in the page to avoid a
1787  * deadlock.  Note that the entry may be clipped while we are blocked but
1788  * will never be freed.
1789  *
1790  * No requirements.
1791  */
1792 int
1793 vm_fault_wire(vm_map_t map, vm_map_entry_t entry, boolean_t user_wire)
1794 {
1795         boolean_t fictitious;
1796         vm_offset_t start;
1797         vm_offset_t end;
1798         vm_offset_t va;
1799         vm_paddr_t pa;
1800         vm_page_t m;
1801         pmap_t pmap;
1802         int rv;
1803
1804         lwkt_gettoken(&map->token);
1805
1806         pmap = vm_map_pmap(map);
1807         start = entry->start;
1808         end = entry->end;
1809         fictitious = entry->object.vm_object &&
1810                         (entry->object.vm_object->type == OBJT_DEVICE);
1811         if (entry->eflags & MAP_ENTRY_KSTACK)
1812                 start += PAGE_SIZE;
1813         map->timestamp++;
1814         vm_map_unlock(map);
1815
1816         /*
1817          * We simulate a fault to get the page and enter it in the physical
1818          * map.
1819          */
1820         for (va = start; va < end; va += PAGE_SIZE) {
1821                 if (user_wire) {
1822                         rv = vm_fault(map, va, VM_PROT_READ, 
1823                                         VM_FAULT_USER_WIRE);
1824                 } else {
1825                         rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE,
1826                                         VM_FAULT_CHANGE_WIRING);
1827                 }
1828                 if (rv) {
1829                         while (va > start) {
1830                                 va -= PAGE_SIZE;
1831                                 if ((pa = pmap_extract(pmap, va)) == 0)
1832                                         continue;
1833                                 pmap_change_wiring(pmap, va, FALSE);
1834                                 if (!fictitious) {
1835                                         m = PHYS_TO_VM_PAGE(pa);
1836                                         vm_page_busy_wait(m, FALSE, "vmwrpg");
1837                                         vm_page_unwire(m, 1);
1838                                         vm_page_wakeup(m);
1839                                 }
1840                         }
1841                         goto done;
1842                 }
1843         }
1844         rv = KERN_SUCCESS;
1845 done:
1846         vm_map_lock(map);
1847         lwkt_reltoken(&map->token);
1848         return (rv);
1849 }
1850
1851 /*
1852  * Unwire a range of virtual addresses in a map.  The map should be
1853  * locked.
1854  */
1855 void
1856 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
1857 {
1858         boolean_t fictitious;
1859         vm_offset_t start;
1860         vm_offset_t end;
1861         vm_offset_t va;
1862         vm_paddr_t pa;
1863         vm_page_t m;
1864         pmap_t pmap;
1865
1866         lwkt_gettoken(&map->token);
1867
1868         pmap = vm_map_pmap(map);
1869         start = entry->start;
1870         end = entry->end;
1871         fictitious = entry->object.vm_object &&
1872                         (entry->object.vm_object->type == OBJT_DEVICE);
1873         if (entry->eflags & MAP_ENTRY_KSTACK)
1874                 start += PAGE_SIZE;
1875
1876         /*
1877          * Since the pages are wired down, we must be able to get their
1878          * mappings from the physical map system.
1879          */
1880         for (va = start; va < end; va += PAGE_SIZE) {
1881                 pa = pmap_extract(pmap, va);
1882                 if (pa != 0) {
1883                         pmap_change_wiring(pmap, va, FALSE);
1884                         if (!fictitious) {
1885                                 m = PHYS_TO_VM_PAGE(pa);
1886                                 vm_page_busy_wait(m, FALSE, "vmwupg");
1887                                 vm_page_unwire(m, 1);
1888                                 vm_page_wakeup(m);
1889                         }
1890                 }
1891         }
1892         lwkt_reltoken(&map->token);
1893 }
1894
1895 /*
1896  * Copy all of the pages from a wired-down map entry to another.
1897  *
1898  * The source and destination maps must be locked for write.
1899  * The source and destination maps token must be held
1900  * The source map entry must be wired down (or be a sharing map
1901  * entry corresponding to a main map entry that is wired down).
1902  *
1903  * No other requirements.
1904  */
1905 void
1906 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1907                     vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
1908 {
1909         vm_object_t dst_object;
1910         vm_object_t src_object;
1911         vm_ooffset_t dst_offset;
1912         vm_ooffset_t src_offset;
1913         vm_prot_t prot;
1914         vm_offset_t vaddr;
1915         vm_page_t dst_m;
1916         vm_page_t src_m;
1917
1918         src_object = src_entry->object.vm_object;
1919         src_offset = src_entry->offset;
1920
1921         /*
1922          * Create the top-level object for the destination entry. (Doesn't
1923          * actually shadow anything - we copy the pages directly.)
1924          */
1925         vm_map_entry_allocate_object(dst_entry);
1926         dst_object = dst_entry->object.vm_object;
1927
1928         prot = dst_entry->max_protection;
1929
1930         /*
1931          * Loop through all of the pages in the entry's range, copying each
1932          * one from the source object (it should be there) to the destination
1933          * object.
1934          */
1935         vm_object_hold(src_object);
1936         vm_object_hold(dst_object);
1937         for (vaddr = dst_entry->start, dst_offset = 0;
1938             vaddr < dst_entry->end;
1939             vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1940
1941                 /*
1942                  * Allocate a page in the destination object
1943                  */
1944                 do {
1945                         dst_m = vm_page_alloc(dst_object,
1946                                               OFF_TO_IDX(dst_offset),
1947                                               VM_ALLOC_NORMAL);
1948                         if (dst_m == NULL) {
1949                                 vm_wait(0);
1950                         }
1951                 } while (dst_m == NULL);
1952
1953                 /*
1954                  * Find the page in the source object, and copy it in.
1955                  * (Because the source is wired down, the page will be in
1956                  * memory.)
1957                  */
1958                 src_m = vm_page_lookup(src_object,
1959                                        OFF_TO_IDX(dst_offset + src_offset));
1960                 if (src_m == NULL)
1961                         panic("vm_fault_copy_wired: page missing");
1962
1963                 vm_page_copy(src_m, dst_m);
1964                 vm_page_event(src_m, VMEVENT_COW);
1965
1966                 /*
1967                  * Enter it in the pmap...
1968                  */
1969
1970                 vm_page_flag_clear(dst_m, PG_ZERO);
1971                 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
1972
1973                 /*
1974                  * Mark it no longer busy, and put it on the active list.
1975                  */
1976                 vm_page_activate(dst_m);
1977                 vm_page_wakeup(dst_m);
1978         }
1979         vm_object_drop(dst_object);
1980         vm_object_drop(src_object);
1981 }
1982
1983 #if 0
1984
1985 /*
1986  * This routine checks around the requested page for other pages that
1987  * might be able to be faulted in.  This routine brackets the viable
1988  * pages for the pages to be paged in.
1989  *
1990  * Inputs:
1991  *      m, rbehind, rahead
1992  *
1993  * Outputs:
1994  *  marray (array of vm_page_t), reqpage (index of requested page)
1995  *
1996  * Return value:
1997  *  number of pages in marray
1998  */
1999 static int
2000 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
2001                           vm_page_t *marray, int *reqpage)
2002 {
2003         int i,j;
2004         vm_object_t object;
2005         vm_pindex_t pindex, startpindex, endpindex, tpindex;
2006         vm_page_t rtm;
2007         int cbehind, cahead;
2008
2009         object = m->object;
2010         pindex = m->pindex;
2011
2012         /*
2013          * we don't fault-ahead for device pager
2014          */
2015         if (object->type == OBJT_DEVICE) {
2016                 *reqpage = 0;
2017                 marray[0] = m;
2018                 return 1;
2019         }
2020
2021         /*
2022          * if the requested page is not available, then give up now
2023          */
2024         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
2025                 *reqpage = 0;   /* not used by caller, fix compiler warn */
2026                 return 0;
2027         }
2028
2029         if ((cbehind == 0) && (cahead == 0)) {
2030                 *reqpage = 0;
2031                 marray[0] = m;
2032                 return 1;
2033         }
2034
2035         if (rahead > cahead) {
2036                 rahead = cahead;
2037         }
2038
2039         if (rbehind > cbehind) {
2040                 rbehind = cbehind;
2041         }
2042
2043         /*
2044          * Do not do any readahead if we have insufficient free memory.
2045          *
2046          * XXX code was broken disabled before and has instability
2047          * with this conditonal fixed, so shortcut for now.
2048          */
2049         if (burst_fault == 0 || vm_page_count_severe()) {
2050                 marray[0] = m;
2051                 *reqpage = 0;
2052                 return 1;
2053         }
2054
2055         /*
2056          * scan backward for the read behind pages -- in memory 
2057          *
2058          * Assume that if the page is not found an interrupt will not
2059          * create it.  Theoretically interrupts can only remove (busy)
2060          * pages, not create new associations.
2061          */
2062         if (pindex > 0) {
2063                 if (rbehind > pindex) {
2064                         rbehind = pindex;
2065                         startpindex = 0;
2066                 } else {
2067                         startpindex = pindex - rbehind;
2068                 }
2069
2070                 vm_object_hold(object);
2071                 for (tpindex = pindex; tpindex > startpindex; --tpindex) {
2072                         if (vm_page_lookup(object, tpindex - 1))
2073                                 break;
2074                 }
2075
2076                 i = 0;
2077                 while (tpindex < pindex) {
2078                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2079                                                              VM_ALLOC_NULL_OK);
2080                         if (rtm == NULL) {
2081                                 for (j = 0; j < i; j++) {
2082                                         vm_page_free(marray[j]);
2083                                 }
2084                                 vm_object_drop(object);
2085                                 marray[0] = m;
2086                                 *reqpage = 0;
2087                                 return 1;
2088                         }
2089                         marray[i] = rtm;
2090                         ++i;
2091                         ++tpindex;
2092                 }
2093                 vm_object_drop(object);
2094         } else {
2095                 i = 0;
2096         }
2097
2098         /*
2099          * Assign requested page
2100          */
2101         marray[i] = m;
2102         *reqpage = i;
2103         ++i;
2104
2105         /*
2106          * Scan forwards for read-ahead pages
2107          */
2108         tpindex = pindex + 1;
2109         endpindex = tpindex + rahead;
2110         if (endpindex > object->size)
2111                 endpindex = object->size;
2112
2113         vm_object_hold(object);
2114         while (tpindex < endpindex) {
2115                 if (vm_page_lookup(object, tpindex))
2116                         break;
2117                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2118                                                      VM_ALLOC_NULL_OK);
2119                 if (rtm == NULL)
2120                         break;
2121                 marray[i] = rtm;
2122                 ++i;
2123                 ++tpindex;
2124         }
2125         vm_object_drop(object);
2126
2127         return (i);
2128 }
2129
2130 #endif
2131
2132 /*
2133  * vm_prefault() provides a quick way of clustering pagefaults into a
2134  * processes address space.  It is a "cousin" of pmap_object_init_pt,
2135  * except it runs at page fault time instead of mmap time.
2136  *
2137  * vm.fast_fault        Enables pre-faulting zero-fill pages
2138  *
2139  * vm.prefault_pages    Number of pages (1/2 negative, 1/2 positive) to
2140  *                      prefault.  Scan stops in either direction when
2141  *                      a page is found to already exist.
2142  *
2143  * This code used to be per-platform pmap_prefault().  It is now
2144  * machine-independent and enhanced to also pre-fault zero-fill pages
2145  * (see vm.fast_fault) as well as make them writable, which greatly
2146  * reduces the number of page faults programs incur.
2147  *
2148  * Application performance when pre-faulting zero-fill pages is heavily
2149  * dependent on the application.  Very tiny applications like /bin/echo
2150  * lose a little performance while applications of any appreciable size
2151  * gain performance.  Prefaulting multiple pages also reduces SMP
2152  * congestion and can improve SMP performance significantly.
2153  *
2154  * NOTE!  prot may allow writing but this only applies to the top level
2155  *        object.  If we wind up mapping a page extracted from a backing
2156  *        object we have to make sure it is read-only.
2157  *
2158  * NOTE!  The caller has already handled any COW operations on the
2159  *        vm_map_entry via the normal fault code.  Do NOT call this
2160  *        shortcut unless the normal fault code has run on this entry.
2161  *
2162  * The related map must be locked.
2163  * No other requirements.
2164  */
2165 static int vm_prefault_pages = 8;
2166 SYSCTL_INT(_vm, OID_AUTO, prefault_pages, CTLFLAG_RW, &vm_prefault_pages, 0,
2167            "Maximum number of pages to pre-fault");
2168 static int vm_fast_fault = 1;
2169 SYSCTL_INT(_vm, OID_AUTO, fast_fault, CTLFLAG_RW, &vm_fast_fault, 0,
2170            "Burst fault zero-fill regions");
2171
2172 /*
2173  * Set PG_NOSYNC if the map entry indicates so, but only if the page
2174  * is not already dirty by other means.  This will prevent passive
2175  * filesystem syncing as well as 'sync' from writing out the page.
2176  */
2177 static void
2178 vm_set_nosync(vm_page_t m, vm_map_entry_t entry)
2179 {
2180         if (entry->eflags & MAP_ENTRY_NOSYNC) {
2181                 if (m->dirty == 0)
2182                         vm_page_flag_set(m, PG_NOSYNC);
2183         } else {
2184                 vm_page_flag_clear(m, PG_NOSYNC);
2185         }
2186 }
2187
2188 static void
2189 vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry, int prot,
2190             int fault_flags)
2191 {
2192         struct lwp *lp;
2193         vm_page_t m;
2194         vm_offset_t addr;
2195         vm_pindex_t index;
2196         vm_pindex_t pindex;
2197         vm_object_t object;
2198         int pprot;
2199         int i;
2200         int noneg;
2201         int nopos;
2202         int maxpages;
2203
2204         /*
2205          * Get stable max count value, disabled if set to 0
2206          */
2207         maxpages = vm_prefault_pages;
2208         cpu_ccfence();
2209         if (maxpages <= 0)
2210                 return;
2211
2212         /*
2213          * We do not currently prefault mappings that use virtual page
2214          * tables.  We do not prefault foreign pmaps.
2215          */
2216         if (entry->maptype == VM_MAPTYPE_VPAGETABLE)
2217                 return;
2218         lp = curthread->td_lwp;
2219         if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2220                 return;
2221
2222         /*
2223          * Limit pre-fault count to 1024 pages.
2224          */
2225         if (maxpages > 1024)
2226                 maxpages = 1024;
2227
2228         object = entry->object.vm_object;
2229         KKASSERT(object != NULL);
2230         KKASSERT(object == entry->object.vm_object);
2231         vm_object_hold(object);
2232         vm_object_chain_acquire(object);
2233
2234         noneg = 0;
2235         nopos = 0;
2236         for (i = 0; i < maxpages; ++i) {
2237                 vm_object_t lobject;
2238                 vm_object_t nobject;
2239                 int allocated = 0;
2240                 int error;
2241
2242                 /*
2243                  * This can eat a lot of time on a heavily contended
2244                  * machine so yield on the tick if needed.
2245                  */
2246                 if ((i & 7) == 7)
2247                         lwkt_yield();
2248
2249                 /*
2250                  * Calculate the page to pre-fault, stopping the scan in
2251                  * each direction separately if the limit is reached.
2252                  */
2253                 if (i & 1) {
2254                         if (noneg)
2255                                 continue;
2256                         addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
2257                 } else {
2258                         if (nopos)
2259                                 continue;
2260                         addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
2261                 }
2262                 if (addr < entry->start) {
2263                         noneg = 1;
2264                         if (noneg && nopos)
2265                                 break;
2266                         continue;
2267                 }
2268                 if (addr >= entry->end) {
2269                         nopos = 1;
2270                         if (noneg && nopos)
2271                                 break;
2272                         continue;
2273                 }
2274
2275                 /*
2276                  * Skip pages already mapped, and stop scanning in that
2277                  * direction.  When the scan terminates in both directions
2278                  * we are done.
2279                  */
2280                 if (pmap_prefault_ok(pmap, addr) == 0) {
2281                         if (i & 1)
2282                                 noneg = 1;
2283                         else
2284                                 nopos = 1;
2285                         if (noneg && nopos)
2286                                 break;
2287                         continue;
2288                 }
2289
2290                 /*
2291                  * Follow the VM object chain to obtain the page to be mapped
2292                  * into the pmap.
2293                  *
2294                  * If we reach the terminal object without finding a page
2295                  * and we determine it would be advantageous, then allocate
2296                  * a zero-fill page for the base object.  The base object
2297                  * is guaranteed to be OBJT_DEFAULT for this case.
2298                  *
2299                  * In order to not have to check the pager via *haspage*()
2300                  * we stop if any non-default object is encountered.  e.g.
2301                  * a vnode or swap object would stop the loop.
2302                  */
2303                 index = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2304                 lobject = object;
2305                 pindex = index;
2306                 pprot = prot;
2307
2308                 KKASSERT(lobject == entry->object.vm_object);
2309                 /*vm_object_hold(lobject); implied */
2310
2311                 while ((m = vm_page_lookup_busy_try(lobject, pindex,
2312                                                     TRUE, &error)) == NULL) {
2313                         if (lobject->type != OBJT_DEFAULT)
2314                                 break;
2315                         if (lobject->backing_object == NULL) {
2316                                 if (vm_fast_fault == 0)
2317                                         break;
2318                                 if ((prot & VM_PROT_WRITE) == 0 ||
2319                                     vm_page_count_min(0)) {
2320                                         break;
2321                                 }
2322
2323                                 /*
2324                                  * NOTE: Allocated from base object
2325                                  */
2326                                 m = vm_page_alloc(object, index,
2327                                                   VM_ALLOC_NORMAL |
2328                                                   VM_ALLOC_ZERO |
2329                                                   VM_ALLOC_USE_GD |
2330                                                   VM_ALLOC_NULL_OK);
2331                                 if (m == NULL)
2332                                         break;
2333                                 allocated = 1;
2334                                 pprot = prot;
2335                                 /* lobject = object .. not needed */
2336                                 break;
2337                         }
2338                         if (lobject->backing_object_offset & PAGE_MASK)
2339                                 break;
2340                         nobject = lobject->backing_object;
2341                         vm_object_hold(nobject);
2342                         KKASSERT(nobject == lobject->backing_object);
2343                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
2344                         if (lobject != object) {
2345                                 vm_object_lock_swap();
2346                                 vm_object_drop(lobject);
2347                         }
2348                         lobject = nobject;
2349                         pprot &= ~VM_PROT_WRITE;
2350                         vm_object_chain_acquire(lobject);
2351                 }
2352
2353                 /*
2354                  * NOTE: A non-NULL (m) will be associated with lobject if
2355                  *       it was found there, otherwise it is probably a
2356                  *       zero-fill page associated with the base object.
2357                  *
2358                  * Give-up if no page is available.
2359                  */
2360                 if (m == NULL) {
2361                         if (lobject != object) {
2362                                 if (object->backing_object != lobject)
2363                                         vm_object_hold(object->backing_object);
2364                                 vm_object_chain_release_all(
2365                                         object->backing_object, lobject);
2366                                 if (object->backing_object != lobject)
2367                                         vm_object_drop(object->backing_object);
2368                                 vm_object_drop(lobject);
2369                         }
2370                         break;
2371                 }
2372
2373                 /*
2374                  * The object must be marked dirty if we are mapping a
2375                  * writable page.  m->object is either lobject or object,
2376                  * both of which are still held.  Do this before we
2377                  * potentially drop the object.
2378                  */
2379                 if (pprot & VM_PROT_WRITE)
2380                         vm_object_set_writeable_dirty(m->object);
2381
2382                 /*
2383                  * Do not conditionalize on PG_RAM.  If pages are present in
2384                  * the VM system we assume optimal caching.  If caching is
2385                  * not optimal the I/O gravy train will be restarted when we
2386                  * hit an unavailable page.  We do not want to try to restart
2387                  * the gravy train now because we really don't know how much
2388                  * of the object has been cached.  The cost for restarting
2389                  * the gravy train should be low (since accesses will likely
2390                  * be I/O bound anyway).
2391                  */
2392                 if (lobject != object) {
2393                         if (object->backing_object != lobject)
2394                                 vm_object_hold(object->backing_object);
2395                         vm_object_chain_release_all(object->backing_object,
2396                                                     lobject);
2397                         if (object->backing_object != lobject)
2398                                 vm_object_drop(object->backing_object);
2399                         vm_object_drop(lobject);
2400                 }
2401
2402                 /*
2403                  * Enter the page into the pmap if appropriate.  If we had
2404                  * allocated the page we have to place it on a queue.  If not
2405                  * we just have to make sure it isn't on the cache queue
2406                  * (pages on the cache queue are not allowed to be mapped).
2407                  */
2408                 if (allocated) {
2409                         /*
2410                          * Page must be zerod.
2411                          */
2412                         if ((m->flags & PG_ZERO) == 0) {
2413                                 vm_page_zero_fill(m);
2414                         } else {
2415 #ifdef PMAP_DEBUG
2416                                 pmap_page_assertzero(
2417                                                 VM_PAGE_TO_PHYS(m));
2418 #endif
2419                                 vm_page_flag_clear(m, PG_ZERO);
2420                                 mycpu->gd_cnt.v_ozfod++;
2421                         }
2422                         mycpu->gd_cnt.v_zfod++;
2423                         m->valid = VM_PAGE_BITS_ALL;
2424
2425                         /*
2426                          * Handle dirty page case
2427                          */
2428                         if (pprot & VM_PROT_WRITE)
2429                                 vm_set_nosync(m, entry);
2430                         pmap_enter(pmap, addr, m, pprot, 0);
2431                         mycpu->gd_cnt.v_vm_faults++;
2432                         if (curthread->td_lwp)
2433                                 ++curthread->td_lwp->lwp_ru.ru_minflt;
2434                         vm_page_deactivate(m);
2435                         if (pprot & VM_PROT_WRITE) {
2436                                 /*vm_object_set_writeable_dirty(m->object);*/
2437                                 vm_set_nosync(m, entry);
2438                                 if (fault_flags & VM_FAULT_DIRTY) {
2439                                         vm_page_dirty(m);
2440                                         /*XXX*/
2441                                         swap_pager_unswapped(m);
2442                                 }
2443                         }
2444                         vm_page_wakeup(m);
2445                 } else if (error) {
2446                         /* couldn't busy page, no wakeup */
2447                 } else if (
2448                     ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2449                     (m->flags & PG_FICTITIOUS) == 0) {
2450                         /*
2451                          * A fully valid page not undergoing soft I/O can
2452                          * be immediately entered into the pmap.
2453                          */
2454                         if ((m->queue - m->pc) == PQ_CACHE)
2455                                 vm_page_deactivate(m);
2456                         if (pprot & VM_PROT_WRITE) {
2457                                 /*vm_object_set_writeable_dirty(m->object);*/
2458                                 vm_set_nosync(m, entry);
2459                                 if (fault_flags & VM_FAULT_DIRTY) {
2460                                         vm_page_dirty(m);
2461                                         /*XXX*/
2462                                         swap_pager_unswapped(m);
2463                                 }
2464                         }
2465                         if (pprot & VM_PROT_WRITE)
2466                                 vm_set_nosync(m, entry);
2467                         pmap_enter(pmap, addr, m, pprot, 0);
2468                         mycpu->gd_cnt.v_vm_faults++;
2469                         if (curthread->td_lwp)
2470                                 ++curthread->td_lwp->lwp_ru.ru_minflt;
2471                         vm_page_wakeup(m);
2472                 } else {
2473                         vm_page_wakeup(m);
2474                 }
2475         }
2476         vm_object_chain_release(object);
2477         vm_object_drop(object);
2478 }
2479
2480 static void
2481 vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
2482                   vm_map_entry_t entry, int prot, int fault_flags)
2483 {
2484         struct lwp *lp;
2485         vm_page_t m;
2486         vm_offset_t addr;
2487         vm_pindex_t pindex;
2488         vm_object_t object;
2489         int i;
2490         int noneg;
2491         int nopos;
2492         int maxpages;
2493
2494         /*
2495          * Get stable max count value, disabled if set to 0
2496          */
2497         maxpages = vm_prefault_pages;
2498         cpu_ccfence();
2499         if (maxpages <= 0)
2500                 return;
2501
2502         /*
2503          * We do not currently prefault mappings that use virtual page
2504          * tables.  We do not prefault foreign pmaps.
2505          */
2506         if (entry->maptype == VM_MAPTYPE_VPAGETABLE)
2507                 return;
2508         lp = curthread->td_lwp;
2509         if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2510                 return;
2511
2512         /*
2513          * Limit pre-fault count to 1024 pages.
2514          */
2515         if (maxpages > 1024)
2516                 maxpages = 1024;
2517
2518         object = entry->object.vm_object;
2519         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2520         KKASSERT(object->backing_object == NULL);
2521
2522         noneg = 0;
2523         nopos = 0;
2524         for (i = 0; i < maxpages; ++i) {
2525                 int error;
2526
2527                 /*
2528                  * Calculate the page to pre-fault, stopping the scan in
2529                  * each direction separately if the limit is reached.
2530                  */
2531                 if (i & 1) {
2532                         if (noneg)
2533                                 continue;
2534                         addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
2535                 } else {
2536                         if (nopos)
2537                                 continue;
2538                         addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
2539                 }
2540                 if (addr < entry->start) {
2541                         noneg = 1;
2542                         if (noneg && nopos)
2543                                 break;
2544                         continue;
2545                 }
2546                 if (addr >= entry->end) {
2547                         nopos = 1;
2548                         if (noneg && nopos)
2549                                 break;
2550                         continue;
2551                 }
2552
2553                 /*
2554                  * Skip pages already mapped, and stop scanning in that
2555                  * direction.  When the scan terminates in both directions
2556                  * we are done.
2557                  */
2558                 if (pmap_prefault_ok(pmap, addr) == 0) {
2559                         if (i & 1)
2560                                 noneg = 1;
2561                         else
2562                                 nopos = 1;
2563                         if (noneg && nopos)
2564                                 break;
2565                         continue;
2566                 }
2567
2568                 /*
2569                  * Follow the VM object chain to obtain the page to be mapped
2570                  * into the pmap.  This version of the prefault code only
2571                  * works with terminal objects.
2572                  *
2573                  * WARNING!  We cannot call swap_pager_unswapped() with a
2574                  *           shared token.
2575                  */
2576                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2577
2578                 m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
2579                 if (m == NULL || error)
2580                         continue;
2581
2582                 if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2583                     (m->flags & PG_FICTITIOUS) == 0 &&
2584                     ((m->flags & PG_SWAPPED) == 0 ||
2585                      (prot & VM_PROT_WRITE) == 0 ||
2586                      (fault_flags & VM_FAULT_DIRTY) == 0)) {
2587                         /*
2588                          * A fully valid page not undergoing soft I/O can
2589                          * be immediately entered into the pmap.
2590                          */
2591                         if ((m->queue - m->pc) == PQ_CACHE)
2592                                 vm_page_deactivate(m);
2593                         if (prot & VM_PROT_WRITE) {
2594                                 vm_object_set_writeable_dirty(m->object);
2595                                 vm_set_nosync(m, entry);
2596                                 if (fault_flags & VM_FAULT_DIRTY) {
2597                                         vm_page_dirty(m);
2598                                         /*XXX*/
2599                                         swap_pager_unswapped(m);
2600                                 }
2601                         }
2602                         pmap_enter(pmap, addr, m, prot, 0);
2603                         mycpu->gd_cnt.v_vm_faults++;
2604                         if (curthread->td_lwp)
2605                                 ++curthread->td_lwp->lwp_ru.ru_minflt;
2606                 }
2607                 vm_page_wakeup(m);
2608         }
2609 }