bce: Rework MSI checkout for 5706 and 5708
[dragonfly.git] / sys / dev / netif / bce / if_bce.c
1 /*-
2  * Copyright (c) 2006-2007 Broadcom Corporation
3  *      David Christensen <davidch@broadcom.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written consent.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
19  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
22  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
28  * THE POSSIBILITY OF SUCH DAMAGE.
29  *
30  * $FreeBSD: src/sys/dev/bce/if_bce.c,v 1.31 2007/05/16 23:34:11 davidch Exp $
31  */
32
33 /*
34  * The following controllers are supported by this driver:
35  *   BCM5706C A2, A3
36  *   BCM5706S A2, A3
37  *   BCM5708C B1, B2
38  *   BCM5708S B1, B2
39  *   BCM5709C A1, C0
40  *   BCM5716  C0
41  *
42  * The following controllers are not supported by this driver:
43  *   BCM5706C A0, A1
44  *   BCM5706S A0, A1
45  *   BCM5708C A0, B0
46  *   BCM5708S A0, B0
47  *   BCM5709C A0, B0, B1
48  *   BCM5709S A0, A1, B0, B1, B2, C0
49  */
50
51 #include "opt_bce.h"
52 #include "opt_polling.h"
53
54 #include <sys/param.h>
55 #include <sys/bus.h>
56 #include <sys/endian.h>
57 #include <sys/kernel.h>
58 #include <sys/interrupt.h>
59 #include <sys/mbuf.h>
60 #include <sys/malloc.h>
61 #include <sys/queue.h>
62 #ifdef BCE_DEBUG
63 #include <sys/random.h>
64 #endif
65 #include <sys/rman.h>
66 #include <sys/serialize.h>
67 #include <sys/socket.h>
68 #include <sys/sockio.h>
69 #include <sys/sysctl.h>
70
71 #include <netinet/ip.h>
72 #include <netinet/tcp.h>
73
74 #include <net/bpf.h>
75 #include <net/ethernet.h>
76 #include <net/if.h>
77 #include <net/if_arp.h>
78 #include <net/if_dl.h>
79 #include <net/if_media.h>
80 #include <net/if_types.h>
81 #include <net/ifq_var.h>
82 #include <net/vlan/if_vlan_var.h>
83 #include <net/vlan/if_vlan_ether.h>
84
85 #include <dev/netif/mii_layer/mii.h>
86 #include <dev/netif/mii_layer/miivar.h>
87 #include <dev/netif/mii_layer/brgphyreg.h>
88
89 #include <bus/pci/pcireg.h>
90 #include <bus/pci/pcivar.h>
91
92 #include "miibus_if.h"
93
94 #include <dev/netif/bce/if_bcereg.h>
95 #include <dev/netif/bce/if_bcefw.h>
96
97 #define BCE_MSI_CKINTVL         ((10 * hz) / 1000)      /* 10ms */
98
99 /****************************************************************************/
100 /* BCE Debug Options                                                        */
101 /****************************************************************************/
102 #ifdef BCE_DEBUG
103
104 static uint32_t bce_debug = BCE_WARN;
105
106 /*
107  *          0 = Never             
108  *          1 = 1 in 2,147,483,648
109  *        256 = 1 in     8,388,608
110  *       2048 = 1 in     1,048,576
111  *      65536 = 1 in        32,768
112  *    1048576 = 1 in         2,048
113  *  268435456 = 1 in             8
114  *  536870912 = 1 in             4
115  * 1073741824 = 1 in             2
116  *
117  * bce_debug_mbuf_allocation_failure:
118  *     How often to simulate an mbuf allocation failure.
119  *
120  * bce_debug_dma_map_addr_failure:
121  *     How often to simulate a DMA mapping failure.
122  *
123  * bce_debug_bootcode_running_failure:
124  *     How often to simulate a bootcode failure.
125  */
126 static int      bce_debug_mbuf_allocation_failure = 0;
127 static int      bce_debug_dma_map_addr_failure = 0;
128 static int      bce_debug_bootcode_running_failure = 0;
129
130 #endif  /* BCE_DEBUG */
131
132
133 /****************************************************************************/
134 /* PCI Device ID Table                                                      */
135 /*                                                                          */
136 /* Used by bce_probe() to identify the devices supported by this driver.    */
137 /****************************************************************************/
138 #define BCE_DEVDESC_MAX         64
139
140 static struct bce_type bce_devs[] = {
141         /* BCM5706C Controllers and OEM boards. */
142         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3101,
143                 "HP NC370T Multifunction Gigabit Server Adapter" },
144         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3106,
145                 "HP NC370i Multifunction Gigabit Server Adapter" },
146         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3070,
147                 "HP NC380T PCIe DP Multifunc Gig Server Adapter" },
148         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x1709,
149                 "HP NC371i Multifunction Gigabit Server Adapter" },
150         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  PCI_ANY_ID,  PCI_ANY_ID,
151                 "Broadcom NetXtreme II BCM5706 1000Base-T" },
152
153         /* BCM5706S controllers and OEM boards. */
154         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, HP_VENDORID, 0x3102,
155                 "HP NC370F Multifunction Gigabit Server Adapter" },
156         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, PCI_ANY_ID,  PCI_ANY_ID,
157                 "Broadcom NetXtreme II BCM5706 1000Base-SX" },
158
159         /* BCM5708C controllers and OEM boards. */
160         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7037,
161                 "HP NC373T PCIe Multifunction Gig Server Adapter" },
162         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7038,
163                 "HP NC373i Multifunction Gigabit Server Adapter" },
164         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7045,
165                 "HP NC374m PCIe Multifunction Adapter" },
166         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  PCI_ANY_ID,  PCI_ANY_ID,
167                 "Broadcom NetXtreme II BCM5708 1000Base-T" },
168
169         /* BCM5708S controllers and OEM boards. */
170         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x1706,
171                 "HP NC373m Multifunction Gigabit Server Adapter" },
172         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703b,
173                 "HP NC373i Multifunction Gigabit Server Adapter" },
174         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703d,
175                 "HP NC373F PCIe Multifunc Giga Server Adapter" },
176         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  PCI_ANY_ID,  PCI_ANY_ID,
177                 "Broadcom NetXtreme II BCM5708S 1000Base-T" },
178
179         /* BCM5709C controllers and OEM boards. */
180         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7055,
181                 "HP NC382i DP Multifunction Gigabit Server Adapter" },
182         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7059,
183                 "HP NC382T PCIe DP Multifunction Gigabit Server Adapter" },
184         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  PCI_ANY_ID,  PCI_ANY_ID,
185                 "Broadcom NetXtreme II BCM5709 1000Base-T" },
186
187         /* BCM5709S controllers and OEM boards. */
188         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x171d,
189                 "HP NC382m DP 1GbE Multifunction BL-c Adapter" },
190         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x7056,
191                 "HP NC382i DP Multifunction Gigabit Server Adapter" },
192         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  PCI_ANY_ID,  PCI_ANY_ID,
193                 "Broadcom NetXtreme II BCM5709 1000Base-SX" },
194
195         /* BCM5716 controllers and OEM boards. */
196         { BRCM_VENDORID, BRCM_DEVICEID_BCM5716,   PCI_ANY_ID,  PCI_ANY_ID,
197                 "Broadcom NetXtreme II BCM5716 1000Base-T" },
198
199         { 0, 0, 0, 0, NULL }
200 };
201
202
203 /****************************************************************************/
204 /* Supported Flash NVRAM device data.                                       */
205 /****************************************************************************/
206 static const struct flash_spec flash_table[] =
207 {
208 #define BUFFERED_FLAGS          (BCE_NV_BUFFERED | BCE_NV_TRANSLATE)
209 #define NONBUFFERED_FLAGS       (BCE_NV_WREN)
210
211         /* Slow EEPROM */
212         {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
213          BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
214          SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
215          "EEPROM - slow"},
216         /* Expansion entry 0001 */
217         {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
218          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
219          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
220          "Entry 0001"},
221         /* Saifun SA25F010 (non-buffered flash) */
222         /* strap, cfg1, & write1 need updates */
223         {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
224          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
225          SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
226          "Non-buffered flash (128kB)"},
227         /* Saifun SA25F020 (non-buffered flash) */
228         /* strap, cfg1, & write1 need updates */
229         {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
230          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
231          SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
232          "Non-buffered flash (256kB)"},
233         /* Expansion entry 0100 */
234         {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
235          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
236          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
237          "Entry 0100"},
238         /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
239         {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
240          NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
241          ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
242          "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
243         /* Entry 0110: ST M45PE20 (non-buffered flash)*/
244         {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
245          NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
246          ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
247          "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
248         /* Saifun SA25F005 (non-buffered flash) */
249         /* strap, cfg1, & write1 need updates */
250         {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
251          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
252          SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
253          "Non-buffered flash (64kB)"},
254         /* Fast EEPROM */
255         {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
256          BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
257          SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
258          "EEPROM - fast"},
259         /* Expansion entry 1001 */
260         {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
261          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
262          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
263          "Entry 1001"},
264         /* Expansion entry 1010 */
265         {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
266          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
267          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
268          "Entry 1010"},
269         /* ATMEL AT45DB011B (buffered flash) */
270         {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
271          BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
272          BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
273          "Buffered flash (128kB)"},
274         /* Expansion entry 1100 */
275         {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
276          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
277          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
278          "Entry 1100"},
279         /* Expansion entry 1101 */
280         {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
281          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
282          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
283          "Entry 1101"},
284         /* Ateml Expansion entry 1110 */
285         {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
286          BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
287          BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
288          "Entry 1110 (Atmel)"},
289         /* ATMEL AT45DB021B (buffered flash) */
290         {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
291          BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
292          BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
293          "Buffered flash (256kB)"},
294 };
295
296 /*
297  * The BCM5709 controllers transparently handle the
298  * differences between Atmel 264 byte pages and all
299  * flash devices which use 256 byte pages, so no
300  * logical-to-physical mapping is required in the
301  * driver.
302  */
303 static struct flash_spec flash_5709 = {
304         .flags          = BCE_NV_BUFFERED,
305         .page_bits      = BCM5709_FLASH_PAGE_BITS,
306         .page_size      = BCM5709_FLASH_PAGE_SIZE,
307         .addr_mask      = BCM5709_FLASH_BYTE_ADDR_MASK,
308         .total_size     = BUFFERED_FLASH_TOTAL_SIZE * 2,
309         .name           = "5709/5716 buffered flash (256kB)",
310 };
311
312
313 /****************************************************************************/
314 /* DragonFly device entry points.                                           */
315 /****************************************************************************/
316 static int      bce_probe(device_t);
317 static int      bce_attach(device_t);
318 static int      bce_detach(device_t);
319 static void     bce_shutdown(device_t);
320
321 /****************************************************************************/
322 /* BCE Debug Data Structure Dump Routines                                   */
323 /****************************************************************************/
324 #ifdef BCE_DEBUG
325 static void     bce_dump_mbuf(struct bce_softc *, struct mbuf *);
326 static void     bce_dump_rx_mbuf_chain(struct bce_softc *, int, int);
327 static void     bce_dump_txbd(struct bce_softc *, int, struct tx_bd *);
328 static void     bce_dump_rxbd(struct bce_softc *, int, struct rx_bd *);
329 static void     bce_dump_l2fhdr(struct bce_softc *, int,
330                                 struct l2_fhdr *) __unused;
331 static void     bce_dump_tx_chain(struct bce_softc *, int, int);
332 static void     bce_dump_rx_chain(struct bce_softc *, int, int);
333 static void     bce_dump_status_block(struct bce_softc *);
334 static void     bce_dump_driver_state(struct bce_softc *);
335 static void     bce_dump_stats_block(struct bce_softc *) __unused;
336 static void     bce_dump_hw_state(struct bce_softc *);
337 static void     bce_dump_txp_state(struct bce_softc *);
338 static void     bce_dump_rxp_state(struct bce_softc *) __unused;
339 static void     bce_dump_tpat_state(struct bce_softc *) __unused;
340 static void     bce_freeze_controller(struct bce_softc *) __unused;
341 static void     bce_unfreeze_controller(struct bce_softc *) __unused;
342 static void     bce_breakpoint(struct bce_softc *);
343 #endif  /* BCE_DEBUG */
344
345
346 /****************************************************************************/
347 /* BCE Register/Memory Access Routines                                      */
348 /****************************************************************************/
349 static uint32_t bce_reg_rd_ind(struct bce_softc *, uint32_t);
350 static void     bce_reg_wr_ind(struct bce_softc *, uint32_t, uint32_t);
351 static void     bce_shmem_wr(struct bce_softc *, uint32_t, uint32_t);
352 static uint32_t bce_shmem_rd(struct bce_softc *, u32);
353 static void     bce_ctx_wr(struct bce_softc *, uint32_t, uint32_t, uint32_t);
354 static int      bce_miibus_read_reg(device_t, int, int);
355 static int      bce_miibus_write_reg(device_t, int, int, int);
356 static void     bce_miibus_statchg(device_t);
357
358
359 /****************************************************************************/
360 /* BCE NVRAM Access Routines                                                */
361 /****************************************************************************/
362 static int      bce_acquire_nvram_lock(struct bce_softc *);
363 static int      bce_release_nvram_lock(struct bce_softc *);
364 static void     bce_enable_nvram_access(struct bce_softc *);
365 static void     bce_disable_nvram_access(struct bce_softc *);
366 static int      bce_nvram_read_dword(struct bce_softc *, uint32_t, uint8_t *,
367                                      uint32_t);
368 static int      bce_init_nvram(struct bce_softc *);
369 static int      bce_nvram_read(struct bce_softc *, uint32_t, uint8_t *, int);
370 static int      bce_nvram_test(struct bce_softc *);
371
372 /****************************************************************************/
373 /* BCE DMA Allocate/Free Routines                                           */
374 /****************************************************************************/
375 static int      bce_dma_alloc(struct bce_softc *);
376 static void     bce_dma_free(struct bce_softc *);
377 static void     bce_dma_map_addr(void *, bus_dma_segment_t *, int, int);
378
379 /****************************************************************************/
380 /* BCE Firmware Synchronization and Load                                    */
381 /****************************************************************************/
382 static int      bce_fw_sync(struct bce_softc *, uint32_t);
383 static void     bce_load_rv2p_fw(struct bce_softc *, uint32_t *,
384                                  uint32_t, uint32_t);
385 static void     bce_load_cpu_fw(struct bce_softc *, struct cpu_reg *,
386                                 struct fw_info *);
387 static void     bce_start_cpu(struct bce_softc *, struct cpu_reg *);
388 static void     bce_halt_cpu(struct bce_softc *, struct cpu_reg *);
389 static void     bce_start_rxp_cpu(struct bce_softc *);
390 static void     bce_init_rxp_cpu(struct bce_softc *);
391 static void     bce_init_txp_cpu(struct bce_softc *);
392 static void     bce_init_tpat_cpu(struct bce_softc *);
393 static void     bce_init_cp_cpu(struct bce_softc *);
394 static void     bce_init_com_cpu(struct bce_softc *);
395 static void     bce_init_cpus(struct bce_softc *);
396
397 static void     bce_stop(struct bce_softc *);
398 static int      bce_reset(struct bce_softc *, uint32_t);
399 static int      bce_chipinit(struct bce_softc *);
400 static int      bce_blockinit(struct bce_softc *);
401 static int      bce_newbuf_std(struct bce_softc *, uint16_t *, uint16_t *,
402                                uint32_t *, int);
403 static void     bce_setup_rxdesc_std(struct bce_softc *, uint16_t, uint32_t *);
404 static void     bce_probe_pci_caps(struct bce_softc *);
405 static void     bce_print_adapter_info(struct bce_softc *);
406 static void     bce_get_media(struct bce_softc *);
407
408 static void     bce_init_tx_context(struct bce_softc *);
409 static int      bce_init_tx_chain(struct bce_softc *);
410 static void     bce_init_rx_context(struct bce_softc *);
411 static int      bce_init_rx_chain(struct bce_softc *);
412 static void     bce_free_rx_chain(struct bce_softc *);
413 static void     bce_free_tx_chain(struct bce_softc *);
414
415 static int      bce_encap(struct bce_softc *, struct mbuf **);
416 static int      bce_tso_setup(struct bce_softc *, struct mbuf **,
417                     uint16_t *, uint16_t *);
418 static void     bce_start(struct ifnet *);
419 static int      bce_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
420 static void     bce_watchdog(struct ifnet *);
421 static int      bce_ifmedia_upd(struct ifnet *);
422 static void     bce_ifmedia_sts(struct ifnet *, struct ifmediareq *);
423 static void     bce_init(void *);
424 static void     bce_mgmt_init(struct bce_softc *);
425
426 static int      bce_init_ctx(struct bce_softc *);
427 static void     bce_get_mac_addr(struct bce_softc *);
428 static void     bce_set_mac_addr(struct bce_softc *);
429 static void     bce_phy_intr(struct bce_softc *);
430 static void     bce_rx_intr(struct bce_softc *, int, uint16_t);
431 static void     bce_tx_intr(struct bce_softc *, uint16_t);
432 static void     bce_disable_intr(struct bce_softc *);
433 static void     bce_enable_intr(struct bce_softc *);
434 static void     bce_reenable_intr(struct bce_softc *);
435
436 #ifdef DEVICE_POLLING
437 static void     bce_poll(struct ifnet *, enum poll_cmd, int);
438 #endif
439 static void     bce_intr(struct bce_softc *);
440 static void     bce_intr_legacy(void *);
441 static void     bce_intr_msi(void *);
442 static void     bce_intr_msi_oneshot(void *);
443 static void     bce_set_rx_mode(struct bce_softc *);
444 static void     bce_stats_update(struct bce_softc *);
445 static void     bce_tick(void *);
446 static void     bce_tick_serialized(struct bce_softc *);
447 static void     bce_pulse(void *);
448 static void     bce_check_msi(void *);
449 static void     bce_add_sysctls(struct bce_softc *);
450
451 static void     bce_coal_change(struct bce_softc *);
452 static int      bce_sysctl_tx_bds_int(SYSCTL_HANDLER_ARGS);
453 static int      bce_sysctl_tx_bds(SYSCTL_HANDLER_ARGS);
454 static int      bce_sysctl_tx_ticks_int(SYSCTL_HANDLER_ARGS);
455 static int      bce_sysctl_tx_ticks(SYSCTL_HANDLER_ARGS);
456 static int      bce_sysctl_rx_bds_int(SYSCTL_HANDLER_ARGS);
457 static int      bce_sysctl_rx_bds(SYSCTL_HANDLER_ARGS);
458 static int      bce_sysctl_rx_ticks_int(SYSCTL_HANDLER_ARGS);
459 static int      bce_sysctl_rx_ticks(SYSCTL_HANDLER_ARGS);
460 static int      bce_sysctl_coal_change(SYSCTL_HANDLER_ARGS,
461                                        uint32_t *, uint32_t);
462
463 /*
464  * NOTE:
465  * Don't set bce_tx_ticks_int/bce_tx_ticks to 1023.  Linux's bnx2
466  * takes 1023 as the TX ticks limit.  However, using 1023 will
467  * cause 5708(B2) to generate extra interrupts (~2000/s) even when
468  * there is _no_ network activity on the NIC.
469  */
470 static uint32_t bce_tx_bds_int = 255;           /* bcm: 20 */
471 static uint32_t bce_tx_bds = 255;               /* bcm: 20 */
472 static uint32_t bce_tx_ticks_int = 1022;        /* bcm: 80 */
473 static uint32_t bce_tx_ticks = 1022;            /* bcm: 80 */
474 static uint32_t bce_rx_bds_int = 128;           /* bcm: 6 */
475 static uint32_t bce_rx_bds = 128;               /* bcm: 6 */
476 static uint32_t bce_rx_ticks_int = 150;         /* bcm: 18 */
477 static uint32_t bce_rx_ticks = 150;             /* bcm: 18 */
478
479 static int      bce_msi_enable = 1;
480
481 static int      bce_rx_pages = RX_PAGES_DEFAULT;
482 static int      bce_tx_pages = TX_PAGES_DEFAULT;
483
484 TUNABLE_INT("hw.bce.tx_bds_int", &bce_tx_bds_int);
485 TUNABLE_INT("hw.bce.tx_bds", &bce_tx_bds);
486 TUNABLE_INT("hw.bce.tx_ticks_int", &bce_tx_ticks_int);
487 TUNABLE_INT("hw.bce.tx_ticks", &bce_tx_ticks);
488 TUNABLE_INT("hw.bce.rx_bds_int", &bce_rx_bds_int);
489 TUNABLE_INT("hw.bce.rx_bds", &bce_rx_bds);
490 TUNABLE_INT("hw.bce.rx_ticks_int", &bce_rx_ticks_int);
491 TUNABLE_INT("hw.bce.rx_ticks", &bce_rx_ticks);
492 TUNABLE_INT("hw.bce.msi.enable", &bce_msi_enable);
493 TUNABLE_INT("hw.bce.rx_pages", &bce_rx_pages);
494 TUNABLE_INT("hw.bce.tx_pages", &bce_tx_pages);
495
496 /****************************************************************************/
497 /* DragonFly device dispatch table.                                         */
498 /****************************************************************************/
499 static device_method_t bce_methods[] = {
500         /* Device interface */
501         DEVMETHOD(device_probe,         bce_probe),
502         DEVMETHOD(device_attach,        bce_attach),
503         DEVMETHOD(device_detach,        bce_detach),
504         DEVMETHOD(device_shutdown,      bce_shutdown),
505
506         /* bus interface */
507         DEVMETHOD(bus_print_child,      bus_generic_print_child),
508         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
509
510         /* MII interface */
511         DEVMETHOD(miibus_readreg,       bce_miibus_read_reg),
512         DEVMETHOD(miibus_writereg,      bce_miibus_write_reg),
513         DEVMETHOD(miibus_statchg,       bce_miibus_statchg),
514
515         { 0, 0 }
516 };
517
518 static driver_t bce_driver = {
519         "bce",
520         bce_methods,
521         sizeof(struct bce_softc)
522 };
523
524 static devclass_t bce_devclass;
525
526
527 DECLARE_DUMMY_MODULE(if_bce);
528 MODULE_DEPEND(bce, miibus, 1, 1, 1);
529 DRIVER_MODULE(if_bce, pci, bce_driver, bce_devclass, NULL, NULL);
530 DRIVER_MODULE(miibus, bce, miibus_driver, miibus_devclass, NULL, NULL);
531
532
533 /****************************************************************************/
534 /* Device probe function.                                                   */
535 /*                                                                          */
536 /* Compares the device to the driver's list of supported devices and        */
537 /* reports back to the OS whether this is the right driver for the device.  */
538 /*                                                                          */
539 /* Returns:                                                                 */
540 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
541 /****************************************************************************/
542 static int
543 bce_probe(device_t dev)
544 {
545         struct bce_type *t;
546         uint16_t vid, did, svid, sdid;
547
548         /* Get the data for the device to be probed. */
549         vid  = pci_get_vendor(dev);
550         did  = pci_get_device(dev);
551         svid = pci_get_subvendor(dev);
552         sdid = pci_get_subdevice(dev);
553
554         /* Look through the list of known devices for a match. */
555         for (t = bce_devs; t->bce_name != NULL; ++t) {
556                 if (vid == t->bce_vid && did == t->bce_did && 
557                     (svid == t->bce_svid || t->bce_svid == PCI_ANY_ID) &&
558                     (sdid == t->bce_sdid || t->bce_sdid == PCI_ANY_ID)) {
559                         uint32_t revid = pci_read_config(dev, PCIR_REVID, 4);
560                         char *descbuf;
561
562                         descbuf = kmalloc(BCE_DEVDESC_MAX, M_TEMP, M_WAITOK);
563
564                         /* Print out the device identity. */
565                         ksnprintf(descbuf, BCE_DEVDESC_MAX, "%s (%c%d)",
566                                   t->bce_name,
567                                   ((revid & 0xf0) >> 4) + 'A', revid & 0xf);
568
569                         device_set_desc_copy(dev, descbuf);
570                         kfree(descbuf, M_TEMP);
571                         return 0;
572                 }
573         }
574         return ENXIO;
575 }
576
577
578 /****************************************************************************/
579 /* PCI Capabilities Probe Function.                                         */
580 /*                                                                          */
581 /* Walks the PCI capabiites list for the device to find what features are   */
582 /* supported.                                                               */
583 /*                                                                          */
584 /* Returns:                                                                 */
585 /*   None.                                                                  */
586 /****************************************************************************/
587 static void
588 bce_print_adapter_info(struct bce_softc *sc)
589 {
590         device_printf(sc->bce_dev, "ASIC (0x%08X); ", sc->bce_chipid);
591
592         kprintf("Rev (%c%d); ", ((BCE_CHIP_ID(sc) & 0xf000) >> 12) + 'A',
593                 ((BCE_CHIP_ID(sc) & 0x0ff0) >> 4));
594
595         /* Bus info. */
596         if (sc->bce_flags & BCE_PCIE_FLAG) {
597                 kprintf("Bus (PCIe x%d, ", sc->link_width);
598                 switch (sc->link_speed) {
599                 case 1:
600                         kprintf("2.5Gbps); ");
601                         break;
602                 case 2:
603                         kprintf("5Gbps); ");
604                         break;
605                 default:
606                         kprintf("Unknown link speed); ");
607                         break;
608                 }
609         } else {
610                 kprintf("Bus (PCI%s, %s, %dMHz); ",
611                     ((sc->bce_flags & BCE_PCIX_FLAG) ? "-X" : ""),
612                     ((sc->bce_flags & BCE_PCI_32BIT_FLAG) ? "32-bit" : "64-bit"),
613                     sc->bus_speed_mhz);
614         }
615
616         /* Firmware version and device features. */
617         kprintf("B/C (%s)", sc->bce_bc_ver);
618
619         if ((sc->bce_flags & BCE_MFW_ENABLE_FLAG) ||
620             (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG)) {
621                 kprintf("; Flags(");
622                 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG)
623                         kprintf("MFW[%s]", sc->bce_mfw_ver);
624                 if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG)
625                         kprintf(" 2.5G");
626                 kprintf(")");
627         }
628         kprintf("\n");
629 }
630
631
632 /****************************************************************************/
633 /* PCI Capabilities Probe Function.                                         */
634 /*                                                                          */
635 /* Walks the PCI capabiites list for the device to find what features are   */
636 /* supported.                                                               */
637 /*                                                                          */
638 /* Returns:                                                                 */
639 /*   None.                                                                  */
640 /****************************************************************************/
641 static void
642 bce_probe_pci_caps(struct bce_softc *sc)
643 {
644         device_t dev = sc->bce_dev;
645         uint8_t ptr;
646
647         if (pci_is_pcix(dev))
648                 sc->bce_cap_flags |= BCE_PCIX_CAPABLE_FLAG;
649
650         ptr = pci_get_pciecap_ptr(dev);
651         if (ptr) {
652                 uint16_t link_status = pci_read_config(dev, ptr + 0x12, 2);
653
654                 sc->link_speed = link_status & 0xf;
655                 sc->link_width = (link_status >> 4) & 0x3f;
656                 sc->bce_cap_flags |= BCE_PCIE_CAPABLE_FLAG;
657                 sc->bce_flags |= BCE_PCIE_FLAG;
658         }
659 }
660
661
662 /****************************************************************************/
663 /* Device attach function.                                                  */
664 /*                                                                          */
665 /* Allocates device resources, performs secondary chip identification,      */
666 /* resets and initializes the hardware, and initializes driver instance     */
667 /* variables.                                                               */
668 /*                                                                          */
669 /* Returns:                                                                 */
670 /*   0 on success, positive value on failure.                               */
671 /****************************************************************************/
672 static int
673 bce_attach(device_t dev)
674 {
675         struct bce_softc *sc = device_get_softc(dev);
676         struct ifnet *ifp = &sc->arpcom.ac_if;
677         uint32_t val;
678         u_int irq_flags;
679         void (*irq_handle)(void *);
680         int rid, rc = 0;
681         int i, j;
682         struct mii_probe_args mii_args;
683         uintptr_t mii_priv = 0;
684
685         sc->bce_dev = dev;
686         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
687
688         pci_enable_busmaster(dev);
689
690         bce_probe_pci_caps(sc);
691
692         /* Allocate PCI memory resources. */
693         rid = PCIR_BAR(0);
694         sc->bce_res_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
695                                                  RF_ACTIVE | PCI_RF_DENSE);
696         if (sc->bce_res_mem == NULL) {
697                 device_printf(dev, "PCI memory allocation failed\n");
698                 return ENXIO;
699         }
700         sc->bce_btag = rman_get_bustag(sc->bce_res_mem);
701         sc->bce_bhandle = rman_get_bushandle(sc->bce_res_mem);
702
703         /* Allocate PCI IRQ resources. */
704         sc->bce_irq_type = pci_alloc_1intr(dev, bce_msi_enable,
705             &sc->bce_irq_rid, &irq_flags);
706
707         sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
708             &sc->bce_irq_rid, irq_flags);
709         if (sc->bce_res_irq == NULL) {
710                 device_printf(dev, "PCI map interrupt failed\n");
711                 rc = ENXIO;
712                 goto fail;
713         }
714
715         /*
716          * Configure byte swap and enable indirect register access.
717          * Rely on CPU to do target byte swapping on big endian systems.
718          * Access to registers outside of PCI configurtion space are not
719          * valid until this is done.
720          */
721         pci_write_config(dev, BCE_PCICFG_MISC_CONFIG,
722                          BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
723                          BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP, 4);
724
725         /* Save ASIC revsion info. */
726         sc->bce_chipid =  REG_RD(sc, BCE_MISC_ID);
727
728         /* Weed out any non-production controller revisions. */
729         switch (BCE_CHIP_ID(sc)) {
730         case BCE_CHIP_ID_5706_A0:
731         case BCE_CHIP_ID_5706_A1:
732         case BCE_CHIP_ID_5708_A0:
733         case BCE_CHIP_ID_5708_B0:
734         case BCE_CHIP_ID_5709_A0:
735         case BCE_CHIP_ID_5709_B0:
736         case BCE_CHIP_ID_5709_B1:
737 #ifdef foo
738         /* 5709C B2 seems to work fine */
739         case BCE_CHIP_ID_5709_B2:
740 #endif
741                 device_printf(dev, "Unsupported chip id 0x%08x!\n",
742                               BCE_CHIP_ID(sc));
743                 rc = ENODEV;
744                 goto fail;
745         }
746
747         mii_priv |= BRGPHY_FLAG_WIRESPEED;
748         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
749                 if (BCE_CHIP_REV(sc) == BCE_CHIP_REV_Ax ||
750                     BCE_CHIP_REV(sc) == BCE_CHIP_REV_Bx)
751                         mii_priv |= BRGPHY_FLAG_NO_EARLYDAC;
752         } else {
753                 mii_priv |= BRGPHY_FLAG_BER_BUG;
754         }
755
756         if (sc->bce_irq_type == PCI_INTR_TYPE_LEGACY) {
757                 irq_handle = bce_intr_legacy;
758         } else if (sc->bce_irq_type == PCI_INTR_TYPE_MSI) {
759                 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
760                         irq_handle = bce_intr_msi_oneshot;
761                         sc->bce_flags |= BCE_ONESHOT_MSI_FLAG;
762                 } else {
763                         irq_handle = bce_intr_msi;
764                         sc->bce_flags |= BCE_CHECK_MSI_FLAG;
765                 }
766         } else {
767                 panic("%s: unsupported intr type %d",
768                     device_get_nameunit(dev), sc->bce_irq_type);
769         }
770
771         /*
772          * Find the base address for shared memory access.
773          * Newer versions of bootcode use a signature and offset
774          * while older versions use a fixed address.
775          */
776         val = REG_RD_IND(sc, BCE_SHM_HDR_SIGNATURE);
777         if ((val & BCE_SHM_HDR_SIGNATURE_SIG_MASK) ==
778             BCE_SHM_HDR_SIGNATURE_SIG) {
779                 /* Multi-port devices use different offsets in shared memory. */
780                 sc->bce_shmem_base = REG_RD_IND(sc,
781                     BCE_SHM_HDR_ADDR_0 + (pci_get_function(sc->bce_dev) << 2));
782         } else {
783                 sc->bce_shmem_base = HOST_VIEW_SHMEM_BASE;
784         }
785         DBPRINT(sc, BCE_INFO, "bce_shmem_base = 0x%08X\n", sc->bce_shmem_base);
786
787         /* Fetch the bootcode revision. */
788         val = bce_shmem_rd(sc, BCE_DEV_INFO_BC_REV);
789         for (i = 0, j = 0; i < 3; i++) {
790                 uint8_t num;
791                 int k, skip0;
792
793                 num = (uint8_t)(val >> (24 - (i * 8)));
794                 for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
795                         if (num >= k || !skip0 || k == 1) {
796                                 sc->bce_bc_ver[j++] = (num / k) + '0';
797                                 skip0 = 0;
798                         }
799                 }
800                 if (i != 2)
801                         sc->bce_bc_ver[j++] = '.';
802         }
803
804         /* Check if any management firwmare is running. */
805         val = bce_shmem_rd(sc, BCE_PORT_FEATURE);
806         if (val & BCE_PORT_FEATURE_ASF_ENABLED) {
807                 sc->bce_flags |= BCE_MFW_ENABLE_FLAG;
808
809                 /* Allow time for firmware to enter the running state. */
810                 for (i = 0; i < 30; i++) {
811                         val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
812                         if (val & BCE_CONDITION_MFW_RUN_MASK)
813                                 break;
814                         DELAY(10000);
815                 }
816         }
817
818         /* Check the current bootcode state. */
819         val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION) &
820             BCE_CONDITION_MFW_RUN_MASK;
821         if (val != BCE_CONDITION_MFW_RUN_UNKNOWN &&
822             val != BCE_CONDITION_MFW_RUN_NONE) {
823                 uint32_t addr = bce_shmem_rd(sc, BCE_MFW_VER_PTR);
824
825                 for (i = 0, j = 0; j < 3; j++) {
826                         val = bce_reg_rd_ind(sc, addr + j * 4);
827                         val = bswap32(val);
828                         memcpy(&sc->bce_mfw_ver[i], &val, 4);
829                         i += 4;
830                 }
831         }
832
833         /* Get PCI bus information (speed and type). */
834         val = REG_RD(sc, BCE_PCICFG_MISC_STATUS);
835         if (val & BCE_PCICFG_MISC_STATUS_PCIX_DET) {
836                 uint32_t clkreg;
837
838                 sc->bce_flags |= BCE_PCIX_FLAG;
839
840                 clkreg = REG_RD(sc, BCE_PCICFG_PCI_CLOCK_CONTROL_BITS) &
841                          BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
842                 switch (clkreg) {
843                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
844                         sc->bus_speed_mhz = 133;
845                         break;
846
847                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
848                         sc->bus_speed_mhz = 100;
849                         break;
850
851                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
852                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
853                         sc->bus_speed_mhz = 66;
854                         break;
855
856                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
857                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
858                         sc->bus_speed_mhz = 50;
859                         break;
860
861                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
862                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
863                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
864                         sc->bus_speed_mhz = 33;
865                         break;
866                 }
867         } else {
868                 if (val & BCE_PCICFG_MISC_STATUS_M66EN)
869                         sc->bus_speed_mhz = 66;
870                 else
871                         sc->bus_speed_mhz = 33;
872         }
873
874         if (val & BCE_PCICFG_MISC_STATUS_32BIT_DET)
875                 sc->bce_flags |= BCE_PCI_32BIT_FLAG;
876
877         /* Reset the controller. */
878         rc = bce_reset(sc, BCE_DRV_MSG_CODE_RESET);
879         if (rc != 0)
880                 goto fail;
881
882         /* Initialize the controller. */
883         rc = bce_chipinit(sc);
884         if (rc != 0) {
885                 device_printf(dev, "Controller initialization failed!\n");
886                 goto fail;
887         }
888
889         /* Perform NVRAM test. */
890         rc = bce_nvram_test(sc);
891         if (rc != 0) {
892                 device_printf(dev, "NVRAM test failed!\n");
893                 goto fail;
894         }
895
896         /* Fetch the permanent Ethernet MAC address. */
897         bce_get_mac_addr(sc);
898
899         /*
900          * Trip points control how many BDs
901          * should be ready before generating an
902          * interrupt while ticks control how long
903          * a BD can sit in the chain before
904          * generating an interrupt.  Set the default 
905          * values for the RX and TX rings.
906          */
907
908 #ifdef BCE_DRBUG
909         /* Force more frequent interrupts. */
910         sc->bce_tx_quick_cons_trip_int = 1;
911         sc->bce_tx_quick_cons_trip     = 1;
912         sc->bce_tx_ticks_int           = 0;
913         sc->bce_tx_ticks               = 0;
914
915         sc->bce_rx_quick_cons_trip_int = 1;
916         sc->bce_rx_quick_cons_trip     = 1;
917         sc->bce_rx_ticks_int           = 0;
918         sc->bce_rx_ticks               = 0;
919 #else
920         sc->bce_tx_quick_cons_trip_int = bce_tx_bds_int;
921         sc->bce_tx_quick_cons_trip     = bce_tx_bds;
922         sc->bce_tx_ticks_int           = bce_tx_ticks_int;
923         sc->bce_tx_ticks               = bce_tx_ticks;
924
925         sc->bce_rx_quick_cons_trip_int = bce_rx_bds_int;
926         sc->bce_rx_quick_cons_trip     = bce_rx_bds;
927         sc->bce_rx_ticks_int           = bce_rx_ticks_int;
928         sc->bce_rx_ticks               = bce_rx_ticks;
929 #endif
930
931         /* Update statistics once every second. */
932         sc->bce_stats_ticks = 1000000 & 0xffff00;
933
934         /* Find the media type for the adapter. */
935         bce_get_media(sc);
936
937         /* Allocate DMA memory resources. */
938         rc = bce_dma_alloc(sc);
939         if (rc != 0) {
940                 device_printf(dev, "DMA resource allocation failed!\n");
941                 goto fail;
942         }
943
944         /* Initialize the ifnet interface. */
945         ifp->if_softc = sc;
946         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
947         ifp->if_ioctl = bce_ioctl;
948         ifp->if_start = bce_start;
949         ifp->if_init = bce_init;
950         ifp->if_watchdog = bce_watchdog;
951 #ifdef DEVICE_POLLING
952         ifp->if_poll = bce_poll;
953 #endif
954         ifp->if_mtu = ETHERMTU;
955         ifp->if_hwassist = BCE_CSUM_FEATURES | CSUM_TSO;
956         ifp->if_capabilities = BCE_IF_CAPABILITIES;
957         ifp->if_capenable = ifp->if_capabilities;
958         ifq_set_maxlen(&ifp->if_snd, USABLE_TX_BD(sc));
959         ifq_set_ready(&ifp->if_snd);
960
961         if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG)
962                 ifp->if_baudrate = IF_Gbps(2.5);
963         else
964                 ifp->if_baudrate = IF_Gbps(1);
965
966         /* Assume a standard 1500 byte MTU size for mbuf allocations. */
967         sc->mbuf_alloc_size  = MCLBYTES;
968
969         /*
970          * Look for our PHY.
971          */
972         mii_probe_args_init(&mii_args, bce_ifmedia_upd, bce_ifmedia_sts);
973         mii_args.mii_probemask = 1 << sc->bce_phy_addr;
974         mii_args.mii_privtag = MII_PRIVTAG_BRGPHY;
975         mii_args.mii_priv = mii_priv;
976
977         rc = mii_probe(dev, &sc->bce_miibus, &mii_args);
978         if (rc != 0) {
979                 device_printf(dev, "PHY probe failed!\n");
980                 goto fail;
981         }
982
983         /* Attach to the Ethernet interface list. */
984         ether_ifattach(ifp, sc->eaddr, NULL);
985
986         callout_init_mp(&sc->bce_tick_callout);
987         callout_init_mp(&sc->bce_pulse_callout);
988         callout_init_mp(&sc->bce_ckmsi_callout);
989
990         /* Hookup IRQ last. */
991         rc = bus_setup_intr(dev, sc->bce_res_irq, INTR_MPSAFE, irq_handle, sc,
992                             &sc->bce_intrhand, ifp->if_serializer);
993         if (rc != 0) {
994                 device_printf(dev, "Failed to setup IRQ!\n");
995                 ether_ifdetach(ifp);
996                 goto fail;
997         }
998
999         ifp->if_cpuid = rman_get_cpuid(sc->bce_res_irq);
1000         KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
1001         sc->bce_intr_cpuid = ifp->if_cpuid;
1002
1003         /* Print some important debugging info. */
1004         DBRUN(BCE_INFO, bce_dump_driver_state(sc));
1005
1006         /* Add the supported sysctls to the kernel. */
1007         bce_add_sysctls(sc);
1008
1009         /*
1010          * The chip reset earlier notified the bootcode that
1011          * a driver is present.  We now need to start our pulse
1012          * routine so that the bootcode is reminded that we're
1013          * still running.
1014          */
1015         bce_pulse(sc);
1016
1017         /* Get the firmware running so IPMI still works */
1018         bce_mgmt_init(sc);
1019
1020         if (bootverbose)
1021                 bce_print_adapter_info(sc);
1022
1023         return 0;
1024 fail:
1025         bce_detach(dev);
1026         return(rc);
1027 }
1028
1029
1030 /****************************************************************************/
1031 /* Device detach function.                                                  */
1032 /*                                                                          */
1033 /* Stops the controller, resets the controller, and releases resources.     */
1034 /*                                                                          */
1035 /* Returns:                                                                 */
1036 /*   0 on success, positive value on failure.                               */
1037 /****************************************************************************/
1038 static int
1039 bce_detach(device_t dev)
1040 {
1041         struct bce_softc *sc = device_get_softc(dev);
1042
1043         if (device_is_attached(dev)) {
1044                 struct ifnet *ifp = &sc->arpcom.ac_if;
1045                 uint32_t msg;
1046
1047                 /* Stop and reset the controller. */
1048                 lwkt_serialize_enter(ifp->if_serializer);
1049                 callout_stop(&sc->bce_pulse_callout);
1050                 bce_stop(sc);
1051                 if (sc->bce_flags & BCE_NO_WOL_FLAG)
1052                         msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1053                 else
1054                         msg = BCE_DRV_MSG_CODE_UNLOAD;
1055                 bce_reset(sc, msg);
1056                 bus_teardown_intr(dev, sc->bce_res_irq, sc->bce_intrhand);
1057                 lwkt_serialize_exit(ifp->if_serializer);
1058
1059                 ether_ifdetach(ifp);
1060         }
1061
1062         /* If we have a child device on the MII bus remove it too. */
1063         if (sc->bce_miibus)
1064                 device_delete_child(dev, sc->bce_miibus);
1065         bus_generic_detach(dev);
1066
1067         if (sc->bce_res_irq != NULL) {
1068                 bus_release_resource(dev, SYS_RES_IRQ, sc->bce_irq_rid,
1069                     sc->bce_res_irq);
1070         }
1071
1072         if (sc->bce_irq_type == PCI_INTR_TYPE_MSI)
1073                 pci_release_msi(dev);
1074
1075         if (sc->bce_res_mem != NULL) {
1076                 bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
1077                                      sc->bce_res_mem);
1078         }
1079
1080         bce_dma_free(sc);
1081
1082         if (sc->bce_sysctl_tree != NULL)
1083                 sysctl_ctx_free(&sc->bce_sysctl_ctx);
1084
1085         return 0;
1086 }
1087
1088
1089 /****************************************************************************/
1090 /* Device shutdown function.                                                */
1091 /*                                                                          */
1092 /* Stops and resets the controller.                                         */
1093 /*                                                                          */
1094 /* Returns:                                                                 */
1095 /*   Nothing                                                                */
1096 /****************************************************************************/
1097 static void
1098 bce_shutdown(device_t dev)
1099 {
1100         struct bce_softc *sc = device_get_softc(dev);
1101         struct ifnet *ifp = &sc->arpcom.ac_if;
1102         uint32_t msg;
1103
1104         lwkt_serialize_enter(ifp->if_serializer);
1105         bce_stop(sc);
1106         if (sc->bce_flags & BCE_NO_WOL_FLAG)
1107                 msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1108         else
1109                 msg = BCE_DRV_MSG_CODE_UNLOAD;
1110         bce_reset(sc, msg);
1111         lwkt_serialize_exit(ifp->if_serializer);
1112 }
1113
1114
1115 /****************************************************************************/
1116 /* Indirect register read.                                                  */
1117 /*                                                                          */
1118 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
1119 /* configuration space.  Using this mechanism avoids issues with posted     */
1120 /* reads but is much slower than memory-mapped I/O.                         */
1121 /*                                                                          */
1122 /* Returns:                                                                 */
1123 /*   The value of the register.                                             */
1124 /****************************************************************************/
1125 static uint32_t
1126 bce_reg_rd_ind(struct bce_softc *sc, uint32_t offset)
1127 {
1128         device_t dev = sc->bce_dev;
1129
1130         pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1131 #ifdef BCE_DEBUG
1132         {
1133                 uint32_t val;
1134                 val = pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1135                 DBPRINT(sc, BCE_EXCESSIVE,
1136                         "%s(); offset = 0x%08X, val = 0x%08X\n",
1137                         __func__, offset, val);
1138                 return val;
1139         }
1140 #else
1141         return pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1142 #endif
1143 }
1144
1145
1146 /****************************************************************************/
1147 /* Indirect register write.                                                 */
1148 /*                                                                          */
1149 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
1150 /* configuration space.  Using this mechanism avoids issues with posted     */
1151 /* writes but is muchh slower than memory-mapped I/O.                       */
1152 /*                                                                          */
1153 /* Returns:                                                                 */
1154 /*   Nothing.                                                               */
1155 /****************************************************************************/
1156 static void
1157 bce_reg_wr_ind(struct bce_softc *sc, uint32_t offset, uint32_t val)
1158 {
1159         device_t dev = sc->bce_dev;
1160
1161         DBPRINT(sc, BCE_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
1162                 __func__, offset, val);
1163
1164         pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1165         pci_write_config(dev, BCE_PCICFG_REG_WINDOW, val, 4);
1166 }
1167
1168
1169 /****************************************************************************/
1170 /* Shared memory write.                                                     */
1171 /*                                                                          */
1172 /* Writes NetXtreme II shared memory region.                                */
1173 /*                                                                          */
1174 /* Returns:                                                                 */
1175 /*   Nothing.                                                               */
1176 /****************************************************************************/
1177 static void
1178 bce_shmem_wr(struct bce_softc *sc, uint32_t offset, uint32_t val)
1179 {
1180         bce_reg_wr_ind(sc, sc->bce_shmem_base + offset, val);
1181 }
1182
1183
1184 /****************************************************************************/
1185 /* Shared memory read.                                                      */
1186 /*                                                                          */
1187 /* Reads NetXtreme II shared memory region.                                 */
1188 /*                                                                          */
1189 /* Returns:                                                                 */
1190 /*   The 32 bit value read.                                                 */
1191 /****************************************************************************/
1192 static u32
1193 bce_shmem_rd(struct bce_softc *sc, uint32_t offset)
1194 {
1195         return bce_reg_rd_ind(sc, sc->bce_shmem_base + offset);
1196 }
1197
1198
1199 /****************************************************************************/
1200 /* Context memory write.                                                    */
1201 /*                                                                          */
1202 /* The NetXtreme II controller uses context memory to track connection      */
1203 /* information for L2 and higher network protocols.                         */
1204 /*                                                                          */
1205 /* Returns:                                                                 */
1206 /*   Nothing.                                                               */
1207 /****************************************************************************/
1208 static void
1209 bce_ctx_wr(struct bce_softc *sc, uint32_t cid_addr, uint32_t ctx_offset,
1210     uint32_t ctx_val)
1211 {
1212         uint32_t idx, offset = ctx_offset + cid_addr;
1213         uint32_t val, retry_cnt = 5;
1214
1215         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
1216             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
1217                 REG_WR(sc, BCE_CTX_CTX_DATA, ctx_val);
1218                 REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_WRITE_REQ));
1219
1220                 for (idx = 0; idx < retry_cnt; idx++) {
1221                         val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1222                         if ((val & BCE_CTX_CTX_CTRL_WRITE_REQ) == 0)
1223                                 break;
1224                         DELAY(5);
1225                 }
1226
1227                 if (val & BCE_CTX_CTX_CTRL_WRITE_REQ) {
1228                         device_printf(sc->bce_dev,
1229                             "Unable to write CTX memory: "
1230                             "cid_addr = 0x%08X, offset = 0x%08X!\n",
1231                             cid_addr, ctx_offset);
1232                 }
1233         } else {
1234                 REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1235                 REG_WR(sc, BCE_CTX_DATA, ctx_val);
1236         }
1237 }
1238
1239
1240 /****************************************************************************/
1241 /* PHY register read.                                                       */
1242 /*                                                                          */
1243 /* Implements register reads on the MII bus.                                */
1244 /*                                                                          */
1245 /* Returns:                                                                 */
1246 /*   The value of the register.                                             */
1247 /****************************************************************************/
1248 static int
1249 bce_miibus_read_reg(device_t dev, int phy, int reg)
1250 {
1251         struct bce_softc *sc = device_get_softc(dev);
1252         uint32_t val;
1253         int i;
1254
1255         /* Make sure we are accessing the correct PHY address. */
1256         KASSERT(phy == sc->bce_phy_addr,
1257             ("invalid phyno %d, should be %d\n", phy, sc->bce_phy_addr));
1258
1259         if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1260                 val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1261                 val &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1262
1263                 REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1264                 REG_RD(sc, BCE_EMAC_MDIO_MODE);
1265
1266                 DELAY(40);
1267         }
1268
1269         val = BCE_MIPHY(phy) | BCE_MIREG(reg) |
1270               BCE_EMAC_MDIO_COMM_COMMAND_READ | BCE_EMAC_MDIO_COMM_DISEXT |
1271               BCE_EMAC_MDIO_COMM_START_BUSY;
1272         REG_WR(sc, BCE_EMAC_MDIO_COMM, val);
1273
1274         for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1275                 DELAY(10);
1276
1277                 val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1278                 if (!(val & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1279                         DELAY(5);
1280
1281                         val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1282                         val &= BCE_EMAC_MDIO_COMM_DATA;
1283                         break;
1284                 }
1285         }
1286
1287         if (val & BCE_EMAC_MDIO_COMM_START_BUSY) {
1288                 if_printf(&sc->arpcom.ac_if,
1289                           "Error: PHY read timeout! phy = %d, reg = 0x%04X\n",
1290                           phy, reg);
1291                 val = 0x0;
1292         } else {
1293                 val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1294         }
1295
1296         DBPRINT(sc, BCE_EXCESSIVE,
1297                 "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n",
1298                 __func__, phy, (uint16_t)reg & 0xffff, (uint16_t) val & 0xffff);
1299
1300         if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1301                 val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1302                 val |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1303
1304                 REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1305                 REG_RD(sc, BCE_EMAC_MDIO_MODE);
1306
1307                 DELAY(40);
1308         }
1309         return (val & 0xffff);
1310 }
1311
1312
1313 /****************************************************************************/
1314 /* PHY register write.                                                      */
1315 /*                                                                          */
1316 /* Implements register writes on the MII bus.                               */
1317 /*                                                                          */
1318 /* Returns:                                                                 */
1319 /*   The value of the register.                                             */
1320 /****************************************************************************/
1321 static int
1322 bce_miibus_write_reg(device_t dev, int phy, int reg, int val)
1323 {
1324         struct bce_softc *sc = device_get_softc(dev);
1325         uint32_t val1;
1326         int i;
1327
1328         /* Make sure we are accessing the correct PHY address. */
1329         KASSERT(phy == sc->bce_phy_addr,
1330             ("invalid phyno %d, should be %d\n", phy, sc->bce_phy_addr));
1331
1332         DBPRINT(sc, BCE_EXCESSIVE,
1333                 "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n",
1334                 __func__, phy, (uint16_t)(reg & 0xffff),
1335                 (uint16_t)(val & 0xffff));
1336
1337         if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1338                 val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1339                 val1 &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1340
1341                 REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
1342                 REG_RD(sc, BCE_EMAC_MDIO_MODE);
1343
1344                 DELAY(40);
1345         }
1346
1347         val1 = BCE_MIPHY(phy) | BCE_MIREG(reg) | val |
1348                 BCE_EMAC_MDIO_COMM_COMMAND_WRITE |
1349                 BCE_EMAC_MDIO_COMM_START_BUSY | BCE_EMAC_MDIO_COMM_DISEXT;
1350         REG_WR(sc, BCE_EMAC_MDIO_COMM, val1);
1351
1352         for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1353                 DELAY(10);
1354
1355                 val1 = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1356                 if (!(val1 & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1357                         DELAY(5);
1358                         break;
1359                 }
1360         }
1361
1362         if (val1 & BCE_EMAC_MDIO_COMM_START_BUSY)
1363                 if_printf(&sc->arpcom.ac_if, "PHY write timeout!\n");
1364
1365         if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1366                 val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1367                 val1 |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1368
1369                 REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
1370                 REG_RD(sc, BCE_EMAC_MDIO_MODE);
1371
1372                 DELAY(40);
1373         }
1374         return 0;
1375 }
1376
1377
1378 /****************************************************************************/
1379 /* MII bus status change.                                                   */
1380 /*                                                                          */
1381 /* Called by the MII bus driver when the PHY establishes link to set the    */
1382 /* MAC interface registers.                                                 */
1383 /*                                                                          */
1384 /* Returns:                                                                 */
1385 /*   Nothing.                                                               */
1386 /****************************************************************************/
1387 static void
1388 bce_miibus_statchg(device_t dev)
1389 {
1390         struct bce_softc *sc = device_get_softc(dev);
1391         struct mii_data *mii = device_get_softc(sc->bce_miibus);
1392
1393         DBPRINT(sc, BCE_INFO, "mii_media_active = 0x%08X\n",
1394                 mii->mii_media_active);
1395
1396 #ifdef BCE_DEBUG
1397         /* Decode the interface media flags. */
1398         if_printf(&sc->arpcom.ac_if, "Media: ( ");
1399         switch(IFM_TYPE(mii->mii_media_active)) {
1400         case IFM_ETHER:
1401                 kprintf("Ethernet )");
1402                 break;
1403         default:
1404                 kprintf("Unknown )");
1405                 break;
1406         }
1407
1408         kprintf(" Media Options: ( ");
1409         switch(IFM_SUBTYPE(mii->mii_media_active)) {
1410         case IFM_AUTO:
1411                 kprintf("Autoselect )");
1412                 break;
1413         case IFM_MANUAL:
1414                 kprintf("Manual )");
1415                 break;
1416         case IFM_NONE:
1417                 kprintf("None )");
1418                 break;
1419         case IFM_10_T:
1420                 kprintf("10Base-T )");
1421                 break;
1422         case IFM_100_TX:
1423                 kprintf("100Base-TX )");
1424                 break;
1425         case IFM_1000_SX:
1426                 kprintf("1000Base-SX )");
1427                 break;
1428         case IFM_1000_T:
1429                 kprintf("1000Base-T )");
1430                 break;
1431         default:
1432                 kprintf("Other )");
1433                 break;
1434         }
1435
1436         kprintf(" Global Options: (");
1437         if (mii->mii_media_active & IFM_FDX)
1438                 kprintf(" FullDuplex");
1439         if (mii->mii_media_active & IFM_HDX)
1440                 kprintf(" HalfDuplex");
1441         if (mii->mii_media_active & IFM_LOOP)
1442                 kprintf(" Loopback");
1443         if (mii->mii_media_active & IFM_FLAG0)
1444                 kprintf(" Flag0");
1445         if (mii->mii_media_active & IFM_FLAG1)
1446                 kprintf(" Flag1");
1447         if (mii->mii_media_active & IFM_FLAG2)
1448                 kprintf(" Flag2");
1449         kprintf(" )\n");
1450 #endif
1451
1452         BCE_CLRBIT(sc, BCE_EMAC_MODE, BCE_EMAC_MODE_PORT);
1453
1454         /*
1455          * Set MII or GMII interface based on the speed negotiated
1456          * by the PHY.
1457          */
1458         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T || 
1459             IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) {
1460                 DBPRINT(sc, BCE_INFO, "Setting GMII interface.\n");
1461                 BCE_SETBIT(sc, BCE_EMAC_MODE, BCE_EMAC_MODE_PORT_GMII);
1462         } else {
1463                 DBPRINT(sc, BCE_INFO, "Setting MII interface.\n");
1464                 BCE_SETBIT(sc, BCE_EMAC_MODE, BCE_EMAC_MODE_PORT_MII);
1465         }
1466
1467         /*
1468          * Set half or full duplex based on the duplicity negotiated
1469          * by the PHY.
1470          */
1471         if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1472                 DBPRINT(sc, BCE_INFO, "Setting Full-Duplex interface.\n");
1473                 BCE_CLRBIT(sc, BCE_EMAC_MODE, BCE_EMAC_MODE_HALF_DUPLEX);
1474         } else {
1475                 DBPRINT(sc, BCE_INFO, "Setting Half-Duplex interface.\n");
1476                 BCE_SETBIT(sc, BCE_EMAC_MODE, BCE_EMAC_MODE_HALF_DUPLEX);
1477         }
1478 }
1479
1480
1481 /****************************************************************************/
1482 /* Acquire NVRAM lock.                                                      */
1483 /*                                                                          */
1484 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
1485 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
1486 /* for use by the driver.                                                   */
1487 /*                                                                          */
1488 /* Returns:                                                                 */
1489 /*   0 on success, positive value on failure.                               */
1490 /****************************************************************************/
1491 static int
1492 bce_acquire_nvram_lock(struct bce_softc *sc)
1493 {
1494         uint32_t val;
1495         int j;
1496
1497         DBPRINT(sc, BCE_VERBOSE, "Acquiring NVRAM lock.\n");
1498
1499         /* Request access to the flash interface. */
1500         REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_SET2);
1501         for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1502                 val = REG_RD(sc, BCE_NVM_SW_ARB);
1503                 if (val & BCE_NVM_SW_ARB_ARB_ARB2)
1504                         break;
1505
1506                 DELAY(5);
1507         }
1508
1509         if (j >= NVRAM_TIMEOUT_COUNT) {
1510                 DBPRINT(sc, BCE_WARN, "Timeout acquiring NVRAM lock!\n");
1511                 return EBUSY;
1512         }
1513         return 0;
1514 }
1515
1516
1517 /****************************************************************************/
1518 /* Release NVRAM lock.                                                      */
1519 /*                                                                          */
1520 /* When the caller is finished accessing NVRAM the lock must be released.   */
1521 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
1522 /* for use by the driver.                                                   */
1523 /*                                                                          */
1524 /* Returns:                                                                 */
1525 /*   0 on success, positive value on failure.                               */
1526 /****************************************************************************/
1527 static int
1528 bce_release_nvram_lock(struct bce_softc *sc)
1529 {
1530         int j;
1531         uint32_t val;
1532
1533         DBPRINT(sc, BCE_VERBOSE, "Releasing NVRAM lock.\n");
1534
1535         /*
1536          * Relinquish nvram interface.
1537          */
1538         REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_CLR2);
1539
1540         for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1541                 val = REG_RD(sc, BCE_NVM_SW_ARB);
1542                 if (!(val & BCE_NVM_SW_ARB_ARB_ARB2))
1543                         break;
1544
1545                 DELAY(5);
1546         }
1547
1548         if (j >= NVRAM_TIMEOUT_COUNT) {
1549                 DBPRINT(sc, BCE_WARN, "Timeout reeasing NVRAM lock!\n");
1550                 return EBUSY;
1551         }
1552         return 0;
1553 }
1554
1555
1556 /****************************************************************************/
1557 /* Enable NVRAM access.                                                     */
1558 /*                                                                          */
1559 /* Before accessing NVRAM for read or write operations the caller must      */
1560 /* enabled NVRAM access.                                                    */
1561 /*                                                                          */
1562 /* Returns:                                                                 */
1563 /*   Nothing.                                                               */
1564 /****************************************************************************/
1565 static void
1566 bce_enable_nvram_access(struct bce_softc *sc)
1567 {
1568         uint32_t val;
1569
1570         DBPRINT(sc, BCE_VERBOSE, "Enabling NVRAM access.\n");
1571
1572         val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
1573         /* Enable both bits, even on read. */
1574         REG_WR(sc, BCE_NVM_ACCESS_ENABLE,
1575                val | BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN);
1576 }
1577
1578
1579 /****************************************************************************/
1580 /* Disable NVRAM access.                                                    */
1581 /*                                                                          */
1582 /* When the caller is finished accessing NVRAM access must be disabled.     */
1583 /*                                                                          */
1584 /* Returns:                                                                 */
1585 /*   Nothing.                                                               */
1586 /****************************************************************************/
1587 static void
1588 bce_disable_nvram_access(struct bce_softc *sc)
1589 {
1590         uint32_t val;
1591
1592         DBPRINT(sc, BCE_VERBOSE, "Disabling NVRAM access.\n");
1593
1594         val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
1595
1596         /* Disable both bits, even after read. */
1597         REG_WR(sc, BCE_NVM_ACCESS_ENABLE,
1598                val & ~(BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN));
1599 }
1600
1601
1602 /****************************************************************************/
1603 /* Read a dword (32 bits) from NVRAM.                                       */
1604 /*                                                                          */
1605 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
1606 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
1607 /*                                                                          */
1608 /* Returns:                                                                 */
1609 /*   0 on success and the 32 bit value read, positive value on failure.     */
1610 /****************************************************************************/
1611 static int
1612 bce_nvram_read_dword(struct bce_softc *sc, uint32_t offset, uint8_t *ret_val,
1613                      uint32_t cmd_flags)
1614 {
1615         uint32_t cmd;
1616         int i, rc = 0;
1617
1618         /* Build the command word. */
1619         cmd = BCE_NVM_COMMAND_DOIT | cmd_flags;
1620
1621         /* Calculate the offset for buffered flash. */
1622         if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
1623                 offset = ((offset / sc->bce_flash_info->page_size) <<
1624                           sc->bce_flash_info->page_bits) +
1625                          (offset % sc->bce_flash_info->page_size);
1626         }
1627
1628         /*
1629          * Clear the DONE bit separately, set the address to read,
1630          * and issue the read.
1631          */
1632         REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
1633         REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
1634         REG_WR(sc, BCE_NVM_COMMAND, cmd);
1635
1636         /* Wait for completion. */
1637         for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
1638                 uint32_t val;
1639
1640                 DELAY(5);
1641
1642                 val = REG_RD(sc, BCE_NVM_COMMAND);
1643                 if (val & BCE_NVM_COMMAND_DONE) {
1644                         val = REG_RD(sc, BCE_NVM_READ);
1645
1646                         val = be32toh(val);
1647                         memcpy(ret_val, &val, 4);
1648                         break;
1649                 }
1650         }
1651
1652         /* Check for errors. */
1653         if (i >= NVRAM_TIMEOUT_COUNT) {
1654                 if_printf(&sc->arpcom.ac_if,
1655                           "Timeout error reading NVRAM at offset 0x%08X!\n",
1656                           offset);
1657                 rc = EBUSY;
1658         }
1659         return rc;
1660 }
1661
1662
1663 /****************************************************************************/
1664 /* Initialize NVRAM access.                                                 */
1665 /*                                                                          */
1666 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
1667 /* access that device.                                                      */
1668 /*                                                                          */
1669 /* Returns:                                                                 */
1670 /*   0 on success, positive value on failure.                               */
1671 /****************************************************************************/
1672 static int
1673 bce_init_nvram(struct bce_softc *sc)
1674 {
1675         uint32_t val;
1676         int j, entry_count, rc = 0;
1677         const struct flash_spec *flash;
1678
1679         DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __func__);
1680
1681         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
1682             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
1683                 sc->bce_flash_info = &flash_5709;
1684                 goto bce_init_nvram_get_flash_size;
1685         }
1686
1687         /* Determine the selected interface. */
1688         val = REG_RD(sc, BCE_NVM_CFG1);
1689
1690         entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
1691
1692         /*
1693          * Flash reconfiguration is required to support additional
1694          * NVRAM devices not directly supported in hardware.
1695          * Check if the flash interface was reconfigured
1696          * by the bootcode.
1697          */
1698
1699         if (val & 0x40000000) {
1700                 /* Flash interface reconfigured by bootcode. */
1701
1702                 DBPRINT(sc, BCE_INFO_LOAD, 
1703                         "%s(): Flash WAS reconfigured.\n", __func__);
1704
1705                 for (j = 0, flash = flash_table; j < entry_count;
1706                      j++, flash++) {
1707                         if ((val & FLASH_BACKUP_STRAP_MASK) ==
1708                             (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
1709                                 sc->bce_flash_info = flash;
1710                                 break;
1711                         }
1712                 }
1713         } else {
1714                 /* Flash interface not yet reconfigured. */
1715                 uint32_t mask;
1716
1717                 DBPRINT(sc, BCE_INFO_LOAD, 
1718                         "%s(): Flash was NOT reconfigured.\n", __func__);
1719
1720                 if (val & (1 << 23))
1721                         mask = FLASH_BACKUP_STRAP_MASK;
1722                 else
1723                         mask = FLASH_STRAP_MASK;
1724
1725                 /* Look for the matching NVRAM device configuration data. */
1726                 for (j = 0, flash = flash_table; j < entry_count;
1727                      j++, flash++) {
1728                         /* Check if the device matches any of the known devices. */
1729                         if ((val & mask) == (flash->strapping & mask)) {
1730                                 /* Found a device match. */
1731                                 sc->bce_flash_info = flash;
1732
1733                                 /* Request access to the flash interface. */
1734                                 rc = bce_acquire_nvram_lock(sc);
1735                                 if (rc != 0)
1736                                         return rc;
1737
1738                                 /* Reconfigure the flash interface. */
1739                                 bce_enable_nvram_access(sc);
1740                                 REG_WR(sc, BCE_NVM_CFG1, flash->config1);
1741                                 REG_WR(sc, BCE_NVM_CFG2, flash->config2);
1742                                 REG_WR(sc, BCE_NVM_CFG3, flash->config3);
1743                                 REG_WR(sc, BCE_NVM_WRITE1, flash->write1);
1744                                 bce_disable_nvram_access(sc);
1745                                 bce_release_nvram_lock(sc);
1746                                 break;
1747                         }
1748                 }
1749         }
1750
1751         /* Check if a matching device was found. */
1752         if (j == entry_count) {
1753                 sc->bce_flash_info = NULL;
1754                 if_printf(&sc->arpcom.ac_if, "Unknown Flash NVRAM found!\n");
1755                 return ENODEV;
1756         }
1757
1758 bce_init_nvram_get_flash_size:
1759         /* Write the flash config data to the shared memory interface. */
1760         val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG2) &
1761             BCE_SHARED_HW_CFG2_NVM_SIZE_MASK;
1762         if (val)
1763                 sc->bce_flash_size = val;
1764         else
1765                 sc->bce_flash_size = sc->bce_flash_info->total_size;
1766
1767         DBPRINT(sc, BCE_INFO_LOAD, "%s() flash->total_size = 0x%08X\n",
1768                 __func__, sc->bce_flash_info->total_size);
1769
1770         DBPRINT(sc, BCE_VERBOSE_RESET, "Exiting %s()\n", __func__);
1771
1772         return rc;
1773 }
1774
1775
1776 /****************************************************************************/
1777 /* Read an arbitrary range of data from NVRAM.                              */
1778 /*                                                                          */
1779 /* Prepares the NVRAM interface for access and reads the requested data     */
1780 /* into the supplied buffer.                                                */
1781 /*                                                                          */
1782 /* Returns:                                                                 */
1783 /*   0 on success and the data read, positive value on failure.             */
1784 /****************************************************************************/
1785 static int
1786 bce_nvram_read(struct bce_softc *sc, uint32_t offset, uint8_t *ret_buf,
1787                int buf_size)
1788 {
1789         uint32_t cmd_flags, offset32, len32, extra;
1790         int rc = 0;
1791
1792         if (buf_size == 0)
1793                 return 0;
1794
1795         /* Request access to the flash interface. */
1796         rc = bce_acquire_nvram_lock(sc);
1797         if (rc != 0)
1798                 return rc;
1799
1800         /* Enable access to flash interface */
1801         bce_enable_nvram_access(sc);
1802
1803         len32 = buf_size;
1804         offset32 = offset;
1805         extra = 0;
1806
1807         cmd_flags = 0;
1808
1809         /* XXX should we release nvram lock if read_dword() fails? */
1810         if (offset32 & 3) {
1811                 uint8_t buf[4];
1812                 uint32_t pre_len;
1813
1814                 offset32 &= ~3;
1815                 pre_len = 4 - (offset & 3);
1816
1817                 if (pre_len >= len32) {
1818                         pre_len = len32;
1819                         cmd_flags = BCE_NVM_COMMAND_FIRST | BCE_NVM_COMMAND_LAST;
1820                 } else {
1821                         cmd_flags = BCE_NVM_COMMAND_FIRST;
1822                 }
1823
1824                 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
1825                 if (rc)
1826                         return rc;
1827
1828                 memcpy(ret_buf, buf + (offset & 3), pre_len);
1829
1830                 offset32 += 4;
1831                 ret_buf += pre_len;
1832                 len32 -= pre_len;
1833         }
1834
1835         if (len32 & 3) {
1836                 extra = 4 - (len32 & 3);
1837                 len32 = (len32 + 4) & ~3;
1838         }
1839
1840         if (len32 == 4) {
1841                 uint8_t buf[4];
1842
1843                 if (cmd_flags)
1844                         cmd_flags = BCE_NVM_COMMAND_LAST;
1845                 else
1846                         cmd_flags = BCE_NVM_COMMAND_FIRST |
1847                                     BCE_NVM_COMMAND_LAST;
1848
1849                 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
1850
1851                 memcpy(ret_buf, buf, 4 - extra);
1852         } else if (len32 > 0) {
1853                 uint8_t buf[4];
1854
1855                 /* Read the first word. */
1856                 if (cmd_flags)
1857                         cmd_flags = 0;
1858                 else
1859                         cmd_flags = BCE_NVM_COMMAND_FIRST;
1860
1861                 rc = bce_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
1862
1863                 /* Advance to the next dword. */
1864                 offset32 += 4;
1865                 ret_buf += 4;
1866                 len32 -= 4;
1867
1868                 while (len32 > 4 && rc == 0) {
1869                         rc = bce_nvram_read_dword(sc, offset32, ret_buf, 0);
1870
1871                         /* Advance to the next dword. */
1872                         offset32 += 4;
1873                         ret_buf += 4;
1874                         len32 -= 4;
1875                 }
1876
1877                 if (rc)
1878                         goto bce_nvram_read_locked_exit;
1879
1880                 cmd_flags = BCE_NVM_COMMAND_LAST;
1881                 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
1882
1883                 memcpy(ret_buf, buf, 4 - extra);
1884         }
1885
1886 bce_nvram_read_locked_exit:
1887         /* Disable access to flash interface and release the lock. */
1888         bce_disable_nvram_access(sc);
1889         bce_release_nvram_lock(sc);
1890
1891         return rc;
1892 }
1893
1894
1895 /****************************************************************************/
1896 /* Verifies that NVRAM is accessible and contains valid data.               */
1897 /*                                                                          */
1898 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
1899 /* correct.                                                                 */
1900 /*                                                                          */
1901 /* Returns:                                                                 */
1902 /*   0 on success, positive value on failure.                               */
1903 /****************************************************************************/
1904 static int
1905 bce_nvram_test(struct bce_softc *sc)
1906 {
1907         uint32_t buf[BCE_NVRAM_SIZE / 4];
1908         uint32_t magic, csum;
1909         uint8_t *data = (uint8_t *)buf;
1910         int rc = 0;
1911
1912         /*
1913          * Check that the device NVRAM is valid by reading
1914          * the magic value at offset 0.
1915          */
1916         rc = bce_nvram_read(sc, 0, data, 4);
1917         if (rc != 0)
1918                 return rc;
1919
1920         magic = be32toh(buf[0]);
1921         if (magic != BCE_NVRAM_MAGIC) {
1922                 if_printf(&sc->arpcom.ac_if,
1923                           "Invalid NVRAM magic value! Expected: 0x%08X, "
1924                           "Found: 0x%08X\n", BCE_NVRAM_MAGIC, magic);
1925                 return ENODEV;
1926         }
1927
1928         /*
1929          * Verify that the device NVRAM includes valid
1930          * configuration data.
1931          */
1932         rc = bce_nvram_read(sc, 0x100, data, BCE_NVRAM_SIZE);
1933         if (rc != 0)
1934                 return rc;
1935
1936         csum = ether_crc32_le(data, 0x100);
1937         if (csum != BCE_CRC32_RESIDUAL) {
1938                 if_printf(&sc->arpcom.ac_if,
1939                           "Invalid Manufacturing Information NVRAM CRC! "
1940                           "Expected: 0x%08X, Found: 0x%08X\n",
1941                           BCE_CRC32_RESIDUAL, csum);
1942                 return ENODEV;
1943         }
1944
1945         csum = ether_crc32_le(data + 0x100, 0x100);
1946         if (csum != BCE_CRC32_RESIDUAL) {
1947                 if_printf(&sc->arpcom.ac_if,
1948                           "Invalid Feature Configuration Information "
1949                           "NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
1950                           BCE_CRC32_RESIDUAL, csum);
1951                 rc = ENODEV;
1952         }
1953         return rc;
1954 }
1955
1956
1957 /****************************************************************************/
1958 /* Identifies the current media type of the controller and sets the PHY     */
1959 /* address.                                                                 */
1960 /*                                                                          */
1961 /* Returns:                                                                 */
1962 /*   Nothing.                                                               */
1963 /****************************************************************************/
1964 static void
1965 bce_get_media(struct bce_softc *sc)
1966 {
1967         uint32_t val;
1968
1969         sc->bce_phy_addr = 1;
1970
1971         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
1972             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
1973                 uint32_t val = REG_RD(sc, BCE_MISC_DUAL_MEDIA_CTRL);
1974                 uint32_t bond_id = val & BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID;
1975                 uint32_t strap;
1976
1977                 /*
1978                  * The BCM5709S is software configurable
1979                  * for Copper or SerDes operation.
1980                  */
1981                 if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
1982                         return;
1983                 } else if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
1984                         sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
1985                         return;
1986                 }
1987
1988                 if (val & BCE_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE) {
1989                         strap = (val & BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
1990                 } else {
1991                         strap =
1992                         (val & BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
1993                 }
1994
1995                 if (pci_get_function(sc->bce_dev) == 0) {
1996                         switch (strap) {
1997                         case 0x4:
1998                         case 0x5:
1999                         case 0x6:
2000                                 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
2001                                 break;
2002                         }
2003                 } else {
2004                         switch (strap) {
2005                         case 0x1:
2006                         case 0x2:
2007                         case 0x4:
2008                                 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
2009                                 break;
2010                         }
2011                 }
2012         } else if (BCE_CHIP_BOND_ID(sc) & BCE_CHIP_BOND_ID_SERDES_BIT) {
2013                 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
2014         }
2015
2016         if (sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) {
2017                 sc->bce_flags |= BCE_NO_WOL_FLAG;
2018                 if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
2019                         sc->bce_phy_addr = 2;
2020                         val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
2021                         if (val & BCE_SHARED_HW_CFG_PHY_2_5G)
2022                                 sc->bce_phy_flags |= BCE_PHY_2_5G_CAPABLE_FLAG;
2023                 }
2024         } else if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) ||
2025             (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)) {
2026                 sc->bce_phy_flags |= BCE_PHY_CRC_FIX_FLAG;
2027         }
2028 }
2029
2030
2031 /****************************************************************************/
2032 /* Free any DMA memory owned by the driver.                                 */
2033 /*                                                                          */
2034 /* Scans through each data structre that requires DMA memory and frees      */
2035 /* the memory if allocated.                                                 */
2036 /*                                                                          */
2037 /* Returns:                                                                 */
2038 /*   Nothing.                                                               */
2039 /****************************************************************************/
2040 static void
2041 bce_dma_free(struct bce_softc *sc)
2042 {
2043         int i;
2044
2045         /* Destroy the status block. */
2046         if (sc->status_tag != NULL) {
2047                 if (sc->status_block != NULL) {
2048                         bus_dmamap_unload(sc->status_tag, sc->status_map);
2049                         bus_dmamem_free(sc->status_tag, sc->status_block,
2050                                         sc->status_map);
2051                 }
2052                 bus_dma_tag_destroy(sc->status_tag);
2053         }
2054
2055         /* Destroy the statistics block. */
2056         if (sc->stats_tag != NULL) {
2057                 if (sc->stats_block != NULL) {
2058                         bus_dmamap_unload(sc->stats_tag, sc->stats_map);
2059                         bus_dmamem_free(sc->stats_tag, sc->stats_block,
2060                                         sc->stats_map);
2061                 }
2062                 bus_dma_tag_destroy(sc->stats_tag);
2063         }
2064
2065         /* Destroy the CTX DMA stuffs. */
2066         if (sc->ctx_tag != NULL) {
2067                 for (i = 0; i < sc->ctx_pages; i++) {
2068                         if (sc->ctx_block[i] != NULL) {
2069                                 bus_dmamap_unload(sc->ctx_tag, sc->ctx_map[i]);
2070                                 bus_dmamem_free(sc->ctx_tag, sc->ctx_block[i],
2071                                                 sc->ctx_map[i]);
2072                         }
2073                 }
2074                 bus_dma_tag_destroy(sc->ctx_tag);
2075         }
2076
2077         /* Destroy the TX buffer descriptor DMA stuffs. */
2078         if (sc->tx_bd_chain_tag != NULL) {
2079                 for (i = 0; i < sc->tx_pages; i++) {
2080                         if (sc->tx_bd_chain[i] != NULL) {
2081                                 bus_dmamap_unload(sc->tx_bd_chain_tag,
2082                                                   sc->tx_bd_chain_map[i]);
2083                                 bus_dmamem_free(sc->tx_bd_chain_tag,
2084                                                 sc->tx_bd_chain[i],
2085                                                 sc->tx_bd_chain_map[i]);
2086                         }
2087                 }
2088                 bus_dma_tag_destroy(sc->tx_bd_chain_tag);
2089         }
2090
2091         /* Destroy the RX buffer descriptor DMA stuffs. */
2092         if (sc->rx_bd_chain_tag != NULL) {
2093                 for (i = 0; i < sc->rx_pages; i++) {
2094                         if (sc->rx_bd_chain[i] != NULL) {
2095                                 bus_dmamap_unload(sc->rx_bd_chain_tag,
2096                                                   sc->rx_bd_chain_map[i]);
2097                                 bus_dmamem_free(sc->rx_bd_chain_tag,
2098                                                 sc->rx_bd_chain[i],
2099                                                 sc->rx_bd_chain_map[i]);
2100                         }
2101                 }
2102                 bus_dma_tag_destroy(sc->rx_bd_chain_tag);
2103         }
2104
2105         /* Destroy the TX mbuf DMA stuffs. */
2106         if (sc->tx_mbuf_tag != NULL) {
2107                 for (i = 0; i < TOTAL_TX_BD(sc); i++) {
2108                         /* Must have been unloaded in bce_stop() */
2109                         KKASSERT(sc->tx_mbuf_ptr[i] == NULL);
2110                         bus_dmamap_destroy(sc->tx_mbuf_tag,
2111                                            sc->tx_mbuf_map[i]);
2112                 }
2113                 bus_dma_tag_destroy(sc->tx_mbuf_tag);
2114         }
2115
2116         /* Destroy the RX mbuf DMA stuffs. */
2117         if (sc->rx_mbuf_tag != NULL) {
2118                 for (i = 0; i < TOTAL_RX_BD(sc); i++) {
2119                         /* Must have been unloaded in bce_stop() */
2120                         KKASSERT(sc->rx_mbuf_ptr[i] == NULL);
2121                         bus_dmamap_destroy(sc->rx_mbuf_tag,
2122                                            sc->rx_mbuf_map[i]);
2123                 }
2124                 bus_dmamap_destroy(sc->rx_mbuf_tag, sc->rx_mbuf_tmpmap);
2125                 bus_dma_tag_destroy(sc->rx_mbuf_tag);
2126         }
2127
2128         /* Destroy the parent tag */
2129         if (sc->parent_tag != NULL)
2130                 bus_dma_tag_destroy(sc->parent_tag);
2131
2132         if (sc->tx_bd_chain_map != NULL)
2133                 kfree(sc->tx_bd_chain_map, M_DEVBUF);
2134         if (sc->tx_bd_chain != NULL)
2135                 kfree(sc->tx_bd_chain, M_DEVBUF);
2136         if (sc->tx_bd_chain_paddr != NULL)
2137                 kfree(sc->tx_bd_chain_paddr, M_DEVBUF);
2138
2139         if (sc->rx_bd_chain_map != NULL)
2140                 kfree(sc->rx_bd_chain_map, M_DEVBUF);
2141         if (sc->rx_bd_chain != NULL)
2142                 kfree(sc->rx_bd_chain, M_DEVBUF);
2143         if (sc->rx_bd_chain_paddr != NULL)
2144                 kfree(sc->rx_bd_chain_paddr, M_DEVBUF);
2145
2146         if (sc->tx_mbuf_map != NULL)
2147                 kfree(sc->tx_mbuf_map, M_DEVBUF);
2148         if (sc->tx_mbuf_ptr != NULL)
2149                 kfree(sc->tx_mbuf_ptr, M_DEVBUF);
2150
2151         if (sc->rx_mbuf_map != NULL)
2152                 kfree(sc->rx_mbuf_map, M_DEVBUF);
2153         if (sc->rx_mbuf_ptr != NULL)
2154                 kfree(sc->rx_mbuf_ptr, M_DEVBUF);
2155         if (sc->rx_mbuf_paddr != NULL)
2156                 kfree(sc->rx_mbuf_paddr, M_DEVBUF);
2157 }
2158
2159
2160 /****************************************************************************/
2161 /* Get DMA memory from the OS.                                              */
2162 /*                                                                          */
2163 /* Validates that the OS has provided DMA buffers in response to a          */
2164 /* bus_dmamap_load() call and saves the physical address of those buffers.  */
2165 /* When the callback is used the OS will return 0 for the mapping function  */
2166 /* (bus_dmamap_load()) so we use the value of map_arg->maxsegs to pass any  */
2167 /* failures back to the caller.                                             */
2168 /*                                                                          */
2169 /* Returns:                                                                 */
2170 /*   Nothing.                                                               */
2171 /****************************************************************************/
2172 static void
2173 bce_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2174 {
2175         bus_addr_t *busaddr = arg;
2176
2177         /*
2178          * Simulate a mapping failure.
2179          * XXX not correct.
2180          */
2181         DBRUNIF(DB_RANDOMTRUE(bce_debug_dma_map_addr_failure),
2182                 kprintf("bce: %s(%d): Simulating DMA mapping error.\n",
2183                         __FILE__, __LINE__);
2184                 error = ENOMEM);
2185                 
2186         /* Check for an error and signal the caller that an error occurred. */
2187         if (error)
2188                 return;
2189
2190         KASSERT(nseg == 1, ("only one segment is allowed"));
2191         *busaddr = segs->ds_addr;
2192 }
2193
2194
2195 /****************************************************************************/
2196 /* Allocate any DMA memory needed by the driver.                            */
2197 /*                                                                          */
2198 /* Allocates DMA memory needed for the various global structures needed by  */
2199 /* hardware.                                                                */
2200 /*                                                                          */
2201 /* Memory alignment requirements:                                           */
2202 /* -----------------+----------+----------+----------+----------+           */
2203 /*  Data Structure  |   5706   |   5708   |   5709   |   5716   |           */
2204 /* -----------------+----------+----------+----------+----------+           */
2205 /* Status Block     | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |           */
2206 /* Statistics Block | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |           */
2207 /* RX Buffers       | 16 bytes | 16 bytes | 16 bytes | 16 bytes |           */
2208 /* PG Buffers       |   none   |   none   |   none   |   none   |           */
2209 /* TX Buffers       |   none   |   none   |   none   |   none   |           */
2210 /* Chain Pages(1)   |   4KiB   |   4KiB   |   4KiB   |   4KiB   |           */
2211 /* Context Pages(1) |   N/A    |   N/A    |   4KiB   |   4KiB   |           */
2212 /* -----------------+----------+----------+----------+----------+           */
2213 /*                                                                          */
2214 /* (1) Must align with CPU page size (BCM_PAGE_SZIE).                       */
2215 /*                                                                          */
2216 /* Returns:                                                                 */
2217 /*   0 for success, positive value for failure.                             */
2218 /****************************************************************************/
2219 static int
2220 bce_dma_alloc(struct bce_softc *sc)
2221 {
2222         struct ifnet *ifp = &sc->arpcom.ac_if;
2223         int i, j, rc = 0, pages;
2224         bus_addr_t busaddr, max_busaddr;
2225         bus_size_t status_align, stats_align;
2226
2227         pages = device_getenv_int(sc->bce_dev, "rx_pages", bce_rx_pages);
2228         if (pages <= 0 || pages > RX_PAGES_MAX || !powerof2(pages)) {
2229                 device_printf(sc->bce_dev, "invalid # of RX pages\n");
2230                 pages = RX_PAGES_DEFAULT;
2231         }
2232         sc->rx_pages = pages;
2233
2234         pages = device_getenv_int(sc->bce_dev, "tx_pages", bce_tx_pages);
2235         if (pages <= 0 || pages > TX_PAGES_MAX || !powerof2(pages)) {
2236                 device_printf(sc->bce_dev, "invalid # of TX pages\n");
2237                 pages = TX_PAGES_DEFAULT;
2238         }
2239         sc->tx_pages = pages;
2240
2241         sc->tx_bd_chain_map = kmalloc(sizeof(bus_dmamap_t) * sc->tx_pages,
2242             M_DEVBUF, M_WAITOK | M_ZERO);
2243         sc->tx_bd_chain = kmalloc(sizeof(struct tx_bd *) * sc->tx_pages,
2244             M_DEVBUF, M_WAITOK | M_ZERO);
2245         sc->tx_bd_chain_paddr = kmalloc(sizeof(bus_addr_t) * sc->tx_pages,
2246             M_DEVBUF, M_WAITOK | M_ZERO);
2247
2248         sc->rx_bd_chain_map = kmalloc(sizeof(bus_dmamap_t) * sc->rx_pages,
2249             M_DEVBUF, M_WAITOK | M_ZERO);
2250         sc->rx_bd_chain = kmalloc(sizeof(struct rx_bd *) * sc->rx_pages,
2251             M_DEVBUF, M_WAITOK | M_ZERO);
2252         sc->rx_bd_chain_paddr = kmalloc(sizeof(bus_addr_t) * sc->rx_pages,
2253             M_DEVBUF, M_WAITOK | M_ZERO);
2254
2255         sc->tx_mbuf_map = kmalloc(sizeof(bus_dmamap_t) * TOTAL_TX_BD(sc),
2256             M_DEVBUF, M_WAITOK | M_ZERO);
2257         sc->tx_mbuf_ptr = kmalloc(sizeof(struct mbuf *) * TOTAL_TX_BD(sc),
2258             M_DEVBUF, M_WAITOK | M_ZERO);
2259
2260         sc->rx_mbuf_map = kmalloc(sizeof(bus_dmamap_t) * TOTAL_RX_BD(sc),
2261             M_DEVBUF, M_WAITOK | M_ZERO);
2262         sc->rx_mbuf_ptr = kmalloc(sizeof(struct mbuf *) * TOTAL_RX_BD(sc),
2263             M_DEVBUF, M_WAITOK | M_ZERO);
2264         sc->rx_mbuf_paddr = kmalloc(sizeof(bus_addr_t) * TOTAL_RX_BD(sc),
2265             M_DEVBUF, M_WAITOK | M_ZERO);
2266
2267         /*
2268          * The embedded PCIe to PCI-X bridge (EPB) 
2269          * in the 5708 cannot address memory above 
2270          * 40 bits (E7_5708CB1_23043 & E6_5708SB1_23043). 
2271          */
2272         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)
2273                 max_busaddr = BCE_BUS_SPACE_MAXADDR;
2274         else
2275                 max_busaddr = BUS_SPACE_MAXADDR;
2276
2277         /*
2278          * BCM5709 and BCM5716 uses host memory as cache for context memory.
2279          */
2280         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
2281             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
2282                 sc->ctx_pages = BCE_CTX_BLK_SZ / BCM_PAGE_SIZE;
2283                 if (sc->ctx_pages == 0)
2284                         sc->ctx_pages = 1;
2285                 if (sc->ctx_pages > BCE_CTX_PAGES) {
2286                         device_printf(sc->bce_dev, "excessive ctx pages %d\n",
2287                             sc->ctx_pages);
2288                         return ENOMEM;
2289                 }
2290                 status_align = 16;
2291                 stats_align = 16;
2292         } else {
2293                 status_align = 8;
2294                 stats_align = 8;
2295         }
2296
2297         /*
2298          * Allocate the parent bus DMA tag appropriate for PCI.
2299          */
2300         rc = bus_dma_tag_create(NULL, 1, BCE_DMA_BOUNDARY,
2301                                 max_busaddr, BUS_SPACE_MAXADDR,
2302                                 NULL, NULL,
2303                                 BUS_SPACE_MAXSIZE_32BIT, 0,
2304                                 BUS_SPACE_MAXSIZE_32BIT,
2305                                 0, &sc->parent_tag);
2306         if (rc != 0) {
2307                 if_printf(ifp, "Could not allocate parent DMA tag!\n");
2308                 return rc;
2309         }
2310
2311         /*
2312          * Allocate status block.
2313          */
2314         sc->status_block = bus_dmamem_coherent_any(sc->parent_tag,
2315                                 status_align, BCE_STATUS_BLK_SZ,
2316                                 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2317                                 &sc->status_tag, &sc->status_map,
2318                                 &sc->status_block_paddr);
2319         if (sc->status_block == NULL) {
2320                 if_printf(ifp, "Could not allocate status block!\n");
2321                 return ENOMEM;
2322         }
2323
2324         /*
2325          * Allocate statistics block.
2326          */
2327         sc->stats_block = bus_dmamem_coherent_any(sc->parent_tag,
2328                                 stats_align, BCE_STATS_BLK_SZ,
2329                                 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2330                                 &sc->stats_tag, &sc->stats_map,
2331                                 &sc->stats_block_paddr);
2332         if (sc->stats_block == NULL) {
2333                 if_printf(ifp, "Could not allocate statistics block!\n");
2334                 return ENOMEM;
2335         }
2336
2337         /*
2338          * Allocate context block, if needed
2339          */
2340         if (sc->ctx_pages != 0) {
2341                 rc = bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, 0,
2342                                         BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
2343                                         NULL, NULL,
2344                                         BCM_PAGE_SIZE, 1, BCM_PAGE_SIZE,
2345                                         0, &sc->ctx_tag);
2346                 if (rc != 0) {
2347                         if_printf(ifp, "Could not allocate "
2348                                   "context block DMA tag!\n");
2349                         return rc;
2350                 }
2351
2352                 for (i = 0; i < sc->ctx_pages; i++) {
2353                         rc = bus_dmamem_alloc(sc->ctx_tag,
2354                                               (void **)&sc->ctx_block[i],
2355                                               BUS_DMA_WAITOK | BUS_DMA_ZERO |
2356                                               BUS_DMA_COHERENT,
2357                                               &sc->ctx_map[i]);
2358                         if (rc != 0) {
2359                                 if_printf(ifp, "Could not allocate %dth context "
2360                                           "DMA memory!\n", i);
2361                                 return rc;
2362                         }
2363
2364                         rc = bus_dmamap_load(sc->ctx_tag, sc->ctx_map[i],
2365                                              sc->ctx_block[i], BCM_PAGE_SIZE,
2366                                              bce_dma_map_addr, &busaddr,
2367                                              BUS_DMA_WAITOK);
2368                         if (rc != 0) {
2369                                 if (rc == EINPROGRESS) {
2370                                         panic("%s coherent memory loading "
2371                                               "is still in progress!", ifp->if_xname);
2372                                 }
2373                                 if_printf(ifp, "Could not map %dth context "
2374                                           "DMA memory!\n", i);
2375                                 bus_dmamem_free(sc->ctx_tag, sc->ctx_block[i],
2376                                                 sc->ctx_map[i]);
2377                                 sc->ctx_block[i] = NULL;
2378                                 return rc;
2379                         }
2380                         sc->ctx_paddr[i] = busaddr;
2381                 }
2382         }
2383
2384         /*
2385          * Create a DMA tag for the TX buffer descriptor chain,
2386          * allocate and clear the  memory, and fetch the
2387          * physical address of the block.
2388          */
2389         rc = bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, 0,
2390                                 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
2391                                 NULL, NULL,
2392                                 BCE_TX_CHAIN_PAGE_SZ, 1, BCE_TX_CHAIN_PAGE_SZ,
2393                                 0, &sc->tx_bd_chain_tag);
2394         if (rc != 0) {
2395                 if_printf(ifp, "Could not allocate "
2396                           "TX descriptor chain DMA tag!\n");
2397                 return rc;
2398         }
2399
2400         for (i = 0; i < sc->tx_pages; i++) {
2401                 rc = bus_dmamem_alloc(sc->tx_bd_chain_tag,
2402                                       (void **)&sc->tx_bd_chain[i],
2403                                       BUS_DMA_WAITOK | BUS_DMA_ZERO |
2404                                       BUS_DMA_COHERENT,
2405                                       &sc->tx_bd_chain_map[i]);
2406                 if (rc != 0) {
2407                         if_printf(ifp, "Could not allocate %dth TX descriptor "
2408                                   "chain DMA memory!\n", i);
2409                         return rc;
2410                 }
2411
2412                 rc = bus_dmamap_load(sc->tx_bd_chain_tag,
2413                                      sc->tx_bd_chain_map[i],
2414                                      sc->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ,
2415                                      bce_dma_map_addr, &busaddr,
2416                                      BUS_DMA_WAITOK);
2417                 if (rc != 0) {
2418                         if (rc == EINPROGRESS) {
2419                                 panic("%s coherent memory loading "
2420                                       "is still in progress!", ifp->if_xname);
2421                         }
2422                         if_printf(ifp, "Could not map %dth TX descriptor "
2423                                   "chain DMA memory!\n", i);
2424                         bus_dmamem_free(sc->tx_bd_chain_tag,
2425                                         sc->tx_bd_chain[i],
2426                                         sc->tx_bd_chain_map[i]);
2427                         sc->tx_bd_chain[i] = NULL;
2428                         return rc;
2429                 }
2430
2431                 sc->tx_bd_chain_paddr[i] = busaddr;
2432                 /* DRC - Fix for 64 bit systems. */
2433                 DBPRINT(sc, BCE_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n", 
2434                         i, (uint32_t)sc->tx_bd_chain_paddr[i]);
2435         }
2436
2437         /* Create a DMA tag for TX mbufs. */
2438         rc = bus_dma_tag_create(sc->parent_tag, 1, 0,
2439                                 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
2440                                 NULL, NULL,
2441                                 IP_MAXPACKET + sizeof(struct ether_vlan_header),
2442                                 BCE_MAX_SEGMENTS, PAGE_SIZE,
2443                                 BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK |
2444                                 BUS_DMA_ONEBPAGE,
2445                                 &sc->tx_mbuf_tag);
2446         if (rc != 0) {
2447                 if_printf(ifp, "Could not allocate TX mbuf DMA tag!\n");
2448                 return rc;
2449         }
2450
2451         /* Create DMA maps for the TX mbufs clusters. */
2452         for (i = 0; i < TOTAL_TX_BD(sc); i++) {
2453                 rc = bus_dmamap_create(sc->tx_mbuf_tag,
2454                                        BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2455                                        &sc->tx_mbuf_map[i]);
2456                 if (rc != 0) {
2457                         for (j = 0; j < i; ++j) {
2458                                 bus_dmamap_destroy(sc->tx_mbuf_tag,
2459                                                    sc->tx_mbuf_map[i]);
2460                         }
2461                         bus_dma_tag_destroy(sc->tx_mbuf_tag);
2462                         sc->tx_mbuf_tag = NULL;
2463
2464                         if_printf(ifp, "Unable to create "
2465                                   "%dth TX mbuf DMA map!\n", i);
2466                         return rc;
2467                 }
2468         }
2469
2470         /*
2471          * Create a DMA tag for the RX buffer descriptor chain,
2472          * allocate and clear the  memory, and fetch the physical
2473          * address of the blocks.
2474          */
2475         rc = bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, 0,
2476                                 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
2477                                 NULL, NULL,
2478                                 BCE_RX_CHAIN_PAGE_SZ, 1, BCE_RX_CHAIN_PAGE_SZ,
2479                                 0, &sc->rx_bd_chain_tag);
2480         if (rc != 0) {
2481                 if_printf(ifp, "Could not allocate "
2482                           "RX descriptor chain DMA tag!\n");
2483                 return rc;
2484         }
2485
2486         for (i = 0; i < sc->rx_pages; i++) {
2487                 rc = bus_dmamem_alloc(sc->rx_bd_chain_tag,
2488                                       (void **)&sc->rx_bd_chain[i],
2489                                       BUS_DMA_WAITOK | BUS_DMA_ZERO |
2490                                       BUS_DMA_COHERENT,
2491                                       &sc->rx_bd_chain_map[i]);
2492                 if (rc != 0) {
2493                         if_printf(ifp, "Could not allocate %dth RX descriptor "
2494                                   "chain DMA memory!\n", i);
2495                         return rc;
2496                 }
2497
2498                 rc = bus_dmamap_load(sc->rx_bd_chain_tag,
2499                                      sc->rx_bd_chain_map[i],
2500                                      sc->rx_bd_chain[i], BCE_RX_CHAIN_PAGE_SZ,
2501                                      bce_dma_map_addr, &busaddr,
2502                                      BUS_DMA_WAITOK);
2503                 if (rc != 0) {
2504                         if (rc == EINPROGRESS) {
2505                                 panic("%s coherent memory loading "
2506                                       "is still in progress!", ifp->if_xname);
2507                         }
2508                         if_printf(ifp, "Could not map %dth RX descriptor "
2509                                   "chain DMA memory!\n", i);
2510                         bus_dmamem_free(sc->rx_bd_chain_tag,
2511                                         sc->rx_bd_chain[i],
2512                                         sc->rx_bd_chain_map[i]);
2513                         sc->rx_bd_chain[i] = NULL;
2514                         return rc;
2515                 }
2516
2517                 sc->rx_bd_chain_paddr[i] = busaddr;
2518                 /* DRC - Fix for 64 bit systems. */
2519                 DBPRINT(sc, BCE_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
2520                         i, (uint32_t)sc->rx_bd_chain_paddr[i]);
2521         }
2522
2523         /* Create a DMA tag for RX mbufs. */
2524         rc = bus_dma_tag_create(sc->parent_tag, BCE_DMA_RX_ALIGN, 0,
2525                                 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
2526                                 NULL, NULL,
2527                                 MCLBYTES, 1, MCLBYTES,
2528                                 BUS_DMA_ALLOCNOW | BUS_DMA_ALIGNED |
2529                                 BUS_DMA_WAITOK,
2530                                 &sc->rx_mbuf_tag);
2531         if (rc != 0) {
2532                 if_printf(ifp, "Could not allocate RX mbuf DMA tag!\n");
2533                 return rc;
2534         }
2535
2536         /* Create tmp DMA map for RX mbuf clusters. */
2537         rc = bus_dmamap_create(sc->rx_mbuf_tag, BUS_DMA_WAITOK,
2538                                &sc->rx_mbuf_tmpmap);
2539         if (rc != 0) {
2540                 bus_dma_tag_destroy(sc->rx_mbuf_tag);
2541                 sc->rx_mbuf_tag = NULL;
2542
2543                 if_printf(ifp, "Could not create RX mbuf tmp DMA map!\n");
2544                 return rc;
2545         }
2546
2547         /* Create DMA maps for the RX mbuf clusters. */
2548         for (i = 0; i < TOTAL_RX_BD(sc); i++) {
2549                 rc = bus_dmamap_create(sc->rx_mbuf_tag, BUS_DMA_WAITOK,
2550                                        &sc->rx_mbuf_map[i]);
2551                 if (rc != 0) {
2552                         for (j = 0; j < i; ++j) {
2553                                 bus_dmamap_destroy(sc->rx_mbuf_tag,
2554                                                    sc->rx_mbuf_map[j]);
2555                         }
2556                         bus_dma_tag_destroy(sc->rx_mbuf_tag);
2557                         sc->rx_mbuf_tag = NULL;
2558
2559                         if_printf(ifp, "Unable to create "
2560                                   "%dth RX mbuf DMA map!\n", i);
2561                         return rc;
2562                 }
2563         }
2564         return 0;
2565 }
2566
2567
2568 /****************************************************************************/
2569 /* Firmware synchronization.                                                */
2570 /*                                                                          */
2571 /* Before performing certain events such as a chip reset, synchronize with  */
2572 /* the firmware first.                                                      */
2573 /*                                                                          */
2574 /* Returns:                                                                 */
2575 /*   0 for success, positive value for failure.                             */
2576 /****************************************************************************/
2577 static int
2578 bce_fw_sync(struct bce_softc *sc, uint32_t msg_data)
2579 {
2580         int i, rc = 0;
2581         uint32_t val;
2582
2583         /* Don't waste any time if we've timed out before. */
2584         if (sc->bce_fw_timed_out)
2585                 return EBUSY;
2586
2587         /* Increment the message sequence number. */
2588         sc->bce_fw_wr_seq++;
2589         msg_data |= sc->bce_fw_wr_seq;
2590
2591         DBPRINT(sc, BCE_VERBOSE, "bce_fw_sync(): msg_data = 0x%08X\n", msg_data);
2592
2593         /* Send the message to the bootcode driver mailbox. */
2594         bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
2595
2596         /* Wait for the bootcode to acknowledge the message. */
2597         for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
2598                 /* Check for a response in the bootcode firmware mailbox. */
2599                 val = bce_shmem_rd(sc, BCE_FW_MB);
2600                 if ((val & BCE_FW_MSG_ACK) == (msg_data & BCE_DRV_MSG_SEQ))
2601                         break;
2602                 DELAY(1000);
2603         }
2604
2605         /* If we've timed out, tell the bootcode that we've stopped waiting. */
2606         if ((val & BCE_FW_MSG_ACK) != (msg_data & BCE_DRV_MSG_SEQ) &&
2607             (msg_data & BCE_DRV_MSG_DATA) != BCE_DRV_MSG_DATA_WAIT0) {
2608                 if_printf(&sc->arpcom.ac_if,
2609                           "Firmware synchronization timeout! "
2610                           "msg_data = 0x%08X\n", msg_data);
2611
2612                 msg_data &= ~BCE_DRV_MSG_CODE;
2613                 msg_data |= BCE_DRV_MSG_CODE_FW_TIMEOUT;
2614
2615                 bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
2616
2617                 sc->bce_fw_timed_out = 1;
2618                 rc = EBUSY;
2619         }
2620         return rc;
2621 }
2622
2623
2624 /****************************************************************************/
2625 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
2626 /*                                                                          */
2627 /* Returns:                                                                 */
2628 /*   Nothing.                                                               */
2629 /****************************************************************************/
2630 static void
2631 bce_load_rv2p_fw(struct bce_softc *sc, uint32_t *rv2p_code,
2632                  uint32_t rv2p_code_len, uint32_t rv2p_proc)
2633 {
2634         int i;
2635         uint32_t val;
2636
2637         for (i = 0; i < rv2p_code_len; i += 8) {
2638                 REG_WR(sc, BCE_RV2P_INSTR_HIGH, *rv2p_code);
2639                 rv2p_code++;
2640                 REG_WR(sc, BCE_RV2P_INSTR_LOW, *rv2p_code);
2641                 rv2p_code++;
2642
2643                 if (rv2p_proc == RV2P_PROC1) {
2644                         val = (i / 8) | BCE_RV2P_PROC1_ADDR_CMD_RDWR;
2645                         REG_WR(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
2646                 } else {
2647                         val = (i / 8) | BCE_RV2P_PROC2_ADDR_CMD_RDWR;
2648                         REG_WR(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
2649                 }
2650         }
2651
2652         /* Reset the processor, un-stall is done later. */
2653         if (rv2p_proc == RV2P_PROC1)
2654                 REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC1_RESET);
2655         else
2656                 REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC2_RESET);
2657 }
2658
2659
2660 /****************************************************************************/
2661 /* Load RISC processor firmware.                                            */
2662 /*                                                                          */
2663 /* Loads firmware from the file if_bcefw.h into the scratchpad memory       */
2664 /* associated with a particular processor.                                  */
2665 /*                                                                          */
2666 /* Returns:                                                                 */
2667 /*   Nothing.                                                               */
2668 /****************************************************************************/
2669 static void
2670 bce_load_cpu_fw(struct bce_softc *sc, struct cpu_reg *cpu_reg,
2671                 struct fw_info *fw)
2672 {
2673         uint32_t offset;
2674         int j;
2675
2676         bce_halt_cpu(sc, cpu_reg);
2677
2678         /* Load the Text area. */
2679         offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
2680         if (fw->text) {
2681                 for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
2682                         REG_WR_IND(sc, offset, fw->text[j]);
2683         }
2684
2685         /* Load the Data area. */
2686         offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
2687         if (fw->data) {
2688                 for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
2689                         REG_WR_IND(sc, offset, fw->data[j]);
2690         }
2691
2692         /* Load the SBSS area. */
2693         offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
2694         if (fw->sbss) {
2695                 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
2696                         REG_WR_IND(sc, offset, fw->sbss[j]);
2697         }
2698
2699         /* Load the BSS area. */
2700         offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
2701         if (fw->bss) {
2702                 for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
2703                         REG_WR_IND(sc, offset, fw->bss[j]);
2704         }
2705
2706         /* Load the Read-Only area. */
2707         offset = cpu_reg->spad_base +
2708                 (fw->rodata_addr - cpu_reg->mips_view_base);
2709         if (fw->rodata) {
2710                 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
2711                         REG_WR_IND(sc, offset, fw->rodata[j]);
2712         }
2713
2714         /* Clear the pre-fetch instruction and set the FW start address. */
2715         REG_WR_IND(sc, cpu_reg->inst, 0);
2716         REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
2717 }
2718
2719
2720 /****************************************************************************/
2721 /* Starts the RISC processor.                                               */
2722 /*                                                                          */
2723 /* Assumes the CPU starting address has already been set.                   */
2724 /*                                                                          */
2725 /* Returns:                                                                 */
2726 /*   Nothing.                                                               */
2727 /****************************************************************************/
2728 static void
2729 bce_start_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
2730 {
2731         uint32_t val;
2732
2733         /* Start the CPU. */
2734         val = REG_RD_IND(sc, cpu_reg->mode);
2735         val &= ~cpu_reg->mode_value_halt;
2736         REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2737         REG_WR_IND(sc, cpu_reg->mode, val);
2738 }
2739
2740
2741 /****************************************************************************/
2742 /* Halts the RISC processor.                                                */
2743 /*                                                                          */
2744 /* Returns:                                                                 */
2745 /*   Nothing.                                                               */
2746 /****************************************************************************/
2747 static void
2748 bce_halt_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
2749 {
2750         uint32_t val;
2751
2752         /* Halt the CPU. */
2753         val = REG_RD_IND(sc, cpu_reg->mode);
2754         val |= cpu_reg->mode_value_halt;
2755         REG_WR_IND(sc, cpu_reg->mode, val);
2756         REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2757 }
2758
2759
2760 /****************************************************************************/
2761 /* Start the RX CPU.                                                        */
2762 /*                                                                          */
2763 /* Returns:                                                                 */
2764 /*   Nothing.                                                               */
2765 /****************************************************************************/
2766 static void
2767 bce_start_rxp_cpu(struct bce_softc *sc)
2768 {
2769         struct cpu_reg cpu_reg;
2770
2771         cpu_reg.mode = BCE_RXP_CPU_MODE;
2772         cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
2773         cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
2774         cpu_reg.state = BCE_RXP_CPU_STATE;
2775         cpu_reg.state_value_clear = 0xffffff;
2776         cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
2777         cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
2778         cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
2779         cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
2780         cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
2781         cpu_reg.spad_base = BCE_RXP_SCRATCH;
2782         cpu_reg.mips_view_base = 0x8000000;
2783
2784         bce_start_cpu(sc, &cpu_reg);
2785 }
2786
2787
2788 /****************************************************************************/
2789 /* Initialize the RX CPU.                                                   */
2790 /*                                                                          */
2791 /* Returns:                                                                 */
2792 /*   Nothing.                                                               */
2793 /****************************************************************************/
2794 static void
2795 bce_init_rxp_cpu(struct bce_softc *sc)
2796 {
2797         struct cpu_reg cpu_reg;
2798         struct fw_info fw;
2799
2800         cpu_reg.mode = BCE_RXP_CPU_MODE;
2801         cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
2802         cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
2803         cpu_reg.state = BCE_RXP_CPU_STATE;
2804         cpu_reg.state_value_clear = 0xffffff;
2805         cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
2806         cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
2807         cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
2808         cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
2809         cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
2810         cpu_reg.spad_base = BCE_RXP_SCRATCH;
2811         cpu_reg.mips_view_base = 0x8000000;
2812
2813         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
2814             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
2815                 fw.ver_major = bce_RXP_b09FwReleaseMajor;
2816                 fw.ver_minor = bce_RXP_b09FwReleaseMinor;
2817                 fw.ver_fix = bce_RXP_b09FwReleaseFix;
2818                 fw.start_addr = bce_RXP_b09FwStartAddr;
2819
2820                 fw.text_addr = bce_RXP_b09FwTextAddr;
2821                 fw.text_len = bce_RXP_b09FwTextLen;
2822                 fw.text_index = 0;
2823                 fw.text = bce_RXP_b09FwText;
2824
2825                 fw.data_addr = bce_RXP_b09FwDataAddr;
2826                 fw.data_len = bce_RXP_b09FwDataLen;
2827                 fw.data_index = 0;
2828                 fw.data = bce_RXP_b09FwData;
2829
2830                 fw.sbss_addr = bce_RXP_b09FwSbssAddr;
2831                 fw.sbss_len = bce_RXP_b09FwSbssLen;
2832                 fw.sbss_index = 0;
2833                 fw.sbss = bce_RXP_b09FwSbss;
2834
2835                 fw.bss_addr = bce_RXP_b09FwBssAddr;
2836                 fw.bss_len = bce_RXP_b09FwBssLen;
2837                 fw.bss_index = 0;
2838                 fw.bss = bce_RXP_b09FwBss;
2839
2840                 fw.rodata_addr = bce_RXP_b09FwRodataAddr;
2841                 fw.rodata_len = bce_RXP_b09FwRodataLen;
2842                 fw.rodata_index = 0;
2843                 fw.rodata = bce_RXP_b09FwRodata;
2844         } else {
2845                 fw.ver_major = bce_RXP_b06FwReleaseMajor;
2846                 fw.ver_minor = bce_RXP_b06FwReleaseMinor;
2847                 fw.ver_fix = bce_RXP_b06FwReleaseFix;
2848                 fw.start_addr = bce_RXP_b06FwStartAddr;
2849
2850                 fw.text_addr = bce_RXP_b06FwTextAddr;
2851                 fw.text_len = bce_RXP_b06FwTextLen;
2852                 fw.text_index = 0;
2853                 fw.text = bce_RXP_b06FwText;
2854
2855                 fw.data_addr = bce_RXP_b06FwDataAddr;
2856                 fw.data_len = bce_RXP_b06FwDataLen;
2857                 fw.data_index = 0;
2858                 fw.data = bce_RXP_b06FwData;
2859
2860                 fw.sbss_addr = bce_RXP_b06FwSbssAddr;
2861                 fw.sbss_len = bce_RXP_b06FwSbssLen;
2862                 fw.sbss_index = 0;
2863                 fw.sbss = bce_RXP_b06FwSbss;
2864
2865                 fw.bss_addr = bce_RXP_b06FwBssAddr;
2866                 fw.bss_len = bce_RXP_b06FwBssLen;
2867                 fw.bss_index = 0;
2868                 fw.bss = bce_RXP_b06FwBss;
2869
2870                 fw.rodata_addr = bce_RXP_b06FwRodataAddr;
2871                 fw.rodata_len = bce_RXP_b06FwRodataLen;
2872                 fw.rodata_index = 0;
2873                 fw.rodata = bce_RXP_b06FwRodata;
2874         }
2875
2876         DBPRINT(sc, BCE_INFO_RESET, "Loading RX firmware.\n");
2877         bce_load_cpu_fw(sc, &cpu_reg, &fw);
2878         /* Delay RXP start until initialization is complete. */
2879 }
2880
2881
2882 /****************************************************************************/
2883 /* Initialize the TX CPU.                                                   */
2884 /*                                                                          */
2885 /* Returns:                                                                 */
2886 /*   Nothing.                                                               */
2887 /****************************************************************************/
2888 static void
2889 bce_init_txp_cpu(struct bce_softc *sc)
2890 {
2891         struct cpu_reg cpu_reg;
2892         struct fw_info fw;
2893
2894         cpu_reg.mode = BCE_TXP_CPU_MODE;
2895         cpu_reg.mode_value_halt = BCE_TXP_CPU_MODE_SOFT_HALT;
2896         cpu_reg.mode_value_sstep = BCE_TXP_CPU_MODE_STEP_ENA;
2897         cpu_reg.state = BCE_TXP_CPU_STATE;
2898         cpu_reg.state_value_clear = 0xffffff;
2899         cpu_reg.gpr0 = BCE_TXP_CPU_REG_FILE;
2900         cpu_reg.evmask = BCE_TXP_CPU_EVENT_MASK;
2901         cpu_reg.pc = BCE_TXP_CPU_PROGRAM_COUNTER;
2902         cpu_reg.inst = BCE_TXP_CPU_INSTRUCTION;
2903         cpu_reg.bp = BCE_TXP_CPU_HW_BREAKPOINT;
2904         cpu_reg.spad_base = BCE_TXP_SCRATCH;
2905         cpu_reg.mips_view_base = 0x8000000;
2906
2907         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
2908             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
2909                 fw.ver_major = bce_TXP_b09FwReleaseMajor;
2910                 fw.ver_minor = bce_TXP_b09FwReleaseMinor;
2911                 fw.ver_fix = bce_TXP_b09FwReleaseFix;
2912                 fw.start_addr = bce_TXP_b09FwStartAddr;
2913
2914                 fw.text_addr = bce_TXP_b09FwTextAddr;
2915                 fw.text_len = bce_TXP_b09FwTextLen;
2916                 fw.text_index = 0;
2917                 fw.text = bce_TXP_b09FwText;
2918
2919                 fw.data_addr = bce_TXP_b09FwDataAddr;
2920                 fw.data_len = bce_TXP_b09FwDataLen;
2921                 fw.data_index = 0;
2922                 fw.data = bce_TXP_b09FwData;
2923
2924                 fw.sbss_addr = bce_TXP_b09FwSbssAddr;
2925                 fw.sbss_len = bce_TXP_b09FwSbssLen;
2926                 fw.sbss_index = 0;
2927                 fw.sbss = bce_TXP_b09FwSbss;
2928
2929                 fw.bss_addr = bce_TXP_b09FwBssAddr;
2930                 fw.bss_len = bce_TXP_b09FwBssLen;
2931                 fw.bss_index = 0;
2932                 fw.bss = bce_TXP_b09FwBss;
2933
2934                 fw.rodata_addr = bce_TXP_b09FwRodataAddr;
2935                 fw.rodata_len = bce_TXP_b09FwRodataLen;
2936                 fw.rodata_index = 0;
2937                 fw.rodata = bce_TXP_b09FwRodata;
2938         } else {
2939                 fw.ver_major = bce_TXP_b06FwReleaseMajor;
2940                 fw.ver_minor = bce_TXP_b06FwReleaseMinor;
2941                 fw.ver_fix = bce_TXP_b06FwReleaseFix;
2942                 fw.start_addr = bce_TXP_b06FwStartAddr;
2943
2944                 fw.text_addr = bce_TXP_b06FwTextAddr;
2945                 fw.text_len = bce_TXP_b06FwTextLen;
2946                 fw.text_index = 0;
2947                 fw.text = bce_TXP_b06FwText;
2948
2949                 fw.data_addr = bce_TXP_b06FwDataAddr;
2950                 fw.data_len = bce_TXP_b06FwDataLen;
2951                 fw.data_index = 0;
2952                 fw.data = bce_TXP_b06FwData;
2953
2954                 fw.sbss_addr = bce_TXP_b06FwSbssAddr;
2955                 fw.sbss_len = bce_TXP_b06FwSbssLen;
2956                 fw.sbss_index = 0;
2957                 fw.sbss = bce_TXP_b06FwSbss;
2958
2959                 fw.bss_addr = bce_TXP_b06FwBssAddr;
2960                 fw.bss_len = bce_TXP_b06FwBssLen;
2961                 fw.bss_index = 0;
2962                 fw.bss = bce_TXP_b06FwBss;
2963
2964                 fw.rodata_addr = bce_TXP_b06FwRodataAddr;
2965                 fw.rodata_len = bce_TXP_b06FwRodataLen;
2966                 fw.rodata_index = 0;
2967                 fw.rodata = bce_TXP_b06FwRodata;
2968         }
2969
2970         DBPRINT(sc, BCE_INFO_RESET, "Loading TX firmware.\n");
2971         bce_load_cpu_fw(sc, &cpu_reg, &fw);
2972         bce_start_cpu(sc, &cpu_reg);
2973 }
2974
2975
2976 /****************************************************************************/
2977 /* Initialize the TPAT CPU.                                                 */
2978 /*                                                                          */
2979 /* Returns:                                                                 */
2980 /*   Nothing.                                                               */
2981 /****************************************************************************/
2982 static void
2983 bce_init_tpat_cpu(struct bce_softc *sc)
2984 {
2985         struct cpu_reg cpu_reg;
2986         struct fw_info fw;
2987
2988         cpu_reg.mode = BCE_TPAT_CPU_MODE;
2989         cpu_reg.mode_value_halt = BCE_TPAT_CPU_MODE_SOFT_HALT;
2990         cpu_reg.mode_value_sstep = BCE_TPAT_CPU_MODE_STEP_ENA;
2991         cpu_reg.state = BCE_TPAT_CPU_STATE;
2992         cpu_reg.state_value_clear = 0xffffff;
2993         cpu_reg.gpr0 = BCE_TPAT_CPU_REG_FILE;
2994         cpu_reg.evmask = BCE_TPAT_CPU_EVENT_MASK;
2995         cpu_reg.pc = BCE_TPAT_CPU_PROGRAM_COUNTER;
2996         cpu_reg.inst = BCE_TPAT_CPU_INSTRUCTION;
2997         cpu_reg.bp = BCE_TPAT_CPU_HW_BREAKPOINT;
2998         cpu_reg.spad_base = BCE_TPAT_SCRATCH;
2999         cpu_reg.mips_view_base = 0x8000000;
3000
3001         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3002             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3003                 fw.ver_major = bce_TPAT_b09FwReleaseMajor;
3004                 fw.ver_minor = bce_TPAT_b09FwReleaseMinor;
3005                 fw.ver_fix = bce_TPAT_b09FwReleaseFix;
3006                 fw.start_addr = bce_TPAT_b09FwStartAddr;
3007
3008                 fw.text_addr = bce_TPAT_b09FwTextAddr;
3009                 fw.text_len = bce_TPAT_b09FwTextLen;
3010                 fw.text_index = 0;
3011                 fw.text = bce_TPAT_b09FwText;
3012
3013                 fw.data_addr = bce_TPAT_b09FwDataAddr;
3014                 fw.data_len = bce_TPAT_b09FwDataLen;
3015                 fw.data_index = 0;
3016                 fw.data = bce_TPAT_b09FwData;
3017
3018                 fw.sbss_addr = bce_TPAT_b09FwSbssAddr;
3019                 fw.sbss_len = bce_TPAT_b09FwSbssLen;
3020                 fw.sbss_index = 0;
3021                 fw.sbss = bce_TPAT_b09FwSbss;
3022
3023                 fw.bss_addr = bce_TPAT_b09FwBssAddr;
3024                 fw.bss_len = bce_TPAT_b09FwBssLen;
3025                 fw.bss_index = 0;
3026                 fw.bss = bce_TPAT_b09FwBss;
3027
3028                 fw.rodata_addr = bce_TPAT_b09FwRodataAddr;
3029                 fw.rodata_len = bce_TPAT_b09FwRodataLen;
3030                 fw.rodata_index = 0;
3031                 fw.rodata = bce_TPAT_b09FwRodata;
3032         } else {
3033                 fw.ver_major = bce_TPAT_b06FwReleaseMajor;
3034                 fw.ver_minor = bce_TPAT_b06FwReleaseMinor;
3035                 fw.ver_fix = bce_TPAT_b06FwReleaseFix;
3036                 fw.start_addr = bce_TPAT_b06FwStartAddr;
3037
3038                 fw.text_addr = bce_TPAT_b06FwTextAddr;
3039                 fw.text_len = bce_TPAT_b06FwTextLen;
3040                 fw.text_index = 0;
3041                 fw.text = bce_TPAT_b06FwText;
3042
3043                 fw.data_addr = bce_TPAT_b06FwDataAddr;
3044                 fw.data_len = bce_TPAT_b06FwDataLen;
3045                 fw.data_index = 0;
3046                 fw.data = bce_TPAT_b06FwData;
3047
3048                 fw.sbss_addr = bce_TPAT_b06FwSbssAddr;
3049                 fw.sbss_len = bce_TPAT_b06FwSbssLen;
3050                 fw.sbss_index = 0;
3051                 fw.sbss = bce_TPAT_b06FwSbss;
3052
3053                 fw.bss_addr = bce_TPAT_b06FwBssAddr;
3054                 fw.bss_len = bce_TPAT_b06FwBssLen;
3055                 fw.bss_index = 0;
3056                 fw.bss = bce_TPAT_b06FwBss;
3057
3058                 fw.rodata_addr = bce_TPAT_b06FwRodataAddr;
3059                 fw.rodata_len = bce_TPAT_b06FwRodataLen;
3060                 fw.rodata_index = 0;
3061                 fw.rodata = bce_TPAT_b06FwRodata;
3062         }
3063
3064         DBPRINT(sc, BCE_INFO_RESET, "Loading TPAT firmware.\n");
3065         bce_load_cpu_fw(sc, &cpu_reg, &fw);
3066         bce_start_cpu(sc, &cpu_reg);
3067 }
3068
3069
3070 /****************************************************************************/
3071 /* Initialize the CP CPU.                                                   */
3072 /*                                                                          */
3073 /* Returns:                                                                 */
3074 /*   Nothing.                                                               */
3075 /****************************************************************************/
3076 static void
3077 bce_init_cp_cpu(struct bce_softc *sc)
3078 {
3079         struct cpu_reg cpu_reg;
3080         struct fw_info fw;
3081
3082         cpu_reg.mode = BCE_CP_CPU_MODE;
3083         cpu_reg.mode_value_halt = BCE_CP_CPU_MODE_SOFT_HALT;
3084         cpu_reg.mode_value_sstep = BCE_CP_CPU_MODE_STEP_ENA;
3085         cpu_reg.state = BCE_CP_CPU_STATE;
3086         cpu_reg.state_value_clear = 0xffffff;
3087         cpu_reg.gpr0 = BCE_CP_CPU_REG_FILE;
3088         cpu_reg.evmask = BCE_CP_CPU_EVENT_MASK;
3089         cpu_reg.pc = BCE_CP_CPU_PROGRAM_COUNTER;
3090         cpu_reg.inst = BCE_CP_CPU_INSTRUCTION;
3091         cpu_reg.bp = BCE_CP_CPU_HW_BREAKPOINT;
3092         cpu_reg.spad_base = BCE_CP_SCRATCH;
3093         cpu_reg.mips_view_base = 0x8000000;
3094
3095         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3096             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3097                 fw.ver_major = bce_CP_b09FwReleaseMajor;
3098                 fw.ver_minor = bce_CP_b09FwReleaseMinor;
3099                 fw.ver_fix = bce_CP_b09FwReleaseFix;
3100                 fw.start_addr = bce_CP_b09FwStartAddr;
3101
3102                 fw.text_addr = bce_CP_b09FwTextAddr;
3103                 fw.text_len = bce_CP_b09FwTextLen;
3104                 fw.text_index = 0;
3105                 fw.text = bce_CP_b09FwText;
3106
3107                 fw.data_addr = bce_CP_b09FwDataAddr;
3108                 fw.data_len = bce_CP_b09FwDataLen;
3109                 fw.data_index = 0;
3110                 fw.data = bce_CP_b09FwData;
3111
3112                 fw.sbss_addr = bce_CP_b09FwSbssAddr;
3113                 fw.sbss_len = bce_CP_b09FwSbssLen;
3114                 fw.sbss_index = 0;
3115                 fw.sbss = bce_CP_b09FwSbss;
3116
3117                 fw.bss_addr = bce_CP_b09FwBssAddr;
3118                 fw.bss_len = bce_CP_b09FwBssLen;
3119                 fw.bss_index = 0;
3120                 fw.bss = bce_CP_b09FwBss;
3121
3122                 fw.rodata_addr = bce_CP_b09FwRodataAddr;
3123                 fw.rodata_len = bce_CP_b09FwRodataLen;
3124                 fw.rodata_index = 0;
3125                 fw.rodata = bce_CP_b09FwRodata;
3126         } else {
3127                 fw.ver_major = bce_CP_b06FwReleaseMajor;
3128                 fw.ver_minor = bce_CP_b06FwReleaseMinor;
3129                 fw.ver_fix = bce_CP_b06FwReleaseFix;
3130                 fw.start_addr = bce_CP_b06FwStartAddr;
3131
3132                 fw.text_addr = bce_CP_b06FwTextAddr;
3133                 fw.text_len = bce_CP_b06FwTextLen;
3134                 fw.text_index = 0;
3135                 fw.text = bce_CP_b06FwText;
3136
3137                 fw.data_addr = bce_CP_b06FwDataAddr;
3138                 fw.data_len = bce_CP_b06FwDataLen;
3139                 fw.data_index = 0;
3140                 fw.data = bce_CP_b06FwData;
3141
3142                 fw.sbss_addr = bce_CP_b06FwSbssAddr;
3143                 fw.sbss_len = bce_CP_b06FwSbssLen;
3144                 fw.sbss_index = 0;
3145                 fw.sbss = bce_CP_b06FwSbss;
3146
3147                 fw.bss_addr = bce_CP_b06FwBssAddr;
3148                 fw.bss_len = bce_CP_b06FwBssLen;
3149                 fw.bss_index = 0;
3150                 fw.bss = bce_CP_b06FwBss;
3151
3152                 fw.rodata_addr = bce_CP_b06FwRodataAddr;
3153                 fw.rodata_len = bce_CP_b06FwRodataLen;
3154                 fw.rodata_index = 0;
3155                 fw.rodata = bce_CP_b06FwRodata;
3156         }
3157
3158         DBPRINT(sc, BCE_INFO_RESET, "Loading CP firmware.\n");
3159         bce_load_cpu_fw(sc, &cpu_reg, &fw);
3160         bce_start_cpu(sc, &cpu_reg);
3161 }
3162
3163
3164 /****************************************************************************/
3165 /* Initialize the COM CPU.                                                 */
3166 /*                                                                          */
3167 /* Returns:                                                                 */
3168 /*   Nothing.                                                               */
3169 /****************************************************************************/
3170 static void
3171 bce_init_com_cpu(struct bce_softc *sc)
3172 {
3173         struct cpu_reg cpu_reg;
3174         struct fw_info fw;
3175
3176         cpu_reg.mode = BCE_COM_CPU_MODE;
3177         cpu_reg.mode_value_halt = BCE_COM_CPU_MODE_SOFT_HALT;
3178         cpu_reg.mode_value_sstep = BCE_COM_CPU_MODE_STEP_ENA;
3179         cpu_reg.state = BCE_COM_CPU_STATE;
3180         cpu_reg.state_value_clear = 0xffffff;
3181         cpu_reg.gpr0 = BCE_COM_CPU_REG_FILE;
3182         cpu_reg.evmask = BCE_COM_CPU_EVENT_MASK;
3183         cpu_reg.pc = BCE_COM_CPU_PROGRAM_COUNTER;
3184         cpu_reg.inst = BCE_COM_CPU_INSTRUCTION;
3185         cpu_reg.bp = BCE_COM_CPU_HW_BREAKPOINT;
3186         cpu_reg.spad_base = BCE_COM_SCRATCH;
3187         cpu_reg.mips_view_base = 0x8000000;
3188
3189         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3190             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3191                 fw.ver_major = bce_COM_b09FwReleaseMajor;
3192                 fw.ver_minor = bce_COM_b09FwReleaseMinor;
3193                 fw.ver_fix = bce_COM_b09FwReleaseFix;
3194                 fw.start_addr = bce_COM_b09FwStartAddr;
3195
3196                 fw.text_addr = bce_COM_b09FwTextAddr;
3197                 fw.text_len = bce_COM_b09FwTextLen;
3198                 fw.text_index = 0;
3199                 fw.text = bce_COM_b09FwText;
3200
3201                 fw.data_addr = bce_COM_b09FwDataAddr;
3202                 fw.data_len = bce_COM_b09FwDataLen;
3203                 fw.data_index = 0;
3204                 fw.data = bce_COM_b09FwData;
3205
3206                 fw.sbss_addr = bce_COM_b09FwSbssAddr;
3207                 fw.sbss_len = bce_COM_b09FwSbssLen;
3208                 fw.sbss_index = 0;
3209                 fw.sbss = bce_COM_b09FwSbss;
3210
3211                 fw.bss_addr = bce_COM_b09FwBssAddr;
3212                 fw.bss_len = bce_COM_b09FwBssLen;
3213                 fw.bss_index = 0;
3214                 fw.bss = bce_COM_b09FwBss;
3215
3216                 fw.rodata_addr = bce_COM_b09FwRodataAddr;
3217                 fw.rodata_len = bce_COM_b09FwRodataLen;
3218                 fw.rodata_index = 0;
3219                 fw.rodata = bce_COM_b09FwRodata;
3220         } else {
3221                 fw.ver_major = bce_COM_b06FwReleaseMajor;
3222                 fw.ver_minor = bce_COM_b06FwReleaseMinor;
3223                 fw.ver_fix = bce_COM_b06FwReleaseFix;
3224                 fw.start_addr = bce_COM_b06FwStartAddr;
3225
3226                 fw.text_addr = bce_COM_b06FwTextAddr;
3227                 fw.text_len = bce_COM_b06FwTextLen;
3228                 fw.text_index = 0;
3229                 fw.text = bce_COM_b06FwText;
3230
3231                 fw.data_addr = bce_COM_b06FwDataAddr;
3232                 fw.data_len = bce_COM_b06FwDataLen;
3233                 fw.data_index = 0;
3234                 fw.data = bce_COM_b06FwData;
3235
3236                 fw.sbss_addr = bce_COM_b06FwSbssAddr;
3237                 fw.sbss_len = bce_COM_b06FwSbssLen;
3238                 fw.sbss_index = 0;
3239                 fw.sbss = bce_COM_b06FwSbss;
3240
3241                 fw.bss_addr = bce_COM_b06FwBssAddr;
3242                 fw.bss_len = bce_COM_b06FwBssLen;
3243                 fw.bss_index = 0;
3244                 fw.bss = bce_COM_b06FwBss;
3245
3246                 fw.rodata_addr = bce_COM_b06FwRodataAddr;
3247                 fw.rodata_len = bce_COM_b06FwRodataLen;
3248                 fw.rodata_index = 0;
3249                 fw.rodata = bce_COM_b06FwRodata;
3250         }
3251
3252         DBPRINT(sc, BCE_INFO_RESET, "Loading COM firmware.\n");
3253         bce_load_cpu_fw(sc, &cpu_reg, &fw);
3254         bce_start_cpu(sc, &cpu_reg);
3255 }
3256
3257
3258 /****************************************************************************/
3259 /* Initialize the RV2P, RX, TX, TPAT, COM, and CP CPUs.                     */
3260 /*                                                                          */
3261 /* Loads the firmware for each CPU and starts the CPU.                      */
3262 /*                                                                          */
3263 /* Returns:                                                                 */
3264 /*   Nothing.                                                               */
3265 /****************************************************************************/
3266 static void
3267 bce_init_cpus(struct bce_softc *sc)
3268 {
3269         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3270             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3271                 if (BCE_CHIP_REV(sc) == BCE_CHIP_REV_Ax) {
3272                         bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc1,
3273                             sizeof(bce_xi90_rv2p_proc1), RV2P_PROC1);
3274                         bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc2,
3275                             sizeof(bce_xi90_rv2p_proc2), RV2P_PROC2);
3276                 } else {
3277                         bce_load_rv2p_fw(sc, bce_xi_rv2p_proc1,
3278                             sizeof(bce_xi_rv2p_proc1), RV2P_PROC1);
3279                         bce_load_rv2p_fw(sc, bce_xi_rv2p_proc2,
3280                             sizeof(bce_xi_rv2p_proc2), RV2P_PROC2);
3281                 }
3282         } else {
3283                 bce_load_rv2p_fw(sc, bce_rv2p_proc1,
3284                     sizeof(bce_rv2p_proc1), RV2P_PROC1);
3285                 bce_load_rv2p_fw(sc, bce_rv2p_proc2,
3286                     sizeof(bce_rv2p_proc2), RV2P_PROC2);
3287         }
3288
3289         bce_init_rxp_cpu(sc);
3290         bce_init_txp_cpu(sc);
3291         bce_init_tpat_cpu(sc);
3292         bce_init_com_cpu(sc);
3293         bce_init_cp_cpu(sc);
3294 }
3295
3296
3297 /****************************************************************************/
3298 /* Initialize context memory.                                               */
3299 /*                                                                          */
3300 /* Clears the memory associated with each Context ID (CID).                 */
3301 /*                                                                          */
3302 /* Returns:                                                                 */
3303 /*   Nothing.                                                               */
3304 /****************************************************************************/
3305 static int
3306 bce_init_ctx(struct bce_softc *sc)
3307 {
3308         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3309             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3310                 /* DRC: Replace this constant value with a #define. */
3311                 int i, retry_cnt = 10;
3312                 uint32_t val;
3313
3314                 /*
3315                  * BCM5709 context memory may be cached
3316                  * in host memory so prepare the host memory
3317                  * for access.
3318                  */
3319                 val = BCE_CTX_COMMAND_ENABLED | BCE_CTX_COMMAND_MEM_INIT |
3320                     (1 << 12);
3321                 val |= (BCM_PAGE_BITS - 8) << 16;
3322                 REG_WR(sc, BCE_CTX_COMMAND, val);
3323
3324                 /* Wait for mem init command to complete. */
3325                 for (i = 0; i < retry_cnt; i++) {
3326                         val = REG_RD(sc, BCE_CTX_COMMAND);
3327                         if (!(val & BCE_CTX_COMMAND_MEM_INIT))
3328                                 break;
3329                         DELAY(2);
3330                 }
3331                 if (i == retry_cnt) {
3332                         device_printf(sc->bce_dev,
3333                             "Context memory initialization failed!\n");
3334                         return ETIMEDOUT;
3335                 }
3336
3337                 for (i = 0; i < sc->ctx_pages; i++) {
3338                         int j;
3339
3340                         /*
3341                          * Set the physical address of the context
3342                          * memory cache.
3343                          */
3344                         REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA0,
3345                             BCE_ADDR_LO(sc->ctx_paddr[i] & 0xfffffff0) |
3346                             BCE_CTX_HOST_PAGE_TBL_DATA0_VALID);
3347                         REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA1,
3348                             BCE_ADDR_HI(sc->ctx_paddr[i]));
3349                         REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_CTRL,
3350                             i | BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
3351
3352                         /*
3353                          * Verify that the context memory write was successful.
3354                          */
3355                         for (j = 0; j < retry_cnt; j++) {
3356                                 val = REG_RD(sc, BCE_CTX_HOST_PAGE_TBL_CTRL);
3357                                 if ((val &
3358                                     BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
3359                                         break;
3360                                 DELAY(5);
3361                         }
3362                         if (j == retry_cnt) {
3363                                 device_printf(sc->bce_dev,
3364                                     "Failed to initialize context page!\n");
3365                                 return ETIMEDOUT;
3366                         }
3367                 }
3368         } else {
3369                 uint32_t vcid_addr, offset;
3370
3371                 /*
3372                  * For the 5706/5708, context memory is local to
3373                  * the controller, so initialize the controller
3374                  * context memory.
3375                  */
3376
3377                 vcid_addr = GET_CID_ADDR(96);
3378                 while (vcid_addr) {
3379                         vcid_addr -= PHY_CTX_SIZE;
3380
3381                         REG_WR(sc, BCE_CTX_VIRT_ADDR, 0);
3382                         REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
3383
3384                         for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
3385                                 CTX_WR(sc, 0x00, offset, 0);
3386
3387                         REG_WR(sc, BCE_CTX_VIRT_ADDR, vcid_addr);
3388                         REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
3389                 }
3390         }
3391         return 0;
3392 }
3393
3394
3395 /****************************************************************************/
3396 /* Fetch the permanent MAC address of the controller.                       */
3397 /*                                                                          */
3398 /* Returns:                                                                 */
3399 /*   Nothing.                                                               */
3400 /****************************************************************************/
3401 static void
3402 bce_get_mac_addr(struct bce_softc *sc)
3403 {
3404         uint32_t mac_lo = 0, mac_hi = 0;
3405
3406         /*
3407          * The NetXtreme II bootcode populates various NIC
3408          * power-on and runtime configuration items in a
3409          * shared memory area.  The factory configured MAC
3410          * address is available from both NVRAM and the
3411          * shared memory area so we'll read the value from
3412          * shared memory for speed.
3413          */
3414
3415         mac_hi = bce_shmem_rd(sc,  BCE_PORT_HW_CFG_MAC_UPPER);
3416         mac_lo = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_LOWER);
3417
3418         if (mac_lo == 0 && mac_hi == 0) {
3419                 if_printf(&sc->arpcom.ac_if, "Invalid Ethernet address!\n");
3420         } else {
3421                 sc->eaddr[0] = (u_char)(mac_hi >> 8);
3422                 sc->eaddr[1] = (u_char)(mac_hi >> 0);
3423                 sc->eaddr[2] = (u_char)(mac_lo >> 24);
3424                 sc->eaddr[3] = (u_char)(mac_lo >> 16);
3425                 sc->eaddr[4] = (u_char)(mac_lo >> 8);
3426                 sc->eaddr[5] = (u_char)(mac_lo >> 0);
3427         }
3428
3429         DBPRINT(sc, BCE_INFO, "Permanent Ethernet address = %6D\n", sc->eaddr, ":");
3430 }
3431
3432
3433 /****************************************************************************/
3434 /* Program the MAC address.                                                 */
3435 /*                                                                          */
3436 /* Returns:                                                                 */
3437 /*   Nothing.                                                               */
3438 /****************************************************************************/
3439 static void
3440 bce_set_mac_addr(struct bce_softc *sc)
3441 {
3442         const uint8_t *mac_addr = sc->eaddr;
3443         uint32_t val;
3444
3445         DBPRINT(sc, BCE_INFO, "Setting Ethernet address = %6D\n",
3446                 sc->eaddr, ":");
3447
3448         val = (mac_addr[0] << 8) | mac_addr[1];
3449         REG_WR(sc, BCE_EMAC_MAC_MATCH0, val);
3450
3451         val = (mac_addr[2] << 24) |
3452               (mac_addr[3] << 16) |
3453               (mac_addr[4] << 8) |
3454               mac_addr[5];
3455         REG_WR(sc, BCE_EMAC_MAC_MATCH1, val);
3456 }
3457
3458
3459 /****************************************************************************/
3460 /* Stop the controller.                                                     */
3461 /*                                                                          */
3462 /* Returns:                                                                 */
3463 /*   Nothing.                                                               */
3464 /****************************************************************************/
3465 static void
3466 bce_stop(struct bce_softc *sc)
3467 {
3468         struct ifnet *ifp = &sc->arpcom.ac_if;
3469
3470         ASSERT_SERIALIZED(ifp->if_serializer);
3471
3472         callout_stop(&sc->bce_tick_callout);
3473
3474         /* Disable the transmit/receive blocks. */
3475         REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, BCE_MISC_ENABLE_CLR_DEFAULT);
3476         REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
3477         DELAY(20);
3478
3479         bce_disable_intr(sc);
3480
3481         /* Free the RX lists. */
3482         bce_free_rx_chain(sc);
3483
3484         /* Free TX buffers. */
3485         bce_free_tx_chain(sc);
3486
3487         sc->bce_link = 0;
3488         sc->bce_coalchg_mask = 0;
3489
3490         ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3491         ifp->if_timer = 0;
3492 }
3493
3494
3495 static int
3496 bce_reset(struct bce_softc *sc, uint32_t reset_code)
3497 {
3498         uint32_t val;
3499         int i, rc = 0;
3500
3501         /* Wait for pending PCI transactions to complete. */
3502         REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS,
3503                BCE_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
3504                BCE_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
3505                BCE_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
3506                BCE_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
3507         val = REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
3508         DELAY(5);
3509
3510         /* Disable DMA */
3511         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3512             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3513                 val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
3514                 val &= ~BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
3515                 REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
3516         }
3517
3518         /* Assume bootcode is running. */
3519         sc->bce_fw_timed_out = 0;
3520         sc->bce_drv_cardiac_arrest = 0;
3521
3522         /* Give the firmware a chance to prepare for the reset. */
3523         rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT0 | reset_code);
3524         if (rc) {
3525                 if_printf(&sc->arpcom.ac_if,
3526                           "Firmware is not ready for reset\n");
3527                 return rc;
3528         }
3529
3530         /* Set a firmware reminder that this is a soft reset. */
3531         bce_shmem_wr(sc, BCE_DRV_RESET_SIGNATURE,
3532             BCE_DRV_RESET_SIGNATURE_MAGIC);
3533
3534         /* Dummy read to force the chip to complete all current transactions. */
3535         val = REG_RD(sc, BCE_MISC_ID);
3536
3537         /* Chip reset. */
3538         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3539             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3540                 REG_WR(sc, BCE_MISC_COMMAND, BCE_MISC_COMMAND_SW_RESET);
3541                 REG_RD(sc, BCE_MISC_COMMAND);
3542                 DELAY(5);
3543
3544                 val = BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3545                     BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3546
3547                 pci_write_config(sc->bce_dev, BCE_PCICFG_MISC_CONFIG, val, 4);
3548         } else {
3549                 val = BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3550                     BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3551                     BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3552                 REG_WR(sc, BCE_PCICFG_MISC_CONFIG, val);
3553
3554                 /* Allow up to 30us for reset to complete. */
3555                 for (i = 0; i < 10; i++) {
3556                         val = REG_RD(sc, BCE_PCICFG_MISC_CONFIG);
3557                         if ((val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3558                             BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
3559                                 break;
3560                         DELAY(10);
3561                 }
3562
3563                 /* Check that reset completed successfully. */
3564                 if (val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3565                     BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
3566                         if_printf(&sc->arpcom.ac_if, "Reset failed!\n");
3567                         return EBUSY;
3568                 }
3569         }
3570
3571         /* Make sure byte swapping is properly configured. */
3572         val = REG_RD(sc, BCE_PCI_SWAP_DIAG0);
3573         if (val != 0x01020304) {
3574                 if_printf(&sc->arpcom.ac_if, "Byte swap is incorrect!\n");
3575                 return ENODEV;
3576         }
3577
3578         /* Just completed a reset, assume that firmware is running again. */
3579         sc->bce_fw_timed_out = 0;
3580         sc->bce_drv_cardiac_arrest = 0;
3581
3582         /* Wait for the firmware to finish its initialization. */
3583         rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT1 | reset_code);
3584         if (rc) {
3585                 if_printf(&sc->arpcom.ac_if,
3586                           "Firmware did not complete initialization!\n");
3587         }
3588         return rc;
3589 }
3590
3591
3592 static int
3593 bce_chipinit(struct bce_softc *sc)
3594 {
3595         uint32_t val;
3596         int rc = 0;
3597
3598         /* Make sure the interrupt is not active. */
3599         REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_MASK_INT);
3600         REG_RD(sc, BCE_PCICFG_INT_ACK_CMD);
3601
3602         /*
3603          * Initialize DMA byte/word swapping, configure the number of DMA
3604          * channels and PCI clock compensation delay.
3605          */
3606         val = BCE_DMA_CONFIG_DATA_BYTE_SWAP |
3607               BCE_DMA_CONFIG_DATA_WORD_SWAP |
3608 #if BYTE_ORDER == BIG_ENDIAN
3609               BCE_DMA_CONFIG_CNTL_BYTE_SWAP |
3610 #endif
3611               BCE_DMA_CONFIG_CNTL_WORD_SWAP |
3612               DMA_READ_CHANS << 12 |
3613               DMA_WRITE_CHANS << 16;
3614
3615         val |= (0x2 << 20) | BCE_DMA_CONFIG_CNTL_PCI_COMP_DLY;
3616
3617         if ((sc->bce_flags & BCE_PCIX_FLAG) && sc->bus_speed_mhz == 133)
3618                 val |= BCE_DMA_CONFIG_PCI_FAST_CLK_CMP;
3619
3620         /*
3621          * This setting resolves a problem observed on certain Intel PCI
3622          * chipsets that cannot handle multiple outstanding DMA operations.
3623          * See errata E9_5706A1_65.
3624          */
3625         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706 &&
3626             BCE_CHIP_ID(sc) != BCE_CHIP_ID_5706_A0 &&
3627             !(sc->bce_flags & BCE_PCIX_FLAG))
3628                 val |= BCE_DMA_CONFIG_CNTL_PING_PONG_DMA;
3629
3630         REG_WR(sc, BCE_DMA_CONFIG, val);
3631
3632         /* Enable the RX_V2P and Context state machines before access. */
3633         REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
3634                BCE_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
3635                BCE_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
3636                BCE_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
3637
3638         /* Initialize context mapping and zero out the quick contexts. */
3639         rc = bce_init_ctx(sc);
3640         if (rc != 0)
3641                 return rc;
3642
3643         /* Initialize the on-boards CPUs */
3644         bce_init_cpus(sc);
3645
3646         /* Enable management frames (NC-SI) to flow to the MCP. */
3647         if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
3648                 val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) |
3649                     BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
3650                 REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
3651         }
3652
3653         /* Prepare NVRAM for access. */
3654         rc = bce_init_nvram(sc);
3655         if (rc != 0)
3656                 return rc;
3657
3658         /* Set the kernel bypass block size */
3659         val = REG_RD(sc, BCE_MQ_CONFIG);
3660         val &= ~BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE;
3661         val |= BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
3662
3663         /* Enable bins used on the 5709/5716. */
3664         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3665             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3666                 val |= BCE_MQ_CONFIG_BIN_MQ_MODE;
3667                 if (BCE_CHIP_ID(sc) == BCE_CHIP_ID_5709_A1)
3668                         val |= BCE_MQ_CONFIG_HALT_DIS;
3669         }
3670
3671         REG_WR(sc, BCE_MQ_CONFIG, val);
3672
3673         val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
3674         REG_WR(sc, BCE_MQ_KNL_BYP_WIND_START, val);
3675         REG_WR(sc, BCE_MQ_KNL_WIND_END, val);
3676
3677         /* Set the page size and clear the RV2P processor stall bits. */
3678         val = (BCM_PAGE_BITS - 8) << 24;
3679         REG_WR(sc, BCE_RV2P_CONFIG, val);
3680
3681         /* Configure page size. */
3682         val = REG_RD(sc, BCE_TBDR_CONFIG);
3683         val &= ~BCE_TBDR_CONFIG_PAGE_SIZE;
3684         val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
3685         REG_WR(sc, BCE_TBDR_CONFIG, val);
3686
3687         /* Set the perfect match control register to default. */
3688         REG_WR_IND(sc, BCE_RXP_PM_CTRL, 0);
3689
3690         return 0;
3691 }
3692
3693
3694 /****************************************************************************/
3695 /* Initialize the controller in preparation to send/receive traffic.        */
3696 /*                                                                          */
3697 /* Returns:                                                                 */
3698 /*   0 for success, positive value for failure.                             */
3699 /****************************************************************************/
3700 static int
3701 bce_blockinit(struct bce_softc *sc)
3702 {
3703         uint32_t reg, val;
3704         int rc = 0;
3705
3706         /* Load the hardware default MAC address. */
3707         bce_set_mac_addr(sc);
3708
3709         /* Set the Ethernet backoff seed value */
3710         val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
3711               sc->eaddr[3] + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
3712         REG_WR(sc, BCE_EMAC_BACKOFF_SEED, val);
3713
3714         sc->last_status_idx = 0;
3715         sc->rx_mode = BCE_EMAC_RX_MODE_SORT_MODE;
3716
3717         /* Set up link change interrupt generation. */
3718         REG_WR(sc, BCE_EMAC_ATTENTION_ENA, BCE_EMAC_ATTENTION_ENA_LINK);
3719
3720         /* Program the physical address of the status block. */
3721         REG_WR(sc, BCE_HC_STATUS_ADDR_L, BCE_ADDR_LO(sc->status_block_paddr));
3722         REG_WR(sc, BCE_HC_STATUS_ADDR_H, BCE_ADDR_HI(sc->status_block_paddr));
3723
3724         /* Program the physical address of the statistics block. */
3725         REG_WR(sc, BCE_HC_STATISTICS_ADDR_L,
3726                BCE_ADDR_LO(sc->stats_block_paddr));
3727         REG_WR(sc, BCE_HC_STATISTICS_ADDR_H,
3728                BCE_ADDR_HI(sc->stats_block_paddr));
3729
3730         /* Program various host coalescing parameters. */
3731         REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
3732                (sc->bce_tx_quick_cons_trip_int << 16) |
3733                sc->bce_tx_quick_cons_trip);
3734         REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
3735                (sc->bce_rx_quick_cons_trip_int << 16) |
3736                sc->bce_rx_quick_cons_trip);
3737         REG_WR(sc, BCE_HC_COMP_PROD_TRIP,
3738                (sc->bce_comp_prod_trip_int << 16) | sc->bce_comp_prod_trip);
3739         REG_WR(sc, BCE_HC_TX_TICKS,
3740                (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks);
3741         REG_WR(sc, BCE_HC_RX_TICKS,
3742                (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks);
3743         REG_WR(sc, BCE_HC_COM_TICKS,
3744                (sc->bce_com_ticks_int << 16) | sc->bce_com_ticks);
3745         REG_WR(sc, BCE_HC_CMD_TICKS,
3746                (sc->bce_cmd_ticks_int << 16) | sc->bce_cmd_ticks);
3747         REG_WR(sc, BCE_HC_STATS_TICKS, (sc->bce_stats_ticks & 0xffff00));
3748         REG_WR(sc, BCE_HC_STAT_COLLECT_TICKS, 0xbb8);   /* 3ms */
3749
3750         val = BCE_HC_CONFIG_TX_TMR_MODE | BCE_HC_CONFIG_COLLECT_STATS;
3751         if (sc->bce_flags & BCE_ONESHOT_MSI_FLAG) {
3752                 if (bootverbose)
3753                         if_printf(&sc->arpcom.ac_if, "oneshot MSI\n");
3754                 val |= BCE_HC_CONFIG_ONE_SHOT | BCE_HC_CONFIG_USE_INT_PARAM;
3755         }
3756         REG_WR(sc, BCE_HC_CONFIG, val);
3757
3758         /* Clear the internal statistics counters. */
3759         REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
3760
3761         /* Verify that bootcode is running. */
3762         reg = bce_shmem_rd(sc, BCE_DEV_INFO_SIGNATURE);
3763
3764         DBRUNIF(DB_RANDOMTRUE(bce_debug_bootcode_running_failure),
3765                 if_printf(&sc->arpcom.ac_if,
3766                           "%s(%d): Simulating bootcode failure.\n",
3767                           __FILE__, __LINE__);
3768                 reg = 0);
3769
3770         if ((reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
3771             BCE_DEV_INFO_SIGNATURE_MAGIC) {
3772                 if_printf(&sc->arpcom.ac_if,
3773                           "Bootcode not running! Found: 0x%08X, "
3774                           "Expected: 08%08X\n",
3775                           reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK,
3776                           BCE_DEV_INFO_SIGNATURE_MAGIC);
3777                 return ENODEV;
3778         }
3779
3780         /* Enable DMA */
3781         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3782             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3783                 val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
3784                 val |= BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
3785                 REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
3786         }
3787
3788         /* Allow bootcode to apply any additional fixes before enabling MAC. */
3789         rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT2 | BCE_DRV_MSG_CODE_RESET);
3790
3791         /* Enable link state change interrupt generation. */
3792         REG_WR(sc, BCE_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
3793
3794         /* Enable the RXP. */
3795         bce_start_rxp_cpu(sc);
3796
3797         /* Disable management frames (NC-SI) from flowing to the MCP. */
3798         if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
3799                 val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) &
3800                     ~BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
3801                 REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
3802         }
3803
3804         /* Enable all remaining blocks in the MAC. */
3805         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3806             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3807                 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
3808                     BCE_MISC_ENABLE_DEFAULT_XI);
3809         } else {
3810                 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT);
3811         }
3812         REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
3813         DELAY(20);
3814
3815         /* Save the current host coalescing block settings. */
3816         sc->hc_command = REG_RD(sc, BCE_HC_COMMAND);
3817
3818         return 0;
3819 }
3820
3821
3822 /****************************************************************************/
3823 /* Encapsulate an mbuf cluster into the rx_bd chain.                        */
3824 /*                                                                          */
3825 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's.     */
3826 /* This routine will map an mbuf cluster into 1 or more rx_bd's as          */
3827 /* necessary.                                                               */
3828 /*                                                                          */
3829 /* Returns:                                                                 */
3830 /*   0 for success, positive value for failure.                             */
3831 /****************************************************************************/
3832 static int
3833 bce_newbuf_std(struct bce_softc *sc, uint16_t *prod, uint16_t *chain_prod,
3834                uint32_t *prod_bseq, int init)
3835 {
3836         bus_dmamap_t map;
3837         bus_dma_segment_t seg;
3838         struct mbuf *m_new;
3839         int error, nseg;
3840 #ifdef BCE_DEBUG
3841         uint16_t debug_chain_prod = *chain_prod;
3842 #endif
3843
3844         /* Make sure the inputs are valid. */
3845         DBRUNIF((*chain_prod > MAX_RX_BD(sc)),
3846                 if_printf(&sc->arpcom.ac_if, "%s(%d): "
3847                           "RX producer out of range: 0x%04X > 0x%04X\n",
3848                           __FILE__, __LINE__,
3849                           *chain_prod, (uint16_t)MAX_RX_BD(sc)));
3850
3851         DBPRINT(sc, BCE_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = 0x%04X, "
3852                 "prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod, *prod_bseq);
3853
3854         DBRUNIF(DB_RANDOMTRUE(bce_debug_mbuf_allocation_failure),
3855                 if_printf(&sc->arpcom.ac_if, "%s(%d): "
3856                           "Simulating mbuf allocation failure.\n",
3857                           __FILE__, __LINE__);
3858                 sc->mbuf_alloc_failed++;
3859                 return ENOBUFS);
3860
3861         /* This is a new mbuf allocation. */
3862         m_new = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
3863         if (m_new == NULL)
3864                 return ENOBUFS;
3865         DBRUNIF(1, sc->rx_mbuf_alloc++);
3866
3867         m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
3868
3869         /* Map the mbuf cluster into device memory. */
3870         error = bus_dmamap_load_mbuf_segment(sc->rx_mbuf_tag,
3871                         sc->rx_mbuf_tmpmap, m_new, &seg, 1, &nseg,
3872                         BUS_DMA_NOWAIT);
3873         if (error) {
3874                 m_freem(m_new);
3875                 if (init) {
3876                         if_printf(&sc->arpcom.ac_if,
3877                                   "Error mapping mbuf into RX chain!\n");
3878                 }
3879                 DBRUNIF(1, sc->rx_mbuf_alloc--);
3880                 return error;
3881         }
3882
3883         if (sc->rx_mbuf_ptr[*chain_prod] != NULL) {
3884                 bus_dmamap_unload(sc->rx_mbuf_tag,
3885                                   sc->rx_mbuf_map[*chain_prod]);
3886         }
3887
3888         map = sc->rx_mbuf_map[*chain_prod];
3889         sc->rx_mbuf_map[*chain_prod] = sc->rx_mbuf_tmpmap;
3890         sc->rx_mbuf_tmpmap = map;
3891
3892         /* Watch for overflow. */
3893         DBRUNIF((sc->free_rx_bd > USABLE_RX_BD(sc)),
3894                 if_printf(&sc->arpcom.ac_if, "%s(%d): "
3895                           "Too many free rx_bd (0x%04X > 0x%04X)!\n",
3896                           __FILE__, __LINE__, sc->free_rx_bd,
3897                           (uint16_t)USABLE_RX_BD(sc)));
3898
3899         /* Update some debug statistic counters */
3900         DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3901                 sc->rx_low_watermark = sc->free_rx_bd);
3902         DBRUNIF((sc->free_rx_bd == 0), sc->rx_empty_count++);
3903
3904         /* Save the mbuf and update our counter. */
3905         sc->rx_mbuf_ptr[*chain_prod] = m_new;
3906         sc->rx_mbuf_paddr[*chain_prod] = seg.ds_addr;
3907         sc->free_rx_bd--;
3908
3909         bce_setup_rxdesc_std(sc, *chain_prod, prod_bseq);
3910
3911         DBRUN(BCE_VERBOSE_RECV,
3912               bce_dump_rx_mbuf_chain(sc, debug_chain_prod, 1));
3913
3914         DBPRINT(sc, BCE_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod = 0x%04X, "
3915                 "prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod, *prod_bseq);
3916
3917         return 0;
3918 }
3919
3920
3921 static void
3922 bce_setup_rxdesc_std(struct bce_softc *sc, uint16_t chain_prod, uint32_t *prod_bseq)
3923 {
3924         struct rx_bd *rxbd;
3925         bus_addr_t paddr;
3926         int len;
3927
3928         paddr = sc->rx_mbuf_paddr[chain_prod];
3929         len = sc->rx_mbuf_ptr[chain_prod]->m_len;
3930
3931         /* Setup the rx_bd for the first segment. */
3932         rxbd = &sc->rx_bd_chain[RX_PAGE(chain_prod)][RX_IDX(chain_prod)];
3933
3934         rxbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(paddr));
3935         rxbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(paddr));
3936         rxbd->rx_bd_len = htole32(len);
3937         rxbd->rx_bd_flags = htole32(RX_BD_FLAGS_START);
3938         *prod_bseq += len;
3939
3940         rxbd->rx_bd_flags |= htole32(RX_BD_FLAGS_END);
3941 }
3942
3943
3944 /****************************************************************************/
3945 /* Initialize the TX context memory.                                        */
3946 /*                                                                          */
3947 /* Returns:                                                                 */
3948 /*   Nothing                                                                */
3949 /****************************************************************************/
3950 static void
3951 bce_init_tx_context(struct bce_softc *sc)
3952 {
3953         uint32_t val;
3954
3955         /* Initialize the context ID for an L2 TX chain. */
3956         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3957             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3958                 /* Set the CID type to support an L2 connection. */
3959                 val = BCE_L2CTX_TX_TYPE_TYPE_L2 | BCE_L2CTX_TX_TYPE_SIZE_L2;
3960                 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE_XI, val);
3961                 val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2 | (8 << 16);
3962                 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE_XI, val);
3963
3964                 /* Point the hardware to the first page in the chain. */
3965                 val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
3966                 CTX_WR(sc, GET_CID_ADDR(TX_CID),
3967                     BCE_L2CTX_TX_TBDR_BHADDR_HI_XI, val);
3968                 val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
3969                 CTX_WR(sc, GET_CID_ADDR(TX_CID),
3970                     BCE_L2CTX_TX_TBDR_BHADDR_LO_XI, val);
3971         } else {
3972                 /* Set the CID type to support an L2 connection. */
3973                 val = BCE_L2CTX_TX_TYPE_TYPE_L2 | BCE_L2CTX_TX_TYPE_SIZE_L2;
3974                 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE, val);
3975                 val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2 | (8 << 16);
3976                 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE, val);
3977
3978                 /* Point the hardware to the first page in the chain. */
3979                 val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
3980                 CTX_WR(sc, GET_CID_ADDR(TX_CID),
3981                     BCE_L2CTX_TX_TBDR_BHADDR_HI, val);
3982                 val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
3983                 CTX_WR(sc, GET_CID_ADDR(TX_CID),
3984                     BCE_L2CTX_TX_TBDR_BHADDR_LO, val);
3985         }
3986 }
3987
3988
3989 /****************************************************************************/
3990 /* Allocate memory and initialize the TX data structures.                   */
3991 /*                                                                          */
3992 /* Returns:                                                                 */
3993 /*   0 for success, positive value for failure.                             */
3994 /****************************************************************************/
3995 static int
3996 bce_init_tx_chain(struct bce_softc *sc)
3997 {
3998         struct tx_bd *txbd;
3999         int i, rc = 0;
4000
4001         DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __func__);
4002
4003         /* Set the initial TX producer/consumer indices. */
4004         sc->tx_prod = 0;
4005         sc->tx_cons = 0;
4006         sc->tx_prod_bseq   = 0;
4007         sc->used_tx_bd = 0;
4008         sc->max_tx_bd = USABLE_TX_BD(sc);
4009         DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD(sc));
4010         DBRUNIF(1, sc->tx_full_count = 0);
4011
4012         /*
4013          * The NetXtreme II supports a linked-list structre called
4014          * a Buffer Descriptor Chain (or BD chain).  A BD chain
4015          * consists of a series of 1 or more chain pages, each of which
4016          * consists of a fixed number of BD entries.
4017          * The last BD entry on each page is a pointer to the next page
4018          * in the chain, and the last pointer in the BD chain
4019          * points back to the beginning of the chain.
4020          */
4021
4022         /* Set the TX next pointer chain entries. */
4023         for (i = 0; i < sc->tx_pages; i++) {
4024                 int j;
4025
4026                 txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
4027
4028                 /* Check if we've reached the last page. */
4029                 if (i == (sc->tx_pages - 1))
4030                         j = 0;
4031                 else
4032                         j = i + 1;
4033
4034                 txbd->tx_bd_haddr_hi =
4035                         htole32(BCE_ADDR_HI(sc->tx_bd_chain_paddr[j]));
4036                 txbd->tx_bd_haddr_lo =
4037                         htole32(BCE_ADDR_LO(sc->tx_bd_chain_paddr[j]));
4038         }
4039         bce_init_tx_context(sc);
4040
4041         return(rc);
4042 }
4043
4044
4045 /****************************************************************************/
4046 /* Free memory and clear the TX data structures.                            */
4047 /*                                                                          */
4048 /* Returns:                                                                 */
4049 /*   Nothing.                                                               */
4050 /****************************************************************************/
4051 static void
4052 bce_free_tx_chain(struct bce_softc *sc)
4053 {
4054         int i;
4055
4056         DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __func__);
4057
4058         /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
4059         for (i = 0; i < TOTAL_TX_BD(sc); i++) {
4060                 if (sc->tx_mbuf_ptr[i] != NULL) {
4061                         bus_dmamap_unload(sc->tx_mbuf_tag, sc->tx_mbuf_map[i]);
4062                         m_freem(sc->tx_mbuf_ptr[i]);
4063                         sc->tx_mbuf_ptr[i] = NULL;
4064                         DBRUNIF(1, sc->tx_mbuf_alloc--);
4065                 }
4066         }
4067
4068         /* Clear each TX chain page. */
4069         for (i = 0; i < sc->tx_pages; i++)
4070                 bzero(sc->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ);
4071         sc->used_tx_bd = 0;
4072
4073         /* Check if we lost any mbufs in the process. */
4074         DBRUNIF((sc->tx_mbuf_alloc),
4075                 if_printf(&sc->arpcom.ac_if,
4076                           "%s(%d): Memory leak! "
4077                           "Lost %d mbufs from tx chain!\n",
4078                           __FILE__, __LINE__, sc->tx_mbuf_alloc));
4079
4080         DBPRINT(sc, BCE_VERBOSE_RESET, "Exiting %s()\n", __func__);
4081 }
4082
4083
4084 /****************************************************************************/
4085 /* Initialize the RX context memory.                                        */
4086 /*                                                                          */
4087 /* Returns:                                                                 */
4088 /*   Nothing                                                                */
4089 /****************************************************************************/
4090 static void
4091 bce_init_rx_context(struct bce_softc *sc)
4092 {
4093         uint32_t val;
4094
4095         /* Initialize the context ID for an L2 RX chain. */
4096         val = BCE_L2CTX_RX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
4097             BCE_L2CTX_RX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
4098
4099         /*
4100          * Set the level for generating pause frames
4101          * when the number of available rx_bd's gets
4102          * too low (the low watermark) and the level
4103          * when pause frames can be stopped (the high
4104          * watermark).
4105          */
4106         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
4107             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
4108                 uint32_t lo_water, hi_water;
4109
4110                 lo_water = BCE_L2CTX_RX_LO_WATER_MARK_DEFAULT;
4111                 hi_water = USABLE_RX_BD(sc) / 4;
4112
4113                 lo_water /= BCE_L2CTX_RX_LO_WATER_MARK_SCALE;
4114                 hi_water /= BCE_L2CTX_RX_HI_WATER_MARK_SCALE;
4115
4116                 if (hi_water > 0xf)
4117                         hi_water = 0xf;
4118                 else if (hi_water == 0)
4119                         lo_water = 0;
4120                 val |= lo_water |
4121                     (hi_water << BCE_L2CTX_RX_HI_WATER_MARK_SHIFT);
4122         }
4123
4124         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_CTX_TYPE, val);
4125
4126         /* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
4127         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
4128             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
4129                 val = REG_RD(sc, BCE_MQ_MAP_L2_5);
4130                 REG_WR(sc, BCE_MQ_MAP_L2_5, val | BCE_MQ_MAP_L2_5_ARM);
4131         }
4132
4133         /* Point the hardware to the first page in the chain. */
4134         val = BCE_ADDR_HI(sc->rx_bd_chain_paddr[0]);
4135         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_HI, val);
4136         val = BCE_ADDR_LO(sc->rx_bd_chain_paddr[0]);
4137         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_LO, val);
4138 }
4139
4140
4141 /****************************************************************************/
4142 /* Allocate memory and initialize the RX data structures.                   */
4143 /*                                                                          */
4144 /* Returns:                                                                 */
4145 /*   0 for success, positive value for failure.                             */
4146 /****************************************************************************/
4147 static int
4148 bce_init_rx_chain(struct bce_softc *sc)
4149 {
4150         struct rx_bd *rxbd;
4151         int i, rc = 0;
4152         uint16_t prod, chain_prod;
4153         uint32_t prod_bseq;
4154
4155         DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __func__);
4156
4157         /* Initialize the RX producer and consumer indices. */
4158         sc->rx_prod = 0;
4159         sc->rx_cons = 0;
4160         sc->rx_prod_bseq = 0;
4161         sc->free_rx_bd = USABLE_RX_BD(sc);
4162         sc->max_rx_bd = USABLE_RX_BD(sc);
4163         DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD(sc));
4164         DBRUNIF(1, sc->rx_empty_count = 0);
4165
4166         /* Initialize the RX next pointer chain entries. */
4167         for (i = 0; i < sc->rx_pages; i++) {
4168                 int j;
4169
4170                 rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
4171
4172                 /* Check if we've reached the last page. */
4173                 if (i == (sc->rx_pages - 1))
4174                         j = 0;
4175                 else
4176                         j = i + 1;
4177
4178                 /* Setup the chain page pointers. */
4179                 rxbd->rx_bd_haddr_hi =
4180                         htole32(BCE_ADDR_HI(sc->rx_bd_chain_paddr[j]));
4181                 rxbd->rx_bd_haddr_lo =
4182                         htole32(BCE_ADDR_LO(sc->rx_bd_chain_paddr[j]));
4183         }
4184
4185         /* Allocate mbuf clusters for the rx_bd chain. */
4186         prod = prod_bseq = 0;
4187         while (prod < TOTAL_RX_BD(sc)) {
4188                 chain_prod = RX_CHAIN_IDX(sc, prod);
4189                 if (bce_newbuf_std(sc, &prod, &chain_prod, &prod_bseq, 1)) {
4190                         if_printf(&sc->arpcom.ac_if,
4191                                   "Error filling RX chain: rx_bd[0x%04X]!\n",
4192                                   chain_prod);
4193                         rc = ENOBUFS;
4194                         break;
4195                 }
4196                 prod = NEXT_RX_BD(prod);
4197         }
4198
4199         /* Save the RX chain producer index. */
4200         sc->rx_prod = prod;
4201         sc->rx_prod_bseq = prod_bseq;
4202
4203         /* Tell the chip about the waiting rx_bd's. */
4204         REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BDIDX,
4205             sc->rx_prod);
4206         REG_WR(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BSEQ,
4207             sc->rx_prod_bseq);
4208
4209         bce_init_rx_context(sc);
4210
4211         return(rc);
4212 }
4213
4214
4215 /****************************************************************************/
4216 /* Free memory and clear the RX data structures.                            */
4217 /*                                                                          */
4218 /* Returns:                                                                 */
4219 /*   Nothing.                                                               */
4220 /****************************************************************************/
4221 static void
4222 bce_free_rx_chain(struct bce_softc *sc)
4223 {
4224         int i;
4225
4226         DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __func__);
4227
4228         /* Free any mbufs still in the RX mbuf chain. */
4229         for (i = 0; i < TOTAL_RX_BD(sc); i++) {
4230                 if (sc->rx_mbuf_ptr[i] != NULL) {
4231                         bus_dmamap_unload(sc->rx_mbuf_tag, sc->rx_mbuf_map[i]);
4232                         m_freem(sc->rx_mbuf_ptr[i]);
4233                         sc->rx_mbuf_ptr[i] = NULL;
4234                         DBRUNIF(1, sc->rx_mbuf_alloc--);
4235                 }
4236         }
4237
4238         /* Clear each RX chain page. */
4239         for (i = 0; i < sc->rx_pages; i++)
4240                 bzero(sc->rx_bd_chain[i], BCE_RX_CHAIN_PAGE_SZ);
4241
4242         /* Check if we lost any mbufs in the process. */
4243         DBRUNIF((sc->rx_mbuf_alloc),
4244                 if_printf(&sc->arpcom.ac_if,
4245                           "%s(%d): Memory leak! "
4246                           "Lost %d mbufs from rx chain!\n",
4247                           __FILE__, __LINE__, sc->rx_mbuf_alloc));
4248
4249         DBPRINT(sc, BCE_VERBOSE_RESET, "Exiting %s()\n", __func__);
4250 }
4251
4252
4253 /****************************************************************************/
4254 /* Set media options.                                                       */
4255 /*                                                                          */
4256 /* Returns:                                                                 */
4257 /*   0 for success, positive value for failure.                             */
4258 /****************************************************************************/
4259 static int
4260 bce_ifmedia_upd(struct ifnet *ifp)
4261 {
4262         struct bce_softc *sc = ifp->if_softc;
4263         struct mii_data *mii = device_get_softc(sc->bce_miibus);
4264         int error = 0;
4265
4266         /*
4267          * 'mii' will be NULL, when this function is called on following
4268          * code path: bce_attach() -> bce_mgmt_init()
4269          */
4270         if (mii != NULL) {
4271                 /* Make sure the MII bus has been enumerated. */
4272                 sc->bce_link = 0;
4273                 if (mii->mii_instance) {
4274                         struct mii_softc *miisc;
4275
4276                         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
4277                                 mii_phy_reset(miisc);
4278                 }
4279                 error = mii_mediachg(mii);
4280         }
4281         return error;
4282 }
4283
4284
4285 /****************************************************************************/
4286 /* Reports current media status.                                            */
4287 /*                                                                          */
4288 /* Returns:                                                                 */
4289 /*   Nothing.                                                               */
4290 /****************************************************************************/
4291 static void
4292 bce_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
4293 {
4294         struct bce_softc *sc = ifp->if_softc;
4295         struct mii_data *mii = device_get_softc(sc->bce_miibus);
4296
4297         mii_pollstat(mii);
4298         ifmr->ifm_active = mii->mii_media_active;
4299         ifmr->ifm_status = mii->mii_media_status;
4300 }
4301
4302
4303 /****************************************************************************/
4304 /* Handles PHY generated interrupt events.                                  */
4305 /*                                                                          */
4306 /* Returns:                                                                 */
4307 /*   Nothing.                                                               */
4308 /****************************************************************************/
4309 static void
4310 bce_phy_intr(struct bce_softc *sc)
4311 {
4312         uint32_t new_link_state, old_link_state;
4313         struct ifnet *ifp = &sc->arpcom.ac_if;
4314
4315         ASSERT_SERIALIZED(ifp->if_serializer);
4316
4317         new_link_state = sc->status_block->status_attn_bits &
4318                          STATUS_ATTN_BITS_LINK_STATE;
4319         old_link_state = sc->status_block->status_attn_bits_ack &
4320                          STATUS_ATTN_BITS_LINK_STATE;
4321
4322         /* Handle any changes if the link state has changed. */
4323         if (new_link_state != old_link_state) { /* XXX redundant? */
4324                 DBRUN(BCE_VERBOSE_INTR, bce_dump_status_block(sc));
4325
4326                 /* Update the status_attn_bits_ack field in the status block. */
4327                 if (new_link_state) {
4328                         REG_WR(sc, BCE_PCICFG_STATUS_BIT_SET_CMD,
4329                                STATUS_ATTN_BITS_LINK_STATE);
4330                         if (bootverbose)
4331                                 if_printf(ifp, "Link is now UP.\n");
4332                 } else {
4333                         REG_WR(sc, BCE_PCICFG_STATUS_BIT_CLEAR_CMD,
4334                                STATUS_ATTN_BITS_LINK_STATE);
4335                         if (bootverbose)
4336                                 if_printf(ifp, "Link is now DOWN.\n");
4337                 }
4338
4339                 /*
4340                  * Assume link is down and allow tick routine to
4341                  * update the state based on the actual media state.
4342                  */
4343                 sc->bce_link = 0;
4344                 callout_stop(&sc->bce_tick_callout);
4345                 bce_tick_serialized(sc);
4346         }
4347
4348         /* Acknowledge the link change interrupt. */
4349         REG_WR(sc, BCE_EMAC_STATUS, BCE_EMAC_STATUS_LINK_CHANGE);
4350 }
4351
4352
4353 /****************************************************************************/
4354 /* Reads the receive consumer value from the status block (skipping over    */
4355 /* chain page pointer if necessary).                                        */
4356 /*                                                                          */
4357 /* Returns:                                                                 */
4358 /*   hw_cons                                                                */
4359 /****************************************************************************/
4360 static __inline uint16_t
4361 bce_get_hw_rx_cons(struct bce_softc *sc)
4362 {
4363         uint16_t hw_cons = sc->status_block->status_rx_quick_consumer_index0;
4364
4365         if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
4366                 hw_cons++;
4367         return hw_cons;
4368 }
4369
4370
4371 /****************************************************************************/
4372 /* Handles received frame interrupt events.                                 */
4373 /*                                                                          */
4374 /* Returns:                                                                 */
4375 /*   Nothing.                                                               */
4376 /****************************************************************************/
4377 static void
4378 bce_rx_intr(struct bce_softc *sc, int count, uint16_t hw_cons)
4379 {
4380         struct ifnet *ifp = &sc->arpcom.ac_if;
4381         uint16_t sw_cons, sw_chain_cons, sw_prod, sw_chain_prod;
4382         uint32_t sw_prod_bseq;
4383
4384         ASSERT_SERIALIZED(ifp->if_serializer);
4385
4386         /* Get working copies of the driver's view of the RX indices. */
4387         sw_cons = sc->rx_cons;
4388         sw_prod = sc->rx_prod;
4389         sw_prod_bseq = sc->rx_prod_bseq;
4390
4391         /* Scan through the receive chain as long as there is work to do. */
4392         while (sw_cons != hw_cons) {
4393                 struct mbuf *m = NULL;
4394                 struct l2_fhdr *l2fhdr = NULL;
4395                 struct rx_bd *rxbd;
4396                 unsigned int len;
4397                 uint32_t status = 0;
4398
4399 #ifdef DEVICE_POLLING
4400                 if (count >= 0 && count-- == 0)
4401                         break;
4402 #endif
4403
4404                 /*
4405                  * Convert the producer/consumer indices
4406                  * to an actual rx_bd index.
4407                  */
4408                 sw_chain_cons = RX_CHAIN_IDX(sc, sw_cons);
4409                 sw_chain_prod = RX_CHAIN_IDX(sc, sw_prod);
4410
4411                 /* Get the used rx_bd. */
4412                 rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)]
4413                                        [RX_IDX(sw_chain_cons)];
4414                 sc->free_rx_bd++;
4415
4416                 /* The mbuf is stored with the last rx_bd entry of a packet. */
4417                 if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
4418                         if (sw_chain_cons != sw_chain_prod) {
4419                                 if_printf(ifp, "RX cons(%d) != prod(%d), "
4420                                           "drop!\n", sw_chain_cons,
4421                                           sw_chain_prod);
4422                                 ifp->if_ierrors++;
4423
4424                                 bce_setup_rxdesc_std(sc, sw_chain_cons,
4425                                                      &sw_prod_bseq);
4426                                 m = NULL;
4427                                 goto bce_rx_int_next_rx;
4428                         }
4429
4430                         /* Unmap the mbuf from DMA space. */
4431                         bus_dmamap_sync(sc->rx_mbuf_tag,
4432                                         sc->rx_mbuf_map[sw_chain_cons],
4433                                         BUS_DMASYNC_POSTREAD);
4434
4435                         /* Save the mbuf from the driver's chain. */
4436                         m = sc->rx_mbuf_ptr[sw_chain_cons];
4437
4438                         /*
4439                          * Frames received on the NetXteme II are prepended 
4440                          * with an l2_fhdr structure which provides status
4441                          * information about the received frame (including
4442                          * VLAN tags and checksum info).  The frames are also
4443                          * automatically adjusted to align the IP header
4444                          * (i.e. two null bytes are inserted before the 
4445                          * Ethernet header).  As a result the data DMA'd by
4446                          * the controller into the mbuf is as follows:
4447                          *
4448                          * +---------+-----+---------------------+-----+
4449                          * | l2_fhdr | pad | packet data         | FCS |
4450                          * +---------+-----+---------------------+-----+
4451                          * 
4452                          * The l2_fhdr needs to be checked and skipped and the
4453                          * FCS needs to be stripped before sending the packet
4454                          * up the stack.
4455                          */
4456                         l2fhdr = mtod(m, struct l2_fhdr *);
4457
4458                         len = l2fhdr->l2_fhdr_pkt_len;
4459                         status = l2fhdr->l2_fhdr_status;
4460
4461                         len -= ETHER_CRC_LEN;
4462
4463                         /* Check the received frame for errors. */
4464                         if (status & (L2_FHDR_ERRORS_BAD_CRC |
4465                                       L2_FHDR_ERRORS_PHY_DECODE |
4466                                       L2_FHDR_ERRORS_ALIGNMENT |
4467                                       L2_FHDR_ERRORS_TOO_SHORT |
4468                                       L2_FHDR_ERRORS_GIANT_FRAME)) {
4469                                 ifp->if_ierrors++;
4470
4471                                 /* Reuse the mbuf for a new frame. */
4472                                 bce_setup_rxdesc_std(sc, sw_chain_prod,
4473                                                      &sw_prod_bseq);
4474                                 m = NULL;
4475                                 goto bce_rx_int_next_rx;
4476                         }
4477
4478                         /* 
4479                          * Get a new mbuf for the rx_bd.   If no new
4480                          * mbufs are available then reuse the current mbuf,
4481                          * log an ierror on the interface, and generate
4482                          * an error in the system log.
4483                          */
4484                         if (bce_newbuf_std(sc, &sw_prod, &sw_chain_prod,
4485                                            &sw_prod_bseq, 0)) {
4486                                 ifp->if_ierrors++;
4487
4488                                 /* Try and reuse the exisitng mbuf. */
4489                                 bce_setup_rxdesc_std(sc, sw_chain_prod,
4490                                                      &sw_prod_bseq);
4491                                 m = NULL;
4492                                 goto bce_rx_int_next_rx;
4493                         }
4494
4495                         /*
4496                          * Skip over the l2_fhdr when passing
4497                          * the data up the stack.
4498                          */
4499                         m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
4500
4501                         m->m_pkthdr.len = m->m_len = len;
4502                         m->m_pkthdr.rcvif = ifp;
4503
4504                         /* Validate the checksum if offload enabled. */
4505                         if (ifp->if_capenable & IFCAP_RXCSUM) {
4506                                 /* Check for an IP datagram. */
4507                                 if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
4508                                         m->m_pkthdr.csum_flags |=
4509                                                 CSUM_IP_CHECKED;
4510
4511                                         /* Check if the IP checksum is valid. */
4512                                         if ((l2fhdr->l2_fhdr_ip_xsum ^
4513                                              0xffff) == 0) {
4514                                                 m->m_pkthdr.csum_flags |=
4515                                                         CSUM_IP_VALID;
4516                                         }
4517                                 }
4518
4519                                 /* Check for a valid TCP/UDP frame. */
4520                                 if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
4521                                               L2_FHDR_STATUS_UDP_DATAGRAM)) {
4522
4523                                         /* Check for a good TCP/UDP checksum. */
4524                                         if ((status &
4525                                              (L2_FHDR_ERRORS_TCP_XSUM |
4526                                               L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
4527                                                 m->m_pkthdr.csum_data =
4528                                                 l2fhdr->l2_fhdr_tcp_udp_xsum;
4529                                                 m->m_pkthdr.csum_flags |=
4530                                                         CSUM_DATA_VALID |
4531                                                         CSUM_PSEUDO_HDR;
4532                                         }
4533                                 }
4534                         }
4535
4536                         ifp->if_ipackets++;
4537 bce_rx_int_next_rx:
4538                         sw_prod = NEXT_RX_BD(sw_prod);
4539                 }
4540
4541                 sw_cons = NEXT_RX_BD(sw_cons);
4542
4543                 /* If we have a packet, pass it up the stack */
4544                 if (m) {
4545                         if (status & L2_FHDR_STATUS_L2_VLAN_TAG) {
4546                                 m->m_flags |= M_VLANTAG;
4547                                 m->m_pkthdr.ether_vlantag =
4548                                         l2fhdr->l2_fhdr_vlan_tag;
4549                         }
4550                         ifp->if_input(ifp, m);
4551                 }
4552         }
4553
4554         sc->rx_cons = sw_cons;
4555         sc->rx_prod = sw_prod;
4556         sc->rx_prod_bseq = sw_prod_bseq;
4557
4558         REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BDIDX,
4559             sc->rx_prod);
4560         REG_WR(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BSEQ,
4561             sc->rx_prod_bseq);
4562 }
4563
4564
4565 /****************************************************************************/
4566 /* Reads the transmit consumer value from the status block (skipping over   */
4567 /* chain page pointer if necessary).                                        */
4568 /*                                                                          */
4569 /* Returns:                                                                 */
4570 /*   hw_cons                                                                */
4571 /****************************************************************************/
4572 static __inline uint16_t
4573 bce_get_hw_tx_cons(struct bce_softc *sc)
4574 {
4575         uint16_t hw_cons = sc->status_block->status_tx_quick_consumer_index0;
4576
4577         if ((hw_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
4578                 hw_cons++;
4579         return hw_cons;
4580 }
4581
4582
4583 /****************************************************************************/
4584 /* Handles transmit completion interrupt events.                            */
4585 /*                                                                          */
4586 /* Returns:                                                                 */
4587 /*   Nothing.                                                               */
4588 /****************************************************************************/
4589 static void
4590 bce_tx_intr(struct bce_softc *sc, uint16_t hw_tx_cons)
4591 {
4592         struct ifnet *ifp = &sc->arpcom.ac_if;
4593         uint16_t sw_tx_cons, sw_tx_chain_cons;
4594
4595         ASSERT_SERIALIZED(ifp->if_serializer);
4596
4597         /* Get the hardware's view of the TX consumer index. */
4598         sw_tx_cons = sc->tx_cons;
4599
4600         /* Cycle through any completed TX chain page entries. */
4601         while (sw_tx_cons != hw_tx_cons) {
4602                 sw_tx_chain_cons = TX_CHAIN_IDX(sc, sw_tx_cons);
4603
4604                 /*
4605                  * Free the associated mbuf. Remember
4606                  * that only the last tx_bd of a packet
4607                  * has an mbuf pointer and DMA map.
4608                  */
4609                 if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {
4610                         /* Unmap the mbuf. */
4611                         bus_dmamap_unload(sc->tx_mbuf_tag,
4612                                           sc->tx_mbuf_map[sw_tx_chain_cons]);
4613
4614                         /* Free the mbuf. */
4615                         m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
4616                         sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
4617
4618                         ifp->if_opackets++;
4619                 }
4620
4621                 sc->used_tx_bd--;
4622                 sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
4623         }
4624
4625         if (sc->used_tx_bd == 0) {
4626                 /* Clear the TX timeout timer. */
4627                 ifp->if_timer = 0;
4628         }
4629
4630         /* Clear the tx hardware queue full flag. */
4631         if (sc->max_tx_bd - sc->used_tx_bd >= BCE_TX_SPARE_SPACE)
4632                 ifp->if_flags &= ~IFF_OACTIVE;
4633         sc->tx_cons = sw_tx_cons;
4634 }
4635
4636
4637 /****************************************************************************/
4638 /* Disables interrupt generation.                                           */
4639 /*                                                                          */
4640 /* Returns:                                                                 */
4641 /*   Nothing.                                                               */
4642 /****************************************************************************/
4643 static void
4644 bce_disable_intr(struct bce_softc *sc)
4645 {
4646         REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_MASK_INT);
4647         REG_RD(sc, BCE_PCICFG_INT_ACK_CMD);
4648
4649         callout_stop(&sc->bce_ckmsi_callout);
4650         sc->bce_msi_maylose = FALSE;
4651         sc->bce_check_rx_cons = 0;
4652         sc->bce_check_tx_cons = 0;
4653         sc->bce_check_status_idx = 0xffff;
4654
4655         lwkt_serialize_handler_disable(sc->arpcom.ac_if.if_serializer);
4656 }
4657
4658
4659 /****************************************************************************/
4660 /* Enables interrupt generation.                                            */
4661 /*                                                                          */
4662 /* Returns:                                                                 */
4663 /*   Nothing.                                                               */
4664 /****************************************************************************/
4665 static void
4666 bce_enable_intr(struct bce_softc *sc)
4667 {
4668         lwkt_serialize_handler_enable(sc->arpcom.ac_if.if_serializer);
4669
4670         REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
4671                BCE_PCICFG_INT_ACK_CMD_INDEX_VALID |
4672                BCE_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
4673         REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
4674                BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
4675
4676         REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | BCE_HC_COMMAND_COAL_NOW);
4677
4678         if (sc->bce_flags & BCE_CHECK_MSI_FLAG) {
4679                 sc->bce_msi_maylose = FALSE;
4680                 sc->bce_check_rx_cons = 0;
4681                 sc->bce_check_tx_cons = 0;
4682                 sc->bce_check_status_idx = 0xffff;
4683
4684                 if (bootverbose)
4685                         if_printf(&sc->arpcom.ac_if, "check msi\n");
4686
4687                 callout_reset_bycpu(&sc->bce_ckmsi_callout, BCE_MSI_CKINTVL,
4688                     bce_check_msi, sc, sc->bce_intr_cpuid);
4689         }
4690 }
4691
4692
4693 /****************************************************************************/
4694 /* Reenables interrupt generation during interrupt handling.                */
4695 /*                                                                          */
4696 /* Returns:                                                                 */
4697 /*   Nothing.                                                               */
4698 /****************************************************************************/
4699 static void
4700 bce_reenable_intr(struct bce_softc *sc)
4701 {
4702         if (sc->bce_irq_type == PCI_INTR_TYPE_LEGACY) {
4703                 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
4704                        BCE_PCICFG_INT_ACK_CMD_INDEX_VALID |
4705                        BCE_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
4706         }
4707         REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
4708                BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
4709 }
4710
4711
4712 /****************************************************************************/
4713 /* Handles controller initialization.                                       */
4714 /*                                                                          */
4715 /* Returns:                                                                 */
4716 /*   Nothing.                                                               */
4717 /****************************************************************************/
4718 static void
4719 bce_init(void *xsc)
4720 {
4721         struct bce_softc *sc = xsc;
4722         struct ifnet *ifp = &sc->arpcom.ac_if;
4723         uint32_t ether_mtu;
4724         int error;
4725
4726         ASSERT_SERIALIZED(ifp->if_serializer);
4727
4728         /* Check if the driver is still running and bail out if it is. */
4729         if (ifp->if_flags & IFF_RUNNING)
4730                 return;
4731
4732         bce_stop(sc);
4733
4734         error = bce_reset(sc, BCE_DRV_MSG_CODE_RESET);
4735         if (error) {
4736                 if_printf(ifp, "Controller reset failed!\n");
4737                 goto back;
4738         }
4739
4740         error = bce_chipinit(sc);
4741         if (error) {
4742                 if_printf(ifp, "Controller initialization failed!\n");
4743                 goto back;
4744         }
4745
4746         error = bce_blockinit(sc);
4747         if (error) {
4748                 if_printf(ifp, "Block initialization failed!\n");
4749                 goto back;
4750         }
4751
4752         /* Load our MAC address. */
4753         bcopy(IF_LLADDR(ifp), sc->eaddr, ETHER_ADDR_LEN);
4754         bce_set_mac_addr(sc);
4755
4756         /* Calculate and program the Ethernet MTU size. */
4757         ether_mtu = ETHER_HDR_LEN + EVL_ENCAPLEN + ifp->if_mtu + ETHER_CRC_LEN;
4758
4759         DBPRINT(sc, BCE_INFO, "%s(): setting mtu = %d\n", __func__, ether_mtu);
4760
4761         /* 
4762          * Program the mtu, enabling jumbo frame 
4763          * support if necessary.  Also set the mbuf
4764          * allocation count for RX frames.
4765          */
4766         if (ether_mtu > ETHER_MAX_LEN + EVL_ENCAPLEN) {
4767 #ifdef notyet
4768                 REG_WR(sc, BCE_EMAC_RX_MTU_SIZE,
4769                        min(ether_mtu, BCE_MAX_JUMBO_ETHER_MTU) |
4770                        BCE_EMAC_RX_MTU_SIZE_JUMBO_ENA);
4771                 sc->mbuf_alloc_size = MJUM9BYTES;
4772 #else
4773                 panic("jumbo buffer is not supported yet");
4774 #endif
4775         } else {
4776                 REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, ether_mtu);
4777                 sc->mbuf_alloc_size = MCLBYTES;
4778         }
4779
4780         /* Calculate the RX Ethernet frame size for rx_bd's. */
4781         sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
4782
4783         DBPRINT(sc, BCE_INFO,
4784                 "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
4785                 "max_frame_size = %d\n",
4786                 __func__, (int)MCLBYTES, sc->mbuf_alloc_size,
4787                 sc->max_frame_size);
4788
4789         /* Program appropriate promiscuous/multicast filtering. */
4790         bce_set_rx_mode(sc);
4791
4792         /* Init RX buffer descriptor chain. */
4793         bce_init_rx_chain(sc);  /* XXX return value */
4794
4795         /* Init TX buffer descriptor chain. */
4796         bce_init_tx_chain(sc);  /* XXX return value */
4797
4798 #ifdef DEVICE_POLLING
4799         /* Disable interrupts if we are polling. */
4800         if (ifp->if_flags & IFF_POLLING) {
4801                 bce_disable_intr(sc);
4802
4803                 REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
4804                        (1 << 16) | sc->bce_rx_quick_cons_trip);
4805                 REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
4806                        (1 << 16) | sc->bce_tx_quick_cons_trip);
4807         } else
4808 #endif
4809         /* Enable host interrupts. */
4810         bce_enable_intr(sc);
4811
4812         bce_ifmedia_upd(ifp);
4813
4814         ifp->if_flags |= IFF_RUNNING;
4815         ifp->if_flags &= ~IFF_OACTIVE;
4816
4817         callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
4818 back:
4819         if (error)
4820                 bce_stop(sc);
4821 }
4822
4823
4824 /****************************************************************************/
4825 /* Initialize the controller just enough so that any management firmware    */
4826 /* running on the device will continue to operate corectly.                 */
4827 /*                                                                          */
4828 /* Returns:                                                                 */
4829 /*   Nothing.                                                               */
4830 /****************************************************************************/
4831 static void
4832 bce_mgmt_init(struct bce_softc *sc)
4833 {
4834         struct ifnet *ifp = &sc->arpcom.ac_if;
4835
4836         /* Bail out if management firmware is not running. */
4837         if (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG))
4838                 return;
4839
4840         /* Enable all critical blocks in the MAC. */
4841         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
4842             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
4843                 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
4844                     BCE_MISC_ENABLE_DEFAULT_XI);
4845         } else {
4846                 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT);
4847         }
4848         REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
4849         DELAY(20);
4850
4851         bce_ifmedia_upd(ifp);
4852 }
4853
4854
4855 /****************************************************************************/
4856 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
4857 /* memory visible to the controller.                                        */
4858 /*                                                                          */
4859 /* Returns:                                                                 */
4860 /*   0 for success, positive value for failure.                             */
4861 /****************************************************************************/
4862 static int
4863 bce_encap(struct bce_softc *sc, struct mbuf **m_head)
4864 {
4865         bus_dma_segment_t segs[BCE_MAX_SEGMENTS];
4866         bus_dmamap_t map, tmp_map;
4867         struct mbuf *m0 = *m_head;
4868         struct tx_bd *txbd = NULL;
4869         uint16_t vlan_tag = 0, flags = 0, mss = 0;
4870         uint16_t chain_prod, chain_prod_start, prod;
4871         uint32_t prod_bseq;
4872         int i, error, maxsegs, nsegs;
4873
4874         /* Transfer any checksum offload flags to the bd. */
4875         if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
4876                 error = bce_tso_setup(sc, m_head, &flags, &mss);
4877                 if (error)
4878                         return ENOBUFS;
4879                 m0 = *m_head;
4880         } else if (m0->m_pkthdr.csum_flags & BCE_CSUM_FEATURES) {
4881                 if (m0->m_pkthdr.csum_flags & CSUM_IP)
4882                         flags |= TX_BD_FLAGS_IP_CKSUM;
4883                 if (m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
4884                         flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
4885         }
4886
4887         /* Transfer any VLAN tags to the bd. */
4888         if (m0->m_flags & M_VLANTAG) {
4889                 flags |= TX_BD_FLAGS_VLAN_TAG;
4890                 vlan_tag = m0->m_pkthdr.ether_vlantag;
4891         }
4892
4893         prod = sc->tx_prod;
4894         chain_prod_start = chain_prod = TX_CHAIN_IDX(sc, prod);
4895
4896         /* Map the mbuf into DMAable memory. */
4897         map = sc->tx_mbuf_map[chain_prod_start];
4898
4899         maxsegs = sc->max_tx_bd - sc->used_tx_bd;
4900         KASSERT(maxsegs >= BCE_TX_SPARE_SPACE,
4901                 ("not enough segments %d", maxsegs));
4902         if (maxsegs > BCE_MAX_SEGMENTS)
4903                 maxsegs = BCE_MAX_SEGMENTS;
4904
4905         /* Map the mbuf into our DMA address space. */
4906         error = bus_dmamap_load_mbuf_defrag(sc->tx_mbuf_tag, map, m_head,
4907                         segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
4908         if (error)
4909                 goto back;
4910         bus_dmamap_sync(sc->tx_mbuf_tag, map, BUS_DMASYNC_PREWRITE);
4911
4912         /* Reset m0 */
4913         m0 = *m_head;
4914
4915         /* prod points to an empty tx_bd at this point. */
4916         prod_bseq  = sc->tx_prod_bseq;
4917
4918         /*
4919          * Cycle through each mbuf segment that makes up
4920          * the outgoing frame, gathering the mapping info
4921          * for that segment and creating a tx_bd to for
4922          * the mbuf.
4923          */
4924         for (i = 0; i < nsegs; i++) {
4925                 chain_prod = TX_CHAIN_IDX(sc, prod);
4926                 txbd= &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
4927
4928                 txbd->tx_bd_haddr_lo = htole32(BCE_ADDR_LO(segs[i].ds_addr));
4929                 txbd->tx_bd_haddr_hi = htole32(BCE_ADDR_HI(segs[i].ds_addr));
4930                 txbd->tx_bd_mss_nbytes = htole32(mss << 16) |
4931                     htole16(segs[i].ds_len);
4932                 txbd->tx_bd_vlan_tag = htole16(vlan_tag);
4933                 txbd->tx_bd_flags = htole16(flags);
4934
4935                 prod_bseq += segs[i].ds_len;
4936                 if (i == 0)
4937                         txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
4938                 prod = NEXT_TX_BD(prod);
4939         }
4940
4941         /* Set the END flag on the last TX buffer descriptor. */
4942         txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
4943
4944         /*
4945          * Ensure that the mbuf pointer for this transmission
4946          * is placed at the array index of the last
4947          * descriptor in this chain.  This is done
4948          * because a single map is used for all 
4949          * segments of the mbuf and we don't want to
4950          * unload the map before all of the segments
4951          * have been freed.
4952          */
4953         sc->tx_mbuf_ptr[chain_prod] = m0;
4954
4955         tmp_map = sc->tx_mbuf_map[chain_prod];
4956         sc->tx_mbuf_map[chain_prod] = map;
4957         sc->tx_mbuf_map[chain_prod_start] = tmp_map;
4958
4959         sc->used_tx_bd += nsegs;
4960
4961         /* prod points to the next free tx_bd at this point. */
4962         sc->tx_prod = prod;
4963         sc->tx_prod_bseq = prod_bseq;
4964 back:
4965         if (error) {
4966                 m_freem(*m_head);
4967                 *m_head = NULL;
4968         }
4969         return error;
4970 }
4971
4972
4973 /****************************************************************************/
4974 /* Main transmit routine when called from another routine with a lock.      */
4975 /*                                                                          */
4976 /* Returns:                                                                 */
4977 /*   Nothing.                                                               */
4978 /****************************************************************************/
4979 static void
4980 bce_start(struct ifnet *ifp)
4981 {
4982         struct bce_softc *sc = ifp->if_softc;
4983         int count = 0;
4984
4985         ASSERT_SERIALIZED(ifp->if_serializer);
4986
4987         /* If there's no link or the transmit queue is empty then just exit. */
4988         if (!sc->bce_link) {
4989                 ifq_purge(&ifp->if_snd);
4990                 return;
4991         }
4992
4993         if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
4994                 return;
4995
4996         for (;;) {
4997                 struct mbuf *m_head;
4998
4999                 /*
5000                  * We keep BCE_TX_SPARE_SPACE entries, so bce_encap() is
5001                  * unlikely to fail.
5002                  */
5003                 if (sc->max_tx_bd - sc->used_tx_bd < BCE_TX_SPARE_SPACE) {
5004                         ifp->if_flags |= IFF_OACTIVE;
5005                         break;
5006                 }
5007
5008                 /* Check for any frames to send. */
5009                 m_head = ifq_dequeue(&ifp->if_snd, NULL);
5010                 if (m_head == NULL)
5011                         break;
5012
5013                 /*
5014                  * Pack the data into the transmit ring. If we
5015                  * don't have room, place the mbuf back at the
5016                  * head of the queue and set the OACTIVE flag
5017                  * to wait for the NIC to drain the chain.
5018                  */
5019                 if (bce_encap(sc, &m_head)) {
5020                         ifp->if_oerrors++;
5021                         if (sc->used_tx_bd == 0) {
5022                                 continue;
5023                         } else {
5024                                 ifp->if_flags |= IFF_OACTIVE;
5025                                 break;
5026                         }
5027                 }
5028
5029                 count++;
5030
5031                 /* Send a copy of the frame to any BPF listeners. */
5032                 ETHER_BPF_MTAP(ifp, m_head);
5033         }
5034
5035         if (count == 0) {
5036                 /* no packets were dequeued */
5037                 return;
5038         }
5039
5040         REG_WR(sc, BCE_MQ_COMMAND,
5041             REG_RD(sc, BCE_MQ_COMMAND) | BCE_MQ_COMMAND_NO_MAP_ERROR);
5042
5043         /* Start the transmit. */
5044         REG_WR16(sc, MB_GET_CID_ADDR(TX_CID) + BCE_L2CTX_TX_HOST_BIDX,
5045             sc->tx_prod);
5046         REG_WR(sc, MB_GET_CID_ADDR(TX_CID) + BCE_L2CTX_TX_HOST_BSEQ,
5047             sc->tx_prod_bseq);
5048
5049         /* Set the tx timeout. */
5050         ifp->if_timer = BCE_TX_TIMEOUT;
5051 }
5052
5053
5054 /****************************************************************************/
5055 /* Handles any IOCTL calls from the operating system.                       */
5056 /*                                                                          */
5057 /* Returns:                                                                 */
5058 /*   0 for success, positive value for failure.                             */
5059 /****************************************************************************/
5060 static int
5061 bce_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
5062 {
5063         struct bce_softc *sc = ifp->if_softc;
5064         struct ifreq *ifr = (struct ifreq *)data;
5065         struct mii_data *mii;
5066         int mask, error = 0;
5067
5068         ASSERT_SERIALIZED(ifp->if_serializer);
5069
5070         switch(command) {
5071         case SIOCSIFMTU:
5072                 /* Check that the MTU setting is supported. */
5073                 if (ifr->ifr_mtu < BCE_MIN_MTU ||
5074 #ifdef notyet
5075                     ifr->ifr_mtu > BCE_MAX_JUMBO_MTU
5076 #else
5077                     ifr->ifr_mtu > ETHERMTU
5078 #endif
5079                    ) {
5080                         error = EINVAL;
5081                         break;
5082                 }
5083
5084                 DBPRINT(sc, BCE_INFO, "Setting new MTU of %d\n", ifr->ifr_mtu);
5085
5086                 ifp->if_mtu = ifr->ifr_mtu;
5087                 ifp->if_flags &= ~IFF_RUNNING;  /* Force reinitialize */
5088                 bce_init(sc);
5089                 break;
5090
5091         case SIOCSIFFLAGS:
5092                 if (ifp->if_flags & IFF_UP) {
5093                         if (ifp->if_flags & IFF_RUNNING) {
5094                                 mask = ifp->if_flags ^ sc->bce_if_flags;
5095
5096                                 if (mask & (IFF_PROMISC | IFF_ALLMULTI))
5097                                         bce_set_rx_mode(sc);
5098                         } else {
5099                                 bce_init(sc);
5100                         }
5101                 } else if (ifp->if_flags & IFF_RUNNING) {
5102                         bce_stop(sc);
5103
5104                         /* If MFW is running, restart the controller a bit. */
5105                         if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
5106                                 bce_reset(sc, BCE_DRV_MSG_CODE_RESET);
5107                                 bce_chipinit(sc);
5108                                 bce_mgmt_init(sc);
5109                         }
5110                 }
5111                 sc->bce_if_flags = ifp->if_flags;
5112                 break;
5113
5114         case SIOCADDMULTI:
5115         case SIOCDELMULTI:
5116                 if (ifp->if_flags & IFF_RUNNING)
5117                         bce_set_rx_mode(sc);
5118                 break;
5119
5120         case SIOCSIFMEDIA:
5121         case SIOCGIFMEDIA:
5122                 DBPRINT(sc, BCE_VERBOSE, "bce_phy_flags = 0x%08X\n",
5123                         sc->bce_phy_flags);
5124                 DBPRINT(sc, BCE_VERBOSE, "Copper media set/get\n");
5125
5126                 mii = device_get_softc(sc->bce_miibus);
5127                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
5128                 break;
5129
5130         case SIOCSIFCAP:
5131                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
5132                 DBPRINT(sc, BCE_INFO, "Received SIOCSIFCAP = 0x%08X\n",
5133                         (uint32_t) mask);
5134
5135                 if (mask & IFCAP_HWCSUM) {
5136                         ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
5137                         if (ifp->if_capenable & IFCAP_TXCSUM)
5138                                 ifp->if_hwassist |= BCE_CSUM_FEATURES;
5139                         else
5140                                 ifp->if_hwassist &= ~BCE_CSUM_FEATURES;
5141                 }
5142                 if (mask & IFCAP_TSO) {
5143                         ifp->if_capenable ^= IFCAP_TSO;
5144                         if (ifp->if_capenable & IFCAP_TSO)
5145                                 ifp->if_hwassist |= CSUM_TSO;
5146                         else
5147                                 ifp->if_hwassist &= ~CSUM_TSO;
5148                 }
5149                 break;
5150
5151         default:
5152                 error = ether_ioctl(ifp, command, data);
5153                 break;
5154         }
5155         return error;
5156 }
5157
5158
5159 /****************************************************************************/
5160 /* Transmit timeout handler.                                                */
5161 /*                                                                          */
5162 /* Returns:                                                                 */
5163 /*   Nothing.                                                               */
5164 /****************************************************************************/
5165 static void
5166 bce_watchdog(struct ifnet *ifp)
5167 {
5168         struct bce_softc *sc = ifp->if_softc;
5169
5170         ASSERT_SERIALIZED(ifp->if_serializer);
5171
5172         DBRUN(BCE_VERBOSE_SEND,
5173               bce_dump_driver_state(sc);
5174               bce_dump_status_block(sc));
5175
5176         /*
5177          * If we are in this routine because of pause frames, then
5178          * don't reset the hardware.
5179          */
5180         if (REG_RD(sc, BCE_EMAC_TX_STATUS) & BCE_EMAC_TX_STATUS_XOFFED) 
5181                 return;
5182
5183         if_printf(ifp, "Watchdog timeout occurred, resetting!\n");
5184
5185         /* DBRUN(BCE_FATAL, bce_breakpoint(sc)); */
5186
5187         ifp->if_flags &= ~IFF_RUNNING;  /* Force reinitialize */
5188         bce_init(sc);
5189
5190         ifp->if_oerrors++;
5191
5192         if (!ifq_is_empty(&ifp->if_snd))
5193                 if_devstart(ifp);
5194 }
5195
5196
5197 #ifdef DEVICE_POLLING
5198
5199 static void
5200 bce_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
5201 {
5202         struct bce_softc *sc = ifp->if_softc;
5203         struct status_block *sblk = sc->status_block;
5204         uint16_t hw_tx_cons, hw_rx_cons;
5205
5206         ASSERT_SERIALIZED(ifp->if_serializer);
5207
5208         switch (cmd) {
5209         case POLL_REGISTER:
5210                 bce_disable_intr(sc);
5211
5212                 REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
5213                        (1 << 16) | sc->bce_rx_quick_cons_trip);
5214                 REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
5215                        (1 << 16) | sc->bce_tx_quick_cons_trip);
5216                 return;
5217         case POLL_DEREGISTER:
5218                 bce_enable_intr(sc);
5219
5220                 REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
5221                        (sc->bce_tx_quick_cons_trip_int << 16) |
5222                        sc->bce_tx_quick_cons_trip);
5223                 REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
5224                        (sc->bce_rx_quick_cons_trip_int << 16) |
5225                        sc->bce_rx_quick_cons_trip);
5226                 return;
5227         default:
5228                 break;
5229         }
5230
5231         /*
5232          * Save the status block index value for use when enabling
5233          * the interrupt.
5234          */
5235         sc->last_status_idx = sblk->status_idx;
5236
5237         /* Make sure status index is extracted before rx/tx cons */
5238         cpu_lfence();
5239
5240         if (cmd == POLL_AND_CHECK_STATUS) {
5241                 uint32_t status_attn_bits;
5242
5243                 status_attn_bits = sblk->status_attn_bits;
5244
5245                 /* Was it a link change interrupt? */
5246                 if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
5247                     (sblk->status_attn_bits_ack & STATUS_ATTN_BITS_LINK_STATE))
5248                         bce_phy_intr(sc);
5249
5250                 /* Clear any transient status updates during link state change. */
5251                 REG_WR(sc, BCE_HC_COMMAND,
5252                     sc->hc_command | BCE_HC_COMMAND_COAL_NOW_WO_INT);
5253                 REG_RD(sc, BCE_HC_COMMAND);
5254
5255                 /*
5256                  * If any other attention is asserted then
5257                  * the chip is toast.
5258                  */
5259                 if ((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
5260                      (sblk->status_attn_bits_ack &
5261                       ~STATUS_ATTN_BITS_LINK_STATE)) {
5262                         if_printf(ifp, "Fatal attention detected: 0x%08X\n",
5263                                   sblk->status_attn_bits);
5264                         bce_init(sc);
5265                         return;
5266                 }
5267         }
5268
5269         hw_rx_cons = bce_get_hw_rx_cons(sc);
5270         hw_tx_cons = bce_get_hw_tx_cons(sc);
5271
5272         /* Check for any completed RX frames. */
5273         if (hw_rx_cons != sc->rx_cons)
5274                 bce_rx_intr(sc, count, hw_rx_cons);
5275
5276         /* Check for any completed TX frames. */
5277         if (hw_tx_cons != sc->tx_cons)
5278                 bce_tx_intr(sc, hw_tx_cons);
5279
5280         /* Check for new frames to transmit. */
5281         if (!ifq_is_empty(&ifp->if_snd))
5282                 if_devstart(ifp);
5283 }
5284
5285 #endif  /* DEVICE_POLLING */
5286
5287
5288 /*
5289  * Interrupt handler.
5290  */
5291 /****************************************************************************/
5292 /* Main interrupt entry point.  Verifies that the controller generated the  */
5293 /* interrupt and then calls a separate routine for handle the various       */
5294 /* interrupt causes (PHY, TX, RX).                                          */
5295 /*                                                                          */
5296 /* Returns:                                                                 */
5297 /*   0 for success, positive value for failure.                             */
5298 /****************************************************************************/
5299 static void
5300 bce_intr(struct bce_softc *sc)
5301 {
5302         struct ifnet *ifp = &sc->arpcom.ac_if;
5303         struct status_block *sblk;
5304         uint16_t hw_rx_cons, hw_tx_cons;
5305         uint32_t status_attn_bits;
5306
5307         ASSERT_SERIALIZED(ifp->if_serializer);
5308
5309         sblk = sc->status_block;
5310
5311         /*
5312          * Save the status block index value for use during
5313          * the next interrupt.
5314          */
5315         sc->last_status_idx = sblk->status_idx;
5316
5317         /* Make sure status index is extracted before rx/tx cons */
5318         cpu_lfence();
5319
5320         /* Check if the hardware has finished any work. */
5321         hw_rx_cons = bce_get_hw_rx_cons(sc);
5322         hw_tx_cons = bce_get_hw_tx_cons(sc);
5323
5324         status_attn_bits = sblk->status_attn_bits;
5325
5326         /* Was it a link change interrupt? */
5327         if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
5328             (sblk->status_attn_bits_ack & STATUS_ATTN_BITS_LINK_STATE)) {
5329                 bce_phy_intr(sc);
5330
5331                 /*
5332                  * Clear any transient status updates during link state
5333                  * change.
5334                  */
5335                 REG_WR(sc, BCE_HC_COMMAND,
5336                     sc->hc_command | BCE_HC_COMMAND_COAL_NOW_WO_INT);
5337                 REG_RD(sc, BCE_HC_COMMAND);
5338         }
5339
5340         /*
5341          * If any other attention is asserted then
5342          * the chip is toast.
5343          */
5344         if ((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
5345             (sblk->status_attn_bits_ack & ~STATUS_ATTN_BITS_LINK_STATE)) {
5346                 if_printf(ifp, "Fatal attention detected: 0x%08X\n",
5347                           sblk->status_attn_bits);
5348                 bce_init(sc);
5349                 return;
5350         }
5351
5352         /* Check for any completed RX frames. */
5353         if (hw_rx_cons != sc->rx_cons)
5354                 bce_rx_intr(sc, -1, hw_rx_cons);
5355
5356         /* Check for any completed TX frames. */
5357         if (hw_tx_cons != sc->tx_cons)
5358                 bce_tx_intr(sc, hw_tx_cons);
5359
5360         /* Re-enable interrupts. */
5361         bce_reenable_intr(sc);
5362
5363         if (sc->bce_coalchg_mask)
5364                 bce_coal_change(sc);
5365
5366         /* Handle any frames that arrived while handling the interrupt. */
5367         if (!ifq_is_empty(&ifp->if_snd))
5368                 if_devstart(ifp);
5369 }
5370
5371 static void
5372 bce_intr_legacy(void *xsc)
5373 {
5374         struct bce_softc *sc = xsc;
5375         struct status_block *sblk;
5376
5377         sblk = sc->status_block;
5378
5379         /*
5380          * If the hardware status block index matches the last value
5381          * read by the driver and we haven't asserted our interrupt
5382          * then there's nothing to do.
5383          */
5384         if (sblk->status_idx == sc->last_status_idx &&
5385             (REG_RD(sc, BCE_PCICFG_MISC_STATUS) &
5386              BCE_PCICFG_MISC_STATUS_INTA_VALUE))
5387                 return;
5388
5389         /* Ack the interrupt and stop others from occuring. */
5390         REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
5391                BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
5392                BCE_PCICFG_INT_ACK_CMD_MASK_INT);
5393
5394         /*
5395          * Read back to deassert IRQ immediately to avoid too
5396          * many spurious interrupts.
5397          */
5398         REG_RD(sc, BCE_PCICFG_INT_ACK_CMD);
5399
5400         bce_intr(sc);
5401 }
5402
5403 static void
5404 bce_intr_msi(void *xsc)
5405 {
5406         struct bce_softc *sc = xsc;
5407
5408         /* Ack the interrupt and stop others from occuring. */
5409         REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
5410                BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
5411                BCE_PCICFG_INT_ACK_CMD_MASK_INT);
5412
5413         bce_intr(sc);
5414 }
5415
5416 static void
5417 bce_intr_msi_oneshot(void *xsc)
5418 {
5419         bce_intr(xsc);
5420 }
5421
5422
5423 /****************************************************************************/
5424 /* Programs the various packet receive modes (broadcast and multicast).     */
5425 /*                                                                          */
5426 /* Returns:                                                                 */
5427 /*   Nothing.                                                               */
5428 /****************************************************************************/
5429 static void
5430 bce_set_rx_mode(struct bce_softc *sc)
5431 {
5432         struct ifnet *ifp = &sc->arpcom.ac_if;
5433         struct ifmultiaddr *ifma;
5434         uint32_t hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
5435         uint32_t rx_mode, sort_mode;
5436         int h, i;
5437
5438         ASSERT_SERIALIZED(ifp->if_serializer);
5439
5440         /* Initialize receive mode default settings. */
5441         rx_mode = sc->rx_mode &
5442                   ~(BCE_EMAC_RX_MODE_PROMISCUOUS |
5443                     BCE_EMAC_RX_MODE_KEEP_VLAN_TAG);
5444         sort_mode = 1 | BCE_RPM_SORT_USER0_BC_EN;
5445
5446         /*
5447          * ASF/IPMI/UMP firmware requires that VLAN tag stripping
5448          * be enbled.
5449          */
5450         if (!(BCE_IF_CAPABILITIES & IFCAP_VLAN_HWTAGGING) &&
5451             !(sc->bce_flags & BCE_MFW_ENABLE_FLAG))
5452                 rx_mode |= BCE_EMAC_RX_MODE_KEEP_VLAN_TAG;
5453
5454         /*
5455          * Check for promiscuous, all multicast, or selected
5456          * multicast address filtering.
5457          */
5458         if (ifp->if_flags & IFF_PROMISC) {
5459                 DBPRINT(sc, BCE_INFO, "Enabling promiscuous mode.\n");
5460
5461                 /* Enable promiscuous mode. */
5462                 rx_mode |= BCE_EMAC_RX_MODE_PROMISCUOUS;
5463                 sort_mode |= BCE_RPM_SORT_USER0_PROM_EN;
5464         } else if (ifp->if_flags & IFF_ALLMULTI) {
5465                 DBPRINT(sc, BCE_INFO, "Enabling all multicast mode.\n");
5466
5467                 /* Enable all multicast addresses. */
5468                 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
5469                         REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4),
5470                                0xffffffff);
5471                 }
5472                 sort_mode |= BCE_RPM_SORT_USER0_MC_EN;
5473         } else {
5474                 /* Accept one or more multicast(s). */
5475                 DBPRINT(sc, BCE_INFO, "Enabling selective multicast mode.\n");
5476
5477                 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
5478                         if (ifma->ifma_addr->sa_family != AF_LINK)
5479                                 continue;
5480                         h = ether_crc32_le(
5481                             LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
5482                             ETHER_ADDR_LEN) & 0xFF;
5483                         hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
5484                 }
5485
5486                 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
5487                         REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4),
5488                                hashes[i]);
5489                 }
5490                 sort_mode |= BCE_RPM_SORT_USER0_MC_HSH_EN;
5491         }
5492
5493         /* Only make changes if the recive mode has actually changed. */
5494         if (rx_mode != sc->rx_mode) {
5495                 DBPRINT(sc, BCE_VERBOSE, "Enabling new receive mode: 0x%08X\n",
5496                         rx_mode);
5497
5498                 sc->rx_mode = rx_mode;
5499                 REG_WR(sc, BCE_EMAC_RX_MODE, rx_mode);
5500         }
5501
5502         /* Disable and clear the exisitng sort before enabling a new sort. */
5503         REG_WR(sc, BCE_RPM_SORT_USER0, 0x0);
5504         REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode);
5505         REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode | BCE_RPM_SORT_USER0_ENA);
5506 }
5507
5508
5509 /****************************************************************************/
5510 /* Called periodically to updates statistics from the controllers           */
5511 /* statistics block.                                                        */
5512 /*                                                                          */
5513 /* Returns:                                                                 */
5514 /*   Nothing.                                                               */
5515 /****************************************************************************/
5516 static void
5517 bce_stats_update(struct bce_softc *sc)
5518 {
5519         struct ifnet *ifp = &sc->arpcom.ac_if;
5520         struct statistics_block *stats = sc->stats_block;
5521
5522         DBPRINT(sc, BCE_EXCESSIVE, "Entering %s()\n", __func__);
5523
5524         ASSERT_SERIALIZED(ifp->if_serializer);
5525
5526         /* 
5527          * Certain controllers don't report carrier sense errors correctly.
5528          * See errata E11_5708CA0_1165.
5529          */
5530         if (!(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
5531             !(BCE_CHIP_ID(sc) == BCE_CHIP_ID_5708_A0)) {
5532                 ifp->if_oerrors +=
5533                         (u_long)stats->stat_Dot3StatsCarrierSenseErrors;
5534         }
5535
5536         /*
5537          * Update the sysctl statistics from the hardware statistics.
5538          */
5539         sc->stat_IfHCInOctets =
5540                 ((uint64_t)stats->stat_IfHCInOctets_hi << 32) +
5541                  (uint64_t)stats->stat_IfHCInOctets_lo;
5542
5543         sc->stat_IfHCInBadOctets =
5544                 ((uint64_t)stats->stat_IfHCInBadOctets_hi << 32) +
5545                  (uint64_t)stats->stat_IfHCInBadOctets_lo;
5546
5547         sc->stat_IfHCOutOctets =
5548                 ((uint64_t)stats->stat_IfHCOutOctets_hi << 32) +
5549                  (uint64_t)stats->stat_IfHCOutOctets_lo;
5550
5551         sc->stat_IfHCOutBadOctets =
5552                 ((uint64_t)stats->stat_IfHCOutBadOctets_hi << 32) +
5553                  (uint64_t)stats->stat_IfHCOutBadOctets_lo;
5554
5555         sc->stat_IfHCInUcastPkts =
5556                 ((uint64_t)stats->stat_IfHCInUcastPkts_hi << 32) +
5557                  (uint64_t)stats->stat_IfHCInUcastPkts_lo;
5558
5559         sc->stat_IfHCInMulticastPkts =
5560                 ((uint64_t)stats->stat_IfHCInMulticastPkts_hi << 32) +
5561                  (uint64_t)stats->stat_IfHCInMulticastPkts_lo;
5562
5563         sc->stat_IfHCInBroadcastPkts =
5564                 ((uint64_t)stats->stat_IfHCInBroadcastPkts_hi << 32) +
5565                  (uint64_t)stats->stat_IfHCInBroadcastPkts_lo;
5566
5567         sc->stat_IfHCOutUcastPkts =
5568                 ((uint64_t)stats->stat_IfHCOutUcastPkts_hi << 32) +
5569                  (uint64_t)stats->stat_IfHCOutUcastPkts_lo;
5570
5571         sc->stat_IfHCOutMulticastPkts =
5572                 ((uint64_t)stats->stat_IfHCOutMulticastPkts_hi << 32) +
5573                  (uint64_t)stats->stat_IfHCOutMulticastPkts_lo;
5574
5575         sc->stat_IfHCOutBroadcastPkts =
5576                 ((uint64_t)stats->stat_IfHCOutBroadcastPkts_hi << 32) +
5577                  (uint64_t)stats->stat_IfHCOutBroadcastPkts_lo;
5578
5579         sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
5580                 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
5581
5582         sc->stat_Dot3StatsCarrierSenseErrors =
5583                 stats->stat_Dot3StatsCarrierSenseErrors;
5584
5585         sc->stat_Dot3StatsFCSErrors =
5586                 stats->stat_Dot3StatsFCSErrors;
5587
5588         sc->stat_Dot3StatsAlignmentErrors =
5589                 stats->stat_Dot3StatsAlignmentErrors;
5590
5591         sc->stat_Dot3StatsSingleCollisionFrames =
5592                 stats->stat_Dot3StatsSingleCollisionFrames;
5593
5594         sc->stat_Dot3StatsMultipleCollisionFrames =
5595                 stats->stat_Dot3StatsMultipleCollisionFrames;
5596
5597         sc->stat_Dot3StatsDeferredTransmissions =
5598                 stats->stat_Dot3StatsDeferredTransmissions;
5599
5600         sc->stat_Dot3StatsExcessiveCollisions =
5601                 stats->stat_Dot3StatsExcessiveCollisions;
5602
5603         sc->stat_Dot3StatsLateCollisions =
5604                 stats->stat_Dot3StatsLateCollisions;
5605
5606         sc->stat_EtherStatsCollisions =
5607                 stats->stat_EtherStatsCollisions;
5608
5609         sc->stat_EtherStatsFragments =
5610                 stats->stat_EtherStatsFragments;
5611
5612         sc->stat_EtherStatsJabbers =
5613                 stats->stat_EtherStatsJabbers;
5614
5615         sc->stat_EtherStatsUndersizePkts =
5616                 stats->stat_EtherStatsUndersizePkts;
5617
5618         sc->stat_EtherStatsOverrsizePkts =
5619                 stats->stat_EtherStatsOverrsizePkts;
5620
5621         sc->stat_EtherStatsPktsRx64Octets =
5622                 stats->stat_EtherStatsPktsRx64Octets;
5623
5624         sc->stat_EtherStatsPktsRx65Octetsto127Octets =
5625                 stats->stat_EtherStatsPktsRx65Octetsto127Octets;
5626
5627         sc->stat_EtherStatsPktsRx128Octetsto255Octets =
5628                 stats->stat_EtherStatsPktsRx128Octetsto255Octets;
5629
5630         sc->stat_EtherStatsPktsRx256Octetsto511Octets =
5631                 stats->stat_EtherStatsPktsRx256Octetsto511Octets;
5632
5633         sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
5634                 stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
5635
5636         sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
5637                 stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
5638
5639         sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
5640                 stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
5641
5642         sc->stat_EtherStatsPktsTx64Octets =
5643                 stats->stat_EtherStatsPktsTx64Octets;
5644
5645         sc->stat_EtherStatsPktsTx65Octetsto127Octets =
5646                 stats->stat_EtherStatsPktsTx65Octetsto127Octets;
5647
5648         sc->stat_EtherStatsPktsTx128Octetsto255Octets =
5649                 stats->stat_EtherStatsPktsTx128Octetsto255Octets;
5650
5651         sc->stat_EtherStatsPktsTx256Octetsto511Octets =
5652                 stats->stat_EtherStatsPktsTx256Octetsto511Octets;
5653
5654         sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
5655                 stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
5656
5657         sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
5658                 stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
5659
5660         sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
5661                 stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
5662
5663         sc->stat_XonPauseFramesReceived =
5664                 stats->stat_XonPauseFramesReceived;
5665
5666         sc->stat_XoffPauseFramesReceived =
5667                 stats->stat_XoffPauseFramesReceived;
5668
5669         sc->stat_OutXonSent =
5670                 stats->stat_OutXonSent;
5671
5672         sc->stat_OutXoffSent =
5673                 stats->stat_OutXoffSent;
5674
5675         sc->stat_FlowControlDone =
5676                 stats->stat_FlowControlDone;
5677
5678         sc->stat_MacControlFramesReceived =
5679                 stats->stat_MacControlFramesReceived;
5680
5681         sc->stat_XoffStateEntered =
5682                 stats->stat_XoffStateEntered;
5683
5684         sc->stat_IfInFramesL2FilterDiscards =
5685                 stats->stat_IfInFramesL2FilterDiscards;
5686
5687         sc->stat_IfInRuleCheckerDiscards =
5688                 stats->stat_IfInRuleCheckerDiscards;
5689
5690         sc->stat_IfInFTQDiscards =
5691                 stats->stat_IfInFTQDiscards;
5692
5693         sc->stat_IfInMBUFDiscards =
5694                 stats->stat_IfInMBUFDiscards;
5695
5696         sc->stat_IfInRuleCheckerP4Hit =
5697                 stats->stat_IfInRuleCheckerP4Hit;
5698
5699         sc->stat_CatchupInRuleCheckerDiscards =
5700                 stats->stat_CatchupInRuleCheckerDiscards;
5701
5702         sc->stat_CatchupInFTQDiscards =
5703                 stats->stat_CatchupInFTQDiscards;
5704
5705         sc->stat_CatchupInMBUFDiscards =
5706                 stats->stat_CatchupInMBUFDiscards;
5707
5708         sc->stat_CatchupInRuleCheckerP4Hit =
5709                 stats->stat_CatchupInRuleCheckerP4Hit;
5710
5711         sc->com_no_buffers = REG_RD_IND(sc, 0x120084);
5712
5713         /*
5714          * Update the interface statistics from the
5715          * hardware statistics.
5716          */
5717         ifp->if_collisions = (u_long)sc->stat_EtherStatsCollisions;
5718
5719         ifp->if_ierrors = (u_long)sc->stat_EtherStatsUndersizePkts +
5720             (u_long)sc->stat_EtherStatsOverrsizePkts +
5721             (u_long)sc->stat_IfInMBUFDiscards +
5722             (u_long)sc->stat_Dot3StatsAlignmentErrors +
5723             (u_long)sc->stat_Dot3StatsFCSErrors +
5724             (u_long)sc->stat_IfInRuleCheckerDiscards +
5725             (u_long)sc->stat_IfInFTQDiscards +
5726             (u_long)sc->com_no_buffers;
5727
5728         ifp->if_oerrors =
5729             (u_long)sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
5730             (u_long)sc->stat_Dot3StatsExcessiveCollisions +
5731             (u_long)sc->stat_Dot3StatsLateCollisions;
5732
5733         DBPRINT(sc, BCE_EXCESSIVE, "Exiting %s()\n", __func__);
5734 }
5735
5736
5737 /****************************************************************************/
5738 /* Periodic function to notify the bootcode that the driver is still        */
5739 /* present.                                                                 */
5740 /*                                                                          */
5741 /* Returns:                                                                 */
5742 /*   Nothing.                                                               */
5743 /****************************************************************************/
5744 static void
5745 bce_pulse(void *xsc)
5746 {
5747         struct bce_softc *sc = xsc;
5748         struct ifnet *ifp = &sc->arpcom.ac_if;
5749         uint32_t msg;
5750
5751         lwkt_serialize_enter(ifp->if_serializer);
5752
5753         /* Tell the firmware that the driver is still running. */
5754         msg = (uint32_t)++sc->bce_fw_drv_pulse_wr_seq;
5755         bce_shmem_wr(sc, BCE_DRV_PULSE_MB, msg);
5756
5757         /* Update the bootcode condition. */
5758         sc->bc_state = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
5759
5760         /* Report whether the bootcode still knows the driver is running. */
5761         if (!sc->bce_drv_cardiac_arrest) {
5762                 if (!(sc->bc_state & BCE_CONDITION_DRV_PRESENT)) {
5763                         sc->bce_drv_cardiac_arrest = 1;
5764                         if_printf(ifp, "Bootcode lost the driver pulse! "
5765                             "(bc_state = 0x%08X)\n", sc->bc_state);
5766                 }
5767         } else {
5768                 /*
5769                  * Not supported by all bootcode versions.
5770                  * (v5.0.11+ and v5.2.1+)  Older bootcode
5771                  * will require the driver to reset the
5772                  * controller to clear this condition.
5773                  */
5774                 if (sc->bc_state & BCE_CONDITION_DRV_PRESENT) {
5775                         sc->bce_drv_cardiac_arrest = 0;
5776                         if_printf(ifp, "Bootcode found the driver pulse! "
5777                             "(bc_state = 0x%08X)\n", sc->bc_state);
5778                 }
5779         }
5780
5781         /* Schedule the next pulse. */
5782         callout_reset(&sc->bce_pulse_callout, hz, bce_pulse, sc);
5783
5784         lwkt_serialize_exit(ifp->if_serializer);
5785 }
5786
5787
5788 /****************************************************************************/
5789 /* Periodic function to check whether MSI is lost                           */
5790 /*                                                                          */
5791 /* Returns:                                                                 */
5792 /*   Nothing.                                                               */
5793 /****************************************************************************/
5794 static void
5795 bce_check_msi(void *xsc)
5796 {
5797         struct bce_softc *sc = xsc;
5798         struct ifnet *ifp = &sc->arpcom.ac_if;
5799         struct status_block *sblk = sc->status_block;
5800
5801
5802         lwkt_serialize_enter(ifp->if_serializer);
5803
5804         KKASSERT(mycpuid == sc->bce_intr_cpuid);
5805
5806         if ((ifp->if_flags & (IFF_RUNNING | IFF_POLLING)) != IFF_RUNNING) {
5807                 lwkt_serialize_exit(ifp->if_serializer);
5808                 return;
5809         }
5810
5811         if (bce_get_hw_rx_cons(sc) != sc->rx_cons ||
5812             bce_get_hw_tx_cons(sc) != sc->tx_cons ||
5813             (sblk->status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
5814             (sblk->status_attn_bits_ack & STATUS_ATTN_BITS_LINK_STATE)) {
5815                 if (sc->bce_check_rx_cons == sc->rx_cons &&
5816                     sc->bce_check_tx_cons == sc->tx_cons &&
5817                     sc->bce_check_status_idx == sc->last_status_idx) {
5818                         uint32_t msi_ctrl;
5819
5820                         if (!sc->bce_msi_maylose) {
5821                                 sc->bce_msi_maylose = TRUE;
5822                                 goto done;
5823                         }
5824
5825                         msi_ctrl = REG_RD(sc, BCE_PCICFG_MSI_CONTROL);
5826                         if (msi_ctrl & BCE_PCICFG_MSI_CONTROL_ENABLE) {
5827                                 if (bootverbose)
5828                                         if_printf(ifp, "lost MSI\n");
5829
5830                                 REG_WR(sc, BCE_PCICFG_MSI_CONTROL,
5831                                     msi_ctrl & ~BCE_PCICFG_MSI_CONTROL_ENABLE);
5832                                 REG_WR(sc, BCE_PCICFG_MSI_CONTROL, msi_ctrl);
5833
5834                                 bce_intr_msi(sc);
5835                         } else if (bootverbose) {
5836                                 if_printf(ifp, "MSI may be lost\n");
5837                         }
5838                 }
5839         }
5840         sc->bce_msi_maylose = FALSE;
5841         sc->bce_check_rx_cons = sc->rx_cons;
5842         sc->bce_check_tx_cons = sc->tx_cons;
5843         sc->bce_check_status_idx = sc->last_status_idx;
5844
5845 done:
5846         callout_reset(&sc->bce_ckmsi_callout, BCE_MSI_CKINTVL,
5847             bce_check_msi, sc);
5848         lwkt_serialize_exit(ifp->if_serializer);
5849 }
5850
5851
5852 /****************************************************************************/
5853 /* Periodic function to perform maintenance tasks.                          */
5854 /*                                                                          */
5855 /* Returns:                                                                 */
5856 /*   Nothing.                                                               */
5857 /****************************************************************************/
5858 static void
5859 bce_tick_serialized(struct bce_softc *sc)
5860 {
5861         struct ifnet *ifp = &sc->arpcom.ac_if;
5862         struct mii_data *mii;
5863
5864         ASSERT_SERIALIZED(ifp->if_serializer);
5865
5866         /* Update the statistics from the hardware statistics block. */
5867         bce_stats_update(sc);
5868
5869         /* Schedule the next tick. */
5870         callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
5871
5872         /* If link is up already up then we're done. */
5873         if (sc->bce_link)
5874                 return;
5875
5876         mii = device_get_softc(sc->bce_miibus);
5877         mii_tick(mii);
5878
5879         /* Check if the link has come up. */
5880         if ((mii->mii_media_status & IFM_ACTIVE) &&
5881             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
5882                 sc->bce_link++;
5883                 /* Now that link is up, handle any outstanding TX traffic. */
5884                 if (!ifq_is_empty(&ifp->if_snd))
5885                         if_devstart(ifp);
5886         }
5887 }
5888
5889
5890 static void
5891 bce_tick(void *xsc)
5892 {
5893         struct bce_softc *sc = xsc;
5894         struct ifnet *ifp = &sc->arpcom.ac_if;
5895
5896         lwkt_serialize_enter(ifp->if_serializer);
5897         bce_tick_serialized(sc);
5898         lwkt_serialize_exit(ifp->if_serializer);
5899 }
5900
5901
5902 #ifdef BCE_DEBUG
5903 /****************************************************************************/
5904 /* Allows the driver state to be dumped through the sysctl interface.       */
5905 /*                                                                          */
5906 /* Returns:                                                                 */
5907 /*   0 for success, positive value for failure.                             */
5908 /****************************************************************************/
5909 static int
5910 bce_sysctl_driver_state(SYSCTL_HANDLER_ARGS)
5911 {
5912         int error;
5913         int result;
5914         struct bce_softc *sc;
5915
5916         result = -1;
5917         error = sysctl_handle_int(oidp, &result, 0, req);
5918
5919         if (error || !req->newptr)
5920                 return (error);
5921
5922         if (result == 1) {
5923                 sc = (struct bce_softc *)arg1;
5924                 bce_dump_driver_state(sc);
5925         }
5926
5927         return error;
5928 }
5929
5930
5931 /****************************************************************************/
5932 /* Allows the hardware state to be dumped through the sysctl interface.     */
5933 /*                                                                          */
5934 /* Returns:                                                                 */
5935 /*   0 for success, positive value for failure.                             */
5936 /****************************************************************************/
5937 static int
5938 bce_sysctl_hw_state(SYSCTL_HANDLER_ARGS)
5939 {
5940         int error;
5941         int result;
5942         struct bce_softc *sc;
5943
5944         result = -1;
5945         error = sysctl_handle_int(oidp, &result, 0, req);
5946
5947         if (error || !req->newptr)
5948                 return (error);
5949
5950         if (result == 1) {
5951                 sc = (struct bce_softc *)arg1;
5952                 bce_dump_hw_state(sc);
5953         }
5954
5955         return error;
5956 }
5957
5958
5959 /****************************************************************************/
5960 /* Provides a sysctl interface to allows dumping the RX chain.              */
5961 /*                                                                          */
5962 /* Returns:                                                                 */
5963 /*   0 for success, positive value for failure.                             */
5964 /****************************************************************************/
5965 static int
5966 bce_sysctl_dump_rx_chain(SYSCTL_HANDLER_ARGS)
5967 {
5968         int error;
5969         int result;
5970         struct bce_softc *sc;
5971
5972         result = -1;
5973         error = sysctl_handle_int(oidp, &result, 0, req);
5974
5975         if (error || !req->newptr)
5976                 return (error);
5977
5978         if (result == 1) {
5979                 sc = (struct bce_softc *)arg1;
5980                 bce_dump_rx_chain(sc, 0, USABLE_RX_BD(sc));
5981         }
5982
5983         return error;
5984 }
5985
5986
5987 /****************************************************************************/
5988 /* Provides a sysctl interface to allows dumping the TX chain.              */
5989 /*                                                                          */
5990 /* Returns:                                                                 */
5991 /*   0 for success, positive value for failure.                             */
5992 /****************************************************************************/
5993 static int
5994 bce_sysctl_dump_tx_chain(SYSCTL_HANDLER_ARGS)
5995 {
5996         int error;
5997         int result;
5998         struct bce_softc *sc;
5999
6000         result = -1;
6001         error = sysctl_handle_int(oidp, &result, 0, req);
6002
6003         if (error || !req->newptr)
6004                 return (error);
6005
6006         if (result == 1) {
6007                 sc = (struct bce_softc *)arg1;
6008                 bce_dump_tx_chain(sc, 0, USABLE_TX_BD(sc));
6009         }
6010
6011         return error;
6012 }
6013
6014
6015 /****************************************************************************/
6016 /* Provides a sysctl interface to allow reading arbitrary registers in the  */
6017 /* device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                            */
6018 /*                                                                          */
6019 /* Returns:                                                                 */
6020 /*   0 for success, positive value for failure.                             */
6021 /****************************************************************************/
6022 static int
6023 bce_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
6024 {
6025         struct bce_softc *sc;
6026         int error;
6027         uint32_t val, result;
6028
6029         result = -1;
6030         error = sysctl_handle_int(oidp, &result, 0, req);
6031         if (error || (req->newptr == NULL))
6032                 return (error);
6033
6034         /* Make sure the register is accessible. */
6035         if (result < 0x8000) {
6036                 sc = (struct bce_softc *)arg1;
6037                 val = REG_RD(sc, result);
6038                 if_printf(&sc->arpcom.ac_if, "reg 0x%08X = 0x%08X\n",
6039                           result, val);
6040         } else if (result < 0x0280000) {
6041                 sc = (struct bce_softc *)arg1;
6042                 val = REG_RD_IND(sc, result);
6043                 if_printf(&sc->arpcom.ac_if, "reg 0x%08X = 0x%08X\n",
6044                           result, val);
6045         }
6046         return (error);
6047 }
6048
6049
6050 /****************************************************************************/
6051 /* Provides a sysctl interface to allow reading arbitrary PHY registers in  */
6052 /* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
6053 /*                                                                          */
6054 /* Returns:                                                                 */
6055 /*   0 for success, positive value for failure.                             */
6056 /****************************************************************************/
6057 static int
6058 bce_sysctl_phy_read(SYSCTL_HANDLER_ARGS)
6059 {
6060         struct bce_softc *sc;
6061         device_t dev;
6062         int error, result;
6063         uint16_t val;
6064
6065         result = -1;
6066         error = sysctl_handle_int(oidp, &result, 0, req);
6067         if (error || (req->newptr == NULL))
6068                 return (error);
6069
6070         /* Make sure the register is accessible. */
6071         if (result < 0x20) {
6072                 sc = (struct bce_softc *)arg1;
6073                 dev = sc->bce_dev;
6074                 val = bce_miibus_read_reg(dev, sc->bce_phy_addr, result);
6075                 if_printf(&sc->arpcom.ac_if,
6076                           "phy 0x%02X = 0x%04X\n", result, val);
6077         }
6078         return (error);
6079 }
6080
6081
6082 /****************************************************************************/
6083 /* Provides a sysctl interface to forcing the driver to dump state and      */
6084 /* enter the debugger.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                */
6085 /*                                                                          */
6086 /* Returns:                                                                 */
6087 /*   0 for success, positive value for failure.                             */
6088 /****************************************************************************/
6089 static int
6090 bce_sysctl_breakpoint(SYSCTL_HANDLER_ARGS)
6091 {
6092         int error;
6093         int result;
6094         struct bce_softc *sc;
6095
6096         result = -1;
6097         error = sysctl_handle_int(oidp, &result, 0, req);
6098
6099         if (error || !req->newptr)
6100                 return (error);
6101
6102         if (result == 1) {
6103                 sc = (struct bce_softc *)arg1;
6104                 bce_breakpoint(sc);
6105         }
6106
6107         return error;
6108 }
6109 #endif
6110
6111
6112 /****************************************************************************/
6113 /* Adds any sysctl parameters for tuning or debugging purposes.             */
6114 /*                                                                          */
6115 /* Returns:                                                                 */
6116 /*   0 for success, positive value for failure.                             */
6117 /****************************************************************************/
6118 static void
6119 bce_add_sysctls(struct bce_softc *sc)
6120 {
6121         struct sysctl_ctx_list *ctx;
6122         struct sysctl_oid_list *children;
6123
6124         sysctl_ctx_init(&sc->bce_sysctl_ctx);
6125         sc->bce_sysctl_tree = SYSCTL_ADD_NODE(&sc->bce_sysctl_ctx,
6126                                               SYSCTL_STATIC_CHILDREN(_hw),
6127                                               OID_AUTO,
6128                                               device_get_nameunit(sc->bce_dev),
6129                                               CTLFLAG_RD, 0, "");
6130         if (sc->bce_sysctl_tree == NULL) {
6131                 device_printf(sc->bce_dev, "can't add sysctl node\n");
6132                 return;
6133         }
6134
6135         ctx = &sc->bce_sysctl_ctx;
6136         children = SYSCTL_CHILDREN(sc->bce_sysctl_tree);
6137
6138         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_bds_int",
6139                         CTLTYPE_INT | CTLFLAG_RW,
6140                         sc, 0, bce_sysctl_tx_bds_int, "I",
6141                         "Send max coalesced BD count during interrupt");
6142         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_bds",
6143                         CTLTYPE_INT | CTLFLAG_RW,
6144                         sc, 0, bce_sysctl_tx_bds, "I",
6145                         "Send max coalesced BD count");
6146         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_ticks_int",
6147                         CTLTYPE_INT | CTLFLAG_RW,
6148                         sc, 0, bce_sysctl_tx_ticks_int, "I",
6149                         "Send coalescing ticks during interrupt");
6150         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_ticks",
6151                         CTLTYPE_INT | CTLFLAG_RW,
6152                         sc, 0, bce_sysctl_tx_ticks, "I",
6153                         "Send coalescing ticks");
6154
6155         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_bds_int",
6156                         CTLTYPE_INT | CTLFLAG_RW,
6157                         sc, 0, bce_sysctl_rx_bds_int, "I",
6158                         "Receive max coalesced BD count during interrupt");
6159         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_bds",
6160                         CTLTYPE_INT | CTLFLAG_RW,
6161                         sc, 0, bce_sysctl_rx_bds, "I",
6162                         "Receive max coalesced BD count");
6163         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_ticks_int",
6164                         CTLTYPE_INT | CTLFLAG_RW,
6165                         sc, 0, bce_sysctl_rx_ticks_int, "I",
6166                         "Receive coalescing ticks during interrupt");
6167         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_ticks",
6168                         CTLTYPE_INT | CTLFLAG_RW,
6169                         sc, 0, bce_sysctl_rx_ticks, "I",
6170                         "Receive coalescing ticks");
6171
6172         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_pages",
6173                 CTLFLAG_RD, &sc->rx_pages, 0, "# of RX pages");
6174         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_pages",
6175                 CTLFLAG_RD, &sc->tx_pages, 0, "# of TX pages");
6176
6177 #ifdef BCE_DEBUG
6178         SYSCTL_ADD_INT(ctx, children, OID_AUTO, 
6179                 "rx_low_watermark",
6180                 CTLFLAG_RD, &sc->rx_low_watermark,
6181                 0, "Lowest level of free rx_bd's");
6182
6183         SYSCTL_ADD_INT(ctx, children, OID_AUTO, 
6184                 "rx_empty_count",
6185                 CTLFLAG_RD, &sc->rx_empty_count,
6186                 0, "Number of times the RX chain was empty");
6187
6188         SYSCTL_ADD_INT(ctx, children, OID_AUTO, 
6189                 "tx_hi_watermark",
6190                 CTLFLAG_RD, &sc->tx_hi_watermark,
6191                 0, "Highest level of used tx_bd's");
6192
6193         SYSCTL_ADD_INT(ctx, children, OID_AUTO, 
6194                 "tx_full_count",
6195                 CTLFLAG_RD, &sc->tx_full_count,
6196                 0, "Number of times the TX chain was full");
6197
6198         SYSCTL_ADD_INT(ctx, children, OID_AUTO, 
6199                 "l2fhdr_status_errors",
6200                 CTLFLAG_RD, &sc->l2fhdr_status_errors,
6201                 0, "l2_fhdr status errors");
6202
6203         SYSCTL_ADD_INT(ctx, children, OID_AUTO, 
6204                 "unexpected_attentions",
6205                 CTLFLAG_RD, &sc->unexpected_attentions,
6206                 0, "unexpected attentions");
6207
6208         SYSCTL_ADD_INT(ctx, children, OID_AUTO, 
6209                 "lost_status_block_updates",
6210                 CTLFLAG_RD, &sc->lost_status_block_updates,
6211                 0, "lost status block updates");
6212
6213         SYSCTL_ADD_INT(ctx, children, OID_AUTO, 
6214                 "mbuf_alloc_failed",
6215                 CTLFLAG_RD, &sc->mbuf_alloc_failed,
6216                 0, "mbuf cluster allocation failures");
6217 #endif
6218
6219         SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 
6220                 "stat_IfHCInOctets",
6221                 CTLFLAG_RD, &sc->stat_IfHCInOctets,
6222                 "Bytes received");
6223
6224         SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 
6225                 "stat_IfHCInBadOctets",
6226                 CTLFLAG_RD, &sc->stat_IfHCInBadOctets,
6227                 "Bad bytes received");
6228
6229         SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 
6230                 "stat_IfHCOutOctets",
6231                 CTLFLAG_RD, &sc->stat_IfHCOutOctets,
6232                 "Bytes sent");
6233
6234         SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 
6235                 "stat_IfHCOutBadOctets",
6236                 CTLFLAG_RD, &sc->stat_IfHCOutBadOctets,
6237                 "Bad bytes sent");
6238
6239         SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 
6240                 "stat_IfHCInUcastPkts",
6241                 CTLFLAG_RD, &sc->stat_IfHCInUcastPkts,
6242                 "Unicast packets received");
6243
6244         SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 
6245                 "stat_IfHCInMulticastPkts",
6246                 CTLFLAG_RD, &sc->stat_IfHCInMulticastPkts,
6247                 "Multicast packets received");
6248
6249         SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 
6250                 "stat_IfHCInBroadcastPkts",
6251                 CTLFLAG_RD, &sc->stat_IfHCInBroadcastPkts,
6252                 "Broadcast packets received");
6253
6254         SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 
6255                 "stat_IfHCOutUcastPkts",
6256                 CTLFLAG_RD, &sc->stat_IfHCOutUcastPkts,
6257                 "Unicast packets sent");
6258
6259         SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 
6260                 "stat_IfHCOutMulticastPkts",
6261                 CTLFLAG_RD, &sc->stat_IfHCOutMulticastPkts,
6262                 "Multicast packets sent");
6263
6264         SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 
6265                 "stat_IfHCOutBroadcastPkts",
6266                 CTLFLAG_RD, &sc->stat_IfHCOutBroadcastPkts,
6267                 "Broadcast packets sent");
6268
6269         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6270                 "stat_emac_tx_stat_dot3statsinternalmactransmiterrors",
6271                 CTLFLAG_RD, &sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors,
6272                 0, "Internal MAC transmit errors");
6273
6274         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6275                 "stat_Dot3StatsCarrierSenseErrors",
6276                 CTLFLAG_RD, &sc->stat_Dot3StatsCarrierSenseErrors,
6277                 0, "Carrier sense errors");
6278
6279         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6280                 "stat_Dot3StatsFCSErrors",
6281                 CTLFLAG_RD, &sc->stat_Dot3StatsFCSErrors,
6282                 0, "Frame check sequence errors");
6283
6284         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6285                 "stat_Dot3StatsAlignmentErrors",
6286                 CTLFLAG_RD, &sc->stat_Dot3StatsAlignmentErrors,
6287                 0, "Alignment errors");
6288
6289         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6290                 "stat_Dot3StatsSingleCollisionFrames",
6291                 CTLFLAG_RD, &sc->stat_Dot3StatsSingleCollisionFrames,
6292                 0, "Single Collision Frames");
6293
6294         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6295                 "stat_Dot3StatsMultipleCollisionFrames",
6296                 CTLFLAG_RD, &sc->stat_Dot3StatsMultipleCollisionFrames,
6297                 0, "Multiple Collision Frames");
6298
6299         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6300                 "stat_Dot3StatsDeferredTransmissions",
6301                 CTLFLAG_RD, &sc->stat_Dot3StatsDeferredTransmissions,
6302                 0, "Deferred Transmissions");
6303
6304         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6305                 "stat_Dot3StatsExcessiveCollisions",
6306                 CTLFLAG_RD, &sc->stat_Dot3StatsExcessiveCollisions,
6307                 0, "Excessive Collisions");
6308
6309         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6310                 "stat_Dot3StatsLateCollisions",
6311                 CTLFLAG_RD, &sc->stat_Dot3StatsLateCollisions,
6312                 0, "Late Collisions");
6313
6314         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6315                 "stat_EtherStatsCollisions",
6316                 CTLFLAG_RD, &sc->stat_EtherStatsCollisions,
6317                 0, "Collisions");
6318
6319         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6320                 "stat_EtherStatsFragments",
6321                 CTLFLAG_RD, &sc->stat_EtherStatsFragments,
6322                 0, "Fragments");
6323
6324         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6325                 "stat_EtherStatsJabbers",
6326                 CTLFLAG_RD, &sc->stat_EtherStatsJabbers,
6327                 0, "Jabbers");
6328
6329         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6330                 "stat_EtherStatsUndersizePkts",
6331                 CTLFLAG_RD, &sc->stat_EtherStatsUndersizePkts,
6332                 0, "Undersize packets");
6333
6334         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6335                 "stat_EtherStatsOverrsizePkts",
6336                 CTLFLAG_RD, &sc->stat_EtherStatsOverrsizePkts,
6337                 0, "stat_EtherStatsOverrsizePkts");
6338
6339         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6340                 "stat_EtherStatsPktsRx64Octets",
6341                 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx64Octets,
6342                 0, "Bytes received in 64 byte packets");
6343
6344         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6345                 "stat_EtherStatsPktsRx65Octetsto127Octets",
6346                 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx65Octetsto127Octets,
6347                 0, "Bytes received in 65 to 127 byte packets");
6348
6349         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6350                 "stat_EtherStatsPktsRx128Octetsto255Octets",
6351                 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx128Octetsto255Octets,
6352                 0, "Bytes received in 128 to 255 byte packets");
6353
6354         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6355                 "stat_EtherStatsPktsRx256Octetsto511Octets",
6356                 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx256Octetsto511Octets,
6357                 0, "Bytes received in 256 to 511 byte packets");
6358
6359         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6360                 "stat_EtherStatsPktsRx512Octetsto1023Octets",
6361                 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx512Octetsto1023Octets,
6362                 0, "Bytes received in 512 to 1023 byte packets");
6363
6364         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6365                 "stat_EtherStatsPktsRx1024Octetsto1522Octets",
6366                 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1024Octetsto1522Octets,
6367                 0, "Bytes received in 1024 t0 1522 byte packets");
6368
6369         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6370                 "stat_EtherStatsPktsRx1523Octetsto9022Octets",
6371                 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1523Octetsto9022Octets,
6372                 0, "Bytes received in 1523 to 9022 byte packets");
6373
6374         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6375                 "stat_EtherStatsPktsTx64Octets",
6376                 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx64Octets,
6377                 0, "Bytes sent in 64 byte packets");
6378
6379         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6380                 "stat_EtherStatsPktsTx65Octetsto127Octets",
6381                 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx65Octetsto127Octets,
6382                 0, "Bytes sent in 65 to 127 byte packets");
6383
6384         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6385                 "stat_EtherStatsPktsTx128Octetsto255Octets",
6386                 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx128Octetsto255Octets,
6387                 0, "Bytes sent in 128 to 255 byte packets");
6388
6389         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6390                 "stat_EtherStatsPktsTx256Octetsto511Octets",
6391                 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx256Octetsto511Octets,
6392                 0, "Bytes sent in 256 to 511 byte packets");
6393
6394         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6395                 "stat_EtherStatsPktsTx512Octetsto1023Octets",
6396                 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx512Octetsto1023Octets,
6397                 0, "Bytes sent in 512 to 1023 byte packets");
6398
6399         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6400                 "stat_EtherStatsPktsTx1024Octetsto1522Octets",
6401                 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1024Octetsto1522Octets,
6402                 0, "Bytes sent in 1024 to 1522 byte packets");
6403
6404         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6405                 "stat_EtherStatsPktsTx1523Octetsto9022Octets",
6406                 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1523Octetsto9022Octets,
6407                 0, "Bytes sent in 1523 to 9022 byte packets");
6408
6409         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6410                 "stat_XonPauseFramesReceived",
6411                 CTLFLAG_RD, &sc->stat_XonPauseFramesReceived,
6412                 0, "XON pause frames receved");
6413
6414         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6415                 "stat_XoffPauseFramesReceived",
6416                 CTLFLAG_RD, &sc->stat_XoffPauseFramesReceived,
6417                 0, "XOFF pause frames received");
6418
6419         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6420                 "stat_OutXonSent",
6421                 CTLFLAG_RD, &sc->stat_OutXonSent,
6422                 0, "XON pause frames sent");
6423
6424         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6425                 "stat_OutXoffSent",
6426                 CTLFLAG_RD, &sc->stat_OutXoffSent,
6427                 0, "XOFF pause frames sent");
6428
6429         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6430                 "stat_FlowControlDone",
6431                 CTLFLAG_RD, &sc->stat_FlowControlDone,
6432                 0, "Flow control done");
6433
6434         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6435                 "stat_MacControlFramesReceived",
6436                 CTLFLAG_RD, &sc->stat_MacControlFramesReceived,
6437                 0, "MAC control frames received");
6438
6439         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6440                 "stat_XoffStateEntered",
6441                 CTLFLAG_RD, &sc->stat_XoffStateEntered,
6442                 0, "XOFF state entered");
6443
6444         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6445                 "stat_IfInFramesL2FilterDiscards",
6446                 CTLFLAG_RD, &sc->stat_IfInFramesL2FilterDiscards,
6447                 0, "Received L2 packets discarded");
6448
6449         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6450                 "stat_IfInRuleCheckerDiscards",
6451                 CTLFLAG_RD, &sc->stat_IfInRuleCheckerDiscards,
6452                 0, "Received packets discarded by rule");
6453
6454         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6455                 "stat_IfInFTQDiscards",
6456                 CTLFLAG_RD, &sc->stat_IfInFTQDiscards,
6457                 0, "Received packet FTQ discards");
6458
6459         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6460                 "stat_IfInMBUFDiscards",
6461                 CTLFLAG_RD, &sc->stat_IfInMBUFDiscards,
6462                 0, "Received packets discarded due to lack of controller buffer memory");
6463
6464         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6465                 "stat_IfInRuleCheckerP4Hit",
6466                 CTLFLAG_RD, &sc->stat_IfInRuleCheckerP4Hit,
6467                 0, "Received packets rule checker hits");
6468
6469         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6470                 "stat_CatchupInRuleCheckerDiscards",
6471                 CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerDiscards,
6472                 0, "Received packets discarded in Catchup path");
6473
6474         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6475                 "stat_CatchupInFTQDiscards",
6476                 CTLFLAG_RD, &sc->stat_CatchupInFTQDiscards,
6477                 0, "Received packets discarded in FTQ in Catchup path");
6478
6479         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6480                 "stat_CatchupInMBUFDiscards",
6481                 CTLFLAG_RD, &sc->stat_CatchupInMBUFDiscards,
6482                 0, "Received packets discarded in controller buffer memory in Catchup path");
6483
6484         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6485                 "stat_CatchupInRuleCheckerP4Hit",
6486                 CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerP4Hit,
6487                 0, "Received packets rule checker hits in Catchup path");
6488
6489         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6490                 "com_no_buffers",
6491                 CTLFLAG_RD, &sc->com_no_buffers,
6492                 0, "Valid packets received but no RX buffers available");
6493
6494 #ifdef BCE_DEBUG
6495         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
6496                 "driver_state", CTLTYPE_INT | CTLFLAG_RW,
6497                 (void *)sc, 0,
6498                 bce_sysctl_driver_state, "I", "Drive state information");
6499
6500         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
6501                 "hw_state", CTLTYPE_INT | CTLFLAG_RW,
6502                 (void *)sc, 0,
6503                 bce_sysctl_hw_state, "I", "Hardware state information");
6504
6505         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
6506                 "dump_rx_chain", CTLTYPE_INT | CTLFLAG_RW,
6507                 (void *)sc, 0,
6508                 bce_sysctl_dump_rx_chain, "I", "Dump rx_bd chain");
6509
6510         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
6511                 "dump_tx_chain", CTLTYPE_INT | CTLFLAG_RW,
6512                 (void *)sc, 0,
6513                 bce_sysctl_dump_tx_chain, "I", "Dump tx_bd chain");
6514
6515         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
6516                 "breakpoint", CTLTYPE_INT | CTLFLAG_RW,
6517                 (void *)sc, 0,
6518                 bce_sysctl_breakpoint, "I", "Driver breakpoint");
6519
6520         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
6521                 "reg_read", CTLTYPE_INT | CTLFLAG_RW,
6522                 (void *)sc, 0,
6523                 bce_sysctl_reg_read, "I", "Register read");
6524
6525         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
6526                 "phy_read", CTLTYPE_INT | CTLFLAG_RW,
6527                 (void *)sc, 0,
6528                 bce_sysctl_phy_read, "I", "PHY register read");
6529
6530 #endif
6531
6532 }
6533
6534
6535 /****************************************************************************/
6536 /* BCE Debug Routines                                                       */
6537 /****************************************************************************/
6538 #ifdef BCE_DEBUG
6539
6540 /****************************************************************************/
6541 /* Freezes the controller to allow for a cohesive state dump.               */
6542 /*                                                                          */
6543 /* Returns:                                                                 */
6544 /*   Nothing.                                                               */
6545 /****************************************************************************/
6546 static void
6547 bce_freeze_controller(struct bce_softc *sc)
6548 {
6549         uint32_t val;
6550
6551         val = REG_RD(sc, BCE_MISC_COMMAND);
6552         val |= BCE_MISC_COMMAND_DISABLE_ALL;
6553         REG_WR(sc, BCE_MISC_COMMAND, val);
6554 }
6555
6556
6557 /****************************************************************************/
6558 /* Unfreezes the controller after a freeze operation.  This may not always  */
6559 /* work and the controller will require a reset!                            */
6560 /*                                                                          */
6561 /* Returns:                                                                 */
6562 /*   Nothing.                                                               */
6563 /****************************************************************************/
6564 static void
6565 bce_unfreeze_controller(struct bce_softc *sc)
6566 {
6567         uint32_t val;
6568
6569         val = REG_RD(sc, BCE_MISC_COMMAND);
6570         val |= BCE_MISC_COMMAND_ENABLE_ALL;
6571         REG_WR(sc, BCE_MISC_COMMAND, val);
6572 }
6573
6574
6575 /****************************************************************************/
6576 /* Prints out information about an mbuf.                                    */
6577 /*                                                                          */
6578 /* Returns:                                                                 */
6579 /*   Nothing.                                                               */
6580 /****************************************************************************/
6581 static void
6582 bce_dump_mbuf(struct bce_softc *sc, struct mbuf *m)
6583 {
6584         struct ifnet *ifp = &sc->arpcom.ac_if;
6585         uint32_t val_hi, val_lo;
6586         struct mbuf *mp = m;
6587
6588         if (m == NULL) {
6589                 /* Index out of range. */
6590                 if_printf(ifp, "mbuf: null pointer\n");
6591                 return;
6592         }
6593
6594         while (mp) {
6595                 val_hi = BCE_ADDR_HI(mp);
6596                 val_lo = BCE_ADDR_LO(mp);
6597                 if_printf(ifp, "mbuf: vaddr = 0x%08X:%08X, m_len = %d, "
6598                           "m_flags = ( ", val_hi, val_lo, mp->m_len);
6599
6600                 if (mp->m_flags & M_EXT)
6601                         kprintf("M_EXT ");
6602                 if (mp->m_flags & M_PKTHDR)
6603                         kprintf("M_PKTHDR ");
6604                 if (mp->m_flags & M_EOR)
6605                         kprintf("M_EOR ");
6606 #ifdef M_RDONLY
6607                 if (mp->m_flags & M_RDONLY)
6608                         kprintf("M_RDONLY ");
6609 #endif
6610
6611                 val_hi = BCE_ADDR_HI(mp->m_data);
6612                 val_lo = BCE_ADDR_LO(mp->m_data);
6613                 kprintf(") m_data = 0x%08X:%08X\n", val_hi, val_lo);
6614
6615                 if (mp->m_flags & M_PKTHDR) {
6616                         if_printf(ifp, "- m_pkthdr: flags = ( ");
6617                         if (mp->m_flags & M_BCAST) 
6618                                 kprintf("M_BCAST ");
6619                         if (mp->m_flags & M_MCAST)
6620                                 kprintf("M_MCAST ");
6621                         if (mp->m_flags & M_FRAG)
6622                                 kprintf("M_FRAG ");
6623                         if (mp->m_flags & M_FIRSTFRAG)
6624                                 kprintf("M_FIRSTFRAG ");
6625                         if (mp->m_flags & M_LASTFRAG)
6626                                 kprintf("M_LASTFRAG ");
6627 #ifdef M_VLANTAG
6628                         if (mp->m_flags & M_VLANTAG)
6629                                 kprintf("M_VLANTAG ");
6630 #endif
6631 #ifdef M_PROMISC
6632                         if (mp->m_flags & M_PROMISC)
6633                                 kprintf("M_PROMISC ");
6634 #endif
6635                         kprintf(") csum_flags = ( ");
6636                         if (mp->m_pkthdr.csum_flags & CSUM_IP)
6637                                 kprintf("CSUM_IP ");
6638                         if (mp->m_pkthdr.csum_flags & CSUM_TCP)
6639                                 kprintf("CSUM_TCP ");
6640                         if (mp->m_pkthdr.csum_flags & CSUM_UDP)
6641                                 kprintf("CSUM_UDP ");
6642                         if (mp->m_pkthdr.csum_flags & CSUM_IP_FRAGS)
6643                                 kprintf("CSUM_IP_FRAGS ");
6644                         if (mp->m_pkthdr.csum_flags & CSUM_FRAGMENT)
6645                                 kprintf("CSUM_FRAGMENT ");
6646 #ifdef CSUM_TSO
6647                         if (mp->m_pkthdr.csum_flags & CSUM_TSO)
6648                                 kprintf("CSUM_TSO ");
6649 #endif
6650                         if (mp->m_pkthdr.csum_flags & CSUM_IP_CHECKED)
6651                                 kprintf("CSUM_IP_CHECKED ");
6652                         if (mp->m_pkthdr.csum_flags & CSUM_IP_VALID)
6653                                 kprintf("CSUM_IP_VALID ");
6654                         if (mp->m_pkthdr.csum_flags & CSUM_DATA_VALID)
6655                                 kprintf("CSUM_DATA_VALID ");
6656                         kprintf(")\n");
6657                 }
6658
6659                 if (mp->m_flags & M_EXT) {
6660                         val_hi = BCE_ADDR_HI(mp->m_ext.ext_buf);
6661                         val_lo = BCE_ADDR_LO(mp->m_ext.ext_buf);
6662                         if_printf(ifp, "- m_ext: vaddr = 0x%08X:%08X, "
6663                                   "ext_size = %d\n",
6664                                   val_hi, val_lo, mp->m_ext.ext_size);
6665                 }
6666                 mp = mp->m_next;
6667         }
6668 }
6669
6670
6671 /****************************************************************************/
6672 /* Prints out the mbufs in the RX mbuf chain.                               */
6673 /*                                                                          */
6674 /* Returns:                                                                 */
6675 /*   Nothing.                                                               */
6676 /****************************************************************************/
6677 static void
6678 bce_dump_rx_mbuf_chain(struct bce_softc *sc, int chain_prod, int count)
6679 {
6680         struct ifnet *ifp = &sc->arpcom.ac_if;
6681         int i;
6682
6683         if_printf(ifp,
6684         "----------------------------"
6685         "  rx mbuf data  "
6686         "----------------------------\n");
6687
6688         for (i = 0; i < count; i++) {
6689                 if_printf(ifp, "rxmbuf[0x%04X]\n", chain_prod);
6690                 bce_dump_mbuf(sc, sc->rx_mbuf_ptr[chain_prod]);
6691                 chain_prod = RX_CHAIN_IDX(sc, NEXT_RX_BD(chain_prod));
6692         }
6693
6694         if_printf(ifp,
6695         "----------------------------"
6696         "----------------"
6697         "----------------------------\n");
6698 }
6699
6700
6701 /****************************************************************************/
6702 /* Prints out a tx_bd structure.                                            */
6703 /*                                                                          */
6704 /* Returns:                                                                 */
6705 /*   Nothing.                                                               */
6706 /****************************************************************************/
6707 static void
6708 bce_dump_txbd(struct bce_softc *sc, int idx, struct tx_bd *txbd)
6709 {
6710         struct ifnet *ifp = &sc->arpcom.ac_if;
6711
6712         if (idx > MAX_TX_BD(sc)) {
6713                 /* Index out of range. */
6714                 if_printf(ifp, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
6715         } else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE) {
6716                 /* TX Chain page pointer. */
6717                 if_printf(ifp, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, "
6718                           "chain page pointer\n",
6719                           idx, txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo);
6720         } else {
6721                 /* Normal tx_bd entry. */
6722                 if_printf(ifp, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, "
6723                           "nbytes = 0x%08X, "
6724                           "vlan tag= 0x%04X, flags = 0x%04X (",
6725                           idx, txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
6726                           txbd->tx_bd_mss_nbytes,
6727                           txbd->tx_bd_vlan_tag, txbd->tx_bd_flags);
6728
6729                 if (txbd->tx_bd_flags & TX_BD_FLAGS_CONN_FAULT)
6730                         kprintf(" CONN_FAULT");
6731
6732                 if (txbd->tx_bd_flags & TX_BD_FLAGS_TCP_UDP_CKSUM)
6733                         kprintf(" TCP_UDP_CKSUM");
6734
6735                 if (txbd->tx_bd_flags & TX_BD_FLAGS_IP_CKSUM)
6736                         kprintf(" IP_CKSUM");
6737
6738                 if (txbd->tx_bd_flags & TX_BD_FLAGS_VLAN_TAG)
6739                         kprintf("  VLAN");
6740
6741                 if (txbd->tx_bd_flags & TX_BD_FLAGS_COAL_NOW)
6742                         kprintf(" COAL_NOW");
6743
6744                 if (txbd->tx_bd_flags & TX_BD_FLAGS_DONT_GEN_CRC)
6745                         kprintf(" DONT_GEN_CRC");
6746
6747                 if (txbd->tx_bd_flags & TX_BD_FLAGS_START)
6748                         kprintf(" START");
6749
6750                 if (txbd->tx_bd_flags & TX_BD_FLAGS_END)
6751                         kprintf(" END");
6752
6753                 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_LSO)
6754                         kprintf(" LSO");
6755
6756                 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_OPTION_WORD)
6757                         kprintf(" OPTION_WORD");
6758
6759                 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_FLAGS)
6760                         kprintf(" FLAGS");
6761
6762                 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_SNAP)
6763                         kprintf(" SNAP");
6764
6765                 kprintf(" )\n");
6766         }
6767 }
6768
6769
6770 /****************************************************************************/
6771 /* Prints out a rx_bd structure.                                            */
6772 /*                                                                          */
6773 /* Returns:                                                                 */
6774 /*   Nothing.                                                               */
6775 /****************************************************************************/
6776 static void
6777 bce_dump_rxbd(struct bce_softc *sc, int idx, struct rx_bd *rxbd)
6778 {
6779         struct ifnet *ifp = &sc->arpcom.ac_if;
6780
6781         if (idx > MAX_RX_BD(sc)) {
6782                 /* Index out of range. */
6783                 if_printf(ifp, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
6784         } else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE) {
6785                 /* TX Chain page pointer. */
6786                 if_printf(ifp, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, "
6787                           "chain page pointer\n",
6788                           idx, rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo);
6789         } else {
6790                 /* Normal tx_bd entry. */
6791                 if_printf(ifp, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, "
6792                           "nbytes = 0x%08X, flags = 0x%08X\n",
6793                           idx, rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
6794                           rxbd->rx_bd_len, rxbd->rx_bd_flags);
6795         }
6796 }
6797
6798
6799 /****************************************************************************/
6800 /* Prints out a l2_fhdr structure.                                          */
6801 /*                                                                          */
6802 /* Returns:                                                                 */
6803 /*   Nothing.                                                               */
6804 /****************************************************************************/
6805 static void
6806 bce_dump_l2fhdr(struct bce_softc *sc, int idx, struct l2_fhdr *l2fhdr)
6807 {
6808         if_printf(&sc->arpcom.ac_if, "l2_fhdr[0x%04X]: status = 0x%08X, "
6809                   "pkt_len = 0x%04X, vlan = 0x%04x, "
6810                   "ip_xsum = 0x%04X, tcp_udp_xsum = 0x%04X\n",
6811                   idx, l2fhdr->l2_fhdr_status,
6812                   l2fhdr->l2_fhdr_pkt_len, l2fhdr->l2_fhdr_vlan_tag,
6813                   l2fhdr->l2_fhdr_ip_xsum, l2fhdr->l2_fhdr_tcp_udp_xsum);
6814 }
6815
6816
6817 /****************************************************************************/
6818 /* Prints out the tx chain.                                                 */
6819 /*                                                                          */
6820 /* Returns:                                                                 */
6821 /*   Nothing.                                                               */
6822 /****************************************************************************/
6823 static void
6824 bce_dump_tx_chain(struct bce_softc *sc, int tx_prod, int count)
6825 {
6826         struct ifnet *ifp = &sc->arpcom.ac_if;
6827         int i;
6828
6829         /* First some info about the tx_bd chain structure. */
6830         if_printf(ifp,
6831         "----------------------------"
6832         "  tx_bd  chain  "
6833         "----------------------------\n");
6834
6835         if_printf(ifp, "page size      = 0x%08X, "
6836                   "tx chain pages        = 0x%08X\n",
6837                   (uint32_t)BCM_PAGE_SIZE, (uint32_t)sc->tx_pages);
6838
6839         if_printf(ifp, "tx_bd per page = 0x%08X, "
6840                   "usable tx_bd per page = 0x%08X\n",
6841                   (uint32_t)TOTAL_TX_BD_PER_PAGE,
6842                   (uint32_t)USABLE_TX_BD_PER_PAGE);
6843
6844         if_printf(ifp, "total tx_bd    = 0x%08X\n", (uint32_t)TOTAL_TX_BD(sc));
6845
6846         if_printf(ifp,
6847         "----------------------------"
6848         "  tx_bd data    "
6849         "----------------------------\n");
6850
6851         /* Now print out the tx_bd's themselves. */
6852         for (i = 0; i < count; i++) {
6853                 struct tx_bd *txbd;
6854
6855                 txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
6856                 bce_dump_txbd(sc, tx_prod, txbd);
6857                 tx_prod = TX_CHAIN_IDX(sc, NEXT_TX_BD(tx_prod));
6858         }
6859
6860         if_printf(ifp,
6861         "----------------------------"
6862         "----------------"
6863         "----------------------------\n");
6864 }
6865
6866
6867 /****************************************************************************/
6868 /* Prints out the rx chain.                                                 */
6869 /*                                                                          */
6870 /* Returns:                                                                 */
6871 /*   Nothing.                                                               */
6872 /****************************************************************************/
6873 static void
6874 bce_dump_rx_chain(struct bce_softc *sc, int rx_prod, int count)
6875 {
6876         struct ifnet *ifp = &sc->arpcom.ac_if;
6877         int i;
6878
6879         /* First some info about the tx_bd chain structure. */
6880         if_printf(ifp,
6881         "----------------------------"
6882         "  rx_bd  chain  "
6883         "----------------------------\n");
6884
6885         if_printf(ifp, "page size      = 0x%08X, "
6886                   "rx chain pages        = 0x%08X\n",
6887                   (uint32_t)BCM_PAGE_SIZE, (uint32_t)sc->rx_pages);
6888
6889         if_printf(ifp, "rx_bd per page = 0x%08X, "
6890                   "usable rx_bd per page = 0x%08X\n",
6891                   (uint32_t)TOTAL_RX_BD_PER_PAGE,
6892                   (uint32_t)USABLE_RX_BD_PER_PAGE);
6893
6894         if_printf(ifp, "total rx_bd    = 0x%08X\n", (uint32_t)TOTAL_RX_BD(sc));
6895
6896         if_printf(ifp,
6897         "----------------------------"
6898         "   rx_bd data   "
6899         "----------------------------\n");
6900
6901         /* Now print out the rx_bd's themselves. */
6902         for (i = 0; i < count; i++) {
6903                 struct rx_bd *rxbd;
6904
6905                 rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
6906                 bce_dump_rxbd(sc, rx_prod, rxbd);
6907                 rx_prod = RX_CHAIN_IDX(sc, NEXT_RX_BD(rx_prod));
6908         }
6909
6910         if_printf(ifp,
6911         "----------------------------"
6912         "----------------"
6913         "----------------------------\n");
6914 }
6915
6916
6917 /****************************************************************************/
6918 /* Prints out the status block from host memory.                            */
6919 /*                                                                          */
6920 /* Returns:                                                                 */
6921 /*   Nothing.                                                               */
6922 /****************************************************************************/
6923 static void
6924 bce_dump_status_block(struct bce_softc *sc)
6925 {
6926         struct status_block *sblk = sc->status_block;
6927         struct ifnet *ifp = &sc->arpcom.ac_if;
6928
6929         if_printf(ifp,
6930         "----------------------------"
6931         "  Status Block  "
6932         "----------------------------\n");
6933
6934         if_printf(ifp, "    0x%08X - attn_bits\n", sblk->status_attn_bits);
6935
6936         if_printf(ifp, "    0x%08X - attn_bits_ack\n",
6937                   sblk->status_attn_bits_ack);
6938
6939         if_printf(ifp, "0x%04X(0x%04X) - rx_cons0\n",
6940             sblk->status_rx_quick_consumer_index0,
6941             (uint16_t)RX_CHAIN_IDX(sc, sblk->status_rx_quick_consumer_index0));
6942
6943         if_printf(ifp, "0x%04X(0x%04X) - tx_cons0\n",
6944             sblk->status_tx_quick_consumer_index0,
6945             (uint16_t)TX_CHAIN_IDX(sc, sblk->status_tx_quick_consumer_index0));
6946
6947         if_printf(ifp, "        0x%04X - status_idx\n", sblk->status_idx);
6948
6949         /* Theses indices are not used for normal L2 drivers. */
6950         if (sblk->status_rx_quick_consumer_index1) {
6951                 if_printf(ifp, "0x%04X(0x%04X) - rx_cons1\n",
6952                 sblk->status_rx_quick_consumer_index1,
6953                 (uint16_t)RX_CHAIN_IDX(sc,
6954                     sblk->status_rx_quick_consumer_index1));
6955         }
6956
6957         if (sblk->status_tx_quick_consumer_index1) {
6958                 if_printf(ifp, "0x%04X(0x%04X) - tx_cons1\n",
6959                 sblk->status_tx_quick_consumer_index1,
6960                 (uint16_t)TX_CHAIN_IDX(sc,
6961                     sblk->status_tx_quick_consumer_index1));
6962         }
6963
6964         if (sblk->status_rx_quick_consumer_index2) {
6965                 if_printf(ifp, "0x%04X(0x%04X)- rx_cons2\n",
6966                 sblk->status_rx_quick_consumer_index2,
6967                 (uint16_t)RX_CHAIN_IDX(sc,
6968                     sblk->status_rx_quick_consumer_index2));
6969         }
6970
6971         if (sblk->status_tx_quick_consumer_index2) {
6972                 if_printf(ifp, "0x%04X(0x%04X) - tx_cons2\n",
6973                 sblk->status_tx_quick_consumer_index2,
6974                 (uint16_t)TX_CHAIN_IDX(sc,
6975                     sblk->status_tx_quick_consumer_index2));
6976         }
6977
6978         if (sblk->status_rx_quick_consumer_index3) {
6979                 if_printf(ifp, "0x%04X(0x%04X) - rx_cons3\n",
6980                 sblk->status_rx_quick_consumer_index3,
6981                 (uint16_t)RX_CHAIN_IDX(sc,
6982                     sblk->status_rx_quick_consumer_index3));
6983         }
6984
6985         if (sblk->status_tx_quick_consumer_index3) {
6986                 if_printf(ifp, "0x%04X(0x%04X) - tx_cons3\n",
6987                 sblk->status_tx_quick_consumer_index3,
6988                 (uint16_t)TX_CHAIN_IDX(sc,
6989                     sblk->status_tx_quick_consumer_index3));
6990         }
6991
6992         if (sblk->status_rx_quick_consumer_index4 ||
6993             sblk->status_rx_quick_consumer_index5) {
6994                 if_printf(ifp, "rx_cons4  = 0x%08X, rx_cons5      = 0x%08X\n",
6995                           sblk->status_rx_quick_consumer_index4,
6996                           sblk->status_rx_quick_consumer_index5);
6997         }
6998
6999         if (sblk->status_rx_quick_consumer_index6 ||
7000             sblk->status_rx_quick_consumer_index7) {
7001                 if_printf(ifp, "rx_cons6  = 0x%08X, rx_cons7      = 0x%08X\n",
7002                           sblk->status_rx_quick_consumer_index6,
7003                           sblk->status_rx_quick_consumer_index7);
7004         }
7005
7006         if (sblk->status_rx_quick_consumer_index8 ||
7007             sblk->status_rx_quick_consumer_index9) {
7008                 if_printf(ifp, "rx_cons8  = 0x%08X, rx_cons9      = 0x%08X\n",
7009                           sblk->status_rx_quick_consumer_index8,
7010                           sblk->status_rx_quick_consumer_index9);
7011         }
7012
7013         if (sblk->status_rx_quick_consumer_index10 ||
7014             sblk->status_rx_quick_consumer_index11) {
7015                 if_printf(ifp, "rx_cons10 = 0x%08X, rx_cons11     = 0x%08X\n",
7016                           sblk->status_rx_quick_consumer_index10,
7017                           sblk->status_rx_quick_consumer_index11);
7018         }
7019
7020         if (sblk->status_rx_quick_consumer_index12 ||
7021             sblk->status_rx_quick_consumer_index13) {
7022                 if_printf(ifp, "rx_cons12 = 0x%08X, rx_cons13     = 0x%08X\n",
7023                           sblk->status_rx_quick_consumer_index12,
7024                           sblk->status_rx_quick_consumer_index13);
7025         }
7026
7027         if (sblk->status_rx_quick_consumer_index14 ||
7028             sblk->status_rx_quick_consumer_index15) {
7029                 if_printf(ifp, "rx_cons14 = 0x%08X, rx_cons15     = 0x%08X\n",
7030                           sblk->status_rx_quick_consumer_index14,
7031                           sblk->status_rx_quick_consumer_index15);
7032         }
7033
7034         if (sblk->status_completion_producer_index ||
7035             sblk->status_cmd_consumer_index) {
7036                 if_printf(ifp, "com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
7037                           sblk->status_completion_producer_index,
7038                           sblk->status_cmd_consumer_index);
7039         }
7040
7041         if_printf(ifp,
7042         "----------------------------"
7043         "----------------"
7044         "----------------------------\n");
7045 }
7046
7047
7048 /****************************************************************************/
7049 /* Prints out the statistics block.                                         */
7050 /*                                                                          */
7051 /* Returns:                                                                 */
7052 /*   Nothing.                                                               */
7053 /****************************************************************************/
7054 static void
7055 bce_dump_stats_block(struct bce_softc *sc)
7056 {
7057         struct statistics_block *sblk = sc->stats_block;
7058         struct ifnet *ifp = &sc->arpcom.ac_if;
7059
7060         if_printf(ifp,
7061         "---------------"
7062         " Stats Block  (All Stats Not Shown Are 0) "
7063         "---------------\n");
7064
7065         if (sblk->stat_IfHCInOctets_hi || sblk->stat_IfHCInOctets_lo) {
7066                 if_printf(ifp, "0x%08X:%08X : IfHcInOctets\n",
7067                           sblk->stat_IfHCInOctets_hi,
7068                           sblk->stat_IfHCInOctets_lo);
7069         }
7070
7071         if (sblk->stat_IfHCInBadOctets_hi || sblk->stat_IfHCInBadOctets_lo) {
7072                 if_printf(ifp, "0x%08X:%08X : IfHcInBadOctets\n",
7073                           sblk->stat_IfHCInBadOctets_hi,
7074                           sblk->stat_IfHCInBadOctets_lo);
7075         }
7076
7077         if (sblk->stat_IfHCOutOctets_hi || sblk->stat_IfHCOutOctets_lo) {
7078                 if_printf(ifp, "0x%08X:%08X : IfHcOutOctets\n",
7079                           sblk->stat_IfHCOutOctets_hi,
7080                           sblk->stat_IfHCOutOctets_lo);
7081         }
7082
7083         if (sblk->stat_IfHCOutBadOctets_hi || sblk->stat_IfHCOutBadOctets_lo) {
7084                 if_printf(ifp, "0x%08X:%08X : IfHcOutBadOctets\n",
7085                           sblk->stat_IfHCOutBadOctets_hi,
7086                           sblk->stat_IfHCOutBadOctets_lo);
7087         }
7088
7089         if (sblk->stat_IfHCInUcastPkts_hi || sblk->stat_IfHCInUcastPkts_lo) {
7090                 if_printf(ifp, "0x%08X:%08X : IfHcInUcastPkts\n",
7091                           sblk->stat_IfHCInUcastPkts_hi,
7092                           sblk->stat_IfHCInUcastPkts_lo);
7093         }
7094
7095         if (sblk->stat_IfHCInBroadcastPkts_hi ||
7096             sblk->stat_IfHCInBroadcastPkts_lo) {
7097                 if_printf(ifp, "0x%08X:%08X : IfHcInBroadcastPkts\n",
7098                           sblk->stat_IfHCInBroadcastPkts_hi,
7099                           sblk->stat_IfHCInBroadcastPkts_lo);
7100         }
7101
7102         if (sblk->stat_IfHCInMulticastPkts_hi ||
7103             sblk->stat_IfHCInMulticastPkts_lo) {
7104                 if_printf(ifp, "0x%08X:%08X : IfHcInMulticastPkts\n",
7105                           sblk->stat_IfHCInMulticastPkts_hi,
7106                           sblk->stat_IfHCInMulticastPkts_lo);
7107         }
7108
7109         if (sblk->stat_IfHCOutUcastPkts_hi || sblk->stat_IfHCOutUcastPkts_lo) {
7110                 if_printf(ifp, "0x%08X:%08X : IfHcOutUcastPkts\n",
7111                           sblk->stat_IfHCOutUcastPkts_hi,
7112                           sblk->stat_IfHCOutUcastPkts_lo);
7113         }
7114
7115         if (sblk->stat_IfHCOutBroadcastPkts_hi ||
7116             sblk->stat_IfHCOutBroadcastPkts_lo) {
7117                 if_printf(ifp, "0x%08X:%08X : IfHcOutBroadcastPkts\n",
7118                           sblk->stat_IfHCOutBroadcastPkts_hi,
7119                           sblk->stat_IfHCOutBroadcastPkts_lo);
7120         }
7121
7122         if (sblk->stat_IfHCOutMulticastPkts_hi ||
7123             sblk->stat_IfHCOutMulticastPkts_lo) {
7124                 if_printf(ifp, "0x%08X:%08X : IfHcOutMulticastPkts\n",
7125                           sblk->stat_IfHCOutMulticastPkts_hi,
7126                           sblk->stat_IfHCOutMulticastPkts_lo);
7127         }
7128
7129         if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors) {
7130                 if_printf(ifp, "         0x%08X : "
7131                 "emac_tx_stat_dot3statsinternalmactransmiterrors\n", 
7132                 sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
7133         }
7134
7135         if (sblk->stat_Dot3StatsCarrierSenseErrors) {
7136                 if_printf(ifp, "         0x%08X : "
7137                           "Dot3StatsCarrierSenseErrors\n",
7138                           sblk->stat_Dot3StatsCarrierSenseErrors);
7139         }
7140
7141         if (sblk->stat_Dot3StatsFCSErrors) {
7142                 if_printf(ifp, "         0x%08X : Dot3StatsFCSErrors\n",
7143                           sblk->stat_Dot3StatsFCSErrors);
7144         }
7145
7146         if (sblk->stat_Dot3StatsAlignmentErrors) {
7147                 if_printf(ifp, "         0x%08X : Dot3StatsAlignmentErrors\n",
7148                           sblk->stat_Dot3StatsAlignmentErrors);
7149         }
7150
7151         if (sblk->stat_Dot3StatsSingleCollisionFrames) {
7152                 if_printf(ifp, "         0x%08X : "
7153                           "Dot3StatsSingleCollisionFrames\n",
7154                           sblk->stat_Dot3StatsSingleCollisionFrames);
7155         }
7156
7157         if (sblk->stat_Dot3StatsMultipleCollisionFrames) {
7158                 if_printf(ifp, "         0x%08X : "
7159                           "Dot3StatsMultipleCollisionFrames\n",
7160                           sblk->stat_Dot3StatsMultipleCollisionFrames);
7161         }
7162
7163         if (sblk->stat_Dot3StatsDeferredTransmissions) {
7164                 if_printf(ifp, "         0x%08X : "
7165                           "Dot3StatsDeferredTransmissions\n",
7166                           sblk->stat_Dot3StatsDeferredTransmissions);
7167         }
7168
7169         if (sblk->stat_Dot3StatsExcessiveCollisions) {
7170                 if_printf(ifp, "         0x%08X : "
7171                           "Dot3StatsExcessiveCollisions\n",
7172                           sblk->stat_Dot3StatsExcessiveCollisions);
7173         }
7174
7175         if (sblk->stat_Dot3StatsLateCollisions) {
7176                 if_printf(ifp, "         0x%08X : Dot3StatsLateCollisions\n",
7177                           sblk->stat_Dot3StatsLateCollisions);
7178         }
7179
7180         if (sblk->stat_EtherStatsCollisions) {
7181                 if_printf(ifp, "         0x%08X : EtherStatsCollisions\n",
7182                           sblk->stat_EtherStatsCollisions);
7183         }
7184
7185         if (sblk->stat_EtherStatsFragments)  {
7186                 if_printf(ifp, "         0x%08X : EtherStatsFragments\n",
7187                           sblk->stat_EtherStatsFragments);
7188         }
7189
7190         if (sblk->stat_EtherStatsJabbers) {
7191                 if_printf(ifp, "         0x%08X : EtherStatsJabbers\n",
7192                           sblk->stat_EtherStatsJabbers);
7193         }
7194
7195         if (sblk->stat_EtherStatsUndersizePkts) {
7196                 if_printf(ifp, "         0x%08X : EtherStatsUndersizePkts\n",
7197                           sblk->stat_EtherStatsUndersizePkts);
7198         }
7199
7200         if (sblk->stat_EtherStatsOverrsizePkts) {
7201                 if_printf(ifp, "         0x%08X : EtherStatsOverrsizePkts\n",
7202                           sblk->stat_EtherStatsOverrsizePkts);
7203         }
7204
7205         if (sblk->stat_EtherStatsPktsRx64Octets) {
7206                 if_printf(ifp, "         0x%08X : EtherStatsPktsRx64Octets\n",
7207                           sblk->stat_EtherStatsPktsRx64Octets);
7208         }
7209
7210         if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets) {
7211                 if_printf(ifp, "         0x%08X : "
7212                           "EtherStatsPktsRx65Octetsto127Octets\n",
7213                           sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
7214         }
7215
7216         if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets) {
7217                 if_printf(ifp, "         0x%08X : "
7218                           "EtherStatsPktsRx128Octetsto255Octets\n",
7219                           sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
7220         }
7221
7222         if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets) {
7223                 if_printf(ifp, "         0x%08X : "
7224                           "EtherStatsPktsRx256Octetsto511Octets\n",
7225                           sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
7226         }
7227
7228         if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets) {
7229                 if_printf(ifp, "         0x%08X : "
7230                           "EtherStatsPktsRx512Octetsto1023Octets\n",
7231                           sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
7232         }
7233
7234         if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets) {
7235                 if_printf(ifp, "         0x%08X : "
7236                           "EtherStatsPktsRx1024Octetsto1522Octets\n",
7237                           sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
7238         }
7239
7240         if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets) {
7241                 if_printf(ifp, "         0x%08X : "
7242                           "EtherStatsPktsRx1523Octetsto9022Octets\n",
7243                           sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
7244         }
7245
7246         if (sblk->stat_EtherStatsPktsTx64Octets) {
7247                 if_printf(ifp, "         0x%08X : EtherStatsPktsTx64Octets\n",
7248                           sblk->stat_EtherStatsPktsTx64Octets);
7249         }
7250
7251         if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets) {
7252                 if_printf(ifp, "         0x%08X : "
7253                           "EtherStatsPktsTx65Octetsto127Octets\n",
7254                           sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
7255         }
7256
7257         if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets) {
7258                 if_printf(ifp, "         0x%08X : "
7259                           "EtherStatsPktsTx128Octetsto255Octets\n",
7260                           sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
7261         }
7262
7263         if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets) {
7264                 if_printf(ifp, "         0x%08X : "
7265                           "EtherStatsPktsTx256Octetsto511Octets\n",
7266                           sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
7267         }
7268
7269         if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets) {
7270                 if_printf(ifp, "         0x%08X : "
7271                           "EtherStatsPktsTx512Octetsto1023Octets\n",
7272                           sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
7273         }
7274
7275         if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets) {
7276                 if_printf(ifp, "         0x%08X : "
7277                           "EtherStatsPktsTx1024Octetsto1522Octets\n",
7278                           sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
7279         }
7280
7281         if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets) {
7282                 if_printf(ifp, "         0x%08X : "
7283                           "EtherStatsPktsTx1523Octetsto9022Octets\n",
7284                           sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
7285         }
7286
7287         if (sblk->stat_XonPauseFramesReceived) {
7288                 if_printf(ifp, "         0x%08X : XonPauseFramesReceived\n",
7289                           sblk->stat_XonPauseFramesReceived);
7290         }
7291
7292         if (sblk->stat_XoffPauseFramesReceived) {
7293                 if_printf(ifp, "          0x%08X : XoffPauseFramesReceived\n",
7294                           sblk->stat_XoffPauseFramesReceived);
7295         }
7296
7297         if (sblk->stat_OutXonSent) {
7298                 if_printf(ifp, "         0x%08X : OutXoffSent\n",
7299                           sblk->stat_OutXonSent);
7300         }
7301
7302         if (sblk->stat_OutXoffSent) {
7303                 if_printf(ifp, "         0x%08X : OutXoffSent\n",
7304                           sblk->stat_OutXoffSent);
7305         }
7306
7307         if (sblk->stat_FlowControlDone) {
7308                 if_printf(ifp, "         0x%08X : FlowControlDone\n",
7309                           sblk->stat_FlowControlDone);
7310         }
7311
7312         if (sblk->stat_MacControlFramesReceived) {
7313                 if_printf(ifp, "         0x%08X : MacControlFramesReceived\n",
7314                           sblk->stat_MacControlFramesReceived);
7315         }
7316
7317         if (sblk->stat_XoffStateEntered) {
7318                 if_printf(ifp, "         0x%08X : XoffStateEntered\n",
7319                           sblk->stat_XoffStateEntered);
7320         }
7321
7322         if (sblk->stat_IfInFramesL2FilterDiscards) {
7323                 if_printf(ifp, "         0x%08X : IfInFramesL2FilterDiscards\n",                          sblk->stat_IfInFramesL2FilterDiscards);
7324         }
7325
7326         if (sblk->stat_IfInRuleCheckerDiscards) {
7327                 if_printf(ifp, "         0x%08X : IfInRuleCheckerDiscards\n",
7328                           sblk->stat_IfInRuleCheckerDiscards);
7329         }
7330
7331         if (sblk->stat_IfInFTQDiscards) {
7332                 if_printf(ifp, "         0x%08X : IfInFTQDiscards\n",
7333                           sblk->stat_IfInFTQDiscards);
7334         }
7335
7336         if (sblk->stat_IfInMBUFDiscards) {
7337                 if_printf(ifp, "         0x%08X : IfInMBUFDiscards\n",
7338                           sblk->stat_IfInMBUFDiscards);
7339         }
7340
7341         if (sblk->stat_IfInRuleCheckerP4Hit) {
7342                 if_printf(ifp, "         0x%08X : IfInRuleCheckerP4Hit\n",
7343                           sblk->stat_IfInRuleCheckerP4Hit);
7344         }
7345
7346         if (sblk->stat_CatchupInRuleCheckerDiscards) {
7347                 if_printf(ifp, "         0x%08X : "
7348                           "CatchupInRuleCheckerDiscards\n",
7349                           sblk->stat_CatchupInRuleCheckerDiscards);
7350         }
7351
7352         if (sblk->stat_CatchupInFTQDiscards) {
7353                 if_printf(ifp, "         0x%08X : CatchupInFTQDiscards\n",
7354                           sblk->stat_CatchupInFTQDiscards);
7355         }
7356
7357         if (sblk->stat_CatchupInMBUFDiscards) {
7358                 if_printf(ifp, "         0x%08X : CatchupInMBUFDiscards\n",
7359                           sblk->stat_CatchupInMBUFDiscards);
7360         }
7361
7362         if (sblk->stat_CatchupInRuleCheckerP4Hit) {
7363                 if_printf(ifp, "         0x%08X : CatchupInRuleCheckerP4Hit\n",
7364                           sblk->stat_CatchupInRuleCheckerP4Hit);
7365         }
7366
7367         if_printf(ifp,
7368         "----------------------------"
7369         "----------------"
7370         "----------------------------\n");
7371 }
7372
7373
7374 /****************************************************************************/
7375 /* Prints out a summary of the driver state.                                */
7376 /*                                                                          */
7377 /* Returns:                                                                 */
7378 /*   Nothing.                                                               */
7379 /****************************************************************************/
7380 static void
7381 bce_dump_driver_state(struct bce_softc *sc)
7382 {
7383         struct ifnet *ifp = &sc->arpcom.ac_if;
7384         uint32_t val_hi, val_lo;
7385
7386         if_printf(ifp,
7387         "-----------------------------"
7388         " Driver State "
7389         "-----------------------------\n");
7390
7391         val_hi = BCE_ADDR_HI(sc);
7392         val_lo = BCE_ADDR_LO(sc);
7393         if_printf(ifp, "0x%08X:%08X - (sc) driver softc structure "
7394                   "virtual address\n", val_hi, val_lo);
7395
7396         val_hi = BCE_ADDR_HI(sc->status_block);
7397         val_lo = BCE_ADDR_LO(sc->status_block);
7398         if_printf(ifp, "0x%08X:%08X - (sc->status_block) status block "
7399                   "virtual address\n", val_hi, val_lo);
7400
7401         val_hi = BCE_ADDR_HI(sc->stats_block);
7402         val_lo = BCE_ADDR_LO(sc->stats_block);
7403         if_printf(ifp, "0x%08X:%08X - (sc->stats_block) statistics block "
7404                   "virtual address\n", val_hi, val_lo);
7405
7406         val_hi = BCE_ADDR_HI(sc->tx_bd_chain);
7407         val_lo = BCE_ADDR_LO(sc->tx_bd_chain);
7408         if_printf(ifp, "0x%08X:%08X - (sc->tx_bd_chain) tx_bd chain "
7409                   "virtual adddress\n", val_hi, val_lo);
7410
7411         val_hi = BCE_ADDR_HI(sc->rx_bd_chain);
7412         val_lo = BCE_ADDR_LO(sc->rx_bd_chain);
7413         if_printf(ifp, "0x%08X:%08X - (sc->rx_bd_chain) rx_bd chain "
7414                   "virtual address\n", val_hi, val_lo);
7415
7416         val_hi = BCE_ADDR_HI(sc->tx_mbuf_ptr);
7417         val_lo = BCE_ADDR_LO(sc->tx_mbuf_ptr);
7418         if_printf(ifp, "0x%08X:%08X - (sc->tx_mbuf_ptr) tx mbuf chain "
7419                   "virtual address\n", val_hi, val_lo);
7420
7421         val_hi = BCE_ADDR_HI(sc->rx_mbuf_ptr);
7422         val_lo = BCE_ADDR_LO(sc->rx_mbuf_ptr);
7423         if_printf(ifp, "0x%08X:%08X - (sc->rx_mbuf_ptr) rx mbuf chain "
7424                   "virtual address\n", val_hi, val_lo);
7425
7426         if_printf(ifp, "         0x%08X - (sc->interrupts_generated) "
7427                   "h/w intrs\n", sc->interrupts_generated);
7428
7429         if_printf(ifp, "         0x%08X - (sc->rx_interrupts) "
7430                   "rx interrupts handled\n", sc->rx_interrupts);
7431
7432         if_printf(ifp, "         0x%08X - (sc->tx_interrupts) "
7433                   "tx interrupts handled\n", sc->tx_interrupts);
7434
7435         if_printf(ifp, "         0x%08X - (sc->last_status_idx) "
7436                   "status block index\n", sc->last_status_idx);
7437
7438         if_printf(ifp, "     0x%04X(0x%04X) - (sc->tx_prod) "
7439                   "tx producer index\n",
7440                   sc->tx_prod, (uint16_t)TX_CHAIN_IDX(sc, sc->tx_prod));
7441
7442         if_printf(ifp, "     0x%04X(0x%04X) - (sc->tx_cons) "
7443                   "tx consumer index\n",
7444                   sc->tx_cons, (uint16_t)TX_CHAIN_IDX(sc, sc->tx_cons));
7445
7446         if_printf(ifp, "         0x%08X - (sc->tx_prod_bseq) "
7447                   "tx producer bseq index\n", sc->tx_prod_bseq);
7448
7449         if_printf(ifp, "     0x%04X(0x%04X) - (sc->rx_prod) "
7450                   "rx producer index\n",
7451                   sc->rx_prod, (uint16_t)RX_CHAIN_IDX(sc, sc->rx_prod));
7452
7453         if_printf(ifp, "     0x%04X(0x%04X) - (sc->rx_cons) "
7454                   "rx consumer index\n",
7455                   sc->rx_cons, (uint16_t)RX_CHAIN_IDX(sc, sc->rx_cons));
7456
7457         if_printf(ifp, "         0x%08X - (sc->rx_prod_bseq) "
7458                   "rx producer bseq index\n", sc->rx_prod_bseq);
7459
7460         if_printf(ifp, "         0x%08X - (sc->rx_mbuf_alloc) "
7461                   "rx mbufs allocated\n", sc->rx_mbuf_alloc);
7462
7463         if_printf(ifp, "         0x%08X - (sc->free_rx_bd) "
7464                   "free rx_bd's\n", sc->free_rx_bd);
7465
7466         if_printf(ifp, "0x%08X/%08X - (sc->rx_low_watermark) rx "
7467                   "low watermark\n", sc->rx_low_watermark, sc->max_rx_bd);
7468
7469         if_printf(ifp, "         0x%08X - (sc->txmbuf_alloc) "
7470                   "tx mbufs allocated\n", sc->tx_mbuf_alloc);
7471
7472         if_printf(ifp, "         0x%08X - (sc->rx_mbuf_alloc) "
7473                   "rx mbufs allocated\n", sc->rx_mbuf_alloc);
7474
7475         if_printf(ifp, "         0x%08X - (sc->used_tx_bd) used tx_bd's\n",
7476                   sc->used_tx_bd);
7477
7478         if_printf(ifp, "0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
7479                   sc->tx_hi_watermark, sc->max_tx_bd);
7480
7481         if_printf(ifp, "         0x%08X - (sc->mbuf_alloc_failed) "
7482                   "failed mbuf alloc\n", sc->mbuf_alloc_failed);
7483
7484         if_printf(ifp,
7485         "----------------------------"
7486         "----------------"
7487         "----------------------------\n");
7488 }
7489
7490
7491 /****************************************************************************/
7492 /* Prints out the hardware state through a summary of important registers,  */
7493 /* followed by a complete register dump.                                    */
7494 /*                                                                          */
7495 /* Returns:                                                                 */
7496 /*   Nothing.                                                               */
7497 /****************************************************************************/
7498 static void
7499 bce_dump_hw_state(struct bce_softc *sc)
7500 {
7501         struct ifnet *ifp = &sc->arpcom.ac_if;
7502         uint32_t val1;
7503         int i;
7504
7505         if_printf(ifp,
7506         "----------------------------"
7507         " Hardware State "
7508         "----------------------------\n");
7509
7510         if_printf(ifp, "%s - bootcode version\n", sc->bce_bc_ver);
7511
7512         val1 = REG_RD(sc, BCE_MISC_ENABLE_STATUS_BITS);
7513         if_printf(ifp, "0x%08X - (0x%06X) misc_enable_status_bits\n",
7514                   val1, BCE_MISC_ENABLE_STATUS_BITS);
7515
7516         val1 = REG_RD(sc, BCE_DMA_STATUS);
7517         if_printf(ifp, "0x%08X - (0x%04X) dma_status\n", val1, BCE_DMA_STATUS);
7518
7519         val1 = REG_RD(sc, BCE_CTX_STATUS);
7520         if_printf(ifp, "0x%08X - (0x%04X) ctx_status\n", val1, BCE_CTX_STATUS);
7521
7522         val1 = REG_RD(sc, BCE_EMAC_STATUS);
7523         if_printf(ifp, "0x%08X - (0x%04X) emac_status\n",
7524                   val1, BCE_EMAC_STATUS);
7525
7526         val1 = REG_RD(sc, BCE_RPM_STATUS);
7527         if_printf(ifp, "0x%08X - (0x%04X) rpm_status\n", val1, BCE_RPM_STATUS);
7528
7529         val1 = REG_RD(sc, BCE_TBDR_STATUS);
7530         if_printf(ifp, "0x%08X - (0x%04X) tbdr_status\n",
7531                   val1, BCE_TBDR_STATUS);
7532
7533         val1 = REG_RD(sc, BCE_TDMA_STATUS);
7534         if_printf(ifp, "0x%08X - (0x%04X) tdma_status\n",
7535                   val1, BCE_TDMA_STATUS);
7536
7537         val1 = REG_RD(sc, BCE_HC_STATUS);
7538         if_printf(ifp, "0x%08X - (0x%06X) hc_status\n", val1, BCE_HC_STATUS);
7539
7540         val1 = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
7541         if_printf(ifp, "0x%08X - (0x%06X) txp_cpu_state\n",
7542                   val1, BCE_TXP_CPU_STATE);
7543
7544         val1 = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
7545         if_printf(ifp, "0x%08X - (0x%06X) tpat_cpu_state\n",
7546                   val1, BCE_TPAT_CPU_STATE);
7547
7548         val1 = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
7549         if_printf(ifp, "0x%08X - (0x%06X) rxp_cpu_state\n",
7550                   val1, BCE_RXP_CPU_STATE);
7551
7552         val1 = REG_RD_IND(sc, BCE_COM_CPU_STATE);
7553         if_printf(ifp, "0x%08X - (0x%06X) com_cpu_state\n",
7554                   val1, BCE_COM_CPU_STATE);
7555
7556         val1 = REG_RD_IND(sc, BCE_MCP_CPU_STATE);
7557         if_printf(ifp, "0x%08X - (0x%06X) mcp_cpu_state\n",
7558                   val1, BCE_MCP_CPU_STATE);
7559
7560         val1 = REG_RD_IND(sc, BCE_CP_CPU_STATE);
7561         if_printf(ifp, "0x%08X - (0x%06X) cp_cpu_state\n",
7562                   val1, BCE_CP_CPU_STATE);
7563
7564         if_printf(ifp,
7565         "----------------------------"
7566         "----------------"
7567         "----------------------------\n");
7568
7569         if_printf(ifp,
7570         "----------------------------"
7571         " Register  Dump "
7572         "----------------------------\n");
7573
7574         for (i = 0x400; i < 0x8000; i += 0x10) {
7575                 if_printf(ifp, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", i,
7576                           REG_RD(sc, i),
7577                           REG_RD(sc, i + 0x4),
7578                           REG_RD(sc, i + 0x8),
7579                           REG_RD(sc, i + 0xc));
7580         }
7581
7582         if_printf(ifp,
7583         "----------------------------"
7584         "----------------"
7585         "----------------------------\n");
7586 }
7587
7588
7589 /****************************************************************************/
7590 /* Prints out the TXP state.                                                */
7591 /*                                                                          */
7592 /* Returns:                                                                 */
7593 /*   Nothing.                                                               */
7594 /****************************************************************************/
7595 static void
7596 bce_dump_txp_state(struct bce_softc *sc)
7597 {
7598         struct ifnet *ifp = &sc->arpcom.ac_if;
7599         uint32_t val1;
7600         int i;
7601
7602         if_printf(ifp,
7603         "----------------------------"
7604         "   TXP  State   "
7605         "----------------------------\n");
7606
7607         val1 = REG_RD_IND(sc, BCE_TXP_CPU_MODE);
7608         if_printf(ifp, "0x%08X - (0x%06X) txp_cpu_mode\n",
7609                   val1, BCE_TXP_CPU_MODE);
7610
7611         val1 = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
7612         if_printf(ifp, "0x%08X - (0x%06X) txp_cpu_state\n",
7613                   val1, BCE_TXP_CPU_STATE);
7614
7615         val1 = REG_RD_IND(sc, BCE_TXP_CPU_EVENT_MASK);
7616         if_printf(ifp, "0x%08X - (0x%06X) txp_cpu_event_mask\n",
7617                   val1, BCE_TXP_CPU_EVENT_MASK);
7618
7619         if_printf(ifp,
7620         "----------------------------"
7621         " Register  Dump "
7622         "----------------------------\n");
7623
7624         for (i = BCE_TXP_CPU_MODE; i < 0x68000; i += 0x10) {
7625                 /* Skip the big blank spaces */
7626                 if (i < 0x454000 && i > 0x5ffff) {
7627                         if_printf(ifp, "0x%04X: "
7628                                   "0x%08X 0x%08X 0x%08X 0x%08X\n", i,
7629                                   REG_RD_IND(sc, i),
7630                                   REG_RD_IND(sc, i + 0x4),
7631                                   REG_RD_IND(sc, i + 0x8),
7632                                   REG_RD_IND(sc, i + 0xc));
7633                 }
7634         }
7635
7636         if_printf(ifp,
7637         "----------------------------"
7638         "----------------"
7639         "----------------------------\n");
7640 }
7641
7642
7643 /****************************************************************************/
7644 /* Prints out the RXP state.                                                */
7645 /*                                                                          */
7646 /* Returns:                                                                 */
7647 /*   Nothing.                                                               */
7648 /****************************************************************************/
7649 static void
7650 bce_dump_rxp_state(struct bce_softc *sc)
7651 {
7652         struct ifnet *ifp = &sc->arpcom.ac_if;
7653         uint32_t val1;
7654         int i;
7655
7656         if_printf(ifp,
7657         "----------------------------"
7658         "   RXP  State   "
7659         "----------------------------\n");
7660
7661         val1 = REG_RD_IND(sc, BCE_RXP_CPU_MODE);
7662         if_printf(ifp, "0x%08X - (0x%06X) rxp_cpu_mode\n",
7663                   val1, BCE_RXP_CPU_MODE);
7664
7665         val1 = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
7666         if_printf(ifp, "0x%08X - (0x%06X) rxp_cpu_state\n",
7667                   val1, BCE_RXP_CPU_STATE);
7668
7669         val1 = REG_RD_IND(sc, BCE_RXP_CPU_EVENT_MASK);
7670         if_printf(ifp, "0x%08X - (0x%06X) rxp_cpu_event_mask\n",
7671                   val1, BCE_RXP_CPU_EVENT_MASK);
7672
7673         if_printf(ifp,
7674         "----------------------------"
7675         " Register  Dump "
7676         "----------------------------\n");
7677
7678         for (i = BCE_RXP_CPU_MODE; i < 0xe8fff; i += 0x10) {
7679                 /* Skip the big blank sapces */
7680                 if (i < 0xc5400 && i > 0xdffff) {
7681                         if_printf(ifp, "0x%04X: "
7682                                   "0x%08X 0x%08X 0x%08X 0x%08X\n", i,
7683                                   REG_RD_IND(sc, i),
7684                                   REG_RD_IND(sc, i + 0x4),
7685                                   REG_RD_IND(sc, i + 0x8),
7686                                   REG_RD_IND(sc, i + 0xc));
7687                 }
7688         }
7689
7690         if_printf(ifp,
7691         "----------------------------"
7692         "----------------"
7693         "----------------------------\n");
7694 }
7695
7696
7697 /****************************************************************************/
7698 /* Prints out the TPAT state.                                               */
7699 /*                                                                          */
7700 /* Returns:                                                                 */
7701 /*   Nothing.                                                               */
7702 /****************************************************************************/
7703 static void
7704 bce_dump_tpat_state(struct bce_softc *sc)
7705 {
7706         struct ifnet *ifp = &sc->arpcom.ac_if;
7707         uint32_t val1;
7708         int i;
7709
7710         if_printf(ifp,
7711         "----------------------------"
7712         "   TPAT State   "
7713         "----------------------------\n");
7714
7715         val1 = REG_RD_IND(sc, BCE_TPAT_CPU_MODE);
7716         if_printf(ifp, "0x%08X - (0x%06X) tpat_cpu_mode\n",
7717                   val1, BCE_TPAT_CPU_MODE);
7718
7719         val1 = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
7720         if_printf(ifp, "0x%08X - (0x%06X) tpat_cpu_state\n",
7721                   val1, BCE_TPAT_CPU_STATE);
7722
7723         val1 = REG_RD_IND(sc, BCE_TPAT_CPU_EVENT_MASK);
7724         if_printf(ifp, "0x%08X - (0x%06X) tpat_cpu_event_mask\n",
7725                   val1, BCE_TPAT_CPU_EVENT_MASK);
7726
7727         if_printf(ifp,
7728         "----------------------------"
7729         " Register  Dump "
7730         "----------------------------\n");
7731
7732         for (i = BCE_TPAT_CPU_MODE; i < 0xa3fff; i += 0x10) {
7733                 /* Skip the big blank spaces */
7734                 if (i < 0x854000 && i > 0x9ffff) {
7735                         if_printf(ifp, "0x%04X: "
7736                                   "0x%08X 0x%08X 0x%08X 0x%08X\n", i,
7737                                   REG_RD_IND(sc, i),
7738                                   REG_RD_IND(sc, i + 0x4),
7739                                   REG_RD_IND(sc, i + 0x8),
7740                                   REG_RD_IND(sc, i + 0xc));
7741                 }
7742         }
7743
7744         if_printf(ifp,
7745         "----------------------------"
7746         "----------------"
7747         "----------------------------\n");
7748 }
7749
7750
7751 /****************************************************************************/
7752 /* Prints out the driver state and then enters the debugger.                */
7753 /*                                                                          */
7754 /* Returns:                                                                 */
7755 /*   Nothing.                                                               */
7756 /****************************************************************************/
7757 static void
7758 bce_breakpoint(struct bce_softc *sc)
7759 {
7760 #if 0
7761         bce_freeze_controller(sc);
7762 #endif
7763
7764         bce_dump_driver_state(sc);
7765         bce_dump_status_block(sc);
7766         bce_dump_tx_chain(sc, 0, TOTAL_TX_BD(sc));
7767         bce_dump_hw_state(sc);
7768         bce_dump_txp_state(sc);
7769
7770 #if 0
7771         bce_unfreeze_controller(sc);
7772 #endif
7773
7774         /* Call the debugger. */
7775         breakpoint();
7776 }
7777
7778 #endif  /* BCE_DEBUG */
7779
7780 static int
7781 bce_sysctl_tx_bds_int(SYSCTL_HANDLER_ARGS)
7782 {
7783         struct bce_softc *sc = arg1;
7784
7785         return bce_sysctl_coal_change(oidp, arg1, arg2, req,
7786                         &sc->bce_tx_quick_cons_trip_int,
7787                         BCE_COALMASK_TX_BDS_INT);
7788 }
7789
7790 static int
7791 bce_sysctl_tx_bds(SYSCTL_HANDLER_ARGS)
7792 {
7793         struct bce_softc *sc = arg1;
7794
7795         return bce_sysctl_coal_change(oidp, arg1, arg2, req,
7796                         &sc->bce_tx_quick_cons_trip,
7797                         BCE_COALMASK_TX_BDS);
7798 }
7799
7800 static int
7801 bce_sysctl_tx_ticks_int(SYSCTL_HANDLER_ARGS)
7802 {
7803         struct bce_softc *sc = arg1;
7804
7805         return bce_sysctl_coal_change(oidp, arg1, arg2, req,
7806                         &sc->bce_tx_ticks_int,
7807                         BCE_COALMASK_TX_TICKS_INT);
7808 }
7809
7810 static int
7811 bce_sysctl_tx_ticks(SYSCTL_HANDLER_ARGS)
7812 {
7813         struct bce_softc *sc = arg1;
7814
7815         return bce_sysctl_coal_change(oidp, arg1, arg2, req,
7816                         &sc->bce_tx_ticks,
7817                         BCE_COALMASK_TX_TICKS);
7818 }
7819
7820 static int
7821 bce_sysctl_rx_bds_int(SYSCTL_HANDLER_ARGS)
7822 {
7823         struct bce_softc *sc = arg1;
7824
7825         return bce_sysctl_coal_change(oidp, arg1, arg2, req,
7826                         &sc->bce_rx_quick_cons_trip_int,
7827                         BCE_COALMASK_RX_BDS_INT);
7828 }
7829
7830 static int
7831 bce_sysctl_rx_bds(SYSCTL_HANDLER_ARGS)
7832 {
7833         struct bce_softc *sc = arg1;
7834
7835         return bce_sysctl_coal_change(oidp, arg1, arg2, req,
7836                         &sc->bce_rx_quick_cons_trip,
7837                         BCE_COALMASK_RX_BDS);
7838 }
7839
7840 static int
7841 bce_sysctl_rx_ticks_int(SYSCTL_HANDLER_ARGS)
7842 {
7843         struct bce_softc *sc = arg1;
7844
7845         return bce_sysctl_coal_change(oidp, arg1, arg2, req,
7846                         &sc->bce_rx_ticks_int,
7847                         BCE_COALMASK_RX_TICKS_INT);
7848 }
7849
7850 static int
7851 bce_sysctl_rx_ticks(SYSCTL_HANDLER_ARGS)
7852 {
7853         struct bce_softc *sc = arg1;
7854
7855         return bce_sysctl_coal_change(oidp, arg1, arg2, req,
7856                         &sc->bce_rx_ticks,
7857                         BCE_COALMASK_RX_TICKS);
7858 }
7859
7860 static int
7861 bce_sysctl_coal_change(SYSCTL_HANDLER_ARGS, uint32_t *coal,
7862                        uint32_t coalchg_mask)
7863 {
7864         struct bce_softc *sc = arg1;
7865         struct ifnet *ifp = &sc->arpcom.ac_if;
7866         int error = 0, v;
7867
7868         lwkt_serialize_enter(ifp->if_serializer);
7869
7870         v = *coal;
7871         error = sysctl_handle_int(oidp, &v, 0, req);
7872         if (!error && req->newptr != NULL) {
7873                 if (v < 0) {
7874                         error = EINVAL;
7875                 } else {
7876                         *coal = v;
7877                         sc->bce_coalchg_mask |= coalchg_mask;
7878                 }
7879         }
7880
7881         lwkt_serialize_exit(ifp->if_serializer);
7882         return error;
7883 }
7884
7885 static void
7886 bce_coal_change(struct bce_softc *sc)
7887 {
7888         struct ifnet *ifp = &sc->arpcom.ac_if;
7889
7890         ASSERT_SERIALIZED(ifp->if_serializer);
7891
7892         if ((ifp->if_flags & IFF_RUNNING) == 0) {
7893                 sc->bce_coalchg_mask = 0;
7894                 return;
7895         }
7896
7897         if (sc->bce_coalchg_mask &
7898             (BCE_COALMASK_TX_BDS | BCE_COALMASK_TX_BDS_INT)) {
7899                 REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
7900                        (sc->bce_tx_quick_cons_trip_int << 16) |
7901                        sc->bce_tx_quick_cons_trip);
7902                 if (bootverbose) {
7903                         if_printf(ifp, "tx_bds %u, tx_bds_int %u\n",
7904                                   sc->bce_tx_quick_cons_trip,
7905                                   sc->bce_tx_quick_cons_trip_int);
7906                 }
7907         }
7908
7909         if (sc->bce_coalchg_mask &
7910             (BCE_COALMASK_TX_TICKS | BCE_COALMASK_TX_TICKS_INT)) {
7911                 REG_WR(sc, BCE_HC_TX_TICKS,
7912                        (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks);
7913                 if (bootverbose) {
7914                         if_printf(ifp, "tx_ticks %u, tx_ticks_int %u\n",
7915                                   sc->bce_tx_ticks, sc->bce_tx_ticks_int);
7916                 }
7917         }
7918
7919         if (sc->bce_coalchg_mask &
7920             (BCE_COALMASK_RX_BDS | BCE_COALMASK_RX_BDS_INT)) {
7921                 REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
7922                        (sc->bce_rx_quick_cons_trip_int << 16) |
7923                        sc->bce_rx_quick_cons_trip);
7924                 if (bootverbose) {
7925                         if_printf(ifp, "rx_bds %u, rx_bds_int %u\n",
7926                                   sc->bce_rx_quick_cons_trip,
7927                                   sc->bce_rx_quick_cons_trip_int);
7928                 }
7929         }
7930
7931         if (sc->bce_coalchg_mask &
7932             (BCE_COALMASK_RX_TICKS | BCE_COALMASK_RX_TICKS_INT)) {
7933                 REG_WR(sc, BCE_HC_RX_TICKS,
7934                        (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks);
7935                 if (bootverbose) {
7936                         if_printf(ifp, "rx_ticks %u, rx_ticks_int %u\n",
7937                                   sc->bce_rx_ticks, sc->bce_rx_ticks_int);
7938                 }
7939         }
7940
7941         sc->bce_coalchg_mask = 0;
7942 }
7943
7944 static int
7945 bce_tso_setup(struct bce_softc *sc, struct mbuf **mp,
7946     uint16_t *flags0, uint16_t *mss0)
7947 {
7948         struct mbuf *m;
7949         uint16_t flags;
7950         int thoff, iphlen, hoff;
7951
7952         m = *mp;
7953         KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
7954
7955         hoff = m->m_pkthdr.csum_lhlen;
7956         iphlen = m->m_pkthdr.csum_iphlen;
7957         thoff = m->m_pkthdr.csum_thlen;
7958
7959         KASSERT(hoff >= sizeof(struct ether_header),
7960             ("invalid ether header len %d", hoff));
7961         KASSERT(iphlen >= sizeof(struct ip),
7962             ("invalid ip header len %d", iphlen));
7963         KASSERT(thoff >= sizeof(struct tcphdr),
7964             ("invalid tcp header len %d", thoff));
7965
7966         if (__predict_false(m->m_len < hoff + iphlen + thoff)) {
7967                 m = m_pullup(m, hoff + iphlen + thoff);
7968                 if (m == NULL) {
7969                         *mp = NULL;
7970                         return ENOBUFS;
7971                 }
7972                 *mp = m;
7973         }
7974
7975         /* Set the LSO flag in the TX BD */
7976         flags = TX_BD_FLAGS_SW_LSO;
7977
7978         /* Set the length of IP + TCP options (in 32 bit words) */
7979         flags |= (((iphlen + thoff -
7980             sizeof(struct ip) - sizeof(struct tcphdr)) >> 2) << 8);
7981
7982         *mss0 = htole16(m->m_pkthdr.tso_segsz);
7983         *flags0 = flags;
7984
7985         return 0;
7986 }