Merge branch 'vendor/MPFR' into gcc441
[dragonfly.git] / sys / vm / vm_page.c
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *      This product includes software developed by the University of
19  *      California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *      from: @(#)vm_page.c     7.4 (Berkeley) 5/7/91
37  * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $
38  * $DragonFly: src/sys/vm/vm_page.c,v 1.40 2008/08/25 17:01:42 dillon Exp $
39  */
40
41 /*
42  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
43  * All rights reserved.
44  *
45  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
46  *
47  * Permission to use, copy, modify and distribute this software and
48  * its documentation is hereby granted, provided that both the copyright
49  * notice and this permission notice appear in all copies of the
50  * software, derivative works or modified versions, and any portions
51  * thereof, and that both notices appear in supporting documentation.
52  *
53  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
54  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
55  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
56  *
57  * Carnegie Mellon requests users of this software to return to
58  *
59  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
60  *  School of Computer Science
61  *  Carnegie Mellon University
62  *  Pittsburgh PA 15213-3890
63  *
64  * any improvements or extensions that they make and grant Carnegie the
65  * rights to redistribute these changes.
66  */
67 /*
68  * Resident memory management module.  The module manipulates 'VM pages'.
69  * A VM page is the core building block for memory management.
70  */
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/malloc.h>
75 #include <sys/proc.h>
76 #include <sys/vmmeter.h>
77 #include <sys/vnode.h>
78
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <sys/lock.h>
82 #include <vm/vm_kern.h>
83 #include <vm/pmap.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_object.h>
86 #include <vm/vm_page.h>
87 #include <vm/vm_pageout.h>
88 #include <vm/vm_pager.h>
89 #include <vm/vm_extern.h>
90 #include <vm/vm_page2.h>
91
92 static void vm_page_queue_init(void);
93 static void vm_page_free_wakeup(void);
94 static vm_page_t vm_page_select_cache(vm_object_t, vm_pindex_t);
95 static vm_page_t _vm_page_list_find2(int basequeue, int index);
96
97 struct vpgqueues vm_page_queues[PQ_COUNT]; /* Array of tailq lists */
98
99 #define ASSERT_IN_CRIT_SECTION()        KKASSERT(crit_test(curthread));
100
101 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare,
102              vm_pindex_t, pindex);
103
104 static void
105 vm_page_queue_init(void) 
106 {
107         int i;
108
109         for (i = 0; i < PQ_L2_SIZE; i++)
110                 vm_page_queues[PQ_FREE+i].cnt = &vmstats.v_free_count;
111         for (i = 0; i < PQ_L2_SIZE; i++)
112                 vm_page_queues[PQ_CACHE+i].cnt = &vmstats.v_cache_count;
113
114         vm_page_queues[PQ_INACTIVE].cnt = &vmstats.v_inactive_count;
115         vm_page_queues[PQ_ACTIVE].cnt = &vmstats.v_active_count;
116         vm_page_queues[PQ_HOLD].cnt = &vmstats.v_active_count;
117         /* PQ_NONE has no queue */
118
119         for (i = 0; i < PQ_COUNT; i++)
120                 TAILQ_INIT(&vm_page_queues[i].pl);
121 }
122
123 /*
124  * note: place in initialized data section?  Is this necessary?
125  */
126 long first_page = 0;
127 int vm_page_array_size = 0;
128 int vm_page_zero_count = 0;
129 vm_page_t vm_page_array = 0;
130
131 /*
132  * (low level boot)
133  *
134  * Sets the page size, perhaps based upon the memory size.
135  * Must be called before any use of page-size dependent functions.
136  */
137 void
138 vm_set_page_size(void)
139 {
140         if (vmstats.v_page_size == 0)
141                 vmstats.v_page_size = PAGE_SIZE;
142         if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0)
143                 panic("vm_set_page_size: page size not a power of two");
144 }
145
146 /*
147  * (low level boot)
148  *
149  * Add a new page to the freelist for use by the system.  New pages
150  * are added to both the head and tail of the associated free page
151  * queue in a bottom-up fashion, so both zero'd and non-zero'd page
152  * requests pull 'recent' adds (higher physical addresses) first.
153  *
154  * Must be called in a critical section.
155  */
156 vm_page_t
157 vm_add_new_page(vm_paddr_t pa)
158 {
159         struct vpgqueues *vpq;
160         vm_page_t m;
161
162         ++vmstats.v_page_count;
163         ++vmstats.v_free_count;
164         m = PHYS_TO_VM_PAGE(pa);
165         m->phys_addr = pa;
166         m->flags = 0;
167         m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK;
168         m->queue = m->pc + PQ_FREE;
169         KKASSERT(m->dirty == 0);
170
171         vpq = &vm_page_queues[m->queue];
172         if (vpq->flipflop)
173                 TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
174         else
175                 TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
176         vpq->flipflop = 1 - vpq->flipflop;
177
178         vm_page_queues[m->queue].lcnt++;
179         return (m);
180 }
181
182 /*
183  * (low level boot)
184  *
185  * Initializes the resident memory module.
186  *
187  * Allocates memory for the page cells, and for the object/offset-to-page
188  * hash table headers.  Each page cell is initialized and placed on the
189  * free list.
190  *
191  * starta/enda represents the range of physical memory addresses available
192  * for use (skipping memory already used by the kernel), subject to
193  * phys_avail[].  Note that phys_avail[] has already mapped out memory
194  * already in use by the kernel.
195  */
196 vm_offset_t
197 vm_page_startup(vm_offset_t vaddr)
198 {
199         vm_offset_t mapped;
200         vm_size_t npages;
201         vm_paddr_t page_range;
202         vm_paddr_t new_end;
203         int i;
204         vm_paddr_t pa;
205         int nblocks;
206         vm_paddr_t last_pa;
207         vm_paddr_t end;
208         vm_paddr_t biggestone, biggestsize;
209         vm_paddr_t total;
210
211         total = 0;
212         biggestsize = 0;
213         biggestone = 0;
214         nblocks = 0;
215         vaddr = round_page(vaddr);
216
217         for (i = 0; phys_avail[i + 1]; i += 2) {
218                 phys_avail[i] = round_page(phys_avail[i]);
219                 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
220         }
221
222         for (i = 0; phys_avail[i + 1]; i += 2) {
223                 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
224
225                 if (size > biggestsize) {
226                         biggestone = i;
227                         biggestsize = size;
228                 }
229                 ++nblocks;
230                 total += size;
231         }
232
233         end = phys_avail[biggestone+1];
234         end = trunc_page(end);
235
236         /*
237          * Initialize the queue headers for the free queue, the active queue
238          * and the inactive queue.
239          */
240
241         vm_page_queue_init();
242
243         /*
244          * Compute the number of pages of memory that will be available for
245          * use (taking into account the overhead of a page structure per
246          * page).
247          */
248         first_page = phys_avail[0] / PAGE_SIZE;
249         page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
250         npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE;
251
252         /*
253          * Initialize the mem entry structures now, and put them in the free
254          * queue.
255          */
256         vm_page_array = (vm_page_t) vaddr;
257         mapped = vaddr;
258
259         /*
260          * Validate these addresses.
261          */
262         new_end = trunc_page(end - page_range * sizeof(struct vm_page));
263         mapped = pmap_map(mapped, new_end, end,
264             VM_PROT_READ | VM_PROT_WRITE);
265 #ifdef __amd64__
266         /* pmap_map() returns an address in the DMAP region */
267         vm_page_array = (vm_page_t) mapped;
268         mapped = vaddr;
269 #endif
270
271         /*
272          * Clear all of the page structures
273          */
274         bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
275         vm_page_array_size = page_range;
276
277         /*
278          * Construct the free queue(s) in ascending order (by physical
279          * address) so that the first 16MB of physical memory is allocated
280          * last rather than first.  On large-memory machines, this avoids
281          * the exhaustion of low physical memory before isa_dmainit has run.
282          */
283         vmstats.v_page_count = 0;
284         vmstats.v_free_count = 0;
285         for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
286                 pa = phys_avail[i];
287                 if (i == biggestone)
288                         last_pa = new_end;
289                 else
290                         last_pa = phys_avail[i + 1];
291                 while (pa < last_pa && npages-- > 0) {
292                         vm_add_new_page(pa);
293                         pa += PAGE_SIZE;
294                 }
295         }
296         return (mapped);
297 }
298
299 /*
300  * Scan comparison function for Red-Black tree scans.  An inclusive
301  * (start,end) is expected.  Other fields are not used.
302  */
303 int
304 rb_vm_page_scancmp(struct vm_page *p, void *data)
305 {
306         struct rb_vm_page_scan_info *info = data;
307
308         if (p->pindex < info->start_pindex)
309                 return(-1);
310         if (p->pindex > info->end_pindex)
311                 return(1);
312         return(0);
313 }
314
315 int
316 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2)
317 {
318         if (p1->pindex < p2->pindex)
319                 return(-1);
320         if (p1->pindex > p2->pindex)
321                 return(1);
322         return(0);
323 }
324
325 /*
326  * The opposite of vm_page_hold().  A page can be freed while being held,
327  * which places it on the PQ_HOLD queue.  We must call vm_page_free_toq()
328  * in this case to actually free it once the hold count drops to 0.
329  *
330  * This routine must be called at splvm().
331  */
332 void
333 vm_page_unhold(vm_page_t mem)
334 {
335         --mem->hold_count;
336         KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
337         if (mem->hold_count == 0 && mem->queue == PQ_HOLD) {
338                 vm_page_busy(mem);
339                 vm_page_free_toq(mem);
340         }
341 }
342
343 /*
344  * Inserts the given mem entry into the object and object list.
345  *
346  * The pagetables are not updated but will presumably fault the page
347  * in if necessary, or if a kernel page the caller will at some point
348  * enter the page into the kernel's pmap.  We are not allowed to block
349  * here so we *can't* do this anyway.
350  *
351  * This routine may not block.
352  * This routine must be called with a critical section held.
353  */
354 void
355 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
356 {
357         ASSERT_IN_CRIT_SECTION();
358         if (m->object != NULL)
359                 panic("vm_page_insert: already inserted");
360
361         /*
362          * Record the object/offset pair in this page
363          */
364         m->object = object;
365         m->pindex = pindex;
366
367         /*
368          * Insert it into the object.
369          */
370         vm_page_rb_tree_RB_INSERT(&object->rb_memq, m);
371         object->generation++;
372
373         /*
374          * show that the object has one more resident page.
375          */
376         object->resident_page_count++;
377
378         /*
379          * Since we are inserting a new and possibly dirty page,
380          * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
381          */
382         if ((m->valid & m->dirty) || (m->flags & PG_WRITEABLE))
383                 vm_object_set_writeable_dirty(object);
384 }
385
386 /*
387  * Removes the given vm_page_t from the global (object,index) hash table
388  * and from the object's memq.
389  *
390  * The underlying pmap entry (if any) is NOT removed here.
391  * This routine may not block.
392  *
393  * The page must be BUSY and will remain BUSY on return.  No spl needs to be
394  * held on call to this routine.
395  *
396  * note: FreeBSD side effect was to unbusy the page on return.  We leave
397  * it busy.
398  */
399 void
400 vm_page_remove(vm_page_t m)
401 {
402         vm_object_t object;
403
404         crit_enter();
405         if (m->object == NULL) {
406                 crit_exit();
407                 return;
408         }
409
410         if ((m->flags & PG_BUSY) == 0)
411                 panic("vm_page_remove: page not busy");
412
413         object = m->object;
414
415         /*
416          * Remove the page from the object and update the object.
417          */
418         vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m);
419         object->resident_page_count--;
420         object->generation++;
421         m->object = NULL;
422
423         crit_exit();
424 }
425
426 /*
427  * Locate and return the page at (object, pindex), or NULL if the
428  * page could not be found.
429  *
430  * This routine will operate properly without spl protection, but
431  * the returned page could be in flux if it is busy.  Because an
432  * interrupt can race a caller's busy check (unbusying and freeing the
433  * page we return before the caller is able to check the busy bit),
434  * the caller should generally call this routine with a critical
435  * section held.
436  *
437  * Callers may call this routine without spl protection if they know
438  * 'for sure' that the page will not be ripped out from under them
439  * by an interrupt.
440  */
441 vm_page_t
442 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
443 {
444         vm_page_t m;
445
446         /*
447          * Search the hash table for this object/offset pair
448          */
449         crit_enter();
450         m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
451         crit_exit();
452         KKASSERT(m == NULL || (m->object == object && m->pindex == pindex));
453         return(m);
454 }
455
456 /*
457  * vm_page_rename()
458  *
459  * Move the given memory entry from its current object to the specified
460  * target object/offset.
461  *
462  * The object must be locked.
463  * This routine may not block.
464  *
465  * Note: This routine will raise itself to splvm(), the caller need not. 
466  *
467  * Note: Swap associated with the page must be invalidated by the move.  We
468  *       have to do this for several reasons:  (1) we aren't freeing the
469  *       page, (2) we are dirtying the page, (3) the VM system is probably
470  *       moving the page from object A to B, and will then later move
471  *       the backing store from A to B and we can't have a conflict.
472  *
473  * Note: We *always* dirty the page.  It is necessary both for the
474  *       fact that we moved it, and because we may be invalidating
475  *       swap.  If the page is on the cache, we have to deactivate it
476  *       or vm_page_dirty() will panic.  Dirty pages are not allowed
477  *       on the cache.
478  */
479 void
480 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
481 {
482         crit_enter();
483         vm_page_remove(m);
484         vm_page_insert(m, new_object, new_pindex);
485         if (m->queue - m->pc == PQ_CACHE)
486                 vm_page_deactivate(m);
487         vm_page_dirty(m);
488         vm_page_wakeup(m);
489         crit_exit();
490 }
491
492 /*
493  * vm_page_unqueue() without any wakeup.  This routine is used when a page
494  * is being moved between queues or otherwise is to remain BUSYied by the
495  * caller.
496  *
497  * This routine must be called at splhigh().
498  * This routine may not block.
499  */
500 void
501 vm_page_unqueue_nowakeup(vm_page_t m)
502 {
503         int queue = m->queue;
504         struct vpgqueues *pq;
505
506         if (queue != PQ_NONE) {
507                 pq = &vm_page_queues[queue];
508                 m->queue = PQ_NONE;
509                 TAILQ_REMOVE(&pq->pl, m, pageq);
510                 (*pq->cnt)--;
511                 pq->lcnt--;
512         }
513 }
514
515 /*
516  * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon
517  * if necessary.
518  *
519  * This routine must be called at splhigh().
520  * This routine may not block.
521  */
522 void
523 vm_page_unqueue(vm_page_t m)
524 {
525         int queue = m->queue;
526         struct vpgqueues *pq;
527
528         if (queue != PQ_NONE) {
529                 m->queue = PQ_NONE;
530                 pq = &vm_page_queues[queue];
531                 TAILQ_REMOVE(&pq->pl, m, pageq);
532                 (*pq->cnt)--;
533                 pq->lcnt--;
534                 if ((queue - m->pc) == PQ_CACHE || (queue - m->pc) == PQ_FREE)
535                         pagedaemon_wakeup();
536         }
537 }
538
539 /*
540  * vm_page_list_find()
541  *
542  * Find a page on the specified queue with color optimization.
543  *
544  * The page coloring optimization attempts to locate a page that does
545  * not overload other nearby pages in the object in the cpu's L1 or L2
546  * caches.  We need this optimization because cpu caches tend to be
547  * physical caches, while object spaces tend to be virtual.
548  *
549  * This routine must be called at splvm().
550  * This routine may not block.
551  *
552  * Note that this routine is carefully inlined.  A non-inlined version
553  * is available for outside callers but the only critical path is
554  * from within this source file.
555  */
556 static __inline
557 vm_page_t
558 _vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
559 {
560         vm_page_t m;
561
562         if (prefer_zero)
563                 m = TAILQ_LAST(&vm_page_queues[basequeue+index].pl, pglist);
564         else
565                 m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl);
566         if (m == NULL)
567                 m = _vm_page_list_find2(basequeue, index);
568         return(m);
569 }
570
571 static vm_page_t
572 _vm_page_list_find2(int basequeue, int index)
573 {
574         int i;
575         vm_page_t m = NULL;
576         struct vpgqueues *pq;
577
578         pq = &vm_page_queues[basequeue];
579
580         /*
581          * Note that for the first loop, index+i and index-i wind up at the
582          * same place.  Even though this is not totally optimal, we've already
583          * blown it by missing the cache case so we do not care.
584          */
585
586         for(i = PQ_L2_SIZE / 2; i > 0; --i) {
587                 if ((m = TAILQ_FIRST(&pq[(index + i) & PQ_L2_MASK].pl)) != NULL)
588                         break;
589
590                 if ((m = TAILQ_FIRST(&pq[(index - i) & PQ_L2_MASK].pl)) != NULL)
591                         break;
592         }
593         return(m);
594 }
595
596 vm_page_t
597 vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
598 {
599         return(_vm_page_list_find(basequeue, index, prefer_zero));
600 }
601
602 /*
603  * Find a page on the cache queue with color optimization.  As pages
604  * might be found, but not applicable, they are deactivated.  This
605  * keeps us from using potentially busy cached pages.
606  *
607  * This routine must be called with a critical section held.
608  * This routine may not block.
609  */
610 vm_page_t
611 vm_page_select_cache(vm_object_t object, vm_pindex_t pindex)
612 {
613         vm_page_t m;
614
615         while (TRUE) {
616                 m = _vm_page_list_find(
617                     PQ_CACHE,
618                     (pindex + object->pg_color) & PQ_L2_MASK,
619                     FALSE
620                 );
621                 if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
622                                m->hold_count || m->wire_count)) {
623                         vm_page_deactivate(m);
624                         continue;
625                 }
626                 return m;
627         }
628         /* not reached */
629 }
630
631 /*
632  * Find a free or zero page, with specified preference.  We attempt to
633  * inline the nominal case and fall back to _vm_page_select_free() 
634  * otherwise.
635  *
636  * This routine must be called with a critical section held.
637  * This routine may not block.
638  */
639 static __inline vm_page_t
640 vm_page_select_free(vm_object_t object, vm_pindex_t pindex, boolean_t prefer_zero)
641 {
642         vm_page_t m;
643
644         m = _vm_page_list_find(
645                 PQ_FREE,
646                 (pindex + object->pg_color) & PQ_L2_MASK,
647                 prefer_zero
648         );
649         return(m);
650 }
651
652 /*
653  * vm_page_alloc()
654  *
655  * Allocate and return a memory cell associated with this VM object/offset
656  * pair.
657  *
658  *      page_req classes:
659  *
660  *      VM_ALLOC_NORMAL         allow use of cache pages, nominal free drain
661  *      VM_ALLOC_SYSTEM         greater free drain
662  *      VM_ALLOC_INTERRUPT      allow free list to be completely drained
663  *      VM_ALLOC_ZERO           advisory request for pre-zero'd page
664  *
665  * The object must be locked.
666  * This routine may not block.
667  * The returned page will be marked PG_BUSY
668  *
669  * Additional special handling is required when called from an interrupt
670  * (VM_ALLOC_INTERRUPT).  We are not allowed to mess with the page cache
671  * in this case.
672  */
673 vm_page_t
674 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
675 {
676         vm_page_t m = NULL;
677
678         KKASSERT(object != NULL);
679         KASSERT(!vm_page_lookup(object, pindex),
680                 ("vm_page_alloc: page already allocated"));
681         KKASSERT(page_req & 
682                 (VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
683
684         /*
685          * Certain system threads (pageout daemon, buf_daemon's) are
686          * allowed to eat deeper into the free page list.
687          */
688         if (curthread->td_flags & TDF_SYSTHREAD)
689                 page_req |= VM_ALLOC_SYSTEM;
690
691         crit_enter();
692 loop:
693         if (vmstats.v_free_count > vmstats.v_free_reserved ||
694             ((page_req & VM_ALLOC_INTERRUPT) && vmstats.v_free_count > 0) ||
695             ((page_req & VM_ALLOC_SYSTEM) && vmstats.v_cache_count == 0 &&
696                 vmstats.v_free_count > vmstats.v_interrupt_free_min)
697         ) {
698                 /*
699                  * The free queue has sufficient free pages to take one out.
700                  */
701                 if (page_req & VM_ALLOC_ZERO)
702                         m = vm_page_select_free(object, pindex, TRUE);
703                 else
704                         m = vm_page_select_free(object, pindex, FALSE);
705         } else if (page_req & VM_ALLOC_NORMAL) {
706                 /*
707                  * Allocatable from the cache (non-interrupt only).  On
708                  * success, we must free the page and try again, thus
709                  * ensuring that vmstats.v_*_free_min counters are replenished.
710                  */
711 #ifdef INVARIANTS
712                 if (curthread->td_preempted) {
713                         kprintf("vm_page_alloc(): warning, attempt to allocate"
714                                 " cache page from preempting interrupt\n");
715                         m = NULL;
716                 } else {
717                         m = vm_page_select_cache(object, pindex);
718                 }
719 #else
720                 m = vm_page_select_cache(object, pindex);
721 #endif
722                 /*
723                  * On success move the page into the free queue and loop.
724                  */
725                 if (m != NULL) {
726                         KASSERT(m->dirty == 0,
727                             ("Found dirty cache page %p", m));
728                         vm_page_busy(m);
729                         vm_page_protect(m, VM_PROT_NONE);
730                         vm_page_free(m);
731                         goto loop;
732                 }
733
734                 /*
735                  * On failure return NULL
736                  */
737                 crit_exit();
738 #if defined(DIAGNOSTIC)
739                 if (vmstats.v_cache_count > 0)
740                         kprintf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", vmstats.v_cache_count);
741 #endif
742                 vm_pageout_deficit++;
743                 pagedaemon_wakeup();
744                 return (NULL);
745         } else {
746                 /*
747                  * No pages available, wakeup the pageout daemon and give up.
748                  */
749                 crit_exit();
750                 vm_pageout_deficit++;
751                 pagedaemon_wakeup();
752                 return (NULL);
753         }
754
755         /*
756          * Good page found.  The page has not yet been busied.  We are in
757          * a critical section.
758          */
759         KASSERT(m != NULL, ("vm_page_alloc(): missing page on free queue\n"));
760         KASSERT(m->dirty == 0, 
761                 ("vm_page_alloc: free/cache page %p was dirty", m));
762
763         /*
764          * Remove from free queue
765          */
766         vm_page_unqueue_nowakeup(m);
767
768         /*
769          * Initialize structure.  Only the PG_ZERO flag is inherited.  Set
770          * the page PG_BUSY
771          */
772         if (m->flags & PG_ZERO) {
773                 vm_page_zero_count--;
774                 m->flags = PG_ZERO | PG_BUSY;
775         } else {
776                 m->flags = PG_BUSY;
777         }
778         m->wire_count = 0;
779         m->hold_count = 0;
780         m->act_count = 0;
781         m->busy = 0;
782         m->valid = 0;
783
784         /*
785          * vm_page_insert() is safe prior to the crit_exit().  Note also that
786          * inserting a page here does not insert it into the pmap (which
787          * could cause us to block allocating memory).  We cannot block 
788          * anywhere.
789          */
790         vm_page_insert(m, object, pindex);
791
792         /*
793          * Don't wakeup too often - wakeup the pageout daemon when
794          * we would be nearly out of memory.
795          */
796         pagedaemon_wakeup();
797
798         crit_exit();
799
800         /*
801          * A PG_BUSY page is returned.
802          */
803         return (m);
804 }
805
806 /*
807  * Block until free pages are available for allocation, called in various
808  * places before memory allocations.
809  */
810 void
811 vm_wait(int timo)
812 {
813         crit_enter();
814         if (curthread == pagethread) {
815                 vm_pageout_pages_needed = 1;
816                 tsleep(&vm_pageout_pages_needed, 0, "VMWait", timo);
817         } else {
818                 if (vm_pages_needed == 0) {
819                         vm_pages_needed = 1;
820                         wakeup(&vm_pages_needed);
821                 }
822                 tsleep(&vmstats.v_free_count, 0, "vmwait", timo);
823         }
824         crit_exit();
825 }
826
827 /*
828  * Block until free pages are available for allocation
829  *
830  * Called only in vm_fault so that processes page faulting can be
831  * easily tracked.
832  */
833 void
834 vm_waitpfault(void)
835 {
836         crit_enter();
837         if (vm_pages_needed == 0) {
838                 vm_pages_needed = 1;
839                 wakeup(&vm_pages_needed);
840         }
841         tsleep(&vmstats.v_free_count, 0, "pfault", 0);
842         crit_exit();
843 }
844
845 /*
846  * Put the specified page on the active list (if appropriate).  Ensure
847  * that act_count is at least ACT_INIT but do not otherwise mess with it.
848  *
849  * The page queues must be locked.
850  * This routine may not block.
851  */
852 void
853 vm_page_activate(vm_page_t m)
854 {
855         crit_enter();
856         if (m->queue != PQ_ACTIVE) {
857                 if ((m->queue - m->pc) == PQ_CACHE)
858                         mycpu->gd_cnt.v_reactivated++;
859
860                 vm_page_unqueue(m);
861
862                 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
863                         m->queue = PQ_ACTIVE;
864                         vm_page_queues[PQ_ACTIVE].lcnt++;
865                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl,
866                                             m, pageq);
867                         if (m->act_count < ACT_INIT)
868                                 m->act_count = ACT_INIT;
869                         vmstats.v_active_count++;
870                 }
871         } else {
872                 if (m->act_count < ACT_INIT)
873                         m->act_count = ACT_INIT;
874         }
875         crit_exit();
876 }
877
878 /*
879  * Helper routine for vm_page_free_toq() and vm_page_cache().  This
880  * routine is called when a page has been added to the cache or free
881  * queues.
882  *
883  * This routine may not block.
884  * This routine must be called at splvm()
885  */
886 static __inline void
887 vm_page_free_wakeup(void)
888 {
889         /*
890          * if pageout daemon needs pages, then tell it that there are
891          * some free.
892          */
893         if (vm_pageout_pages_needed &&
894             vmstats.v_cache_count + vmstats.v_free_count >= 
895             vmstats.v_pageout_free_min
896         ) {
897                 wakeup(&vm_pageout_pages_needed);
898                 vm_pageout_pages_needed = 0;
899         }
900
901         /*
902          * wakeup processes that are waiting on memory if we hit a
903          * high water mark. And wakeup scheduler process if we have
904          * lots of memory. this process will swapin processes.
905          */
906         if (vm_pages_needed && !vm_page_count_min(0)) {
907                 vm_pages_needed = 0;
908                 wakeup(&vmstats.v_free_count);
909         }
910 }
911
912 /*
913  *      vm_page_free_toq:
914  *
915  *      Returns the given page to the PQ_FREE list, disassociating it with
916  *      any VM object.
917  *
918  *      The vm_page must be PG_BUSY on entry.  PG_BUSY will be released on
919  *      return (the page will have been freed).  No particular spl is required
920  *      on entry.
921  *
922  *      This routine may not block.
923  */
924 void
925 vm_page_free_toq(vm_page_t m)
926 {
927         struct vpgqueues *pq;
928
929         crit_enter();
930         mycpu->gd_cnt.v_tfree++;
931
932         KKASSERT((m->flags & PG_MAPPED) == 0);
933
934         if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
935                 kprintf(
936                 "vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
937                     (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
938                     m->hold_count);
939                 if ((m->queue - m->pc) == PQ_FREE)
940                         panic("vm_page_free: freeing free page");
941                 else
942                         panic("vm_page_free: freeing busy page");
943         }
944
945         /*
946          * unqueue, then remove page.  Note that we cannot destroy
947          * the page here because we do not want to call the pager's
948          * callback routine until after we've put the page on the
949          * appropriate free queue.
950          */
951         vm_page_unqueue_nowakeup(m);
952         vm_page_remove(m);
953
954         /*
955          * No further management of fictitious pages occurs beyond object
956          * and queue removal.
957          */
958         if ((m->flags & PG_FICTITIOUS) != 0) {
959                 vm_page_wakeup(m);
960                 crit_exit();
961                 return;
962         }
963
964         m->valid = 0;
965         vm_page_undirty(m);
966
967         if (m->wire_count != 0) {
968                 if (m->wire_count > 1) {
969                     panic(
970                         "vm_page_free: invalid wire count (%d), pindex: 0x%lx",
971                         m->wire_count, (long)m->pindex);
972                 }
973                 panic("vm_page_free: freeing wired page");
974         }
975
976         /*
977          * Clear the UNMANAGED flag when freeing an unmanaged page.
978          */
979         if (m->flags & PG_UNMANAGED) {
980             m->flags &= ~PG_UNMANAGED;
981         }
982
983         if (m->hold_count != 0) {
984                 m->flags &= ~PG_ZERO;
985                 m->queue = PQ_HOLD;
986         } else {
987                 m->queue = PQ_FREE + m->pc;
988         }
989         pq = &vm_page_queues[m->queue];
990         pq->lcnt++;
991         ++(*pq->cnt);
992
993         /*
994          * Put zero'd pages on the end ( where we look for zero'd pages
995          * first ) and non-zerod pages at the head.
996          */
997         if (m->flags & PG_ZERO) {
998                 TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
999                 ++vm_page_zero_count;
1000         } else {
1001                 TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1002         }
1003         vm_page_wakeup(m);
1004         vm_page_free_wakeup();
1005         crit_exit();
1006 }
1007
1008 /*
1009  * vm_page_unmanage()
1010  *
1011  * Prevent PV management from being done on the page.  The page is
1012  * removed from the paging queues as if it were wired, and as a 
1013  * consequence of no longer being managed the pageout daemon will not
1014  * touch it (since there is no way to locate the pte mappings for the
1015  * page).  madvise() calls that mess with the pmap will also no longer
1016  * operate on the page.
1017  *
1018  * Beyond that the page is still reasonably 'normal'.  Freeing the page
1019  * will clear the flag.
1020  *
1021  * This routine is used by OBJT_PHYS objects - objects using unswappable
1022  * physical memory as backing store rather then swap-backed memory and
1023  * will eventually be extended to support 4MB unmanaged physical 
1024  * mappings.
1025  *
1026  * Must be called with a critical section held.
1027  */
1028 void
1029 vm_page_unmanage(vm_page_t m)
1030 {
1031         ASSERT_IN_CRIT_SECTION();
1032         if ((m->flags & PG_UNMANAGED) == 0) {
1033                 if (m->wire_count == 0)
1034                         vm_page_unqueue(m);
1035         }
1036         vm_page_flag_set(m, PG_UNMANAGED);
1037 }
1038
1039 /*
1040  * Mark this page as wired down by yet another map, removing it from
1041  * paging queues as necessary.
1042  *
1043  * The page queues must be locked.
1044  * This routine may not block.
1045  */
1046 void
1047 vm_page_wire(vm_page_t m)
1048 {
1049         /*
1050          * Only bump the wire statistics if the page is not already wired,
1051          * and only unqueue the page if it is on some queue (if it is unmanaged
1052          * it is already off the queues).  Don't do anything with fictitious
1053          * pages because they are always wired.
1054          */
1055         crit_enter();
1056         if ((m->flags & PG_FICTITIOUS) == 0) {
1057                 if (m->wire_count == 0) {
1058                         if ((m->flags & PG_UNMANAGED) == 0)
1059                                 vm_page_unqueue(m);
1060                         vmstats.v_wire_count++;
1061                 }
1062                 m->wire_count++;
1063                 KASSERT(m->wire_count != 0,
1064                         ("vm_page_wire: wire_count overflow m=%p", m));
1065         }
1066         crit_exit();
1067 }
1068
1069 /*
1070  * Release one wiring of this page, potentially enabling it to be paged again.
1071  *
1072  * Many pages placed on the inactive queue should actually go
1073  * into the cache, but it is difficult to figure out which.  What
1074  * we do instead, if the inactive target is well met, is to put
1075  * clean pages at the head of the inactive queue instead of the tail.
1076  * This will cause them to be moved to the cache more quickly and
1077  * if not actively re-referenced, freed more quickly.  If we just
1078  * stick these pages at the end of the inactive queue, heavy filesystem
1079  * meta-data accesses can cause an unnecessary paging load on memory bound 
1080  * processes.  This optimization causes one-time-use metadata to be
1081  * reused more quickly.
1082  *
1083  * BUT, if we are in a low-memory situation we have no choice but to
1084  * put clean pages on the cache queue.
1085  *
1086  * A number of routines use vm_page_unwire() to guarantee that the page
1087  * will go into either the inactive or active queues, and will NEVER
1088  * be placed in the cache - for example, just after dirtying a page.
1089  * dirty pages in the cache are not allowed.
1090  *
1091  * The page queues must be locked.
1092  * This routine may not block.
1093  */
1094 void
1095 vm_page_unwire(vm_page_t m, int activate)
1096 {
1097         crit_enter();
1098         if (m->flags & PG_FICTITIOUS) {
1099                 /* do nothing */
1100         } else if (m->wire_count <= 0) {
1101                 panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1102         } else {
1103                 if (--m->wire_count == 0) {
1104                         --vmstats.v_wire_count;
1105                         if (m->flags & PG_UNMANAGED) {
1106                                 ;
1107                         } else if (activate) {
1108                                 TAILQ_INSERT_TAIL(
1109                                     &vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1110                                 m->queue = PQ_ACTIVE;
1111                                 vm_page_queues[PQ_ACTIVE].lcnt++;
1112                                 vmstats.v_active_count++;
1113                         } else {
1114                                 vm_page_flag_clear(m, PG_WINATCFLS);
1115                                 TAILQ_INSERT_TAIL(
1116                                     &vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1117                                 m->queue = PQ_INACTIVE;
1118                                 vm_page_queues[PQ_INACTIVE].lcnt++;
1119                                 vmstats.v_inactive_count++;
1120                         }
1121                 }
1122         }
1123         crit_exit();
1124 }
1125
1126
1127 /*
1128  * Move the specified page to the inactive queue.  If the page has
1129  * any associated swap, the swap is deallocated.
1130  *
1131  * Normally athead is 0 resulting in LRU operation.  athead is set
1132  * to 1 if we want this page to be 'as if it were placed in the cache',
1133  * except without unmapping it from the process address space.
1134  *
1135  * This routine may not block.
1136  */
1137 static __inline void
1138 _vm_page_deactivate(vm_page_t m, int athead)
1139 {
1140         /*
1141          * Ignore if already inactive.
1142          */
1143         if (m->queue == PQ_INACTIVE)
1144                 return;
1145
1146         if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1147                 if ((m->queue - m->pc) == PQ_CACHE)
1148                         mycpu->gd_cnt.v_reactivated++;
1149                 vm_page_flag_clear(m, PG_WINATCFLS);
1150                 vm_page_unqueue(m);
1151                 if (athead)
1152                         TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1153                 else
1154                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1155                 m->queue = PQ_INACTIVE;
1156                 vm_page_queues[PQ_INACTIVE].lcnt++;
1157                 vmstats.v_inactive_count++;
1158         }
1159 }
1160
1161 void
1162 vm_page_deactivate(vm_page_t m)
1163 {
1164     crit_enter();
1165     _vm_page_deactivate(m, 0);
1166     crit_exit();
1167 }
1168
1169 /*
1170  * vm_page_try_to_cache:
1171  *
1172  * Returns 0 on failure, 1 on success
1173  */
1174 int
1175 vm_page_try_to_cache(vm_page_t m)
1176 {
1177         crit_enter();
1178         if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1179             (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1180                 crit_exit();
1181                 return(0);
1182         }
1183         vm_page_test_dirty(m);
1184         if (m->dirty) {
1185                 crit_exit();
1186                 return(0);
1187         }
1188         vm_page_cache(m);
1189         crit_exit();
1190         return(1);
1191 }
1192
1193 /*
1194  * Attempt to free the page.  If we cannot free it, we do nothing.
1195  * 1 is returned on success, 0 on failure.
1196  */
1197 int
1198 vm_page_try_to_free(vm_page_t m)
1199 {
1200         crit_enter();
1201         if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1202             (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1203                 crit_exit();
1204                 return(0);
1205         }
1206         vm_page_test_dirty(m);
1207         if (m->dirty) {
1208                 crit_exit();
1209                 return(0);
1210         }
1211         vm_page_busy(m);
1212         vm_page_protect(m, VM_PROT_NONE);
1213         vm_page_free(m);
1214         crit_exit();
1215         return(1);
1216 }
1217
1218 /*
1219  * vm_page_cache
1220  *
1221  * Put the specified page onto the page cache queue (if appropriate).
1222  *
1223  * This routine may not block.
1224  */
1225 void
1226 vm_page_cache(vm_page_t m)
1227 {
1228         ASSERT_IN_CRIT_SECTION();
1229
1230         if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
1231                         m->wire_count || m->hold_count) {
1232                 kprintf("vm_page_cache: attempting to cache busy/held page\n");
1233                 return;
1234         }
1235
1236         /*
1237          * Already in the cache (and thus not mapped)
1238          */
1239         if ((m->queue - m->pc) == PQ_CACHE) {
1240                 KKASSERT((m->flags & PG_MAPPED) == 0);
1241                 return;
1242         }
1243
1244         /*
1245          * Caller is required to test m->dirty, but note that the act of
1246          * removing the page from its maps can cause it to become dirty
1247          * on an SMP system due to another cpu running in usermode.
1248          */
1249         if (m->dirty) {
1250                 panic("vm_page_cache: caching a dirty page, pindex: %ld",
1251                         (long)m->pindex);
1252         }
1253
1254         /*
1255          * Remove all pmaps and indicate that the page is not
1256          * writeable or mapped.  Our vm_page_protect() call may
1257          * have blocked (especially w/ VM_PROT_NONE), so recheck
1258          * everything.
1259          */
1260         vm_page_busy(m);
1261         vm_page_protect(m, VM_PROT_NONE);
1262         vm_page_wakeup(m);
1263         if ((m->flags & (PG_BUSY|PG_UNMANAGED|PG_MAPPED)) || m->busy ||
1264                         m->wire_count || m->hold_count) {
1265                 /* do nothing */
1266         } else if (m->dirty) {
1267                 vm_page_deactivate(m);
1268         } else {
1269                 vm_page_unqueue_nowakeup(m);
1270                 m->queue = PQ_CACHE + m->pc;
1271                 vm_page_queues[m->queue].lcnt++;
1272                 TAILQ_INSERT_TAIL(&vm_page_queues[m->queue].pl, m, pageq);
1273                 vmstats.v_cache_count++;
1274                 vm_page_free_wakeup();
1275         }
1276 }
1277
1278 /*
1279  * vm_page_dontneed()
1280  *
1281  * Cache, deactivate, or do nothing as appropriate.  This routine
1282  * is typically used by madvise() MADV_DONTNEED.
1283  *
1284  * Generally speaking we want to move the page into the cache so
1285  * it gets reused quickly.  However, this can result in a silly syndrome
1286  * due to the page recycling too quickly.  Small objects will not be
1287  * fully cached.  On the otherhand, if we move the page to the inactive
1288  * queue we wind up with a problem whereby very large objects 
1289  * unnecessarily blow away our inactive and cache queues.
1290  *
1291  * The solution is to move the pages based on a fixed weighting.  We
1292  * either leave them alone, deactivate them, or move them to the cache,
1293  * where moving them to the cache has the highest weighting.
1294  * By forcing some pages into other queues we eventually force the
1295  * system to balance the queues, potentially recovering other unrelated
1296  * space from active.  The idea is to not force this to happen too
1297  * often.
1298  */
1299 void
1300 vm_page_dontneed(vm_page_t m)
1301 {
1302         static int dnweight;
1303         int dnw;
1304         int head;
1305
1306         dnw = ++dnweight;
1307
1308         /*
1309          * occassionally leave the page alone
1310          */
1311         crit_enter();
1312         if ((dnw & 0x01F0) == 0 ||
1313             m->queue == PQ_INACTIVE || 
1314             m->queue - m->pc == PQ_CACHE
1315         ) {
1316                 if (m->act_count >= ACT_INIT)
1317                         --m->act_count;
1318                 crit_exit();
1319                 return;
1320         }
1321
1322         if (m->dirty == 0)
1323                 vm_page_test_dirty(m);
1324
1325         if (m->dirty || (dnw & 0x0070) == 0) {
1326                 /*
1327                  * Deactivate the page 3 times out of 32.
1328                  */
1329                 head = 0;
1330         } else {
1331                 /*
1332                  * Cache the page 28 times out of every 32.  Note that
1333                  * the page is deactivated instead of cached, but placed
1334                  * at the head of the queue instead of the tail.
1335                  */
1336                 head = 1;
1337         }
1338         _vm_page_deactivate(m, head);
1339         crit_exit();
1340 }
1341
1342 /*
1343  * Grab a page, blocking if it is busy and allocating a page if necessary.
1344  * A busy page is returned or NULL.
1345  *
1346  * If VM_ALLOC_RETRY is specified VM_ALLOC_NORMAL must also be specified.
1347  * If VM_ALLOC_RETRY is not specified
1348  *
1349  * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is
1350  * always returned if we had blocked.  
1351  * This routine will never return NULL if VM_ALLOC_RETRY is set.
1352  * This routine may not be called from an interrupt.
1353  * The returned page may not be entirely valid.
1354  *
1355  * This routine may be called from mainline code without spl protection and
1356  * be guarenteed a busied page associated with the object at the specified
1357  * index.
1358  */
1359 vm_page_t
1360 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1361 {
1362         vm_page_t m;
1363         int generation;
1364
1365         KKASSERT(allocflags &
1366                 (VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
1367         crit_enter();
1368 retrylookup:
1369         if ((m = vm_page_lookup(object, pindex)) != NULL) {
1370                 if (m->busy || (m->flags & PG_BUSY)) {
1371                         generation = object->generation;
1372
1373                         while ((object->generation == generation) &&
1374                                         (m->busy || (m->flags & PG_BUSY))) {
1375                                 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1376                                 tsleep(m, 0, "pgrbwt", 0);
1377                                 if ((allocflags & VM_ALLOC_RETRY) == 0) {
1378                                         m = NULL;
1379                                         goto done;
1380                                 }
1381                         }
1382                         goto retrylookup;
1383                 } else {
1384                         vm_page_busy(m);
1385                         goto done;
1386                 }
1387         }
1388         m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1389         if (m == NULL) {
1390                 vm_wait(0);
1391                 if ((allocflags & VM_ALLOC_RETRY) == 0)
1392                         goto done;
1393                 goto retrylookup;
1394         }
1395 done:
1396         crit_exit();
1397         return(m);
1398 }
1399
1400 /*
1401  * Mapping function for valid bits or for dirty bits in
1402  * a page.  May not block.
1403  *
1404  * Inputs are required to range within a page.
1405  */
1406 __inline int
1407 vm_page_bits(int base, int size)
1408 {
1409         int first_bit;
1410         int last_bit;
1411
1412         KASSERT(
1413             base + size <= PAGE_SIZE,
1414             ("vm_page_bits: illegal base/size %d/%d", base, size)
1415         );
1416
1417         if (size == 0)          /* handle degenerate case */
1418                 return(0);
1419
1420         first_bit = base >> DEV_BSHIFT;
1421         last_bit = (base + size - 1) >> DEV_BSHIFT;
1422
1423         return ((2 << last_bit) - (1 << first_bit));
1424 }
1425
1426 /*
1427  * Sets portions of a page valid and clean.  The arguments are expected
1428  * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1429  * of any partial chunks touched by the range.  The invalid portion of
1430  * such chunks will be zero'd.
1431  *
1432  * This routine may not block.
1433  *
1434  * (base + size) must be less then or equal to PAGE_SIZE.
1435  */
1436 void
1437 vm_page_set_validclean(vm_page_t m, int base, int size)
1438 {
1439         int pagebits;
1440         int frag;
1441         int endoff;
1442
1443         if (size == 0)  /* handle degenerate case */
1444                 return;
1445
1446         /*
1447          * If the base is not DEV_BSIZE aligned and the valid
1448          * bit is clear, we have to zero out a portion of the
1449          * first block.
1450          */
1451
1452         if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1453             (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
1454         ) {
1455                 pmap_zero_page_area(
1456                     VM_PAGE_TO_PHYS(m),
1457                     frag,
1458                     base - frag
1459                 );
1460         }
1461
1462         /*
1463          * If the ending offset is not DEV_BSIZE aligned and the 
1464          * valid bit is clear, we have to zero out a portion of
1465          * the last block.
1466          */
1467
1468         endoff = base + size;
1469
1470         if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1471             (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
1472         ) {
1473                 pmap_zero_page_area(
1474                     VM_PAGE_TO_PHYS(m),
1475                     endoff,
1476                     DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
1477                 );
1478         }
1479
1480         /*
1481          * Set valid, clear dirty bits.  If validating the entire
1482          * page we can safely clear the pmap modify bit.  We also
1483          * use this opportunity to clear the PG_NOSYNC flag.  If a process
1484          * takes a write fault on a MAP_NOSYNC memory area the flag will
1485          * be set again.
1486          *
1487          * We set valid bits inclusive of any overlap, but we can only
1488          * clear dirty bits for DEV_BSIZE chunks that are fully within
1489          * the range.
1490          */
1491
1492         pagebits = vm_page_bits(base, size);
1493         m->valid |= pagebits;
1494 #if 0   /* NOT YET */
1495         if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1496                 frag = DEV_BSIZE - frag;
1497                 base += frag;
1498                 size -= frag;
1499                 if (size < 0)
1500                     size = 0;
1501         }
1502         pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1503 #endif
1504         m->dirty &= ~pagebits;
1505         if (base == 0 && size == PAGE_SIZE) {
1506                 pmap_clear_modify(m);
1507                 vm_page_flag_clear(m, PG_NOSYNC);
1508         }
1509 }
1510
1511 void
1512 vm_page_clear_dirty(vm_page_t m, int base, int size)
1513 {
1514         m->dirty &= ~vm_page_bits(base, size);
1515 }
1516
1517 /*
1518  * Make the page all-dirty.
1519  *
1520  * Also make sure the related object and vnode reflect the fact that the
1521  * object may now contain a dirty page.
1522  */
1523 void
1524 vm_page_dirty(vm_page_t m)
1525 {
1526 #ifdef INVARIANTS
1527         int pqtype = m->queue - m->pc;
1528 #endif
1529         KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE,
1530                 ("vm_page_dirty: page in free/cache queue!"));
1531         if (m->dirty != VM_PAGE_BITS_ALL) {
1532                 m->dirty = VM_PAGE_BITS_ALL;
1533                 if (m->object)
1534                         vm_object_set_writeable_dirty(m->object);
1535         }
1536 }
1537
1538 /*
1539  * Invalidates DEV_BSIZE'd chunks within a page.  Both the
1540  * valid and dirty bits for the effected areas are cleared.
1541  *
1542  * May not block.
1543  */
1544 void
1545 vm_page_set_invalid(vm_page_t m, int base, int size)
1546 {
1547         int bits;
1548
1549         bits = vm_page_bits(base, size);
1550         m->valid &= ~bits;
1551         m->dirty &= ~bits;
1552         m->object->generation++;
1553 }
1554
1555 /*
1556  * The kernel assumes that the invalid portions of a page contain 
1557  * garbage, but such pages can be mapped into memory by user code.
1558  * When this occurs, we must zero out the non-valid portions of the
1559  * page so user code sees what it expects.
1560  *
1561  * Pages are most often semi-valid when the end of a file is mapped 
1562  * into memory and the file's size is not page aligned.
1563  */
1564 void
1565 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1566 {
1567         int b;
1568         int i;
1569
1570         /*
1571          * Scan the valid bits looking for invalid sections that
1572          * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1573          * valid bit may be set ) have already been zerod by
1574          * vm_page_set_validclean().
1575          */
1576         for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1577                 if (i == (PAGE_SIZE / DEV_BSIZE) || 
1578                     (m->valid & (1 << i))
1579                 ) {
1580                         if (i > b) {
1581                                 pmap_zero_page_area(
1582                                     VM_PAGE_TO_PHYS(m), 
1583                                     b << DEV_BSHIFT,
1584                                     (i - b) << DEV_BSHIFT
1585                                 );
1586                         }
1587                         b = i + 1;
1588                 }
1589         }
1590
1591         /*
1592          * setvalid is TRUE when we can safely set the zero'd areas
1593          * as being valid.  We can do this if there are no cache consistency
1594          * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1595          */
1596         if (setvalid)
1597                 m->valid = VM_PAGE_BITS_ALL;
1598 }
1599
1600 /*
1601  * Is a (partial) page valid?  Note that the case where size == 0
1602  * will return FALSE in the degenerate case where the page is entirely
1603  * invalid, and TRUE otherwise.
1604  *
1605  * May not block.
1606  */
1607 int
1608 vm_page_is_valid(vm_page_t m, int base, int size)
1609 {
1610         int bits = vm_page_bits(base, size);
1611
1612         if (m->valid && ((m->valid & bits) == bits))
1613                 return 1;
1614         else
1615                 return 0;
1616 }
1617
1618 /*
1619  * update dirty bits from pmap/mmu.  May not block.
1620  */
1621 void
1622 vm_page_test_dirty(vm_page_t m)
1623 {
1624         if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1625                 vm_page_dirty(m);
1626         }
1627 }
1628
1629 /*
1630  * Issue an event on a VM page.  Corresponding action structures are
1631  * removed from the page's list and called.
1632  */
1633 void
1634 vm_page_event_internal(vm_page_t m, vm_page_event_t event)
1635 {
1636         struct vm_page_action *scan, *next;
1637
1638         LIST_FOREACH_MUTABLE(scan, &m->action_list, entry, next) {
1639                 if (scan->event == event) {
1640                         scan->event = VMEVENT_NONE;
1641                         LIST_REMOVE(scan, entry);
1642                         scan->func(m, scan);
1643                 }
1644         }
1645 }
1646
1647 #include "opt_ddb.h"
1648 #ifdef DDB
1649 #include <sys/kernel.h>
1650
1651 #include <ddb/ddb.h>
1652
1653 DB_SHOW_COMMAND(page, vm_page_print_page_info)
1654 {
1655         db_printf("vmstats.v_free_count: %d\n", vmstats.v_free_count);
1656         db_printf("vmstats.v_cache_count: %d\n", vmstats.v_cache_count);
1657         db_printf("vmstats.v_inactive_count: %d\n", vmstats.v_inactive_count);
1658         db_printf("vmstats.v_active_count: %d\n", vmstats.v_active_count);
1659         db_printf("vmstats.v_wire_count: %d\n", vmstats.v_wire_count);
1660         db_printf("vmstats.v_free_reserved: %d\n", vmstats.v_free_reserved);
1661         db_printf("vmstats.v_free_min: %d\n", vmstats.v_free_min);
1662         db_printf("vmstats.v_free_target: %d\n", vmstats.v_free_target);
1663         db_printf("vmstats.v_cache_min: %d\n", vmstats.v_cache_min);
1664         db_printf("vmstats.v_inactive_target: %d\n", vmstats.v_inactive_target);
1665 }
1666
1667 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1668 {
1669         int i;
1670         db_printf("PQ_FREE:");
1671         for(i=0;i<PQ_L2_SIZE;i++) {
1672                 db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1673         }
1674         db_printf("\n");
1675                 
1676         db_printf("PQ_CACHE:");
1677         for(i=0;i<PQ_L2_SIZE;i++) {
1678                 db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1679         }
1680         db_printf("\n");
1681
1682         db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1683                 vm_page_queues[PQ_ACTIVE].lcnt,
1684                 vm_page_queues[PQ_INACTIVE].lcnt);
1685 }
1686 #endif /* DDB */