ifconfig(8): Print more WPS attributes in verbose "list scan" output
[dragonfly.git] / sbin / ifconfig / ifieee80211.c
1 /*
2  * Copyright 2001 The Aerospace Corporation.  All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  * 3. The name of The Aerospace Corporation may not be used to endorse or
13  *    promote products derived from this software.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AEROSPACE CORPORATION ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AEROSPACE CORPORATION BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  * $FreeBSD: head/sbin/ifconfig/ifieee80211.c 203970 2010-02-16 21:39:20Z imp $
28  */
29
30 /*-
31  * Copyright (c) 1997, 1998, 2000 The NetBSD Foundation, Inc.
32  * All rights reserved.
33  *
34  * This code is derived from software contributed to The NetBSD Foundation
35  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
36  * NASA Ames Research Center.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  *
47  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
48  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
49  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
50  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
51  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
52  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
53  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
54  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
55  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
56  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
57  * POSSIBILITY OF SUCH DAMAGE.
58  */
59
60 #include <sys/param.h>
61 #include <sys/ioctl.h>
62 #include <sys/socket.h>
63 #include <sys/sysctl.h>
64 #include <sys/time.h>
65
66 #include <net/ethernet.h>
67 #include <net/if.h>
68 #include <net/if_dl.h>
69 #include <net/if_types.h>
70 #include <net/if_media.h>
71 #include <net/route.h>
72
73 #include <netproto/802_11/ieee80211_ioctl.h>
74 #include <netproto/802_11/ieee80211_dragonfly.h>
75 #include <netproto/802_11/ieee80211_superg.h>
76 #include <netproto/802_11/ieee80211_tdma.h>
77 #include <netproto/802_11/ieee80211_mesh.h>
78 #include <netproto/802_11/ieee80211_wps.h>
79
80 #include <assert.h>
81 #include <ctype.h>
82 #include <err.h>
83 #include <errno.h>
84 #include <fcntl.h>
85 #include <inttypes.h>
86 #include <langinfo.h>
87 #include <locale.h>
88 #include <stdarg.h>
89 #include <stddef.h>
90 #include <stdio.h>
91 #include <stdlib.h>
92 #include <string.h>
93 #include <unistd.h>
94
95 #include "ifconfig.h"
96 #include "regdomain.h"
97
98 #ifndef IEEE80211_FIXED_RATE_NONE
99 #define IEEE80211_FIXED_RATE_NONE       0xff
100 #endif
101
102 /* XXX need these publicly defined or similar */
103 #ifndef IEEE80211_NODE_AUTH
104 #define IEEE80211_NODE_AUTH     0x000001        /* authorized for data */
105 #define IEEE80211_NODE_QOS      0x000002        /* QoS enabled */
106 #define IEEE80211_NODE_ERP      0x000004        /* ERP enabled */
107 #define IEEE80211_NODE_PWR_MGT  0x000010        /* power save mode enabled */
108 #define IEEE80211_NODE_AREF     0x000020        /* authentication ref held */
109 #define IEEE80211_NODE_HT       0x000040        /* HT enabled */
110 #define IEEE80211_NODE_HTCOMPAT 0x000080        /* HT setup w/ vendor OUI's */
111 #define IEEE80211_NODE_WPS      0x000100        /* WPS association */
112 #define IEEE80211_NODE_TSN      0x000200        /* TSN association */
113 #define IEEE80211_NODE_AMPDU_RX 0x000400        /* AMPDU rx enabled */
114 #define IEEE80211_NODE_AMPDU_TX 0x000800        /* AMPDU tx enabled */
115 #define IEEE80211_NODE_MIMO_PS  0x001000        /* MIMO power save enabled */
116 #define IEEE80211_NODE_MIMO_RTS 0x002000        /* send RTS in MIMO PS */
117 #define IEEE80211_NODE_RIFS     0x004000        /* RIFS enabled */
118 #define IEEE80211_NODE_SGI20    0x008000        /* Short GI in HT20 enabled */
119 #define IEEE80211_NODE_SGI40    0x010000        /* Short GI in HT40 enabled */
120 #define IEEE80211_NODE_ASSOCID  0x020000        /* xmit requires associd */
121 #define IEEE80211_NODE_AMSDU_RX 0x040000        /* AMSDU rx enabled */
122 #define IEEE80211_NODE_AMSDU_TX 0x080000        /* AMSDU tx enabled */
123 #endif
124
125 #define MAXCHAN 1536            /* max 1.5K channels */
126
127 #define MAXCOL  78
128 static  int col;
129 static  char spacer;
130
131 static void LINE_INIT(char c);
132 static void LINE_BREAK(void);
133 static void LINE_CHECK(const char *fmt, ...) __printflike(1, 2);
134
135 static const char *modename[IEEE80211_MODE_MAX] = {
136         [IEEE80211_MODE_AUTO]     = "auto",
137         [IEEE80211_MODE_11A]      = "11a",
138         [IEEE80211_MODE_11B]      = "11b",
139         [IEEE80211_MODE_11G]      = "11g",
140         [IEEE80211_MODE_FH]       = "fh",
141         [IEEE80211_MODE_TURBO_A]  = "turboA",
142         [IEEE80211_MODE_TURBO_G]  = "turboG",
143         [IEEE80211_MODE_STURBO_A] = "sturbo",
144         [IEEE80211_MODE_11NA]     = "11na",
145         [IEEE80211_MODE_11NG]     = "11ng",
146         [IEEE80211_MODE_HALF]     = "half",
147         [IEEE80211_MODE_QUARTER]  = "quarter"
148 };
149
150 static void set80211(int s, int type, int val, int len, void *data);
151 static int get80211(int s, int type, void *data, int len);
152 static int get80211len(int s, int type, void *data, size_t len, size_t *plen);
153 static int get80211val(int s, int type, int *val);
154 static const char *get_string(const char *val, const char *sep,
155     u_int8_t *buf, int *lenp);
156 static void print_string(const u_int8_t *buf, int len);
157 static void print_regdomain(const struct ieee80211_regdomain *, int);
158 static void print_channels(int, const struct ieee80211req_chaninfo *,
159     int allchans, int verbose);
160 static void regdomain_makechannels(struct ieee80211_regdomain_req *,
161     const struct ieee80211_devcaps_req *);
162 static const char *mesh_linkstate_string(uint8_t state);
163
164 static struct ieee80211req_chaninfo *chaninfo;
165 static struct ieee80211_regdomain regdomain;
166 static int gotregdomain = 0;
167 static struct ieee80211_roamparams_req roamparams;
168 static int gotroam = 0;
169 static struct ieee80211_txparams_req txparams;
170 static int gottxparams = 0;
171 static struct ieee80211_channel curchan;
172 static int gotcurchan = 0;
173 static struct ifmediareq *ifmr;
174 static int htconf = 0;
175 static int gothtconf = 0;
176
177 static int
178 iseq(const char *a, const char *b)
179 {
180         return (strcasecmp(a, b) == 0);
181 }
182
183 static int
184 ismatch(const char *a, const char *b)
185 {
186         return (strncasecmp(a, b, strlen(b)) == 0);
187 }
188
189 static void
190 gethtconf(int s)
191 {
192         if (gothtconf)
193                 return;
194         if (get80211val(s, IEEE80211_IOC_HTCONF, &htconf) < 0)
195                 warn("unable to get HT configuration information");
196         gothtconf = 1;
197 }
198
199 /*
200  * Collect channel info from the kernel.  We use this (mostly)
201  * to handle mapping between frequency and IEEE channel number.
202  */
203 static void
204 getchaninfo(int s)
205 {
206         if (chaninfo != NULL)
207                 return;
208         chaninfo = malloc(IEEE80211_CHANINFO_SIZE(MAXCHAN));
209         if (chaninfo == NULL)
210                 errx(1, "no space for channel list");
211         if (get80211(s, IEEE80211_IOC_CHANINFO, chaninfo,
212             IEEE80211_CHANINFO_SIZE(MAXCHAN)) < 0)
213                 err(1, "unable to get channel information");
214         ifmr = ifmedia_getstate(s);
215         gethtconf(s);
216 }
217
218 static struct regdata *
219 getregdata(void)
220 {
221         static struct regdata *rdp = NULL;
222         if (rdp == NULL) {
223                 rdp = lib80211_alloc_regdata();
224                 if (rdp == NULL)
225                         errx(-1, "missing or corrupted regdomain database");
226         }
227         return rdp;
228 }
229
230 /*
231  * Given the channel at index i with attributes from,
232  * check if there is a channel with attributes to in
233  * the channel table.  With suitable attributes this
234  * allows the caller to look for promotion; e.g. from
235  * 11b > 11g.
236  */
237 static int
238 canpromote(u_int i, uint32_t from, uint32_t to)
239 {
240         const struct ieee80211_channel *fc = &chaninfo->ic_chans[i];
241         u_int j;
242
243         if ((fc->ic_flags & from) != from)
244                 return i;
245         /* NB: quick check exploiting ordering of chans w/ same frequency */
246         if (i+1 < chaninfo->ic_nchans &&
247             chaninfo->ic_chans[i+1].ic_freq == fc->ic_freq &&
248             (chaninfo->ic_chans[i+1].ic_flags & to) == to)
249                 return i+1;
250         /* brute force search in case channel list is not ordered */
251         for (j = 0; j < chaninfo->ic_nchans; j++) {
252                 const struct ieee80211_channel *tc = &chaninfo->ic_chans[j];
253                 if (j != i &&
254                     tc->ic_freq == fc->ic_freq && (tc->ic_flags & to) == to)
255                 return j;
256         }
257         return i;
258 }
259
260 /*
261  * Handle channel promotion.  When a channel is specified with
262  * only a frequency we want to promote it to the ``best'' channel
263  * available.  The channel list has separate entries for 11b, 11g,
264  * 11a, and 11n[ga] channels so specifying a frequency w/o any
265  * attributes requires we upgrade, e.g. from 11b -> 11g.  This
266  * gets complicated when the channel is specified on the same
267  * command line with a media request that constrains the available
268  * channe list (e.g. mode 11a); we want to honor that to avoid
269  * confusing behaviour.
270  */
271 static int
272 promote(int i)
273 {
274         /*
275          * Query the current mode of the interface in case it's
276          * constrained (e.g. to 11a).  We must do this carefully
277          * as there may be a pending ifmedia request in which case
278          * asking the kernel will give us the wrong answer.  This
279          * is an unfortunate side-effect of the way ifconfig is
280          * structure for modularity (yech).
281          *
282          * NB: ifmr is actually setup in getchaninfo (above); we
283          *     assume it's called coincident with to this call so
284          *     we have a ``current setting''; otherwise we must pass
285          *     the socket descriptor down to here so we can make
286          *     the ifmedia_getstate call ourselves.
287          */
288         int chanmode = ifmr != NULL ? IFM_MODE(ifmr->ifm_current) : IFM_AUTO;
289
290         /* when ambiguous promote to ``best'' */
291         /* NB: we abitrarily pick HT40+ over HT40- */
292         if (chanmode != IFM_IEEE80211_11B)
293                 i = canpromote(i, IEEE80211_CHAN_B, IEEE80211_CHAN_G);
294         if (chanmode != IFM_IEEE80211_11G && (htconf & 1)) {
295                 i = canpromote(i, IEEE80211_CHAN_G,
296                         IEEE80211_CHAN_G | IEEE80211_CHAN_HT20);
297                 if (htconf & 2) {
298                         i = canpromote(i, IEEE80211_CHAN_G,
299                                 IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D);
300                         i = canpromote(i, IEEE80211_CHAN_G,
301                                 IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U);
302                 }
303         }
304         if (chanmode != IFM_IEEE80211_11A && (htconf & 1)) {
305                 i = canpromote(i, IEEE80211_CHAN_A,
306                         IEEE80211_CHAN_A | IEEE80211_CHAN_HT20);
307                 if (htconf & 2) {
308                         i = canpromote(i, IEEE80211_CHAN_A,
309                                 IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D);
310                         i = canpromote(i, IEEE80211_CHAN_A,
311                                 IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U);
312                 }
313         }
314         return i;
315 }
316
317 static void
318 mapfreq(struct ieee80211_channel *chan, uint16_t freq, uint32_t flags)
319 {
320         u_int i;
321
322         for (i = 0; i < chaninfo->ic_nchans; i++) {
323                 const struct ieee80211_channel *c = &chaninfo->ic_chans[i];
324
325                 if (c->ic_freq == freq && (c->ic_flags & flags) == flags) {
326                         if (flags == 0) {
327                                 /* when ambiguous promote to ``best'' */
328                                 c = &chaninfo->ic_chans[promote(i)];
329                         }
330                         *chan = *c;
331                         return;
332                 }
333         }
334         errx(1, "unknown/undefined frequency %u/0x%x", freq, flags);
335 }
336
337 static void
338 mapchan(struct ieee80211_channel *chan, uint8_t ieee, uint32_t flags)
339 {
340         u_int i;
341
342         for (i = 0; i < chaninfo->ic_nchans; i++) {
343                 const struct ieee80211_channel *c = &chaninfo->ic_chans[i];
344
345                 if (c->ic_ieee == ieee && (c->ic_flags & flags) == flags) {
346                         if (flags == 0) {
347                                 /* when ambiguous promote to ``best'' */
348                                 c = &chaninfo->ic_chans[promote(i)];
349                         }
350                         *chan = *c;
351                         return;
352                 }
353         }
354         errx(1, "unknown/undefined channel number %d flags 0x%x", ieee, flags);
355 }
356
357 static const struct ieee80211_channel *
358 getcurchan(int s)
359 {
360         if (gotcurchan)
361                 return &curchan;
362         if (get80211(s, IEEE80211_IOC_CURCHAN, &curchan, sizeof(curchan)) < 0) {
363                 int val;
364                 /* fall back to legacy ioctl */
365                 if (get80211val(s, IEEE80211_IOC_CHANNEL, &val) < 0)
366                         err(-1, "cannot figure out current channel");
367                 getchaninfo(s);
368                 mapchan(&curchan, val, 0);
369         }
370         gotcurchan = 1;
371         return &curchan;
372 }
373
374 static enum ieee80211_phymode
375 chan2mode(const struct ieee80211_channel *c)
376 {
377         if (IEEE80211_IS_CHAN_HTA(c))
378                 return IEEE80211_MODE_11NA;
379         if (IEEE80211_IS_CHAN_HTG(c))
380                 return IEEE80211_MODE_11NG;
381         if (IEEE80211_IS_CHAN_108A(c))
382                 return IEEE80211_MODE_TURBO_A;
383         if (IEEE80211_IS_CHAN_108G(c))
384                 return IEEE80211_MODE_TURBO_G;
385         if (IEEE80211_IS_CHAN_ST(c))
386                 return IEEE80211_MODE_STURBO_A;
387         if (IEEE80211_IS_CHAN_FHSS(c))
388                 return IEEE80211_MODE_FH;
389         if (IEEE80211_IS_CHAN_HALF(c))
390                 return IEEE80211_MODE_HALF;
391         if (IEEE80211_IS_CHAN_QUARTER(c))
392                 return IEEE80211_MODE_QUARTER;
393         if (IEEE80211_IS_CHAN_A(c))
394                 return IEEE80211_MODE_11A;
395         if (IEEE80211_IS_CHAN_ANYG(c))
396                 return IEEE80211_MODE_11G;
397         if (IEEE80211_IS_CHAN_B(c))
398                 return IEEE80211_MODE_11B;
399         return IEEE80211_MODE_AUTO;
400 }
401
402 static void
403 getroam(int s)
404 {
405         if (gotroam)
406                 return;
407         if (get80211(s, IEEE80211_IOC_ROAM,
408             &roamparams, sizeof(roamparams)) < 0)
409                 err(1, "unable to get roaming parameters");
410         gotroam = 1;
411 }
412
413 static void
414 setroam_cb(int s, void *arg)
415 {
416         struct ieee80211_roamparams_req *roam = arg;
417         set80211(s, IEEE80211_IOC_ROAM, 0, sizeof(*roam), roam);
418 }
419
420 static void
421 gettxparams(int s)
422 {
423         if (gottxparams)
424                 return;
425         if (get80211(s, IEEE80211_IOC_TXPARAMS,
426             &txparams, sizeof(txparams)) < 0)
427                 err(1, "unable to get transmit parameters");
428         gottxparams = 1;
429 }
430
431 static void
432 settxparams_cb(int s, void *arg)
433 {
434         struct ieee80211_txparams_req *txp = arg;
435         set80211(s, IEEE80211_IOC_TXPARAMS, 0, sizeof(*txp), txp);
436 }
437
438 static void
439 getregdomain(int s)
440 {
441         if (gotregdomain)
442                 return;
443         if (get80211(s, IEEE80211_IOC_REGDOMAIN,
444             &regdomain, sizeof(regdomain)) < 0)
445                 err(1, "unable to get regulatory domain info");
446         gotregdomain = 1;
447 }
448
449 static void
450 getdevcaps(int s, struct ieee80211_devcaps_req *dc)
451 {
452         if (get80211(s, IEEE80211_IOC_DEVCAPS, dc,
453             IEEE80211_DEVCAPS_SPACE(dc)) < 0)
454                 err(1, "unable to get device capabilities");
455 }
456
457 static void
458 setregdomain_cb(int s, void *arg)
459 {
460         struct ieee80211_regdomain_req *req;
461         struct ieee80211_regdomain *rd = arg;
462         struct ieee80211_devcaps_req *dc;
463         struct regdata *rdp = getregdata();
464
465         if (rd->country != NO_COUNTRY) {
466                 const struct country *cc;
467                 /*
468                  * Check current country seting to make sure it's
469                  * compatible with the new regdomain.  If not, then
470                  * override it with any default country for this
471                  * SKU.  If we cannot arrange a match, then abort.
472                  */
473                 cc = lib80211_country_findbycc(rdp, rd->country);
474                 if (cc == NULL)
475                         errx(1, "unknown ISO country code %d", rd->country);
476                 if (cc->rd->sku != rd->regdomain) {
477                         const struct regdomain *rp;
478                         /*
479                          * Check if country is incompatible with regdomain.
480                          * To enable multiple regdomains for a country code
481                          * we permit a mismatch between the regdomain and
482                          * the country's associated regdomain when the
483                          * regdomain is setup w/o a default country.  For
484                          * example, US is bound to the FCC regdomain but
485                          * we allow US to be combined with FCC3 because FCC3
486                          * has not default country.  This allows bogus
487                          * combinations like FCC3+DK which are resolved when
488                          * constructing the channel list by deferring to the
489                          * regdomain to construct the channel list.
490                          */
491                         rp = lib80211_regdomain_findbysku(rdp, rd->regdomain);
492                         if (rp == NULL)
493                                 errx(1, "country %s (%s) is not usable with "
494                                     "regdomain %d", cc->isoname, cc->name,
495                                     rd->regdomain);
496                         else if (rp->cc != NULL && rp->cc != cc)
497                                 errx(1, "country %s (%s) is not usable with "
498                                    "regdomain %s", cc->isoname, cc->name,
499                                    rp->name);
500                 }
501         }
502         /*
503          * Fetch the device capabilities and calculate the
504          * full set of netbands for which we request a new
505          * channel list be constructed.  Once that's done we
506          * push the regdomain info + channel list to the kernel.
507          */
508         dc = malloc(IEEE80211_DEVCAPS_SIZE(MAXCHAN));
509         if (dc == NULL)
510                 errx(1, "no space for device capabilities");
511         dc->dc_chaninfo.ic_nchans = MAXCHAN;
512         getdevcaps(s, dc);
513 #if 0
514         if (verbose) {
515                 printf("drivercaps: 0x%x\n", dc->dc_drivercaps);
516                 printf("cryptocaps: 0x%x\n", dc->dc_cryptocaps);
517                 printf("htcaps    : 0x%x\n", dc->dc_htcaps);
518                 memcpy(chaninfo, &dc->dc_chaninfo,
519                     IEEE80211_CHANINFO_SPACE(&dc->dc_chaninfo));
520                 print_channels(s, &dc->dc_chaninfo, 1/*allchans*/, 1/*verbose*/);
521         }
522 #endif
523         req = malloc(IEEE80211_REGDOMAIN_SIZE(dc->dc_chaninfo.ic_nchans));
524         if (req == NULL)
525                 errx(1, "no space for regdomain request");
526         req->rd = *rd;
527         regdomain_makechannels(req, dc);
528         if (verbose) {
529                 LINE_INIT(':');
530                 print_regdomain(rd, 1/*verbose*/);
531                 LINE_BREAK();
532                 /* blech, reallocate channel list for new data */
533                 if (chaninfo != NULL)
534                         free(chaninfo);
535                 chaninfo = malloc(IEEE80211_CHANINFO_SPACE(&req->chaninfo));
536                 if (chaninfo == NULL)
537                         errx(1, "no space for channel list");
538                 memcpy(chaninfo, &req->chaninfo,
539                     IEEE80211_CHANINFO_SPACE(&req->chaninfo));
540                 print_channels(s, &req->chaninfo, 1/*allchans*/, 1/*verbose*/);
541         }
542         if (req->chaninfo.ic_nchans == 0)
543                 errx(1, "no channels calculated");
544         set80211(s, IEEE80211_IOC_REGDOMAIN, 0,
545             IEEE80211_REGDOMAIN_SPACE(req), req);
546         free(req);
547         free(dc);
548 }
549
550 static int
551 ieee80211_mhz2ieee(int freq, int flags)
552 {
553         struct ieee80211_channel chan;
554         mapfreq(&chan, freq, flags);
555         return chan.ic_ieee;
556 }
557
558 static int
559 isanyarg(const char *arg)
560 {
561         return (ismatch(arg, "-") ||
562                 ismatch(arg, "any") ||
563                 ismatch(arg, "off"));
564 }
565
566 static void
567 set80211ssid(const char *val, int d, int s, const struct afswtch *rafp)
568 {
569         int             ssid;
570         int             len;
571         u_int8_t        data[IEEE80211_NWID_LEN];
572
573         ssid = 0;
574         len = strlen(val);
575         if (len > 2 && isdigit((int)val[0]) && val[1] == ':') {
576                 ssid = atoi(val)-1;
577                 val += 2;
578         }
579
580         bzero(data, sizeof(data));
581         len = sizeof(data);
582         if (get_string(val, NULL, data, &len) == NULL)
583                 exit(1);
584
585         set80211(s, IEEE80211_IOC_SSID, ssid, len, data);
586 }
587
588 static void
589 set80211meshid(const char *val, int d, int s, const struct afswtch *rafp)
590 {
591         int             len;
592         u_int8_t        data[IEEE80211_NWID_LEN];
593
594         memset(data, 0, sizeof(data));
595         len = sizeof(data);
596         if (get_string(val, NULL, data, &len) == NULL)
597                 exit(1);
598
599         set80211(s, IEEE80211_IOC_MESH_ID, 0, len, data);
600 }
601
602 static void
603 set80211stationname(const char *val, int d, int s, const struct afswtch *rafp)
604 {
605         int                     len;
606         u_int8_t                data[33];
607
608         bzero(data, sizeof(data));
609         len = sizeof(data);
610         get_string(val, NULL, data, &len);
611
612         set80211(s, IEEE80211_IOC_STATIONNAME, 0, len, data);
613 }
614
615 /*
616  * Parse a channel specification for attributes/flags.
617  * The syntax is:
618  *      freq/xx         channel width (5,10,20,40,40+,40-)
619  *      freq:mode       channel mode (a,b,g,h,n,t,s,d)
620  *
621  * These can be combined in either order; e.g. 2437:ng/40.
622  * Modes are case insensitive.
623  *
624  * The result is not validated here; it's assumed to be
625  * checked against the channel table fetched from the kernel.
626  */
627 static int
628 getchannelflags(const char *val, int freq)
629 {
630 #define _CHAN_HT        0x80000000
631         const char *cp;
632         int flags;
633
634         flags = 0;
635
636         cp = strchr(val, ':');
637         if (cp != NULL) {
638                 for (cp++; isalpha((int) *cp); cp++) {
639                         /* accept mixed case */
640                         int c = *cp;
641                         if (isupper(c))
642                                 c = tolower(c);
643                         switch (c) {
644                         case 'a':               /* 802.11a */
645                                 flags |= IEEE80211_CHAN_A;
646                                 break;
647                         case 'b':               /* 802.11b */
648                                 flags |= IEEE80211_CHAN_B;
649                                 break;
650                         case 'g':               /* 802.11g */
651                                 flags |= IEEE80211_CHAN_G;
652                                 break;
653                         case 'h':               /* ht = 802.11n */
654                         case 'n':               /* 802.11n */
655                                 flags |= _CHAN_HT;      /* NB: private */
656                                 break;
657                         case 'd':               /* dt = Atheros Dynamic Turbo */
658                                 flags |= IEEE80211_CHAN_TURBO;
659                                 break;
660                         case 't':               /* ht, dt, st, t */
661                                 /* dt and unadorned t specify Dynamic Turbo */
662                                 if ((flags & (IEEE80211_CHAN_STURBO|_CHAN_HT)) == 0)
663                                         flags |= IEEE80211_CHAN_TURBO;
664                                 break;
665                         case 's':               /* st = Atheros Static Turbo */
666                                 flags |= IEEE80211_CHAN_STURBO;
667                                 break;
668                         default:
669                                 errx(-1, "%s: Invalid channel attribute %c\n",
670                                     val, *cp);
671                         }
672                 }
673         }
674         cp = strchr(val, '/');
675         if (cp != NULL) {
676                 char *ep;
677                 u_long cw = strtoul(cp+1, &ep, 10);
678
679                 switch (cw) {
680                 case 5:
681                         flags |= IEEE80211_CHAN_QUARTER;
682                         break;
683                 case 10:
684                         flags |= IEEE80211_CHAN_HALF;
685                         break;
686                 case 20:
687                         /* NB: this may be removed below */
688                         flags |= IEEE80211_CHAN_HT20;
689                         break;
690                 case 40:
691                         if (ep != NULL && *ep == '+')
692                                 flags |= IEEE80211_CHAN_HT40U;
693                         else if (ep != NULL && *ep == '-')
694                                 flags |= IEEE80211_CHAN_HT40D;
695                         break;
696                 default:
697                         errx(-1, "%s: Invalid channel width\n", val);
698                 }
699         }
700         /*
701          * Cleanup specifications.
702          */
703         if ((flags & _CHAN_HT) == 0) {
704                 /*
705                  * If user specified freq/20 or freq/40 quietly remove
706                  * HT cw attributes depending on channel use.  To give
707                  * an explicit 20/40 width for an HT channel you must
708                  * indicate it is an HT channel since all HT channels
709                  * are also usable for legacy operation; e.g. freq:n/40.
710                  */
711                 flags &= ~IEEE80211_CHAN_HT;
712         } else {
713                 /*
714                  * Remove private indicator that this is an HT channel
715                  * and if no explicit channel width has been given
716                  * provide the default settings.
717                  */
718                 flags &= ~_CHAN_HT;
719                 if ((flags & IEEE80211_CHAN_HT) == 0) {
720                         struct ieee80211_channel chan;
721                         /*
722                          * Consult the channel list to see if we can use
723                          * HT40+ or HT40- (if both the map routines choose).
724                          */
725                         if (freq > 255)
726                                 mapfreq(&chan, freq, 0);
727                         else
728                                 mapchan(&chan, freq, 0);
729                         flags |= (chan.ic_flags & IEEE80211_CHAN_HT);
730                 }
731         }
732         return flags;
733 #undef _CHAN_HT
734 }
735
736 static void
737 getchannel(int s, struct ieee80211_channel *chan, const char *val)
738 {
739         int v, flags;
740         char *eptr;
741
742         memset(chan, 0, sizeof(*chan));
743         if (isanyarg(val)) {
744                 chan->ic_freq = IEEE80211_CHAN_ANY;
745                 return;
746         }
747         getchaninfo(s);
748         errno = 0;
749         v = strtol(val, &eptr, 10);
750         if (val[0] == '\0' || val == eptr || errno == ERANGE ||
751             /* channel may be suffixed with nothing, :flag, or /width */
752             (eptr[0] != '\0' && eptr[0] != ':' && eptr[0] != '/'))
753                 errx(1, "invalid channel specification%s",
754                     errno == ERANGE ? " (out of range)" : "");
755         flags = getchannelflags(val, v);
756         if (v > 255) {          /* treat as frequency */
757                 mapfreq(chan, v, flags);
758         } else {
759                 mapchan(chan, v, flags);
760         }
761 }
762
763 static void
764 set80211channel(const char *val, int d, int s, const struct afswtch *rafp)
765 {
766         struct ieee80211_channel chan;
767
768         getchannel(s, &chan, val);
769         set80211(s, IEEE80211_IOC_CURCHAN, 0, sizeof(chan), &chan);
770 }
771
772 static void
773 set80211chanswitch(const char *val, int d, int s, const struct afswtch *rafp)
774 {
775         struct ieee80211_chanswitch_req csr;
776
777         getchannel(s, &csr.csa_chan, val);
778         csr.csa_mode = 1;
779         csr.csa_count = 5;
780         set80211(s, IEEE80211_IOC_CHANSWITCH, 0, sizeof(csr), &csr);
781 }
782
783 static void
784 set80211authmode(const char *val, int d, int s, const struct afswtch *rafp)
785 {
786         int     mode;
787
788         if (iseq(val, "none")) {
789                 mode = IEEE80211_AUTH_NONE;
790         } else if (iseq(val, "open")) {
791                 mode = IEEE80211_AUTH_OPEN;
792         } else if (iseq(val, "shared")) {
793                 mode = IEEE80211_AUTH_SHARED;
794         } else if (iseq(val, "8021x")) {
795                 mode = IEEE80211_AUTH_8021X;
796         } else if (iseq(val, "wpa")) {
797                 mode = IEEE80211_AUTH_WPA;
798         } else {
799                 errx(1, "unknown authmode");
800         }
801
802         set80211(s, IEEE80211_IOC_AUTHMODE, mode, 0, NULL);
803 }
804
805 static void
806 set80211powersavemode(const char *val, int d, int s, const struct afswtch *rafp)
807 {
808         int     mode;
809
810         if (iseq(val, "off")) {
811                 mode = IEEE80211_POWERSAVE_OFF;
812         } else if (iseq(val, "on")) {
813                 mode = IEEE80211_POWERSAVE_ON;
814         } else if (iseq(val, "cam")) {
815                 mode = IEEE80211_POWERSAVE_CAM;
816         } else if (iseq(val, "psp")) {
817                 mode = IEEE80211_POWERSAVE_PSP;
818         } else if (iseq(val, "psp-cam")) {
819                 mode = IEEE80211_POWERSAVE_PSP_CAM;
820         } else {
821                 errx(1, "unknown powersavemode");
822         }
823
824         set80211(s, IEEE80211_IOC_POWERSAVE, mode, 0, NULL);
825 }
826
827 static void
828 set80211powersave(const char *val, int d, int s, const struct afswtch *rafp)
829 {
830         if (d == 0)
831                 set80211(s, IEEE80211_IOC_POWERSAVE, IEEE80211_POWERSAVE_OFF,
832                     0, NULL);
833         else
834                 set80211(s, IEEE80211_IOC_POWERSAVE, IEEE80211_POWERSAVE_ON,
835                     0, NULL);
836 }
837
838 static void
839 set80211powersavesleep(const char *val, int d, int s, const struct afswtch *rafp)
840 {
841         set80211(s, IEEE80211_IOC_POWERSAVESLEEP, atoi(val), 0, NULL);
842 }
843
844 static void
845 set80211wepmode(const char *val, int d, int s, const struct afswtch *rafp)
846 {
847         int     mode;
848
849         if (iseq(val, "off")) {
850                 mode = IEEE80211_WEP_OFF;
851         } else if (iseq(val, "on")) {
852                 mode = IEEE80211_WEP_ON;
853         } else if (iseq(val, "mixed")) {
854                 mode = IEEE80211_WEP_MIXED;
855         } else {
856                 errx(1, "unknown wep mode");
857         }
858
859         set80211(s, IEEE80211_IOC_WEP, mode, 0, NULL);
860 }
861
862 static void
863 set80211wep(const char *val, int d, int s, const struct afswtch *rafp)
864 {
865         set80211(s, IEEE80211_IOC_WEP, d, 0, NULL);
866 }
867
868 static int
869 isundefarg(const char *arg)
870 {
871         return (strcmp(arg, "-") == 0 || ismatch(arg, "undef"));
872 }
873
874 static void
875 set80211weptxkey(const char *val, int d, int s, const struct afswtch *rafp)
876 {
877         if (isundefarg(val))
878                 set80211(s, IEEE80211_IOC_WEPTXKEY, IEEE80211_KEYIX_NONE, 0, NULL);
879         else
880                 set80211(s, IEEE80211_IOC_WEPTXKEY, atoi(val)-1, 0, NULL);
881 }
882
883 static void
884 set80211wepkey(const char *val, int d, int s, const struct afswtch *rafp)
885 {
886         int             key = 0;
887         int             len;
888         u_int8_t        data[IEEE80211_KEYBUF_SIZE];
889
890         if (isdigit((int)val[0]) && val[1] == ':') {
891                 key = atoi(val)-1;
892                 val += 2;
893         }
894
895         bzero(data, sizeof(data));
896         len = sizeof(data);
897         get_string(val, NULL, data, &len);
898
899         set80211(s, IEEE80211_IOC_WEPKEY, key, len, data);
900 }
901
902 /*
903  * This function is purely a NetBSD compatibility interface.  The NetBSD
904  * interface is too inflexible, but it's there so we'll support it since
905  * it's not all that hard.
906  */
907 static void
908 set80211nwkey(const char *val, int d, int s, const struct afswtch *rafp)
909 {
910         int             txkey;
911         int             i, len;
912         u_int8_t        data[IEEE80211_KEYBUF_SIZE];
913
914         set80211(s, IEEE80211_IOC_WEP, IEEE80211_WEP_ON, 0, NULL);
915
916         if (isdigit((int)val[0]) && val[1] == ':') {
917                 txkey = val[0]-'0'-1;
918                 val += 2;
919
920                 for (i = 0; i < 4; i++) {
921                         bzero(data, sizeof(data));
922                         len = sizeof(data);
923                         val = get_string(val, ",", data, &len);
924                         if (val == NULL)
925                                 exit(1);
926
927                         set80211(s, IEEE80211_IOC_WEPKEY, i, len, data);
928                 }
929         } else {
930                 bzero(data, sizeof(data));
931                 len = sizeof(data);
932                 get_string(val, NULL, data, &len);
933                 txkey = 0;
934
935                 set80211(s, IEEE80211_IOC_WEPKEY, 0, len, data);
936
937                 bzero(data, sizeof(data));
938                 for (i = 1; i < 4; i++)
939                         set80211(s, IEEE80211_IOC_WEPKEY, i, 0, data);
940         }
941
942         set80211(s, IEEE80211_IOC_WEPTXKEY, txkey, 0, NULL);
943 }
944
945 static void
946 set80211rtsthreshold(const char *val, int d, int s, const struct afswtch *rafp)
947 {
948         set80211(s, IEEE80211_IOC_RTSTHRESHOLD,
949                 isundefarg(val) ? IEEE80211_RTS_MAX : atoi(val), 0, NULL);
950 }
951
952 static void
953 set80211protmode(const char *val, int d, int s, const struct afswtch *rafp)
954 {
955         int     mode;
956
957         if (iseq(val, "off")) {
958                 mode = IEEE80211_PROTMODE_OFF;
959         } else if (iseq(val, "cts")) {
960                 mode = IEEE80211_PROTMODE_CTS;
961         } else if (ismatch(val, "rts")) {
962                 mode = IEEE80211_PROTMODE_RTSCTS;
963         } else {
964                 errx(1, "unknown protection mode");
965         }
966
967         set80211(s, IEEE80211_IOC_PROTMODE, mode, 0, NULL);
968 }
969
970 static void
971 set80211htprotmode(const char *val, int d, int s, const struct afswtch *rafp)
972 {
973         int     mode;
974
975         if (iseq(val, "off")) {
976                 mode = IEEE80211_PROTMODE_OFF;
977         } else if (ismatch(val, "rts")) {
978                 mode = IEEE80211_PROTMODE_RTSCTS;
979         } else {
980                 errx(1, "unknown protection mode");
981         }
982
983         set80211(s, IEEE80211_IOC_HTPROTMODE, mode, 0, NULL);
984 }
985
986 static void
987 set80211txpower(const char *val, int d, int s, const struct afswtch *rafp)
988 {
989         double v = atof(val);
990         int txpow;
991
992         txpow = (int) (2*v);
993         if (txpow != 2*v)
994                 errx(-1, "invalid tx power (must be .5 dBm units)");
995         set80211(s, IEEE80211_IOC_TXPOWER, txpow, 0, NULL);
996 }
997
998 #define IEEE80211_ROAMING_DEVICE        0
999 #define IEEE80211_ROAMING_AUTO          1
1000 #define IEEE80211_ROAMING_MANUAL        2
1001
1002 static void
1003 set80211roaming(const char *val, int d, int s, const struct afswtch *rafp)
1004 {
1005         int mode;
1006
1007         if (iseq(val, "device")) {
1008                 mode = IEEE80211_ROAMING_DEVICE;
1009         } else if (iseq(val, "auto")) {
1010                 mode = IEEE80211_ROAMING_AUTO;
1011         } else if (iseq(val, "manual")) {
1012                 mode = IEEE80211_ROAMING_MANUAL;
1013         } else {
1014                 errx(1, "unknown roaming mode");
1015         }
1016         set80211(s, IEEE80211_IOC_ROAMING, mode, 0, NULL);
1017 }
1018
1019 static void
1020 set80211wme(const char *val, int d, int s, const struct afswtch *rafp)
1021 {
1022         set80211(s, IEEE80211_IOC_WME, d, 0, NULL);
1023 }
1024
1025 static void
1026 set80211hidessid(const char *val, int d, int s, const struct afswtch *rafp)
1027 {
1028         set80211(s, IEEE80211_IOC_HIDESSID, d, 0, NULL);
1029 }
1030
1031 static void
1032 set80211apbridge(const char *val, int d, int s, const struct afswtch *rafp)
1033 {
1034         set80211(s, IEEE80211_IOC_APBRIDGE, d, 0, NULL);
1035 }
1036
1037 static void
1038 set80211fastframes(const char *val, int d, int s, const struct afswtch *rafp)
1039 {
1040         set80211(s, IEEE80211_IOC_FF, d, 0, NULL);
1041 }
1042
1043 static void
1044 set80211dturbo(const char *val, int d, int s, const struct afswtch *rafp)
1045 {
1046         set80211(s, IEEE80211_IOC_TURBOP, d, 0, NULL);
1047 }
1048
1049 static void
1050 set80211chanlist(const char *val, int d, int s, const struct afswtch *rafp)
1051 {
1052         struct ieee80211req_chanlist chanlist;
1053         char *temp, *cp, *tp;
1054
1055         temp = strdup(val);
1056         if (temp == NULL)
1057                 errx(1, "strdup failed");
1058         memset(&chanlist, 0, sizeof(chanlist));
1059         cp = temp;
1060         for (;;) {
1061                 int first, last, f, c;
1062
1063                 tp = strchr(cp, ',');
1064                 if (tp != NULL)
1065                         *tp++ = '\0';
1066                 switch (sscanf(cp, "%u-%u", &first, &last)) {
1067                 case 1:
1068                         if (first > IEEE80211_CHAN_MAX)
1069                                 errx(-1, "channel %u out of range, max %u",
1070                                         first, IEEE80211_CHAN_MAX);
1071                         setbit(chanlist.ic_channels, first);
1072                         break;
1073                 case 2:
1074                         if (first > IEEE80211_CHAN_MAX)
1075                                 errx(-1, "channel %u out of range, max %u",
1076                                         first, IEEE80211_CHAN_MAX);
1077                         if (last > IEEE80211_CHAN_MAX)
1078                                 errx(-1, "channel %u out of range, max %u",
1079                                         last, IEEE80211_CHAN_MAX);
1080                         if (first > last)
1081                                 errx(-1, "void channel range, %u > %u",
1082                                         first, last);
1083                         for (f = first; f <= last; f++)
1084                                 setbit(chanlist.ic_channels, f);
1085                         break;
1086                 }
1087                 if (tp == NULL)
1088                         break;
1089                 c = *tp;
1090                 while (isspace(c))
1091                         tp++;
1092                 if (!isdigit(c))
1093                         break;
1094                 cp = tp;
1095         }
1096         set80211(s, IEEE80211_IOC_CHANLIST, 0, sizeof(chanlist), &chanlist);
1097 }
1098
1099 static void
1100 set80211bssid(const char *val, int d, int s, const struct afswtch *rafp)
1101 {
1102
1103         if (!isanyarg(val)) {
1104                 char *temp;
1105                 struct sockaddr_dl sdl;
1106
1107                 temp = malloc(strlen(val) + 2); /* ':' and '\0' */
1108                 if (temp == NULL)
1109                         errx(1, "malloc failed");
1110                 temp[0] = ':';
1111                 strcpy(temp + 1, val);
1112                 sdl.sdl_len = sizeof(sdl);
1113                 link_addr(temp, &sdl);
1114                 free(temp);
1115                 if (sdl.sdl_alen != IEEE80211_ADDR_LEN)
1116                         errx(1, "malformed link-level address");
1117                 set80211(s, IEEE80211_IOC_BSSID, 0,
1118                         IEEE80211_ADDR_LEN, LLADDR(&sdl));
1119         } else {
1120                 uint8_t zerobssid[IEEE80211_ADDR_LEN];
1121                 memset(zerobssid, 0, sizeof(zerobssid));
1122                 set80211(s, IEEE80211_IOC_BSSID, 0,
1123                         IEEE80211_ADDR_LEN, zerobssid);
1124         }
1125 }
1126
1127 static int
1128 getac(const char *ac)
1129 {
1130         if (iseq(ac, "ac_be") || iseq(ac, "be"))
1131                 return WME_AC_BE;
1132         if (iseq(ac, "ac_bk") || iseq(ac, "bk"))
1133                 return WME_AC_BK;
1134         if (iseq(ac, "ac_vi") || iseq(ac, "vi"))
1135                 return WME_AC_VI;
1136         if (iseq(ac, "ac_vo") || iseq(ac, "vo"))
1137                 return WME_AC_VO;
1138         errx(1, "unknown wme access class %s", ac);
1139 }
1140
1141 static
1142 DECL_CMD_FUNC2(set80211cwmin, ac, val)
1143 {
1144         set80211(s, IEEE80211_IOC_WME_CWMIN, atoi(val), getac(ac), NULL);
1145 }
1146
1147 static
1148 DECL_CMD_FUNC2(set80211cwmax, ac, val)
1149 {
1150         set80211(s, IEEE80211_IOC_WME_CWMAX, atoi(val), getac(ac), NULL);
1151 }
1152
1153 static
1154 DECL_CMD_FUNC2(set80211aifs, ac, val)
1155 {
1156         set80211(s, IEEE80211_IOC_WME_AIFS, atoi(val), getac(ac), NULL);
1157 }
1158
1159 static
1160 DECL_CMD_FUNC2(set80211txoplimit, ac, val)
1161 {
1162         set80211(s, IEEE80211_IOC_WME_TXOPLIMIT, atoi(val), getac(ac), NULL);
1163 }
1164
1165 static
1166 DECL_CMD_FUNC(set80211acm, ac, d)
1167 {
1168         set80211(s, IEEE80211_IOC_WME_ACM, 1, getac(ac), NULL);
1169 }
1170 static
1171 DECL_CMD_FUNC(set80211noacm, ac, d)
1172 {
1173         set80211(s, IEEE80211_IOC_WME_ACM, 0, getac(ac), NULL);
1174 }
1175
1176 static
1177 DECL_CMD_FUNC(set80211ackpolicy, ac, d)
1178 {
1179         set80211(s, IEEE80211_IOC_WME_ACKPOLICY, 1, getac(ac), NULL);
1180 }
1181 static
1182 DECL_CMD_FUNC(set80211noackpolicy, ac, d)
1183 {
1184         set80211(s, IEEE80211_IOC_WME_ACKPOLICY, 0, getac(ac), NULL);
1185 }
1186
1187 static
1188 DECL_CMD_FUNC2(set80211bsscwmin, ac, val)
1189 {
1190         set80211(s, IEEE80211_IOC_WME_CWMIN, atoi(val),
1191                 getac(ac)|IEEE80211_WMEPARAM_BSS, NULL);
1192 }
1193
1194 static
1195 DECL_CMD_FUNC2(set80211bsscwmax, ac, val)
1196 {
1197         set80211(s, IEEE80211_IOC_WME_CWMAX, atoi(val),
1198                 getac(ac)|IEEE80211_WMEPARAM_BSS, NULL);
1199 }
1200
1201 static
1202 DECL_CMD_FUNC2(set80211bssaifs, ac, val)
1203 {
1204         set80211(s, IEEE80211_IOC_WME_AIFS, atoi(val),
1205                 getac(ac)|IEEE80211_WMEPARAM_BSS, NULL);
1206 }
1207
1208 static
1209 DECL_CMD_FUNC2(set80211bsstxoplimit, ac, val)
1210 {
1211         set80211(s, IEEE80211_IOC_WME_TXOPLIMIT, atoi(val),
1212                 getac(ac)|IEEE80211_WMEPARAM_BSS, NULL);
1213 }
1214
1215 static
1216 DECL_CMD_FUNC(set80211dtimperiod, val, d)
1217 {
1218         set80211(s, IEEE80211_IOC_DTIM_PERIOD, atoi(val), 0, NULL);
1219 }
1220
1221 static
1222 DECL_CMD_FUNC(set80211bintval, val, d)
1223 {
1224         set80211(s, IEEE80211_IOC_BEACON_INTERVAL, atoi(val), 0, NULL);
1225 }
1226
1227 static void
1228 set80211macmac(int s, int op, const char *val)
1229 {
1230         char *temp;
1231         struct sockaddr_dl sdl;
1232
1233         temp = malloc(strlen(val) + 2); /* ':' and '\0' */
1234         if (temp == NULL)
1235                 errx(1, "malloc failed");
1236         temp[0] = ':';
1237         strcpy(temp + 1, val);
1238         sdl.sdl_len = sizeof(sdl);
1239         link_addr(temp, &sdl);
1240         free(temp);
1241         if (sdl.sdl_alen != IEEE80211_ADDR_LEN)
1242                 errx(1, "malformed link-level address");
1243         set80211(s, op, 0, IEEE80211_ADDR_LEN, LLADDR(&sdl));
1244 }
1245
1246 static
1247 DECL_CMD_FUNC(set80211addmac, val, d)
1248 {
1249         set80211macmac(s, IEEE80211_IOC_ADDMAC, val);
1250 }
1251
1252 static
1253 DECL_CMD_FUNC(set80211delmac, val, d)
1254 {
1255         set80211macmac(s, IEEE80211_IOC_DELMAC, val);
1256 }
1257
1258 static
1259 DECL_CMD_FUNC(set80211kickmac, val, d)
1260 {
1261         char *temp;
1262         struct sockaddr_dl sdl;
1263         struct ieee80211req_mlme mlme;
1264
1265         temp = malloc(strlen(val) + 2); /* ':' and '\0' */
1266         if (temp == NULL)
1267                 errx(1, "malloc failed");
1268         temp[0] = ':';
1269         strcpy(temp + 1, val);
1270         sdl.sdl_len = sizeof(sdl);
1271         link_addr(temp, &sdl);
1272         free(temp);
1273         if (sdl.sdl_alen != IEEE80211_ADDR_LEN)
1274                 errx(1, "malformed link-level address");
1275         memset(&mlme, 0, sizeof(mlme));
1276         mlme.im_op = IEEE80211_MLME_DEAUTH;
1277         mlme.im_reason = IEEE80211_REASON_AUTH_EXPIRE;
1278         memcpy(mlme.im_macaddr, LLADDR(&sdl), IEEE80211_ADDR_LEN);
1279         set80211(s, IEEE80211_IOC_MLME, 0, sizeof(mlme), &mlme);
1280 }
1281
1282 static
1283 DECL_CMD_FUNC(set80211maccmd, val, d)
1284 {
1285         set80211(s, IEEE80211_IOC_MACCMD, d, 0, NULL);
1286 }
1287
1288 static void
1289 set80211meshrtmac(int s, int req, const char *val)
1290 {
1291         char *temp;
1292         struct sockaddr_dl sdl;
1293
1294         temp = malloc(strlen(val) + 2); /* ':' and '\0' */
1295         if (temp == NULL)
1296                 errx(1, "malloc failed");
1297         temp[0] = ':';
1298         strcpy(temp + 1, val);
1299         sdl.sdl_len = sizeof(sdl);
1300         link_addr(temp, &sdl);
1301         free(temp);
1302         if (sdl.sdl_alen != IEEE80211_ADDR_LEN)
1303                 errx(1, "malformed link-level address");
1304         set80211(s, IEEE80211_IOC_MESH_RTCMD, req,
1305             IEEE80211_ADDR_LEN, LLADDR(&sdl));
1306 }
1307
1308 static
1309 DECL_CMD_FUNC(set80211addmeshrt, val, d)
1310 {
1311         set80211meshrtmac(s, IEEE80211_MESH_RTCMD_ADD, val);
1312 }
1313
1314 static
1315 DECL_CMD_FUNC(set80211delmeshrt, val, d)
1316 {
1317         set80211meshrtmac(s, IEEE80211_MESH_RTCMD_DELETE, val);
1318 }
1319
1320 static
1321 DECL_CMD_FUNC(set80211meshrtcmd, val, d)
1322 {
1323         set80211(s, IEEE80211_IOC_MESH_RTCMD, d, 0, NULL);
1324 }
1325
1326 static
1327 DECL_CMD_FUNC(set80211hwmprootmode, val, d)
1328 {
1329         int mode;
1330
1331         if (iseq(val, "normal"))
1332                 mode = IEEE80211_HWMP_ROOTMODE_NORMAL;
1333         else if (iseq(val, "proactive"))
1334                 mode = IEEE80211_HWMP_ROOTMODE_PROACTIVE;
1335         else if (iseq(val, "rann"))
1336                 mode = IEEE80211_HWMP_ROOTMODE_RANN;
1337         else
1338                 mode = IEEE80211_HWMP_ROOTMODE_DISABLED;
1339         set80211(s, IEEE80211_IOC_HWMP_ROOTMODE, mode, 0, NULL);
1340 }
1341
1342 static
1343 DECL_CMD_FUNC(set80211hwmpmaxhops, val, d)
1344 {
1345         set80211(s, IEEE80211_IOC_HWMP_MAXHOPS, atoi(val), 0, NULL);
1346 }
1347
1348 static void
1349 set80211pureg(const char *val, int d, int s, const struct afswtch *rafp)
1350 {
1351         set80211(s, IEEE80211_IOC_PUREG, d, 0, NULL);
1352 }
1353
1354 static void
1355 set80211bgscan(const char *val, int d, int s, const struct afswtch *rafp)
1356 {
1357         set80211(s, IEEE80211_IOC_BGSCAN, d, 0, NULL);
1358 }
1359
1360 static
1361 DECL_CMD_FUNC(set80211bgscanidle, val, d)
1362 {
1363         set80211(s, IEEE80211_IOC_BGSCAN_IDLE, atoi(val), 0, NULL);
1364 }
1365
1366 static
1367 DECL_CMD_FUNC(set80211bgscanintvl, val, d)
1368 {
1369         set80211(s, IEEE80211_IOC_BGSCAN_INTERVAL, atoi(val), 0, NULL);
1370 }
1371
1372 static
1373 DECL_CMD_FUNC(set80211scanvalid, val, d)
1374 {
1375         set80211(s, IEEE80211_IOC_SCANVALID, atoi(val), 0, NULL);
1376 }
1377
1378 /*
1379  * Parse an optional trailing specification of which netbands
1380  * to apply a parameter to.  This is basically the same syntax
1381  * as used for channels but you can concatenate to specify
1382  * multiple.  For example:
1383  *      14:abg          apply to 11a, 11b, and 11g
1384  *      6:ht            apply to 11na and 11ng
1385  * We don't make a big effort to catch silly things; this is
1386  * really a convenience mechanism.
1387  */
1388 static int
1389 getmodeflags(const char *val)
1390 {
1391         const char *cp;
1392         int flags;
1393
1394         flags = 0;
1395
1396         cp = strchr(val, ':');
1397         if (cp != NULL) {
1398                 for (cp++; isalpha((int) *cp); cp++) {
1399                         /* accept mixed case */
1400                         int c = *cp;
1401                         if (isupper(c))
1402                                 c = tolower(c);
1403                         switch (c) {
1404                         case 'a':               /* 802.11a */
1405                                 flags |= IEEE80211_CHAN_A;
1406                                 break;
1407                         case 'b':               /* 802.11b */
1408                                 flags |= IEEE80211_CHAN_B;
1409                                 break;
1410                         case 'g':               /* 802.11g */
1411                                 flags |= IEEE80211_CHAN_G;
1412                                 break;
1413                         case 'n':               /* 802.11n */
1414                                 flags |= IEEE80211_CHAN_HT;
1415                                 break;
1416                         case 'd':               /* dt = Atheros Dynamic Turbo */
1417                                 flags |= IEEE80211_CHAN_TURBO;
1418                                 break;
1419                         case 't':               /* ht, dt, st, t */
1420                                 /* dt and unadorned t specify Dynamic Turbo */
1421                                 if ((flags & (IEEE80211_CHAN_STURBO|IEEE80211_CHAN_HT)) == 0)
1422                                         flags |= IEEE80211_CHAN_TURBO;
1423                                 break;
1424                         case 's':               /* st = Atheros Static Turbo */
1425                                 flags |= IEEE80211_CHAN_STURBO;
1426                                 break;
1427                         case 'h':               /* 1/2-width channels */
1428                                 flags |= IEEE80211_CHAN_HALF;
1429                                 break;
1430                         case 'q':               /* 1/4-width channels */
1431                                 flags |= IEEE80211_CHAN_QUARTER;
1432                                 break;
1433                         default:
1434                                 errx(-1, "%s: Invalid mode attribute %c\n",
1435                                     val, *cp);
1436                         }
1437                 }
1438         }
1439         return flags;
1440 }
1441
1442 #define _APPLY(_flags, _base, _param, _v) do {                          \
1443     if (_flags & IEEE80211_CHAN_HT) {                                   \
1444             if ((_flags & (IEEE80211_CHAN_5GHZ|IEEE80211_CHAN_2GHZ)) == 0) {\
1445                     _base.params[IEEE80211_MODE_11NA]._param = _v;      \
1446                     _base.params[IEEE80211_MODE_11NG]._param = _v;      \
1447             } else if (_flags & IEEE80211_CHAN_5GHZ)                    \
1448                     _base.params[IEEE80211_MODE_11NA]._param = _v;      \
1449             else                                                        \
1450                     _base.params[IEEE80211_MODE_11NG]._param = _v;      \
1451     }                                                                   \
1452     if (_flags & IEEE80211_CHAN_TURBO) {                                \
1453             if ((_flags & (IEEE80211_CHAN_5GHZ|IEEE80211_CHAN_2GHZ)) == 0) {\
1454                     _base.params[IEEE80211_MODE_TURBO_A]._param = _v;   \
1455                     _base.params[IEEE80211_MODE_TURBO_G]._param = _v;   \
1456             } else if (_flags & IEEE80211_CHAN_5GHZ)                    \
1457                     _base.params[IEEE80211_MODE_TURBO_A]._param = _v;   \
1458             else                                                        \
1459                     _base.params[IEEE80211_MODE_TURBO_G]._param = _v;   \
1460     }                                                                   \
1461     if (_flags & IEEE80211_CHAN_STURBO)                                 \
1462             _base.params[IEEE80211_MODE_STURBO_A]._param = _v;          \
1463     if ((_flags & IEEE80211_CHAN_A) == IEEE80211_CHAN_A)                \
1464             _base.params[IEEE80211_MODE_11A]._param = _v;               \
1465     if ((_flags & IEEE80211_CHAN_G) == IEEE80211_CHAN_G)                \
1466             _base.params[IEEE80211_MODE_11G]._param = _v;               \
1467     if ((_flags & IEEE80211_CHAN_B) == IEEE80211_CHAN_B)                \
1468             _base.params[IEEE80211_MODE_11B]._param = _v;               \
1469     if (_flags & IEEE80211_CHAN_HALF)                                   \
1470             _base.params[IEEE80211_MODE_HALF]._param = _v;              \
1471     if (_flags & IEEE80211_CHAN_QUARTER)                                \
1472             _base.params[IEEE80211_MODE_QUARTER]._param = _v;           \
1473 } while (0)
1474 #define _APPLY1(_flags, _base, _param, _v) do {                         \
1475     if (_flags & IEEE80211_CHAN_HT) {                                   \
1476             if (_flags & IEEE80211_CHAN_5GHZ)                           \
1477                     _base.params[IEEE80211_MODE_11NA]._param = _v;      \
1478             else                                                        \
1479                     _base.params[IEEE80211_MODE_11NG]._param = _v;      \
1480     } else if ((_flags & IEEE80211_CHAN_108A) == IEEE80211_CHAN_108A)   \
1481             _base.params[IEEE80211_MODE_TURBO_A]._param = _v;           \
1482     else if ((_flags & IEEE80211_CHAN_108G) == IEEE80211_CHAN_108G)     \
1483             _base.params[IEEE80211_MODE_TURBO_G]._param = _v;           \
1484     else if ((_flags & IEEE80211_CHAN_ST) == IEEE80211_CHAN_ST)         \
1485             _base.params[IEEE80211_MODE_STURBO_A]._param = _v;          \
1486     else if (_flags & IEEE80211_CHAN_HALF)                              \
1487             _base.params[IEEE80211_MODE_HALF]._param = _v;              \
1488     else if (_flags & IEEE80211_CHAN_QUARTER)                           \
1489             _base.params[IEEE80211_MODE_QUARTER]._param = _v;           \
1490     else if ((_flags & IEEE80211_CHAN_A) == IEEE80211_CHAN_A)           \
1491             _base.params[IEEE80211_MODE_11A]._param = _v;               \
1492     else if ((_flags & IEEE80211_CHAN_G) == IEEE80211_CHAN_G)           \
1493             _base.params[IEEE80211_MODE_11G]._param = _v;               \
1494     else if ((_flags & IEEE80211_CHAN_B) == IEEE80211_CHAN_B)           \
1495             _base.params[IEEE80211_MODE_11B]._param = _v;               \
1496 } while (0)
1497 #define _APPLY_RATE(_flags, _base, _param, _v) do {                     \
1498     if (_flags & IEEE80211_CHAN_HT) {                                   \
1499         (_v) = (_v / 2) | IEEE80211_RATE_MCS;                           \
1500     }                                                                   \
1501     _APPLY(_flags, _base, _param, _v);                                  \
1502 } while (0)
1503 #define _APPLY_RATE1(_flags, _base, _param, _v) do {                    \
1504     if (_flags & IEEE80211_CHAN_HT) {                                   \
1505         (_v) = (_v / 2) | IEEE80211_RATE_MCS;                           \
1506     }                                                                   \
1507     _APPLY1(_flags, _base, _param, _v);                                 \
1508 } while (0)
1509
1510 static
1511 DECL_CMD_FUNC(set80211roamrssi, val, d)
1512 {
1513         double v = atof(val);
1514         int rssi, flags;
1515
1516         rssi = (int) (2*v);
1517         if (rssi != 2*v)
1518                 errx(-1, "invalid rssi (must be .5 dBm units)");
1519         flags = getmodeflags(val);
1520         getroam(s);
1521         if (flags == 0) {               /* NB: no flags => current channel */
1522                 flags = getcurchan(s)->ic_flags;
1523                 _APPLY1(flags, roamparams, rssi, rssi);
1524         } else
1525                 _APPLY(flags, roamparams, rssi, rssi);
1526         callback_register(setroam_cb, &roamparams);
1527 }
1528
1529 static int
1530 getrate(const char *val, const char *tag)
1531 {
1532         double v = atof(val);
1533         int rate;
1534
1535         rate = (int) (2*v);
1536         if (rate != 2*v)
1537                 errx(-1, "invalid %s rate (must be .5 Mb/s units)", tag);
1538         return rate;            /* NB: returns 2x the specified value */
1539 }
1540
1541 static
1542 DECL_CMD_FUNC(set80211roamrate, val, d)
1543 {
1544         int rate, flags;
1545
1546         rate = getrate(val, "roam");
1547         flags = getmodeflags(val);
1548         getroam(s);
1549         if (flags == 0) {               /* NB: no flags => current channel */
1550                 flags = getcurchan(s)->ic_flags;
1551                 _APPLY_RATE1(flags, roamparams, rate, rate);
1552         } else
1553                 _APPLY_RATE(flags, roamparams, rate, rate);
1554         callback_register(setroam_cb, &roamparams);
1555 }
1556
1557 static
1558 DECL_CMD_FUNC(set80211mcastrate, val, d)
1559 {
1560         int rate, flags;
1561
1562         rate = getrate(val, "mcast");
1563         flags = getmodeflags(val);
1564         gettxparams(s);
1565         if (flags == 0) {               /* NB: no flags => current channel */
1566                 flags = getcurchan(s)->ic_flags;
1567                 _APPLY_RATE1(flags, txparams, mcastrate, rate);
1568         } else
1569                 _APPLY_RATE(flags, txparams, mcastrate, rate);
1570         callback_register(settxparams_cb, &txparams);
1571 }
1572
1573 static
1574 DECL_CMD_FUNC(set80211mgtrate, val, d)
1575 {
1576         int rate, flags;
1577
1578         rate = getrate(val, "mgmt");
1579         flags = getmodeflags(val);
1580         gettxparams(s);
1581         if (flags == 0) {               /* NB: no flags => current channel */
1582                 flags = getcurchan(s)->ic_flags;
1583                 _APPLY_RATE1(flags, txparams, mgmtrate, rate);
1584         } else
1585                 _APPLY_RATE(flags, txparams, mgmtrate, rate);
1586         callback_register(settxparams_cb, &txparams);
1587 }
1588
1589 static
1590 DECL_CMD_FUNC(set80211ucastrate, val, d)
1591 {
1592         int flags;
1593
1594         gettxparams(s);
1595         flags = getmodeflags(val);
1596         if (isanyarg(val)) {
1597                 if (flags == 0) {       /* NB: no flags => current channel */
1598                         flags = getcurchan(s)->ic_flags;
1599                         _APPLY1(flags, txparams, ucastrate,
1600                             IEEE80211_FIXED_RATE_NONE);
1601                 } else
1602                         _APPLY(flags, txparams, ucastrate,
1603                             IEEE80211_FIXED_RATE_NONE);
1604         } else {
1605                 int rate = getrate(val, "ucast");
1606                 if (flags == 0) {       /* NB: no flags => current channel */
1607                         flags = getcurchan(s)->ic_flags;
1608                         _APPLY_RATE1(flags, txparams, ucastrate, rate);
1609                 } else
1610                         _APPLY_RATE(flags, txparams, ucastrate, rate);
1611         }
1612         callback_register(settxparams_cb, &txparams);
1613 }
1614
1615 static
1616 DECL_CMD_FUNC(set80211maxretry, val, d)
1617 {
1618         int v = atoi(val), flags;
1619
1620         flags = getmodeflags(val);
1621         gettxparams(s);
1622         if (flags == 0) {               /* NB: no flags => current channel */
1623                 flags = getcurchan(s)->ic_flags;
1624                 _APPLY1(flags, txparams, maxretry, v);
1625         } else
1626                 _APPLY(flags, txparams, maxretry, v);
1627         callback_register(settxparams_cb, &txparams);
1628 }
1629 #undef _APPLY_RATE
1630 #undef _APPLY
1631
1632 static
1633 DECL_CMD_FUNC(set80211fragthreshold, val, d)
1634 {
1635         set80211(s, IEEE80211_IOC_FRAGTHRESHOLD,
1636                 isundefarg(val) ? IEEE80211_FRAG_MAX : atoi(val), 0, NULL);
1637 }
1638
1639 static
1640 DECL_CMD_FUNC(set80211bmissthreshold, val, d)
1641 {
1642         set80211(s, IEEE80211_IOC_BMISSTHRESHOLD,
1643                 isundefarg(val) ? IEEE80211_HWBMISS_MAX : atoi(val), 0, NULL);
1644 }
1645
1646 static void
1647 set80211burst(const char *val, int d, int s, const struct afswtch *rafp)
1648 {
1649         set80211(s, IEEE80211_IOC_BURST, d, 0, NULL);
1650 }
1651
1652 static void
1653 set80211doth(const char *val, int d, int s, const struct afswtch *rafp)
1654 {
1655         set80211(s, IEEE80211_IOC_DOTH, d, 0, NULL);
1656 }
1657
1658 static void
1659 set80211dfs(const char *val, int d, int s, const struct afswtch *rafp)
1660 {
1661         set80211(s, IEEE80211_IOC_DFS, d, 0, NULL);
1662 }
1663
1664 static void
1665 set80211shortgi(const char *val, int d, int s, const struct afswtch *rafp)
1666 {
1667         set80211(s, IEEE80211_IOC_SHORTGI,
1668                 d ? (IEEE80211_HTCAP_SHORTGI20 | IEEE80211_HTCAP_SHORTGI40) : 0,
1669                 0, NULL);
1670 }
1671
1672 static void
1673 set80211ampdu(const char *val, int d, int s, const struct afswtch *rafp)
1674 {
1675         int ampdu;
1676
1677         if (get80211val(s, IEEE80211_IOC_AMPDU, &ampdu) < 0)
1678                 errx(-1, "cannot get AMPDU setting");
1679         if (d < 0) {
1680                 d = -d;
1681                 ampdu &= ~d;
1682         } else
1683                 ampdu |= d;
1684         set80211(s, IEEE80211_IOC_AMPDU, ampdu, 0, NULL);
1685 }
1686
1687 static
1688 DECL_CMD_FUNC(set80211ampdulimit, val, d)
1689 {
1690         int v;
1691
1692         switch (atoi(val)) {
1693         case 8:
1694         case 8*1024:
1695                 v = IEEE80211_HTCAP_MAXRXAMPDU_8K;
1696                 break;
1697         case 16:
1698         case 16*1024:
1699                 v = IEEE80211_HTCAP_MAXRXAMPDU_16K;
1700                 break;
1701         case 32:
1702         case 32*1024:
1703                 v = IEEE80211_HTCAP_MAXRXAMPDU_32K;
1704                 break;
1705         case 64:
1706         case 64*1024:
1707                 v = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1708                 break;
1709         default:
1710                 errx(-1, "invalid A-MPDU limit %s", val);
1711         }
1712         set80211(s, IEEE80211_IOC_AMPDU_LIMIT, v, 0, NULL);
1713 }
1714
1715 static
1716 DECL_CMD_FUNC(set80211ampdudensity, val, d)
1717 {
1718         int v;
1719
1720         if (isanyarg(val) || iseq(val, "na"))
1721                 v = IEEE80211_HTCAP_MPDUDENSITY_NA;
1722         else switch ((int)(atof(val)*4)) {
1723         case 0:
1724                 v = IEEE80211_HTCAP_MPDUDENSITY_NA;
1725                 break;
1726         case 1:
1727                 v = IEEE80211_HTCAP_MPDUDENSITY_025;
1728                 break;
1729         case 2:
1730                 v = IEEE80211_HTCAP_MPDUDENSITY_05;
1731                 break;
1732         case 4:
1733                 v = IEEE80211_HTCAP_MPDUDENSITY_1;
1734                 break;
1735         case 8:
1736                 v = IEEE80211_HTCAP_MPDUDENSITY_2;
1737                 break;
1738         case 16:
1739                 v = IEEE80211_HTCAP_MPDUDENSITY_4;
1740                 break;
1741         case 32:
1742                 v = IEEE80211_HTCAP_MPDUDENSITY_8;
1743                 break;
1744         case 64:
1745                 v = IEEE80211_HTCAP_MPDUDENSITY_16;
1746                 break;
1747         default:
1748                 errx(-1, "invalid A-MPDU density %s", val);
1749         }
1750         set80211(s, IEEE80211_IOC_AMPDU_DENSITY, v, 0, NULL);
1751 }
1752
1753 static void
1754 set80211amsdu(const char *val, int d, int s, const struct afswtch *rafp)
1755 {
1756         int amsdu;
1757
1758         if (get80211val(s, IEEE80211_IOC_AMSDU, &amsdu) < 0)
1759                 err(-1, "cannot get AMSDU setting");
1760         if (d < 0) {
1761                 d = -d;
1762                 amsdu &= ~d;
1763         } else
1764                 amsdu |= d;
1765         set80211(s, IEEE80211_IOC_AMSDU, amsdu, 0, NULL);
1766 }
1767
1768 static
1769 DECL_CMD_FUNC(set80211amsdulimit, val, d)
1770 {
1771         set80211(s, IEEE80211_IOC_AMSDU_LIMIT, atoi(val), 0, NULL);
1772 }
1773
1774 static void
1775 set80211puren(const char *val, int d, int s, const struct afswtch *rafp)
1776 {
1777         set80211(s, IEEE80211_IOC_PUREN, d, 0, NULL);
1778 }
1779
1780 static void
1781 set80211htcompat(const char *val, int d, int s, const struct afswtch *rafp)
1782 {
1783         set80211(s, IEEE80211_IOC_HTCOMPAT, d, 0, NULL);
1784 }
1785
1786 static void
1787 set80211htconf(const char *val, int d, int s, const struct afswtch *rafp)
1788 {
1789         set80211(s, IEEE80211_IOC_HTCONF, d, 0, NULL);
1790         htconf = d;
1791 }
1792
1793 static void
1794 set80211dwds(const char *val, int d, int s, const struct afswtch *rafp)
1795 {
1796         set80211(s, IEEE80211_IOC_DWDS, d, 0, NULL);
1797 }
1798
1799 static void
1800 set80211inact(const char *val, int d, int s, const struct afswtch *rafp)
1801 {
1802         set80211(s, IEEE80211_IOC_INACTIVITY, d, 0, NULL);
1803 }
1804
1805 static void
1806 set80211tsn(const char *val, int d, int s, const struct afswtch *rafp)
1807 {
1808         set80211(s, IEEE80211_IOC_TSN, d, 0, NULL);
1809 }
1810
1811 static void
1812 set80211dotd(const char *val, int d, int s, const struct afswtch *rafp)
1813 {
1814         set80211(s, IEEE80211_IOC_DOTD, d, 0, NULL);
1815 }
1816
1817 static void
1818 set80211smps(const char *val, int d, int s, const struct afswtch *rafp)
1819 {
1820         set80211(s, IEEE80211_IOC_SMPS, d, 0, NULL);
1821 }
1822
1823 static void
1824 set80211rifs(const char *val, int d, int s, const struct afswtch *rafp)
1825 {
1826         set80211(s, IEEE80211_IOC_RIFS, d, 0, NULL);
1827 }
1828
1829 static
1830 DECL_CMD_FUNC(set80211tdmaslot, val, d)
1831 {
1832         set80211(s, IEEE80211_IOC_TDMA_SLOT, atoi(val), 0, NULL);
1833 }
1834
1835 static
1836 DECL_CMD_FUNC(set80211tdmaslotcnt, val, d)
1837 {
1838         set80211(s, IEEE80211_IOC_TDMA_SLOTCNT, atoi(val), 0, NULL);
1839 }
1840
1841 static
1842 DECL_CMD_FUNC(set80211tdmaslotlen, val, d)
1843 {
1844         set80211(s, IEEE80211_IOC_TDMA_SLOTLEN, atoi(val), 0, NULL);
1845 }
1846
1847 static
1848 DECL_CMD_FUNC(set80211tdmabintval, val, d)
1849 {
1850         set80211(s, IEEE80211_IOC_TDMA_BINTERVAL, atoi(val), 0, NULL);
1851 }
1852
1853 static
1854 DECL_CMD_FUNC(set80211meshttl, val, d)
1855 {
1856         set80211(s, IEEE80211_IOC_MESH_TTL, atoi(val), 0, NULL);
1857 }
1858
1859 static
1860 DECL_CMD_FUNC(set80211meshforward, val, d)
1861 {
1862         set80211(s, IEEE80211_IOC_MESH_FWRD, atoi(val), 0, NULL);
1863 }
1864
1865 static
1866 DECL_CMD_FUNC(set80211meshpeering, val, d)
1867 {
1868         set80211(s, IEEE80211_IOC_MESH_AP, atoi(val), 0, NULL);
1869 }
1870
1871 static
1872 DECL_CMD_FUNC(set80211meshmetric, val, d)
1873 {
1874         char v[12];
1875
1876         memcpy(v, val, sizeof(v));
1877         set80211(s, IEEE80211_IOC_MESH_PR_METRIC, 0, 0, v);
1878 }
1879
1880 static
1881 DECL_CMD_FUNC(set80211meshpath, val, d)
1882 {
1883         char v[12];
1884
1885         memcpy(v, val, sizeof(v));
1886         set80211(s, IEEE80211_IOC_MESH_PR_PATH, 0, 0, v);
1887 }
1888
1889 static int
1890 regdomain_sort(const void *a, const void *b)
1891 {
1892 #define CHAN_ALL \
1893         (IEEE80211_CHAN_ALLTURBO|IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)
1894         const struct ieee80211_channel *ca = a;
1895         const struct ieee80211_channel *cb = b;
1896
1897         return ca->ic_freq == cb->ic_freq ?
1898             ((int)ca->ic_flags & CHAN_ALL) - ((int)cb->ic_flags & CHAN_ALL) :
1899             ca->ic_freq - cb->ic_freq;
1900 #undef CHAN_ALL
1901 }
1902
1903 static const struct ieee80211_channel *
1904 chanlookup(const struct ieee80211_channel chans[], int nchans,
1905         int freq, int flags)
1906 {
1907         int i;
1908
1909         flags &= IEEE80211_CHAN_ALLTURBO;
1910         for (i = 0; i < nchans; i++) {
1911                 const struct ieee80211_channel *c = &chans[i];
1912                 if (c->ic_freq == freq &&
1913                     ((int)c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1914                         return c;
1915         }
1916         return NULL;
1917 }
1918
1919 static int
1920 chanfind(const struct ieee80211_channel chans[], int nchans, int flags)
1921 {
1922         int i;
1923
1924         for (i = 0; i < nchans; i++) {
1925                 const struct ieee80211_channel *c = &chans[i];
1926                 if (((int)c->ic_flags & flags) == flags)
1927                         return 1;
1928         }
1929         return 0;
1930 }
1931
1932 /*
1933  * Check channel compatibility.
1934  */
1935 static int
1936 checkchan(const struct ieee80211req_chaninfo *avail, int freq, int flags)
1937 {
1938         flags &= ~REQ_FLAGS;
1939         /*
1940          * Check if exact channel is in the calibration table;
1941          * everything below is to deal with channels that we
1942          * want to include but that are not explicitly listed.
1943          */
1944         if (flags & IEEE80211_CHAN_HT40) {
1945                 /* NB: we use an HT40 channel center that matches HT20 */
1946                 flags = (flags &~ IEEE80211_CHAN_HT40) | IEEE80211_CHAN_HT20;
1947         }
1948         if (chanlookup(avail->ic_chans, avail->ic_nchans, freq, flags) != NULL)
1949                 return 1;
1950         if (flags & IEEE80211_CHAN_GSM) {
1951                 /*
1952                  * XXX GSM frequency mapping is handled in the kernel
1953                  * so we cannot find them in the calibration table;
1954                  * just accept the channel and the kernel will reject
1955                  * the channel list if it's wrong.
1956                  */
1957                 return 1;
1958         }
1959         /*
1960          * If this is a 1/2 or 1/4 width channel allow it if a full
1961          * width channel is present for this frequency, and the device
1962          * supports fractional channels on this band.  This is a hack
1963          * that avoids bloating the calibration table; it may be better
1964          * by per-band attributes though (we are effectively calculating
1965          * this attribute by scanning the channel list ourself).
1966          */
1967         if ((flags & (IEEE80211_CHAN_HALF | IEEE80211_CHAN_QUARTER)) == 0)
1968                 return 0;
1969         if (chanlookup(avail->ic_chans, avail->ic_nchans, freq,
1970             flags &~ (IEEE80211_CHAN_HALF | IEEE80211_CHAN_QUARTER)) == NULL)
1971                 return 0;
1972         if (flags & IEEE80211_CHAN_HALF) {
1973                 return chanfind(avail->ic_chans, avail->ic_nchans,
1974                     IEEE80211_CHAN_HALF |
1975                        (flags & (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_5GHZ)));
1976         } else {
1977                 return chanfind(avail->ic_chans, avail->ic_nchans,
1978                     IEEE80211_CHAN_QUARTER |
1979                         (flags & (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_5GHZ)));
1980         }
1981 }
1982
1983 static void
1984 regdomain_addchans(struct ieee80211req_chaninfo *ci,
1985         const netband_head *bands,
1986         const struct ieee80211_regdomain *reg,
1987         uint32_t chanFlags,
1988         const struct ieee80211req_chaninfo *avail)
1989 {
1990         const struct netband *nb;
1991         const struct freqband *b;
1992         struct ieee80211_channel *c, *prev;
1993         int freq, hi_adj, lo_adj, channelSep;
1994         uint32_t flags;
1995
1996         hi_adj = (chanFlags & IEEE80211_CHAN_HT40U) ? -20 : 0;
1997         lo_adj = (chanFlags & IEEE80211_CHAN_HT40D) ? 20 : 0;
1998         channelSep = (chanFlags & IEEE80211_CHAN_2GHZ) ? 0 : 40;
1999         LIST_FOREACH(nb, bands, next) {
2000                 b = nb->band;
2001                 if (verbose) {
2002                         printf("%s:", __func__);
2003                         printb(" chanFlags", chanFlags, IEEE80211_CHAN_BITS);
2004                         printb(" bandFlags", nb->flags | b->flags,
2005                             IEEE80211_CHAN_BITS);
2006                         putchar('\n');
2007                 }
2008                 prev = NULL;
2009                 for (freq = b->freqStart + lo_adj;
2010                      freq <= b->freqEnd + hi_adj; freq += b->chanSep) {
2011                         /*
2012                          * Construct flags for the new channel.  We take
2013                          * the attributes from the band descriptions except
2014                          * for HT40 which is enabled generically (i.e. +/-
2015                          * extension channel) in the band description and
2016                          * then constrained according by channel separation.
2017                          */
2018                         flags = nb->flags | b->flags;
2019                         if (flags & IEEE80211_CHAN_HT) {
2020                                 /*
2021                                  * HT channels are generated specially; we're
2022                                  * called to add HT20, HT40+, and HT40- chan's
2023                                  * so we need to expand only band specs for
2024                                  * the HT channel type being added.
2025                                  */
2026                                 if ((chanFlags & IEEE80211_CHAN_HT20) &&
2027                                     (flags & IEEE80211_CHAN_HT20) == 0) {
2028                                         if (verbose)
2029                                                 printf("%u: skip, not an "
2030                                                     "HT20 channel\n", freq);
2031                                         continue;
2032                                 }
2033                                 if ((chanFlags & IEEE80211_CHAN_HT40) &&
2034                                     (flags & IEEE80211_CHAN_HT40) == 0) {
2035                                         if (verbose)
2036                                                 printf("%u: skip, not an "
2037                                                     "HT40 channel\n", freq);
2038                                         continue;
2039                                 }
2040                                 /*
2041                                  * DFS and HT40 don't mix.  This should be
2042                                  * expressed in the regdomain database but
2043                                  * just in case enforce it here.
2044                                  */
2045                                 if ((chanFlags & IEEE80211_CHAN_HT40) &&
2046                                     (flags & IEEE80211_CHAN_DFS)) {
2047                                         if (verbose)
2048                                                 printf("%u: skip, HT40+DFS "
2049                                                     "not permitted\n", freq);
2050                                         continue;
2051                                 }
2052                                 /* NB: HT attribute comes from caller */
2053                                 flags &= ~IEEE80211_CHAN_HT;
2054                                 flags |= chanFlags & IEEE80211_CHAN_HT;
2055                         }
2056                         /*
2057                          * Check if device can operate on this frequency.
2058                          */
2059                         if (!checkchan(avail, freq, flags)) {
2060                                 if (verbose) {
2061                                         printf("%u: skip, ", freq);
2062                                         printb("flags", flags,
2063                                             IEEE80211_CHAN_BITS);
2064                                         printf(" not available\n");
2065                                 }
2066                                 continue;
2067                         }
2068                         if ((flags & REQ_ECM) && !reg->ecm) {
2069                                 if (verbose)
2070                                         printf("%u: skip, ECM channel\n", freq);
2071                                 continue;
2072                         }
2073                         if ((flags & REQ_INDOOR) && reg->location == 'O') {
2074                                 if (verbose)
2075                                         printf("%u: skip, indoor channel\n",
2076                                             freq);
2077                                 continue;
2078                         }
2079                         if ((flags & REQ_OUTDOOR) && reg->location == 'I') {
2080                                 if (verbose)
2081                                         printf("%u: skip, outdoor channel\n",
2082                                             freq);
2083                                 continue;
2084                         }
2085                         if ((flags & IEEE80211_CHAN_HT40) &&
2086                             prev != NULL && (freq - prev->ic_freq) < channelSep) {
2087                                 if (verbose)
2088                                         printf("%u: skip, only %u channel "
2089                                             "separation, need %d\n", freq,
2090                                             freq - prev->ic_freq, channelSep);
2091                                 continue;
2092                         }
2093                         if (ci->ic_nchans == IEEE80211_CHAN_MAX) {
2094                                 if (verbose)
2095                                         printf("%u: skip, channel table full\n",
2096                                             freq);
2097                                 break;
2098                         }
2099                         c = &ci->ic_chans[ci->ic_nchans++];
2100                         memset(c, 0, sizeof(*c));
2101                         c->ic_freq = freq;
2102                         c->ic_flags = flags;
2103                         if (c->ic_flags & IEEE80211_CHAN_DFS)
2104                                 c->ic_maxregpower = nb->maxPowerDFS;
2105                         else
2106                                 c->ic_maxregpower = nb->maxPower;
2107                         if (verbose) {
2108                                 printf("[%3d] add freq %u ",
2109                                     ci->ic_nchans-1, c->ic_freq);
2110                                 printb("flags", c->ic_flags, IEEE80211_CHAN_BITS);
2111                                 printf(" power %u\n", c->ic_maxregpower);
2112                         }
2113                         /* NB: kernel fills in other fields */
2114                         prev = c;
2115                 }
2116         }
2117 }
2118
2119 static void
2120 regdomain_makechannels(
2121         struct ieee80211_regdomain_req *req,
2122         const struct ieee80211_devcaps_req *dc)
2123 {
2124         struct regdata *rdp = getregdata();
2125         const struct country *cc;
2126         const struct ieee80211_regdomain *reg = &req->rd;
2127         struct ieee80211req_chaninfo *ci = &req->chaninfo;
2128         const struct regdomain *rd;
2129
2130         /*
2131          * Locate construction table for new channel list.  We treat
2132          * the regdomain/SKU as definitive so a country can be in
2133          * multiple with different properties (e.g. US in FCC+FCC3).
2134          * If no regdomain is specified then we fallback on the country
2135          * code to find the associated regdomain since countries always
2136          * belong to at least one regdomain.
2137          */
2138         if (reg->regdomain == 0) {
2139                 cc = lib80211_country_findbycc(rdp, reg->country);
2140                 if (cc == NULL)
2141                         errx(1, "internal error, country %d not found",
2142                             reg->country);
2143                 rd = cc->rd;
2144         } else
2145                 rd = lib80211_regdomain_findbysku(rdp, reg->regdomain);
2146         if (rd == NULL)
2147                 errx(1, "internal error, regdomain %d not found",
2148                             reg->regdomain);
2149         if (rd->sku != SKU_DEBUG) {
2150                 /*
2151                  * regdomain_addchans incrememnts the channel count for
2152                  * each channel it adds so initialize ic_nchans to zero.
2153                  * Note that we know we have enough space to hold all possible
2154                  * channels because the devcaps list size was used to
2155                  * allocate our request.
2156                  */
2157                 ci->ic_nchans = 0;
2158                 if (!LIST_EMPTY(&rd->bands_11b))
2159                         regdomain_addchans(ci, &rd->bands_11b, reg,
2160                             IEEE80211_CHAN_B, &dc->dc_chaninfo);
2161                 if (!LIST_EMPTY(&rd->bands_11g))
2162                         regdomain_addchans(ci, &rd->bands_11g, reg,
2163                             IEEE80211_CHAN_G, &dc->dc_chaninfo);
2164                 if (!LIST_EMPTY(&rd->bands_11a))
2165                         regdomain_addchans(ci, &rd->bands_11a, reg,
2166                             IEEE80211_CHAN_A, &dc->dc_chaninfo);
2167                 if (!LIST_EMPTY(&rd->bands_11na) && dc->dc_htcaps != 0) {
2168                         regdomain_addchans(ci, &rd->bands_11na, reg,
2169                             IEEE80211_CHAN_A | IEEE80211_CHAN_HT20,
2170                             &dc->dc_chaninfo);
2171                         if (dc->dc_htcaps & IEEE80211_HTCAP_CHWIDTH40) {
2172                                 regdomain_addchans(ci, &rd->bands_11na, reg,
2173                                     IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U,
2174                                     &dc->dc_chaninfo);
2175                                 regdomain_addchans(ci, &rd->bands_11na, reg,
2176                                     IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D,
2177                                     &dc->dc_chaninfo);
2178                         }
2179                 }
2180                 if (!LIST_EMPTY(&rd->bands_11ng) && dc->dc_htcaps != 0) {
2181                         regdomain_addchans(ci, &rd->bands_11ng, reg,
2182                             IEEE80211_CHAN_G | IEEE80211_CHAN_HT20,
2183                             &dc->dc_chaninfo);
2184                         if (dc->dc_htcaps & IEEE80211_HTCAP_CHWIDTH40) {
2185                                 regdomain_addchans(ci, &rd->bands_11ng, reg,
2186                                     IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U,
2187                                     &dc->dc_chaninfo);
2188                                 regdomain_addchans(ci, &rd->bands_11ng, reg,
2189                                     IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D,
2190                                     &dc->dc_chaninfo);
2191                         }
2192                 }
2193                 qsort(ci->ic_chans, ci->ic_nchans, sizeof(ci->ic_chans[0]),
2194                     regdomain_sort);
2195         } else
2196                 memcpy(ci, &dc->dc_chaninfo,
2197                     IEEE80211_CHANINFO_SPACE(&dc->dc_chaninfo));
2198 }
2199
2200 static void
2201 list_countries(void)
2202 {
2203         struct regdata *rdp = getregdata();
2204         const struct country *cp;
2205         const struct regdomain *dp;
2206         int i;
2207
2208         i = 0;
2209         printf("\nCountry codes:\n");
2210         LIST_FOREACH(cp, &rdp->countries, next) {
2211                 printf("%2s %-15.15s%s", cp->isoname,
2212                     cp->name, ((i+1)%4) == 0 ? "\n" : " ");
2213                 i++;
2214         }
2215         i = 0;
2216         printf("\nRegulatory domains:\n");
2217         LIST_FOREACH(dp, &rdp->domains, next) {
2218                 printf("%-15.15s%s", dp->name, ((i+1)%4) == 0 ? "\n" : " ");
2219                 i++;
2220         }
2221         printf("\n");
2222 }
2223
2224 static void
2225 defaultcountry(const struct regdomain *rd)
2226 {
2227         struct regdata *rdp = getregdata();
2228         const struct country *cc;
2229
2230         cc = lib80211_country_findbycc(rdp, rd->cc->code);
2231         if (cc == NULL)
2232                 errx(1, "internal error, ISO country code %d not "
2233                     "defined for regdomain %s", rd->cc->code, rd->name);
2234         regdomain.country = cc->code;
2235         regdomain.isocc[0] = cc->isoname[0];
2236         regdomain.isocc[1] = cc->isoname[1];
2237 }
2238
2239 static
2240 DECL_CMD_FUNC(set80211regdomain, val, d)
2241 {
2242         struct regdata *rdp = getregdata();
2243         const struct regdomain *rd;
2244
2245         rd = lib80211_regdomain_findbyname(rdp, val);
2246         if (rd == NULL) {
2247                 char *eptr;
2248                 long sku = strtol(val, &eptr, 0);
2249
2250                 if (eptr != val)
2251                         rd = lib80211_regdomain_findbysku(rdp, sku);
2252                 if (eptr == val || rd == NULL)
2253                         errx(1, "unknown regdomain %s", val);
2254         }
2255         getregdomain(s);
2256         regdomain.regdomain = rd->sku;
2257         if (regdomain.country == 0 && rd->cc != NULL) {
2258                 /*
2259                  * No country code setup and there's a default
2260                  * one for this regdomain fill it in.
2261                  */
2262                 defaultcountry(rd);
2263         }
2264         callback_register(setregdomain_cb, &regdomain);
2265 }
2266
2267 static
2268 DECL_CMD_FUNC(set80211country, val, d)
2269 {
2270         struct regdata *rdp = getregdata();
2271         const struct country *cc;
2272
2273         cc = lib80211_country_findbyname(rdp, val);
2274         if (cc == NULL) {
2275                 char *eptr;
2276                 long code = strtol(val, &eptr, 0);
2277
2278                 if (eptr != val)
2279                         cc = lib80211_country_findbycc(rdp, code);
2280                 if (eptr == val || cc == NULL)
2281                         errx(1, "unknown ISO country code %s", val);
2282         }
2283         getregdomain(s);
2284         regdomain.regdomain = cc->rd->sku;
2285         regdomain.country = cc->code;
2286         regdomain.isocc[0] = cc->isoname[0];
2287         regdomain.isocc[1] = cc->isoname[1];
2288         callback_register(setregdomain_cb, &regdomain);
2289 }
2290
2291 static void
2292 set80211location(const char *val, int d, int s, const struct afswtch *rafp)
2293 {
2294         getregdomain(s);
2295         regdomain.location = d;
2296         callback_register(setregdomain_cb, &regdomain);
2297 }
2298
2299 static void
2300 set80211ecm(const char *val, int d, int s, const struct afswtch *rafp)
2301 {
2302         getregdomain(s);
2303         regdomain.ecm = d;
2304         callback_register(setregdomain_cb, &regdomain);
2305 }
2306
2307 static void
2308 LINE_INIT(char c)
2309 {
2310         spacer = c;
2311         if (c == '\t')
2312                 col = 8;
2313         else
2314                 col = 1;
2315 }
2316
2317 static void
2318 LINE_BREAK(void)
2319 {
2320         if (spacer != '\t') {
2321                 printf("\n");
2322                 spacer = '\t';
2323         }
2324         col = 8;                /* 8-col tab */
2325 }
2326
2327 static void
2328 LINE_CHECK(const char *fmt, ...)
2329 {
2330         char buf[80];
2331         va_list ap;
2332         int n;
2333
2334         va_start(ap, fmt);
2335         n = vsnprintf(buf+1, sizeof(buf)-1, fmt, ap);
2336         va_end(ap);
2337         col += 1+n;
2338         if (col > MAXCOL) {
2339                 LINE_BREAK();
2340                 col += n;
2341         }
2342         buf[0] = spacer;
2343         printf("%s", buf);
2344         spacer = ' ';
2345 }
2346
2347 static int
2348 getmaxrate(const uint8_t rates[15], uint8_t nrates)
2349 {
2350         int i, maxrate = -1;
2351
2352         for (i = 0; i < nrates; i++) {
2353                 int rate = rates[i] & IEEE80211_RATE_VAL;
2354                 if (rate > maxrate)
2355                         maxrate = rate;
2356         }
2357         return maxrate / 2;
2358 }
2359
2360 static const char *
2361 getcaps(int capinfo)
2362 {
2363         static char capstring[32];
2364         char *cp = capstring;
2365
2366         if (capinfo & IEEE80211_CAPINFO_ESS)
2367                 *cp++ = 'E';
2368         if (capinfo & IEEE80211_CAPINFO_IBSS)
2369                 *cp++ = 'I';
2370         if (capinfo & IEEE80211_CAPINFO_CF_POLLABLE)
2371                 *cp++ = 'c';
2372         if (capinfo & IEEE80211_CAPINFO_CF_POLLREQ)
2373                 *cp++ = 'C';
2374         if (capinfo & IEEE80211_CAPINFO_PRIVACY)
2375                 *cp++ = 'P';
2376         if (capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)
2377                 *cp++ = 'S';
2378         if (capinfo & IEEE80211_CAPINFO_PBCC)
2379                 *cp++ = 'B';
2380         if (capinfo & IEEE80211_CAPINFO_CHNL_AGILITY)
2381                 *cp++ = 'A';
2382         if (capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME)
2383                 *cp++ = 's';
2384         if (capinfo & IEEE80211_CAPINFO_RSN)
2385                 *cp++ = 'R';
2386         if (capinfo & IEEE80211_CAPINFO_DSSSOFDM)
2387                 *cp++ = 'D';
2388         *cp = '\0';
2389         return capstring;
2390 }
2391
2392 static const char *
2393 getflags(int flags)
2394 {
2395         static char flagstring[32];
2396         char *cp = flagstring;
2397
2398         if (flags & IEEE80211_NODE_AUTH)
2399                 *cp++ = 'A';
2400         if (flags & IEEE80211_NODE_QOS)
2401                 *cp++ = 'Q';
2402         if (flags & IEEE80211_NODE_ERP)
2403                 *cp++ = 'E';
2404         if (flags & IEEE80211_NODE_PWR_MGT)
2405                 *cp++ = 'P';
2406         if (flags & IEEE80211_NODE_HT) {
2407                 *cp++ = 'H';
2408                 if (flags & IEEE80211_NODE_HTCOMPAT)
2409                         *cp++ = '+';
2410         }
2411         if (flags & IEEE80211_NODE_WPS)
2412                 *cp++ = 'W';
2413         if (flags & IEEE80211_NODE_TSN)
2414                 *cp++ = 'N';
2415         if (flags & IEEE80211_NODE_AMPDU_TX)
2416                 *cp++ = 'T';
2417         if (flags & IEEE80211_NODE_AMPDU_RX)
2418                 *cp++ = 'R';
2419         if (flags & IEEE80211_NODE_MIMO_PS) {
2420                 *cp++ = 'M';
2421                 if (flags & IEEE80211_NODE_MIMO_RTS)
2422                         *cp++ = '+';
2423         }
2424         if (flags & IEEE80211_NODE_RIFS)
2425                 *cp++ = 'I';
2426         if (flags & IEEE80211_NODE_SGI40) {
2427                 *cp++ = 'S';
2428                 if (flags & IEEE80211_NODE_SGI20)
2429                         *cp++ = '+';
2430         } else if (flags & IEEE80211_NODE_SGI20)
2431                 *cp++ = 's';
2432         if (flags & IEEE80211_NODE_AMSDU_TX)
2433                 *cp++ = 't';
2434         if (flags & IEEE80211_NODE_AMSDU_RX)
2435                 *cp++ = 'r';
2436         *cp = '\0';
2437         return flagstring;
2438 }
2439
2440 static void
2441 printie(const char* tag, const uint8_t *ie, size_t ielen, int maxlen)
2442 {
2443         printf("%s", tag);
2444         if (verbose) {
2445                 maxlen -= strlen(tag)+2;
2446                 if (2*ielen > (size_t)maxlen)
2447                         maxlen--;
2448                 printf("<");
2449                 for (; ielen > 0; ie++, ielen--) {
2450                         if (maxlen-- <= 0)
2451                                 break;
2452                         printf("%02x", *ie);
2453                 }
2454                 if (ielen != 0)
2455                         printf("-");
2456                 printf(">");
2457         }
2458 }
2459
2460 #define LE_READ_2(p)                                    \
2461         ((u_int16_t)                                    \
2462          ((((const u_int8_t *)(p))[0]      ) |          \
2463           (((const u_int8_t *)(p))[1] <<  8)))
2464 #define LE_READ_4(p)                                    \
2465         ((u_int32_t)                                    \
2466          ((((const u_int8_t *)(p))[0]      ) |          \
2467           (((const u_int8_t *)(p))[1] <<  8) |          \
2468           (((const u_int8_t *)(p))[2] << 16) |          \
2469           (((const u_int8_t *)(p))[3] << 24)))
2470
2471 /*
2472  * NB: The decoding routines assume a properly formatted ie
2473  *     which should be safe as the kernel only retains them
2474  *     if they parse ok.
2475  */
2476
2477 static void
2478 printwmeparam(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen)
2479 {
2480 #define MS(_v, _f)      (((_v) & _f) >> _f##_S)
2481         static const char *acnames[] = { "BE", "BK", "VO", "VI" };
2482         const struct ieee80211_wme_param *wme =
2483             (const struct ieee80211_wme_param *) ie;
2484         int i;
2485
2486         printf("%s", tag);
2487         if (!verbose)
2488                 return;
2489         printf("<qosinfo 0x%x", wme->param_qosInfo);
2490         ie += offsetof(struct ieee80211_wme_param, params_acParams);
2491         for (i = 0; i < WME_NUM_AC; i++) {
2492                 const struct ieee80211_wme_acparams *ac =
2493                     &wme->params_acParams[i];
2494
2495                 printf(" %s[%saifsn %u cwmin %u cwmax %u txop %u]"
2496                         , acnames[i]
2497                         , MS(ac->acp_aci_aifsn, WME_PARAM_ACM) ? "acm " : ""
2498                         , MS(ac->acp_aci_aifsn, WME_PARAM_AIFSN)
2499                         , MS(ac->acp_logcwminmax, WME_PARAM_LOGCWMIN)
2500                         , MS(ac->acp_logcwminmax, WME_PARAM_LOGCWMAX)
2501                         , LE_READ_2(&ac->acp_txop)
2502                 );
2503         }
2504         printf(">");
2505 #undef MS
2506 }
2507
2508 static void
2509 printwmeinfo(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen)
2510 {
2511         printf("%s", tag);
2512         if (verbose) {
2513                 const struct ieee80211_wme_info *wme =
2514                     (const struct ieee80211_wme_info *) ie;
2515                 printf("<version 0x%x info 0x%x>",
2516                     wme->wme_version, wme->wme_info);
2517         }
2518 }
2519
2520 static void
2521 printhtcap(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen)
2522 {
2523         printf("%s", tag);
2524         if (verbose) {
2525                 const struct ieee80211_ie_htcap *htcap =
2526                     (const struct ieee80211_ie_htcap *) ie;
2527                 const char *sep;
2528                 int i, j;
2529
2530                 printf("<cap 0x%x param 0x%x",
2531                     LE_READ_2(&htcap->hc_cap), htcap->hc_param);
2532                 printf(" mcsset[");
2533                 sep = "";
2534                 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++)
2535                         if (isset(htcap->hc_mcsset, i)) {
2536                                 for (j = i+1; j < IEEE80211_HTRATE_MAXSIZE; j++)
2537                                         if (isclr(htcap->hc_mcsset, j))
2538                                                 break;
2539                                 j--;
2540                                 if (i == j)
2541                                         printf("%s%u", sep, i);
2542                                 else
2543                                         printf("%s%u-%u", sep, i, j);
2544                                 i += j-i;
2545                                 sep = ",";
2546                         }
2547                 printf("] extcap 0x%x txbf 0x%x antenna 0x%x>",
2548                     LE_READ_2(&htcap->hc_extcap),
2549                     LE_READ_4(&htcap->hc_txbf),
2550                     htcap->hc_antenna);
2551         }
2552 }
2553
2554 static void
2555 printhtinfo(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen)
2556 {
2557         printf("%s", tag);
2558         if (verbose) {
2559                 const struct ieee80211_ie_htinfo *htinfo =
2560                     (const struct ieee80211_ie_htinfo *) ie;
2561                 const char *sep;
2562                 int i, j;
2563
2564                 printf("<ctl %u, %x,%x,%x,%x", htinfo->hi_ctrlchannel,
2565                     htinfo->hi_byte1, htinfo->hi_byte2, htinfo->hi_byte3,
2566                     LE_READ_2(&htinfo->hi_byte45));
2567                 printf(" basicmcs[");
2568                 sep = "";
2569                 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++)
2570                         if (isset(htinfo->hi_basicmcsset, i)) {
2571                                 for (j = i+1; j < IEEE80211_HTRATE_MAXSIZE; j++)
2572                                         if (isclr(htinfo->hi_basicmcsset, j))
2573                                                 break;
2574                                 j--;
2575                                 if (i == j)
2576                                         printf("%s%u", sep, i);
2577                                 else
2578                                         printf("%s%u-%u", sep, i, j);
2579                                 i += j-i;
2580                                 sep = ",";
2581                         }
2582                 printf("]>");
2583         }
2584 }
2585
2586 static void
2587 printathie(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen)
2588 {
2589
2590         printf("%s", tag);
2591         if (verbose) {
2592                 const struct ieee80211_ath_ie *ath =
2593                         (const struct ieee80211_ath_ie *)ie;
2594
2595                 printf("<");
2596                 if (ath->ath_capability & ATHEROS_CAP_TURBO_PRIME)
2597                         printf("DTURBO,");
2598                 if (ath->ath_capability & ATHEROS_CAP_COMPRESSION)
2599                         printf("COMP,");
2600                 if (ath->ath_capability & ATHEROS_CAP_FAST_FRAME)
2601                         printf("FF,");
2602                 if (ath->ath_capability & ATHEROS_CAP_XR)
2603                         printf("XR,");
2604                 if (ath->ath_capability & ATHEROS_CAP_AR)
2605                         printf("AR,");
2606                 if (ath->ath_capability & ATHEROS_CAP_BURST)
2607                         printf("BURST,");
2608                 if (ath->ath_capability & ATHEROS_CAP_WME)
2609                         printf("WME,");
2610                 if (ath->ath_capability & ATHEROS_CAP_BOOST)
2611                         printf("BOOST,");
2612                 printf("0x%x>", LE_READ_2(ath->ath_defkeyix));
2613         }
2614 }
2615
2616
2617 static void
2618 printmeshconf(const char *tag, const uint8_t *ie, size_t ielen, int maxlen)
2619 {
2620 #define MATCHOUI(field, oui, string)                                    \
2621 do {                                                                    \
2622         if (memcmp(field, oui, 4) == 0)                                 \
2623                 printf("%s", string);                                   \
2624 } while (0)
2625
2626         printf("%s", tag);
2627         if (verbose) {
2628                 const struct ieee80211_meshconf_ie *mconf =
2629                         (const struct ieee80211_meshconf_ie *)ie;
2630                 printf("<PATH:");
2631                 if (mconf->conf_pselid == IEEE80211_MESHCONF_PATH_HWMP)
2632                         printf("HWMP");
2633                 else
2634                         printf("UNKNOWN");
2635                 printf(" LINK:");
2636                 if (mconf->conf_pmetid == IEEE80211_MESHCONF_METRIC_AIRTIME)
2637                         printf("AIRTIME");
2638                 else
2639                         printf("UNKNOWN");
2640                 printf(" CONGESTION:");
2641                 if (mconf->conf_ccid == IEEE80211_MESHCONF_CC_DISABLED)
2642                         printf("DISABLED");
2643                 else
2644                         printf("UNKNOWN");
2645                 printf(" SYNC:");
2646                 if (mconf->conf_syncid == IEEE80211_MESHCONF_SYNC_NEIGHOFF)
2647                         printf("NEIGHOFF");
2648                 else
2649                         printf("UNKNOWN");
2650                 printf(" AUTH:");
2651                 if (mconf->conf_authid == IEEE80211_MESHCONF_AUTH_DISABLED)
2652                         printf("DISABLED");
2653                 else
2654                         printf("UNKNOWN");
2655                 printf(" FORM:0x%x CAPS:0x%x>", mconf->conf_form,
2656                     mconf->conf_cap);
2657         }
2658 #undef MATCHOUI
2659 }
2660
2661 static const char *
2662 wpa_cipher(const u_int8_t *sel)
2663 {
2664 #define WPA_SEL(x)      (((x)<<24)|WPA_OUI)
2665         u_int32_t w = LE_READ_4(sel);
2666
2667         switch (w) {
2668         case WPA_SEL(WPA_CSE_NULL):
2669                 return "NONE";
2670         case WPA_SEL(WPA_CSE_WEP40):
2671                 return "WEP40";
2672         case WPA_SEL(WPA_CSE_WEP104):
2673                 return "WEP104";
2674         case WPA_SEL(WPA_CSE_TKIP):
2675                 return "TKIP";
2676         case WPA_SEL(WPA_CSE_CCMP):
2677                 return "AES-CCMP";
2678         }
2679         return "?";             /* NB: so 1<< is discarded */
2680 #undef WPA_SEL
2681 }
2682
2683 static const char *
2684 wpa_keymgmt(const u_int8_t *sel)
2685 {
2686 #define WPA_SEL(x)      (((x)<<24)|WPA_OUI)
2687         u_int32_t w = LE_READ_4(sel);
2688
2689         switch (w) {
2690         case WPA_SEL(WPA_ASE_8021X_UNSPEC):
2691                 return "8021X-UNSPEC";
2692         case WPA_SEL(WPA_ASE_8021X_PSK):
2693                 return "8021X-PSK";
2694         case WPA_SEL(WPA_ASE_NONE):
2695                 return "NONE";
2696         }
2697         return "?";
2698 #undef WPA_SEL
2699 }
2700
2701 static void
2702 printwpaie(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen)
2703 {
2704         u_int8_t len = ie[1];
2705
2706         printf("%s", tag);
2707         if (verbose) {
2708                 const char *sep;
2709                 int n;
2710
2711                 ie += 6, len -= 4;              /* NB: len is payload only */
2712
2713                 printf("<v%u", LE_READ_2(ie));
2714                 ie += 2, len -= 2;
2715
2716                 printf(" mc:%s", wpa_cipher(ie));
2717                 ie += 4, len -= 4;
2718
2719                 /* unicast ciphers */
2720                 n = LE_READ_2(ie);
2721                 ie += 2, len -= 2;
2722                 sep = " uc:";
2723                 for (; n > 0; n--) {
2724                         printf("%s%s", sep, wpa_cipher(ie));
2725                         ie += 4, len -= 4;
2726                         sep = "+";
2727                 }
2728
2729                 /* key management algorithms */
2730                 n = LE_READ_2(ie);
2731                 ie += 2, len -= 2;
2732                 sep = " km:";
2733                 for (; n > 0; n--) {
2734                         printf("%s%s", sep, wpa_keymgmt(ie));
2735                         ie += 4, len -= 4;
2736                         sep = "+";
2737                 }
2738
2739                 if (len > 2)            /* optional capabilities */
2740                         printf(", caps 0x%x", LE_READ_2(ie));
2741                 printf(">");
2742         }
2743 }
2744
2745 static const char *
2746 rsn_cipher(const u_int8_t *sel)
2747 {
2748 #define RSN_SEL(x)      (((x)<<24)|RSN_OUI)
2749         u_int32_t w = LE_READ_4(sel);
2750
2751         switch (w) {
2752         case RSN_SEL(RSN_CSE_NULL):
2753                 return "NONE";
2754         case RSN_SEL(RSN_CSE_WEP40):
2755                 return "WEP40";
2756         case RSN_SEL(RSN_CSE_WEP104):
2757                 return "WEP104";
2758         case RSN_SEL(RSN_CSE_TKIP):
2759                 return "TKIP";
2760         case RSN_SEL(RSN_CSE_CCMP):
2761                 return "AES-CCMP";
2762         case RSN_SEL(RSN_CSE_WRAP):
2763                 return "AES-OCB";
2764         }
2765         return "?";
2766 #undef WPA_SEL
2767 }
2768
2769 static const char *
2770 rsn_keymgmt(const u_int8_t *sel)
2771 {
2772 #define RSN_SEL(x)      (((x)<<24)|RSN_OUI)
2773         u_int32_t w = LE_READ_4(sel);
2774
2775         switch (w) {
2776         case RSN_SEL(RSN_ASE_8021X_UNSPEC):
2777                 return "8021X-UNSPEC";
2778         case RSN_SEL(RSN_ASE_8021X_PSK):
2779                 return "8021X-PSK";
2780         case RSN_SEL(RSN_ASE_NONE):
2781                 return "NONE";
2782         }
2783         return "?";
2784 #undef RSN_SEL
2785 }
2786
2787 static void
2788 printrsnie(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen)
2789 {
2790         printf("%s", tag);
2791         if (verbose) {
2792                 const char *sep;
2793                 int n;
2794
2795                 ie += 2, ielen -= 2;
2796
2797                 printf("<v%u", LE_READ_2(ie));
2798                 ie += 2, ielen -= 2;
2799
2800                 printf(" mc:%s", rsn_cipher(ie));
2801                 ie += 4, ielen -= 4;
2802
2803                 /* unicast ciphers */
2804                 n = LE_READ_2(ie);
2805                 ie += 2, ielen -= 2;
2806                 sep = " uc:";
2807                 for (; n > 0; n--) {
2808                         printf("%s%s", sep, rsn_cipher(ie));
2809                         ie += 4, ielen -= 4;
2810                         sep = "+";
2811                 }
2812
2813                 /* key management algorithms */
2814                 n = LE_READ_2(ie);
2815                 ie += 2, ielen -= 2;
2816                 sep = " km:";
2817                 for (; n > 0; n--) {
2818                         printf("%s%s", sep, rsn_keymgmt(ie));
2819                         ie += 4, ielen -= 4;
2820                         sep = "+";
2821                 }
2822
2823                 if (ielen > 2)          /* optional capabilities */
2824                         printf(", caps 0x%x", LE_READ_2(ie));
2825                 /* XXXPMKID */
2826                 printf(">");
2827         }
2828 }
2829
2830 #define BE_READ_2(p)                                    \
2831         ((u_int16_t)                                    \
2832          ((((const u_int8_t *)(p))[1]      ) |          \
2833           (((const u_int8_t *)(p))[0] <<  8)))
2834
2835 static void
2836 printwpsie(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen)
2837 {
2838         u_int8_t len = ie[1];
2839         uint16_t tlv_type;
2840         uint16_t tlv_len;
2841         uint16_t cfg_mthd;
2842         int n;
2843         int f;
2844
2845         printf("%s", tag);
2846         if (verbose) {
2847                 static const char *dev_pass_id[] = {
2848                         "D",    /* Default (PIN) */
2849                         "U",    /* User-specified */
2850                         "M",    /* Machine-specified */
2851                         "K",    /* Rekey */
2852                         "P",    /* PushButton */
2853                         "R"     /* Registrar-specified */
2854                 };
2855
2856                 ie +=6, len -= 4;               /* NB: len is payload only */
2857
2858                 /* WPS IE in Beacon and Probe Resp frames have different fields */
2859                 printf("<");
2860                 while (len) {
2861                         tlv_type = BE_READ_2(ie);
2862                         tlv_len  = BE_READ_2(ie + 2);
2863
2864                         /* some devices broadcast invalid WPS frames */
2865                         if (tlv_len > len) {
2866                                 printf("bad frame length tlv_type=0x%02x "
2867                                     "tlv_len=%d len=%d", tlv_type, tlv_len,
2868                                     len);
2869                                 break;
2870                         }
2871
2872                         ie += 4, len -= 4;
2873
2874                         switch (tlv_type) {
2875                         case IEEE80211_WPS_ATTR_VERSION:
2876                                 printf("v:%d.%d", *ie >> 4, *ie & 0xf);
2877                                 break;
2878                         case IEEE80211_WPS_ATTR_AP_SETUP_LOCKED:
2879                                 printf(" ap_setup:%s", *ie ? "locked" :
2880                                     "unlocked");
2881                                 break;
2882                         case IEEE80211_WPS_ATTR_CONFIG_METHODS:
2883                         case IEEE80211_WPS_ATTR_SELECTED_REGISTRAR_CONFIG_METHODS:
2884                                 if (tlv_type == IEEE80211_WPS_ATTR_SELECTED_REGISTRAR_CONFIG_METHODS)
2885                                         printf(" sel_reg_cfg_mthd:");
2886                                 else
2887                                         printf(" cfg_mthd:" );
2888                                 cfg_mthd = BE_READ_2(ie);
2889                                 f = 0;
2890                                 for (n = 15; n >= 0; n--) {
2891                                         if (f) {
2892                                                 printf(",");
2893                                                 f = 0;
2894                                         }
2895                                         switch (cfg_mthd & (1 << n)) {
2896                                         case 0:
2897                                                 break;
2898                                         case IEEE80211_WPS_CONFIG_USBA:
2899                                                 printf("usba");
2900                                                 f++;
2901                                                 break;
2902                                         case IEEE80211_WPS_CONFIG_ETHERNET:
2903                                                 printf("ethernet");
2904                                                 f++;
2905                                                 break;
2906                                         case IEEE80211_WPS_CONFIG_LABEL:
2907                                                 printf("label");
2908                                                 f++;
2909                                                 break;
2910                                         case IEEE80211_WPS_CONFIG_DISPLAY:
2911                                                 if (!(cfg_mthd &
2912                                                     (IEEE80211_WPS_CONFIG_VIRT_DISPLAY |
2913                                                     IEEE80211_WPS_CONFIG_PHY_DISPLAY)))
2914                                                     {
2915                                                         printf("display");
2916                                                         f++;
2917                                                 }
2918                                                 break;
2919                                         case IEEE80211_WPS_CONFIG_EXT_NFC_TOKEN:
2920                                                 printf("ext_nfc_tokenk");
2921                                                 f++;
2922                                                 break;
2923                                         case IEEE80211_WPS_CONFIG_INT_NFC_TOKEN:
2924                                                 printf("int_nfc_token");
2925                                                 f++;
2926                                                 break;
2927                                         case IEEE80211_WPS_CONFIG_NFC_INTERFACE:
2928                                                 printf("nfc_interface");
2929                                                 f++;
2930                                                 break;
2931                                         case IEEE80211_WPS_CONFIG_PUSHBUTTON:
2932                                                 if (!(cfg_mthd &
2933                                                     (IEEE80211_WPS_CONFIG_VIRT_PUSHBUTTON |
2934                                                     IEEE80211_WPS_CONFIG_PHY_PUSHBUTTON))) {
2935                                                         printf("push_button");
2936                                                         f++;
2937                                                 }
2938                                                 break;
2939                                         case IEEE80211_WPS_CONFIG_KEYPAD:
2940                                                 printf("keypad");
2941                                                 f++;
2942                                                 break;
2943                                         case IEEE80211_WPS_CONFIG_VIRT_PUSHBUTTON:
2944                                                 printf("virtual_push_button");
2945                                                 f++;
2946                                                 break;
2947                                         case IEEE80211_WPS_CONFIG_PHY_PUSHBUTTON:
2948                                                 printf("physical_push_button");
2949                                                 f++;
2950                                                 break;
2951                                         case IEEE80211_WPS_CONFIG_P2PS:
2952                                                 printf("p2ps");
2953                                                 f++;
2954                                                 break;
2955                                         case IEEE80211_WPS_CONFIG_VIRT_DISPLAY:
2956                                                 printf("virtual_display");
2957                                                 f++;
2958                                                 break;
2959                                         case IEEE80211_WPS_CONFIG_PHY_DISPLAY:
2960                                                 printf("physical_display");
2961                                                 f++;
2962                                                 break;
2963                                         default:
2964                                                 printf("unknown_wps_config<%04x>",
2965                                                     cfg_mthd & (1 << n));
2966                                                 f++;
2967                                                 break;
2968                                         }
2969                                 }
2970                                 break;
2971                         case IEEE80211_WPS_ATTR_DEV_NAME:
2972                                 printf(" device_name:<%.*s>", tlv_len, ie);
2973                                 break;
2974                         case IEEE80211_WPS_ATTR_DEV_PASSWORD_ID:
2975                                 n = LE_READ_2(ie);
2976                                 if (n < (int)nitems(dev_pass_id))
2977                                         printf(" dpi:%s", dev_pass_id[n]);
2978                                 break;
2979                         case IEEE80211_WPS_ATTR_MANUFACTURER:
2980                                 printf(" manufacturer:<%.*s>", tlv_len, ie);
2981                                 break;
2982                         case IEEE80211_WPS_ATTR_MODEL_NAME:
2983                                 printf(" model_name:<%.*s>", tlv_len, ie);
2984                                 break;
2985                         case IEEE80211_WPS_ATTR_MODEL_NUMBER:
2986                                 printf(" model_number:<%.*s>", tlv_len, ie);
2987                                 break;
2988                         case IEEE80211_WPS_ATTR_PRIMARY_DEV_TYPE:
2989                                 printf(" prim_dev:");
2990                                 for (n = 0; n < tlv_len; n++)
2991                                         printf("%02x", ie[n]);
2992                                 break;
2993                         case IEEE80211_WPS_ATTR_RF_BANDS:
2994                                 printf(" rf:");
2995                                 f = 0;
2996                                 for (n = 7; n >= 0; n--) {
2997                                         if (f) {
2998                                                 printf(",");
2999                                                 f = 0;
3000                                         }
3001                                         switch (*ie & (1 << n)) {
3002                                         case 0:
3003                                                 break;
3004                                         case IEEE80211_WPS_RF_BAND_24GHZ:
3005                                                 printf("2.4Ghz");
3006                                                 f++;
3007                                                 break;
3008                                         case IEEE80211_WPS_RF_BAND_50GHZ:
3009                                                 printf("5Ghz");
3010                                                 f++;
3011                                                 break;
3012                                         case IEEE80211_WPS_RF_BAND_600GHZ:
3013                                                 printf("60Ghz");
3014                                                 f++;
3015                                                 break;
3016                                         default:
3017                                                 printf("unknown<%02x>",
3018                                                     *ie & (1 << n));
3019                                                 f++;
3020                                                 break;
3021                                         }
3022                                 }
3023                                 break;
3024                         case IEEE80211_WPS_ATTR_RESPONSE_TYPE:
3025                                 printf(" resp_type:0x%02x", *ie);
3026                                 break;
3027                         case IEEE80211_WPS_ATTR_SELECTED_REGISTRAR:
3028                                 printf(" sel:%s", *ie ? "T" : "F");
3029                                 break;
3030                         case IEEE80211_WPS_ATTR_SERIAL_NUMBER:
3031                                 printf(" serial_number:<%.*s>", tlv_len, ie);
3032                                 break;
3033                         case IEEE80211_WPS_ATTR_UUID_E:
3034                                 printf(" uuid-e:");
3035                                 for (n = 0; n < (tlv_len - 1); n++)
3036                                         printf("%02x-", ie[n]);
3037                                 printf("%02x", ie[n]);
3038                                 break;
3039                         case IEEE80211_WPS_ATTR_VENDOR_EXT:
3040                                 printf(" vendor:");
3041                                 for (n = 0; n < tlv_len; n++)
3042                                         printf("%02x", ie[n]);
3043                                 break;
3044                         case IEEE80211_WPS_ATTR_WPS_STATE:
3045                                 switch (*ie) {
3046                                 case IEEE80211_WPS_STATE_NOT_CONFIGURED:
3047                                         printf(" state:N");
3048                                         break;
3049                                 case IEEE80211_WPS_STATE_CONFIGURED:
3050                                         printf(" state:C");
3051                                         break;
3052                                 default:
3053                                         printf(" state:B<%02x>", *ie);
3054                                         break;
3055                                 }
3056                                 break;
3057                         default:
3058                                 printf(" unknown_wps_attr:0x%x", tlv_type);
3059                                 break;
3060                         }
3061                         ie += tlv_len, len -= tlv_len;
3062                 }
3063                 printf(">");
3064         }
3065 }
3066
3067 static void
3068 printtdmaie(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen)
3069 {
3070         printf("%s", tag);
3071         if (verbose && ielen >= sizeof(struct ieee80211_tdma_param)) {
3072                 const struct ieee80211_tdma_param *tdma =
3073                    (const struct ieee80211_tdma_param *) ie;
3074
3075                 /* XXX tstamp */
3076                 printf("<v%u slot:%u slotcnt:%u slotlen:%u bintval:%u inuse:0x%x>",
3077                     tdma->tdma_version, tdma->tdma_slot, tdma->tdma_slotcnt,
3078                     LE_READ_2(&tdma->tdma_slotlen), tdma->tdma_bintval,
3079                     tdma->tdma_inuse[0]);
3080         }
3081 }
3082
3083 /*
3084  * Copy the ssid string contents into buf, truncating to fit.  If the
3085  * ssid is entirely printable then just copy intact.  Otherwise convert
3086  * to hexadecimal.  If the result is truncated then replace the last
3087  * three characters with "...".
3088  */
3089 static int
3090 copy_essid(char buf[], size_t bufsize, const u_int8_t *essid, size_t essid_len)
3091 {
3092         const u_int8_t *p;
3093         size_t maxlen;
3094         size_t i;
3095
3096         if (essid_len > bufsize)
3097                 maxlen = bufsize;
3098         else
3099                 maxlen = essid_len;
3100         /* determine printable or not */
3101         for (i = 0, p = essid; i < maxlen; i++, p++) {
3102                 if (*p < ' ' || *p > 0x7e)
3103                         break;
3104         }
3105         if (i != maxlen) {              /* not printable, print as hex */
3106                 if (bufsize < 3)
3107                         return 0;
3108                 strlcpy(buf, "0x", bufsize);
3109                 bufsize -= 2;
3110                 p = essid;
3111                 for (i = 0; i < maxlen && bufsize >= 2; i++) {
3112                         sprintf(&buf[2+2*i], "%02x", p[i]);
3113                         bufsize -= 2;
3114                 }
3115                 if (i != essid_len)
3116                         memcpy(&buf[2+2*i-3], "...", 3);
3117         } else {                        /* printable, truncate as needed */
3118                 memcpy(buf, essid, maxlen);
3119                 if (maxlen != essid_len)
3120                         memcpy(&buf[maxlen-3], "...", 3);
3121         }
3122         return maxlen;
3123 }
3124
3125 static void
3126 printssid(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen)
3127 {
3128         char ssid[2*IEEE80211_NWID_LEN+1];
3129
3130         printf("%s<%.*s>", tag, copy_essid(ssid, maxlen, ie+2, ie[1]), ssid);
3131 }
3132
3133 static void
3134 printrates(const char *tag, const u_int8_t *ie, size_t ielen,
3135            __unused int maxlen)
3136 {
3137         const char *sep;
3138         size_t i;
3139
3140         printf("%s", tag);
3141         sep = "<";
3142         for (i = 2; i < ielen; i++) {
3143                 printf("%s%s%d", sep,
3144                     ie[i] & IEEE80211_RATE_BASIC ? "B" : "",
3145                     ie[i] & IEEE80211_RATE_VAL);
3146                 sep = ",";
3147         }
3148         printf(">");
3149 }
3150
3151 static void
3152 printcountry(const char *tag, const u_int8_t *ie, size_t ielen,
3153              __unused int maxlen)
3154 {
3155         const struct ieee80211_country_ie *cie =
3156            (const struct ieee80211_country_ie *) ie;
3157         size_t i, nbands, schan, nchan;
3158
3159         printf("%s<%c%c%c", tag, cie->cc[0], cie->cc[1], cie->cc[2]);
3160         nbands = (cie->len - 3) / sizeof(cie->band[0]);
3161         for (i = 0; i < nbands; i++) {
3162                 schan = cie->band[i].schan;
3163                 nchan = cie->band[i].nchan;
3164                 if (nchan != 1)
3165                         printf(" %zu-%zu,%u", schan, schan + nchan-1,
3166                             cie->band[i].maxtxpwr);
3167                 else
3168                         printf(" %zu,%u", schan, cie->band[i].maxtxpwr);
3169         }
3170         printf(">");
3171 }
3172
3173 /* unaligned little endian access */
3174 #define LE_READ_4(p)                                    \
3175         ((u_int32_t)                                    \
3176          ((((const u_int8_t *)(p))[0]      ) |          \
3177           (((const u_int8_t *)(p))[1] <<  8) |          \
3178           (((const u_int8_t *)(p))[2] << 16) |          \
3179           (((const u_int8_t *)(p))[3] << 24)))
3180
3181 static __inline int
3182 iswpaoui(const u_int8_t *frm)
3183 {
3184         return frm[1] > 3 && LE_READ_4(frm+2) == ((WPA_OUI_TYPE<<24)|WPA_OUI);
3185 }
3186
3187 static __inline int
3188 iswmeinfo(const u_int8_t *frm)
3189 {
3190         return frm[1] > 5 && LE_READ_4(frm+2) == ((WME_OUI_TYPE<<24)|WME_OUI) &&
3191                 frm[6] == WME_INFO_OUI_SUBTYPE;
3192 }
3193
3194 static __inline int
3195 iswmeparam(const u_int8_t *frm)
3196 {
3197         return frm[1] > 5 && LE_READ_4(frm+2) == ((WME_OUI_TYPE<<24)|WME_OUI) &&
3198                 frm[6] == WME_PARAM_OUI_SUBTYPE;
3199 }
3200
3201 static __inline int
3202 isatherosoui(const u_int8_t *frm)
3203 {
3204         return frm[1] > 3 && LE_READ_4(frm+2) == ((ATH_OUI_TYPE<<24)|ATH_OUI);
3205 }
3206
3207 static __inline int
3208 istdmaoui(const uint8_t *frm)
3209 {
3210         return frm[1] > 3 && LE_READ_4(frm+2) == ((TDMA_OUI_TYPE<<24)|TDMA_OUI);
3211 }
3212
3213 static __inline int
3214 iswpsoui(const uint8_t *frm)
3215 {
3216         return frm[1] > 3 && LE_READ_4(frm+2) == ((WPS_OUI_TYPE<<24)|WPA_OUI);
3217 }
3218
3219 static const char *
3220 iename(int elemid)
3221 {
3222         static char iename_buf[64];
3223         switch (elemid) {
3224         case IEEE80211_ELEMID_FHPARMS:  return " FHPARMS";
3225         case IEEE80211_ELEMID_CFPARMS:  return " CFPARMS";
3226         case IEEE80211_ELEMID_TIM:      return " TIM";
3227         case IEEE80211_ELEMID_IBSSPARMS:return " IBSSPARMS";
3228         case IEEE80211_ELEMID_CHALLENGE:return " CHALLENGE";
3229         case IEEE80211_ELEMID_PWRCNSTR: return " PWRCNSTR";
3230         case IEEE80211_ELEMID_PWRCAP:   return " PWRCAP";
3231         case IEEE80211_ELEMID_TPCREQ:   return " TPCREQ";
3232         case IEEE80211_ELEMID_TPCREP:   return " TPCREP";
3233         case IEEE80211_ELEMID_SUPPCHAN: return " SUPPCHAN";
3234         case IEEE80211_ELEMID_CSA:      return " CSA";
3235         case IEEE80211_ELEMID_MEASREQ:  return " MEASREQ";
3236         case IEEE80211_ELEMID_MEASREP:  return " MEASREP";
3237         case IEEE80211_ELEMID_QUIET:    return " QUIET";
3238         case IEEE80211_ELEMID_IBSSDFS:  return " IBSSDFS";
3239         case IEEE80211_ELEMID_RESERVED_47:
3240                                         return " RESERVED_47";
3241         case IEEE80211_ELEMID_MOBILITY_DOMAIN:
3242                                         return " MOBILITY_DOMAIN";
3243         case IEEE80211_ELEMID_RRM_ENACAPS:
3244                                         return " RRM_ENCAPS";
3245         case IEEE80211_ELEMID_OVERLAP_BSS_SCAN_PARAM:
3246                                         return " OVERLAP_BSS";
3247         case IEEE80211_ELEMID_TPC:      return " TPC";
3248         case IEEE80211_ELEMID_CCKM:     return " CCKM";
3249         case IEEE80211_ELEMID_EXTCAP:   return " EXTCAP";
3250         }
3251         snprintf(iename_buf, sizeof(iename_buf), " UNKNOWN_ELEMID_%d",
3252             elemid);
3253         return (const char *) iename_buf;
3254 }
3255
3256 static void
3257 printies(const u_int8_t *vp, int ielen, int maxcols)
3258 {
3259         while (ielen > 0) {
3260                 switch (vp[0]) {
3261                 case IEEE80211_ELEMID_SSID:
3262                         if (verbose)
3263                                 printssid(" SSID", vp, 2+vp[1], maxcols);
3264                         break;
3265                 case IEEE80211_ELEMID_RATES:
3266                 case IEEE80211_ELEMID_XRATES:
3267                         if (verbose)
3268                                 printrates(vp[0] == IEEE80211_ELEMID_RATES ?
3269                                     " RATES" : " XRATES", vp, 2+vp[1], maxcols);
3270                         break;
3271                 case IEEE80211_ELEMID_DSPARMS:
3272                         if (verbose)
3273                                 printf(" DSPARMS<%u>", vp[2]);
3274                         break;
3275                 case IEEE80211_ELEMID_COUNTRY:
3276                         if (verbose)
3277                                 printcountry(" COUNTRY", vp, 2+vp[1], maxcols);
3278                         break;
3279                 case IEEE80211_ELEMID_ERP:
3280                         if (verbose)
3281                                 printf(" ERP<0x%x>", vp[2]);
3282                         break;
3283                 case IEEE80211_ELEMID_VENDOR:
3284                         if (iswpaoui(vp))
3285                                 printwpaie(" WPA", vp, 2+vp[1], maxcols);
3286                         else if (iswmeinfo(vp))
3287                                 printwmeinfo(" WME", vp, 2+vp[1], maxcols);
3288                         else if (iswmeparam(vp))
3289                                 printwmeparam(" WME", vp, 2+vp[1], maxcols);
3290                         else if (isatherosoui(vp))
3291                                 printathie(" ATH", vp, 2+vp[1], maxcols);
3292                         else if (iswpsoui(vp))
3293                                 printwpsie(" WPS", vp, 2+vp[1], maxcols);
3294                         else if (istdmaoui(vp))
3295                                 printtdmaie(" TDMA", vp, 2+vp[1], maxcols);
3296                         else if (verbose)
3297                                 printie(" VEN", vp, 2+vp[1], maxcols);
3298                         break;
3299                 case IEEE80211_ELEMID_RSN:
3300                         printrsnie(" RSN", vp, 2+vp[1], maxcols);
3301                         break;
3302                 case IEEE80211_ELEMID_HTCAP:
3303                         printhtcap(" HTCAP", vp, 2+vp[1], maxcols);
3304                         break;
3305                 case IEEE80211_ELEMID_HTINFO:
3306                         if (verbose)
3307                                 printhtinfo(" HTINFO", vp, 2+vp[1], maxcols);
3308                         break;
3309                 case IEEE80211_ELEMID_MESHID:
3310                         if (verbose)
3311                                 printssid(" MESHID", vp, 2+vp[1], maxcols);
3312                         break;
3313                 case IEEE80211_ELEMID_MESHCONF:
3314                         printmeshconf(" MESHCONF", vp, 2+vp[1], maxcols);
3315                         break;
3316                 default:
3317                         if (verbose)
3318                                 printie(iename(vp[0]), vp, 2+vp[1], maxcols);
3319                         break;
3320                 }
3321                 ielen -= 2+vp[1];
3322                 vp += 2+vp[1];
3323         }
3324 }
3325
3326 static void
3327 printmimo(const struct ieee80211_mimo_info *mi)
3328 {
3329         /* NB: don't muddy display unless there's something to show */
3330         if (mi->rssi[0] != 0 || mi->rssi[1] != 0 || mi->rssi[2] != 0) {
3331                 /* XXX ignore EVM for now */
3332                 printf(" (rssi %d:%d:%d nf %d:%d:%d)",
3333                     mi->rssi[0], mi->rssi[1], mi->rssi[2],
3334                     mi->noise[0], mi->noise[1], mi->noise[2]);
3335         }
3336 }
3337
3338 static void
3339 list_scan(int s, int long_ssids)
3340 {
3341         uint8_t buf[24*1024];
3342         char ssid[IEEE80211_NWID_LEN+1];
3343         const uint8_t *cp;
3344         size_t len, ssidmax, idlen;
3345
3346         if (get80211len(s, IEEE80211_IOC_SCAN_RESULTS, buf, sizeof(buf), &len) < 0)
3347                 errx(1, "unable to get scan results");
3348         if (len < sizeof(struct ieee80211req_scan_result))
3349                 return;
3350
3351         getchaninfo(s);
3352
3353         ssidmax = (verbose || long_ssids) ? IEEE80211_NWID_LEN - 1 : 14;
3354         printf("%-*.*s  %-17.17s  %4s %4s  %-7s  %3s %4s\n"
3355                 , (int)ssidmax, (int)ssidmax, "SSID/MESH ID"
3356                 , "BSSID"
3357                 , "CHAN"
3358                 , "RATE"
3359                 , " S:N"
3360                 , "INT"
3361                 , "CAPS"
3362         );
3363         cp = buf;
3364         do {
3365                 const struct ieee80211req_scan_result *sr;
3366                 const uint8_t *vp, *idp;
3367
3368                 sr = (const struct ieee80211req_scan_result *) cp;
3369                 vp = cp + sr->isr_ie_off;
3370                 if (sr->isr_meshid_len) {
3371                         idp = vp + sr->isr_ssid_len;
3372                         idlen = sr->isr_meshid_len;
3373                 } else {
3374                         idp = vp;
3375                         idlen = sr->isr_ssid_len;
3376                 }
3377                 printf("%-*.*s  %s  %3d  %3dM %3d:%-3d  %3d %-4.4s"
3378                         , (int)ssidmax
3379                         , copy_essid(ssid, ssidmax, idp, idlen)
3380                         , ssid
3381                         , ether_ntoa((const struct ether_addr *) sr->isr_bssid)
3382                         , ieee80211_mhz2ieee(sr->isr_freq, sr->isr_flags)
3383                         , getmaxrate(sr->isr_rates, sr->isr_nrates)
3384                         , (sr->isr_rssi/2)+sr->isr_noise, sr->isr_noise
3385                         , sr->isr_intval
3386                         , getcaps(sr->isr_capinfo)
3387                 );
3388                 printies(vp + sr->isr_ssid_len + sr->isr_meshid_len,
3389                     sr->isr_ie_len, 24);
3390                 printf("\n");
3391                 cp += sr->isr_len, len -= sr->isr_len;
3392         } while (len >= sizeof(struct ieee80211req_scan_result));
3393 }
3394
3395 static void
3396 scan_and_wait(int s)
3397 {
3398         struct ieee80211_scan_req sr;
3399         struct ieee80211req ireq;
3400         int sroute;
3401
3402         sroute = socket(PF_ROUTE, SOCK_RAW, 0);
3403         if (sroute < 0) {
3404                 perror("socket(PF_ROUTE,SOCK_RAW)");
3405                 return;
3406         }
3407         memset(&ireq, 0, sizeof(ireq));
3408         strlcpy(ireq.i_name, name, sizeof(ireq.i_name));
3409         ireq.i_type = IEEE80211_IOC_SCAN_REQ;
3410
3411         memset(&sr, 0, sizeof(sr));
3412         sr.sr_flags = IEEE80211_IOC_SCAN_ACTIVE
3413                     | IEEE80211_IOC_SCAN_NOPICK
3414                     | IEEE80211_IOC_SCAN_ONCE;
3415         sr.sr_duration = IEEE80211_IOC_SCAN_FOREVER;
3416         sr.sr_nssid = 0;
3417
3418         ireq.i_data = &sr;
3419         ireq.i_len = sizeof(sr);
3420         /* NB: only root can trigger a scan so ignore errors */
3421         if (ioctl(s, SIOCS80211, &ireq) >= 0) {
3422                 char buf[2048];
3423                 struct if_announcemsghdr *ifan;
3424                 struct rt_msghdr *rtm;
3425
3426                 do {
3427                         if (read(sroute, buf, sizeof(buf)) < 0) {
3428                                 perror("read(PF_ROUTE)");
3429                                 break;
3430                         }
3431                         rtm = (struct rt_msghdr *) buf;
3432                         if (rtm->rtm_version != RTM_VERSION)
3433                                 break;
3434                         ifan = (struct if_announcemsghdr *) rtm;
3435                 } while (rtm->rtm_type != RTM_IEEE80211 ||
3436                     ifan->ifan_what != RTM_IEEE80211_SCAN);
3437         }
3438         close(sroute);
3439 }
3440
3441 static
3442 DECL_CMD_FUNC(set80211scan, val, d)
3443 {
3444         scan_and_wait(s);
3445         list_scan(s, 0);
3446 }
3447
3448 static enum ieee80211_opmode get80211opmode(int s);
3449
3450 static int
3451 gettxseq(const struct ieee80211req_sta_info *si)
3452 {
3453         int i, txseq;
3454
3455         if ((si->isi_state & IEEE80211_NODE_QOS) == 0)
3456                 return si->isi_txseqs[0];
3457         /* XXX not right but usually what folks want */
3458         txseq = 0;
3459         for (i = 0; i < IEEE80211_TID_SIZE; i++)
3460                 if (si->isi_txseqs[i] > txseq)
3461                         txseq = si->isi_txseqs[i];
3462         return txseq;
3463 }
3464
3465 static int
3466 getrxseq(const struct ieee80211req_sta_info *si)
3467 {
3468         int i, rxseq;
3469
3470         if ((si->isi_state & IEEE80211_NODE_QOS) == 0)
3471                 return si->isi_rxseqs[0];
3472         /* XXX not right but usually what folks want */
3473         rxseq = 0;
3474         for (i = 0; i < IEEE80211_TID_SIZE; i++)
3475                 if (si->isi_rxseqs[i] > rxseq)
3476                         rxseq = si->isi_rxseqs[i];
3477         return rxseq;
3478 }
3479
3480 static void
3481 list_stations(int s)
3482 {
3483         union {
3484                 struct ieee80211req_sta_req req;
3485                 uint8_t buf[24*1024];
3486         } u;
3487         enum ieee80211_opmode opmode = get80211opmode(s);
3488         const uint8_t *cp;
3489         size_t len;
3490
3491         /* broadcast address =>'s get all stations */
3492         memset(u.req.is_u.macaddr, 0xff, IEEE80211_ADDR_LEN);
3493         if (opmode == IEEE80211_M_STA) {
3494                 /*
3495                  * Get information about the associated AP.
3496                  */
3497                 get80211(s, IEEE80211_IOC_BSSID,
3498                          u.req.is_u.macaddr, IEEE80211_ADDR_LEN);
3499         }
3500         if (get80211len(s, IEEE80211_IOC_STA_INFO, &u, sizeof(u), &len) < 0)
3501                 errx(1, "unable to get station information");
3502         if (len < sizeof(struct ieee80211req_sta_info))
3503                 return;
3504
3505         getchaninfo(s);
3506
3507         if (opmode == IEEE80211_M_MBSS) {
3508                 printf("%-17.17s %4s %5s %5s %7s %4s %4s %4s %6s %6s\n"
3509                         , "ADDR"
3510                         , "CHAN"
3511                         , "LOCAL"
3512                         , "PEER"
3513                         , "STATE"
3514                         , "RATE"
3515                         , "RSSI"
3516                         , "IDLE"
3517                         , "TXSEQ"
3518                         , "RXSEQ"
3519                 );
3520         } else {
3521                 printf("%-17.17s %4s %4s %4s %4s %4s %6s %6s %4s %-7s\n"
3522                         , "ADDR"
3523                         , "AID"
3524                         , "CHAN"
3525                         , "RATE"
3526                         , "RSSI"
3527                         , "IDLE"
3528                         , "TXSEQ"
3529                         , "RXSEQ"
3530                         , "CAPS"
3531                         , "FLAG"
3532                 );
3533         }
3534         cp = (const uint8_t *) u.req.info;
3535         do {
3536                 const struct ieee80211req_sta_info *si;
3537
3538                 si = (const struct ieee80211req_sta_info *) cp;
3539                 if (si->isi_len < sizeof(*si))
3540                         break;
3541                 if (opmode == IEEE80211_M_MBSS) {
3542                         printf("%s %4d %5x %5x %7.7s %3dM %4.1f %4d %6d %6d"
3543                                 , ether_ntoa((const struct ether_addr*)
3544                                     si->isi_macaddr)
3545                                 , ieee80211_mhz2ieee(si->isi_freq,
3546                                     si->isi_flags)
3547                                 , si->isi_localid
3548                                 , si->isi_peerid
3549                                 , mesh_linkstate_string(si->isi_peerstate)
3550                                 , si->isi_txmbps/2
3551                                 , si->isi_rssi/2.
3552                                 , si->isi_inact
3553                                 , gettxseq(si)
3554                                 , getrxseq(si)
3555                         );
3556                 } else {
3557                         printf("%s %4u %4d %3dM %4.1f %4d %6d %6d %-4.4s %-7.7s"
3558                                 , ether_ntoa((const struct ether_addr*)
3559                                     si->isi_macaddr)
3560                                 , IEEE80211_AID(si->isi_associd)
3561                                 , ieee80211_mhz2ieee(si->isi_freq,
3562                                     si->isi_flags)
3563                                 , si->isi_txmbps/2
3564                                 , si->isi_rssi/2.
3565                                 , si->isi_inact
3566                                 , gettxseq(si)
3567                                 , getrxseq(si)
3568                                 , getcaps(si->isi_capinfo)
3569                                 , getflags(si->isi_state)
3570                         );
3571                 }
3572                 printies(cp + si->isi_ie_off, si->isi_ie_len, 24);
3573                 printmimo(&si->isi_mimo);
3574                 printf("\n");
3575                 cp += si->isi_len, len -= si->isi_len;
3576         } while (len >= sizeof(struct ieee80211req_sta_info));
3577 }
3578
3579 static const char *
3580 mesh_linkstate_string(uint8_t state)
3581 {
3582         static const char *state_names[] = {
3583             [0] = "IDLE",
3584             [1] = "OPEN-TX",
3585             [2] = "OPEN-RX",
3586             [3] = "CONF-RX",
3587             [4] = "ESTAB",
3588             [5] = "HOLDING",
3589         };
3590
3591         if (state >= nitems(state_names)) {
3592                 static char buf[10];
3593                 snprintf(buf, sizeof(buf), "#%u", state);
3594                 return buf;
3595         } else {
3596                 return state_names[state];
3597         }
3598 }
3599
3600 static const char *
3601 get_chaninfo(const struct ieee80211_channel *c, int precise,
3602         char buf[], size_t bsize)
3603 {
3604         buf[0] = '\0';
3605         if (IEEE80211_IS_CHAN_FHSS(c))
3606                 strlcat(buf, " FHSS", bsize);
3607         if (IEEE80211_IS_CHAN_A(c))
3608                 strlcat(buf, " 11a", bsize);
3609         else if (IEEE80211_IS_CHAN_ANYG(c))
3610                 strlcat(buf, " 11g", bsize);
3611         else if (IEEE80211_IS_CHAN_B(c))
3612                 strlcat(buf, " 11b", bsize);
3613         if (IEEE80211_IS_CHAN_HALF(c))
3614                 strlcat(buf, "/10MHz", bsize);
3615         if (IEEE80211_IS_CHAN_QUARTER(c))
3616                 strlcat(buf, "/5MHz", bsize);
3617         if (IEEE80211_IS_CHAN_TURBO(c))
3618                 strlcat(buf, " Turbo", bsize);
3619         if (precise) {
3620                 if (IEEE80211_IS_CHAN_HT20(c))
3621                         strlcat(buf, " ht/20", bsize);
3622                 else if (IEEE80211_IS_CHAN_HT40D(c))
3623                         strlcat(buf, " ht/40-", bsize);
3624                 else if (IEEE80211_IS_CHAN_HT40U(c))
3625                         strlcat(buf, " ht/40+", bsize);
3626         } else {
3627                 if (IEEE80211_IS_CHAN_HT(c))
3628                         strlcat(buf, " ht", bsize);
3629         }
3630         return buf;
3631 }
3632
3633 static void
3634 print_chaninfo(const struct ieee80211_channel *c, int verb)
3635 {
3636         char buf[14];
3637
3638         printf("Channel %3u : %u%c MHz%-14.14s",
3639                 ieee80211_mhz2ieee(c->ic_freq, c->ic_flags), c->ic_freq,
3640                 IEEE80211_IS_CHAN_PASSIVE(c) ? '*' : ' ',
3641                 get_chaninfo(c, verb, buf, sizeof(buf)));
3642 }
3643
3644 static int
3645 chanpref(const struct ieee80211_channel *c)
3646 {
3647         if (IEEE80211_IS_CHAN_HT40(c))
3648                 return 40;
3649         if (IEEE80211_IS_CHAN_HT20(c))
3650                 return 30;
3651         if (IEEE80211_IS_CHAN_HALF(c))
3652                 return 10;
3653         if (IEEE80211_IS_CHAN_QUARTER(c))
3654                 return 5;
3655         if (IEEE80211_IS_CHAN_TURBO(c))
3656                 return 25;
3657         if (IEEE80211_IS_CHAN_A(c))
3658                 return 20;
3659         if (IEEE80211_IS_CHAN_G(c))
3660                 return 20;
3661         if (IEEE80211_IS_CHAN_B(c))
3662                 return 15;
3663         if (IEEE80211_IS_CHAN_PUREG(c))
3664                 return 15;
3665         return 0;
3666 }
3667
3668 static void
3669 print_channels(int s, const struct ieee80211req_chaninfo *chans,
3670         int allchans, int verb)
3671 {
3672         struct ieee80211req_chaninfo *achans;
3673         uint8_t reported[IEEE80211_CHAN_BYTES];
3674         const struct ieee80211_channel *c;
3675         size_t i, half;
3676
3677         achans = malloc(IEEE80211_CHANINFO_SPACE(chans));
3678         if (achans == NULL)
3679                 errx(1, "no space for active channel list");
3680         achans->ic_nchans = 0;
3681         memset(reported, 0, sizeof(reported));
3682         if (!allchans) {
3683                 struct ieee80211req_chanlist active;
3684
3685                 if (get80211(s, IEEE80211_IOC_CHANLIST, &active, sizeof(active)) < 0)
3686                         errx(1, "unable to get active channel list");
3687                 for (i = 0; i < chans->ic_nchans; i++) {
3688                         c = &chans->ic_chans[i];
3689                         if (!isset(active.ic_channels, c->ic_ieee))
3690                                 continue;
3691                         /*
3692                          * Suppress compatible duplicates unless
3693                          * verbose.  The kernel gives us it's
3694                          * complete channel list which has separate
3695                          * entries for 11g/11b and 11a/turbo.
3696                          */
3697                         if (isset(reported, c->ic_ieee) && !verb) {
3698                                 /* XXX we assume duplicates are adjacent */
3699                                 achans->ic_chans[achans->ic_nchans-1] = *c;
3700                         } else {
3701                                 achans->ic_chans[achans->ic_nchans++] = *c;
3702                                 setbit(reported, c->ic_ieee);
3703                         }
3704                 }
3705         } else {
3706                 for (i = 0; i < chans->ic_nchans; i++) {
3707                         c = &chans->ic_chans[i];
3708                         /* suppress duplicates as above */
3709                         if (isset(reported, c->ic_ieee) && !verb) {
3710                                 /* XXX we assume duplicates are adjacent */
3711                                 struct ieee80211_channel *a =
3712                                     &achans->ic_chans[achans->ic_nchans-1];
3713                                 if (chanpref(c) > chanpref(a))
3714                                         *a = *c;
3715                         } else {
3716                                 achans->ic_chans[achans->ic_nchans++] = *c;
3717                                 setbit(reported, c->ic_ieee);
3718                         }
3719                 }
3720         }
3721         half = achans->ic_nchans / 2;
3722         if (achans->ic_nchans % 2)
3723                 half++;
3724
3725         for (i = 0; i < achans->ic_nchans / 2; i++) {
3726                 print_chaninfo(&achans->ic_chans[i], verb);
3727                 print_chaninfo(&achans->ic_chans[half+i], verb);
3728                 printf("\n");
3729         }
3730         if (achans->ic_nchans % 2) {
3731                 print_chaninfo(&achans->ic_chans[i], verb);
3732                 printf("\n");
3733         }
3734         free(achans);
3735 }
3736
3737 static void
3738 list_channels(int s, int allchans)
3739 {
3740         getchaninfo(s);
3741         print_channels(s, chaninfo, allchans, verbose);
3742 }
3743
3744 static void
3745 print_txpow(const struct ieee80211_channel *c)
3746 {
3747         printf("Channel %3u : %u MHz %3.1f reg %2d  ",
3748             c->ic_ieee, c->ic_freq,
3749             c->ic_maxpower/2., c->ic_maxregpower);
3750 }
3751
3752 static void
3753 print_txpow_verbose(const struct ieee80211_channel *c)
3754 {
3755         print_chaninfo(c, 1);
3756         printf("min %4.1f dBm  max %3.1f dBm  reg %2d dBm",
3757             c->ic_minpower/2., c->ic_maxpower/2., c->ic_maxregpower);
3758         /* indicate where regulatory cap limits power use */
3759         if (c->ic_maxpower > 2*c->ic_maxregpower)
3760                 printf(" <");
3761 }
3762
3763 static void
3764 list_txpow(int s)
3765 {
3766         struct ieee80211req_chaninfo *achans;
3767         uint8_t reported[IEEE80211_CHAN_BYTES];
3768         struct ieee80211_channel *c, *prev;
3769         size_t i, half;
3770
3771         getchaninfo(s);
3772         achans = malloc(IEEE80211_CHANINFO_SPACE(chaninfo));
3773         if (achans == NULL)
3774                 errx(1, "no space for active channel list");
3775         achans->ic_nchans = 0;
3776         memset(reported, 0, sizeof(reported));
3777         for (i = 0; i < chaninfo->ic_nchans; i++) {
3778                 c = &chaninfo->ic_chans[i];
3779                 /* suppress duplicates as above */
3780                 if (isset(reported, c->ic_ieee) && !verbose) {
3781                         /* XXX we assume duplicates are adjacent */
3782                         prev = &achans->ic_chans[achans->ic_nchans-1];
3783                         /* display highest power on channel */
3784                         if (c->ic_maxpower > prev->ic_maxpower)
3785                                 *prev = *c;
3786                 } else {
3787                         achans->ic_chans[achans->ic_nchans++] = *c;
3788                         setbit(reported, c->ic_ieee);
3789                 }
3790         }
3791         if (!verbose) {
3792                 half = achans->ic_nchans / 2;
3793                 if (achans->ic_nchans % 2)
3794                         half++;
3795