Merge from vendor branch OPENSSL:
[dragonfly.git] / sys / dev / netif / bge / if_bge.c
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *      This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/bge/if_bge.c,v 1.3.2.29 2003/12/01 21:06:59 ambrisko Exp $
34  * $DragonFly: src/sys/dev/netif/bge/if_bge.c,v 1.24 2004/09/14 22:31:01 joerg Exp $
35  *
36  */
37
38 /*
39  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
40  * 
41  * Written by Bill Paul <wpaul@windriver.com>
42  * Senior Engineer, Wind River Systems
43  */
44
45 /*
46  * The Broadcom BCM5700 is based on technology originally developed by
47  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
48  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
49  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
50  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
51  * frames, highly configurable RX filtering, and 16 RX and TX queues
52  * (which, along with RX filter rules, can be used for QOS applications).
53  * Other features, such as TCP segmentation, may be available as part
54  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
55  * firmware images can be stored in hardware and need not be compiled
56  * into the driver.
57  *
58  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
59  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
60  * 
61  * The BCM5701 is a single-chip solution incorporating both the BCM5700
62  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
63  * does not support external SSRAM.
64  *
65  * Broadcom also produces a variation of the BCM5700 under the "Altima"
66  * brand name, which is functionally similar but lacks PCI-X support.
67  *
68  * Without external SSRAM, you can only have at most 4 TX rings,
69  * and the use of the mini RX ring is disabled. This seems to imply
70  * that these features are simply not available on the BCM5701. As a
71  * result, this driver does not implement any support for the mini RX
72  * ring.
73  */
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/sockio.h>
78 #include <sys/mbuf.h>
79 #include <sys/malloc.h>
80 #include <sys/kernel.h>
81 #include <sys/socket.h>
82 #include <sys/queue.h>
83
84 #include <net/if.h>
85 #include <net/if_arp.h>
86 #include <net/ethernet.h>
87 #include <net/if_dl.h>
88 #include <net/if_media.h>
89
90 #include <net/bpf.h>
91
92 #include <net/if_types.h>
93 #include <net/vlan/if_vlan_var.h>
94
95 #include <netinet/in_systm.h>
96 #include <netinet/in.h>
97 #include <netinet/ip.h>
98
99 #include <vm/vm.h>              /* for vtophys */
100 #include <vm/pmap.h>            /* for vtophys */
101 #include <machine/clock.h>      /* for DELAY */
102 #include <machine/bus_memio.h>
103 #include <machine/bus.h>
104 #include <machine/resource.h>
105 #include <sys/bus.h>
106 #include <sys/rman.h>
107
108 #include <dev/netif/mii_layer/mii.h>
109 #include <dev/netif/mii_layer/miivar.h>
110 #include <dev/netif/mii_layer/miidevs.h>
111 #include <dev/netif/mii_layer/brgphyreg.h>
112
113 #include <bus/pci/pcidevs.h>
114 #include <bus/pci/pcireg.h>
115 #include <bus/pci/pcivar.h>
116
117 #include "if_bgereg.h"
118
119 #define BGE_CSUM_FEATURES       (CSUM_IP | CSUM_TCP | CSUM_UDP)
120
121 /* "controller miibus0" required.  See GENERIC if you get errors here. */
122 #include "miibus_if.h"
123
124 /*
125  * Various supported device vendors/types and their names. Note: the
126  * spec seems to indicate that the hardware still has Alteon's vendor
127  * ID burned into it, though it will always be overriden by the vendor
128  * ID in the EEPROM. Just to be safe, we cover all possibilities.
129  */
130 #define BGE_DEVDESC_MAX         64      /* Maximum device description length */
131
132 static struct bge_type bge_devs[] = {
133         { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700,
134                 "Broadcom BCM5700 Gigabit Ethernet" },
135         { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700,
136                 "Broadcom BCM5701 Gigabit Ethernet" },
137         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5700,
138                 "Broadcom BCM5700 Gigabit Ethernet" },
139         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5701,
140                 "Broadcom BCM5701 Gigabit Ethernet" },
141         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702X,
142                 "Broadcom BCM5702X Gigabit Ethernet" },
143         { PCI_VENDOR_BROADCOM, BCOM_DEVICEID_BCM5702X,
144                 "Broadcom BCM5702X Gigabit Ethernet" },
145         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703X,
146                 "Broadcom BCM5703X Gigabit Ethernet" },
147         { PCI_VENDOR_BROADCOM, BCOM_DEVICEID_BCM5703X,
148                 "Broadcom BCM5703X Gigabit Ethernet" },
149         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704C,
150                 "Broadcom BCM5704C Dual Gigabit Ethernet" },
151         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S,
152                 "Broadcom BCM5704S Dual Gigabit Ethernet" },
153         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705,
154                 "Broadcom BCM5705 Gigabit Ethernet" },
155         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M,
156                 "Broadcom BCM5705M Gigabit Ethernet" },
157         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705_ALT,
158                 "Broadcom BCM5705M Gigabit Ethernet" },
159         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5782,
160                 "Broadcom BCM5782 Gigabit Ethernet" },
161         { PCI_VENDOR_BROADCOM, BCOM_DEVICEID_BCM5788,
162                 "Broadcom BCM5788 Gigabit Ethernet" },
163         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901,
164                 "Broadcom BCM5901 Fast Ethernet" },
165         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901A2,
166                 "Broadcom BCM5901A2 Fast Ethernet" },
167         { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
168                 "SysKonnect Gigabit Ethernet" },
169         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1000,
170                 "Altima AC1000 Gigabit Ethernet" },
171         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1001,
172                 "Altima AC1002 Gigabit Ethernet" },
173         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC9100,
174                 "Altima AC9100 Gigabit Ethernet" },
175         { 0, 0, NULL }
176 };
177
178 static int bge_probe            (device_t);
179 static int bge_attach           (device_t);
180 static int bge_detach           (device_t);
181 static void bge_release_resources
182                                 (struct bge_softc *);
183 static void bge_txeof           (struct bge_softc *);
184 static void bge_rxeof           (struct bge_softc *);
185
186 static void bge_tick            (void *);
187 static void bge_stats_update    (struct bge_softc *);
188 static void bge_stats_update_regs
189                                 (struct bge_softc *);
190 static int bge_encap            (struct bge_softc *, struct mbuf *,
191                                         u_int32_t *);
192
193 static void bge_intr            (void *);
194 static void bge_start           (struct ifnet *);
195 static int bge_ioctl            (struct ifnet *, u_long, caddr_t,
196                                         struct ucred *);
197 static void bge_init            (void *);
198 static void bge_stop            (struct bge_softc *);
199 static void bge_watchdog                (struct ifnet *);
200 static void bge_shutdown                (device_t);
201 static int bge_ifmedia_upd      (struct ifnet *);
202 static void bge_ifmedia_sts     (struct ifnet *, struct ifmediareq *);
203
204 static u_int8_t bge_eeprom_getbyte      (struct bge_softc *,
205                                                 int, u_int8_t *);
206 static int bge_read_eeprom      (struct bge_softc *, caddr_t, int, int);
207
208 static u_int32_t bge_crc        (caddr_t);
209 static void bge_setmulti        (struct bge_softc *);
210
211 static void bge_handle_events   (struct bge_softc *);
212 static int bge_alloc_jumbo_mem  (struct bge_softc *);
213 static void bge_free_jumbo_mem  (struct bge_softc *);
214 static void *bge_jalloc         (struct bge_softc *);
215 static void bge_jfree           (caddr_t, u_int);
216 static void bge_jref            (caddr_t, u_int);
217 static int bge_newbuf_std       (struct bge_softc *, int, struct mbuf *);
218 static int bge_newbuf_jumbo     (struct bge_softc *, int, struct mbuf *);
219 static int bge_init_rx_ring_std (struct bge_softc *);
220 static void bge_free_rx_ring_std        (struct bge_softc *);
221 static int bge_init_rx_ring_jumbo       (struct bge_softc *);
222 static void bge_free_rx_ring_jumbo      (struct bge_softc *);
223 static void bge_free_tx_ring    (struct bge_softc *);
224 static int bge_init_tx_ring     (struct bge_softc *);
225
226 static int bge_chipinit         (struct bge_softc *);
227 static int bge_blockinit        (struct bge_softc *);
228
229 #ifdef notdef
230 static u_int8_t bge_vpd_readbyte (struct bge_softc *, int);
231 static void bge_vpd_read_res    (struct bge_softc *,
232                                         struct vpd_res *, int);
233 static void bge_vpd_read        (struct bge_softc *);
234 #endif
235
236 static u_int32_t bge_readmem_ind
237                                 (struct bge_softc *, int);
238 static void bge_writemem_ind    (struct bge_softc *, int, int);
239 #ifdef notdef
240 static u_int32_t bge_readreg_ind
241                                 (struct bge_softc *, int);
242 #endif
243 static void bge_writereg_ind    (struct bge_softc *, int, int);
244
245 static int bge_miibus_readreg   (device_t, int, int);
246 static int bge_miibus_writereg  (device_t, int, int, int);
247 static void bge_miibus_statchg  (device_t);
248
249 static void bge_reset           (struct bge_softc *);
250
251 static device_method_t bge_methods[] = {
252         /* Device interface */
253         DEVMETHOD(device_probe,         bge_probe),
254         DEVMETHOD(device_attach,        bge_attach),
255         DEVMETHOD(device_detach,        bge_detach),
256         DEVMETHOD(device_shutdown,      bge_shutdown),
257
258         /* bus interface */
259         DEVMETHOD(bus_print_child,      bus_generic_print_child),
260         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
261
262         /* MII interface */
263         DEVMETHOD(miibus_readreg,       bge_miibus_readreg),
264         DEVMETHOD(miibus_writereg,      bge_miibus_writereg),
265         DEVMETHOD(miibus_statchg,       bge_miibus_statchg),
266
267         { 0, 0 }
268 };
269
270 static driver_t bge_driver = {
271         "bge",
272         bge_methods,
273         sizeof(struct bge_softc)
274 };
275
276 static devclass_t bge_devclass;
277
278 DECLARE_DUMMY_MODULE(if_bge);
279 DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, 0, 0);
280 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
281
282 static u_int32_t
283 bge_readmem_ind(sc, off)
284         struct bge_softc *sc;
285         int off;
286 {
287         device_t dev;
288
289         dev = sc->bge_dev;
290
291         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
292         return(pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4));
293 }
294
295 static void
296 bge_writemem_ind(sc, off, val)
297         struct bge_softc *sc;
298         int off, val;
299 {
300         device_t dev;
301
302         dev = sc->bge_dev;
303
304         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
305         pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
306
307         return;
308 }
309
310 #ifdef notdef
311 static u_int32_t
312 bge_readreg_ind(sc, off)
313         struct bge_softc *sc;
314         int off;
315 {
316         device_t dev;
317
318         dev = sc->bge_dev;
319
320         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
321         return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
322 }
323 #endif
324
325 static void
326 bge_writereg_ind(sc, off, val)
327         struct bge_softc *sc;
328         int off, val;
329 {
330         device_t dev;
331
332         dev = sc->bge_dev;
333
334         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
335         pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
336
337         return;
338 }
339
340 #ifdef notdef
341 static u_int8_t
342 bge_vpd_readbyte(sc, addr)
343         struct bge_softc *sc;
344         int addr;
345 {
346         int i;
347         device_t dev;
348         u_int32_t val;
349
350         dev = sc->bge_dev;
351         pci_write_config(dev, BGE_PCI_VPD_ADDR, addr, 2);
352         for (i = 0; i < BGE_TIMEOUT * 10; i++) {
353                 DELAY(10);
354                 if (pci_read_config(dev, BGE_PCI_VPD_ADDR, 2) & BGE_VPD_FLAG)
355                         break;
356         }
357
358         if (i == BGE_TIMEOUT) {
359                 printf("bge%d: VPD read timed out\n", sc->bge_unit);
360                 return(0);
361         }
362
363         val = pci_read_config(dev, BGE_PCI_VPD_DATA, 4);
364
365         return((val >> ((addr % 4) * 8)) & 0xFF);
366 }
367
368 static void
369 bge_vpd_read_res(sc, res, addr)
370         struct bge_softc *sc;
371         struct vpd_res *res;
372         int addr;
373 {
374         int i;
375         u_int8_t *ptr;
376
377         ptr = (u_int8_t *)res;
378         for (i = 0; i < sizeof(struct vpd_res); i++)
379                 ptr[i] = bge_vpd_readbyte(sc, i + addr);
380
381         return;
382 }
383
384 static void
385 bge_vpd_read(sc)
386         struct bge_softc *sc;
387 {
388         int pos = 0, i;
389         struct vpd_res res;
390
391         if (sc->bge_vpd_prodname != NULL)
392                 free(sc->bge_vpd_prodname, M_DEVBUF);
393         if (sc->bge_vpd_readonly != NULL)
394                 free(sc->bge_vpd_readonly, M_DEVBUF);
395         sc->bge_vpd_prodname = NULL;
396         sc->bge_vpd_readonly = NULL;
397
398         bge_vpd_read_res(sc, &res, pos);
399
400         if (res.vr_id != VPD_RES_ID) {
401                 printf("bge%d: bad VPD resource id: expected %x got %x\n",
402                         sc->bge_unit, VPD_RES_ID, res.vr_id);
403                 return;
404         }
405
406         pos += sizeof(res);
407         sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_INTWAIT);
408         for (i = 0; i < res.vr_len; i++)
409                 sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
410         sc->bge_vpd_prodname[i] = '\0';
411         pos += i;
412
413         bge_vpd_read_res(sc, &res, pos);
414
415         if (res.vr_id != VPD_RES_READ) {
416                 printf("bge%d: bad VPD resource id: expected %x got %x\n",
417                     sc->bge_unit, VPD_RES_READ, res.vr_id);
418                 return;
419         }
420
421         pos += sizeof(res);
422         sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_INTWAIT);
423         for (i = 0; i < res.vr_len + 1; i++)
424                 sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
425
426         return;
427 }
428 #endif
429
430 /*
431  * Read a byte of data stored in the EEPROM at address 'addr.' The
432  * BCM570x supports both the traditional bitbang interface and an
433  * auto access interface for reading the EEPROM. We use the auto
434  * access method.
435  */
436 static u_int8_t
437 bge_eeprom_getbyte(sc, addr, dest)
438         struct bge_softc *sc;
439         int addr;
440         u_int8_t *dest;
441 {
442         int i;
443         u_int32_t byte = 0;
444
445         /*
446          * Enable use of auto EEPROM access so we can avoid
447          * having to use the bitbang method.
448          */
449         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
450
451         /* Reset the EEPROM, load the clock period. */
452         CSR_WRITE_4(sc, BGE_EE_ADDR,
453             BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
454         DELAY(20);
455
456         /* Issue the read EEPROM command. */
457         CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
458
459         /* Wait for completion */
460         for(i = 0; i < BGE_TIMEOUT * 10; i++) {
461                 DELAY(10);
462                 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
463                         break;
464         }
465
466         if (i == BGE_TIMEOUT) {
467                 printf("bge%d: eeprom read timed out\n", sc->bge_unit);
468                 return(0);
469         }
470
471         /* Get result. */
472         byte = CSR_READ_4(sc, BGE_EE_DATA);
473
474         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
475
476         return(0);
477 }
478
479 /*
480  * Read a sequence of bytes from the EEPROM.
481  */
482 static int
483 bge_read_eeprom(sc, dest, off, cnt)
484         struct bge_softc *sc;
485         caddr_t dest;
486         int off;
487         int cnt;
488 {
489         int err = 0, i;
490         u_int8_t byte = 0;
491
492         for (i = 0; i < cnt; i++) {
493                 err = bge_eeprom_getbyte(sc, off + i, &byte);
494                 if (err)
495                         break;
496                 *(dest + i) = byte;
497         }
498
499         return(err ? 1 : 0);
500 }
501
502 static int
503 bge_miibus_readreg(dev, phy, reg)
504         device_t dev;
505         int phy, reg;
506 {
507         struct bge_softc *sc;
508         struct ifnet *ifp;
509         u_int32_t val, autopoll;
510         int i;
511
512         sc = device_get_softc(dev);
513         ifp = &sc->arpcom.ac_if;
514
515         /*
516          * Broadcom's own driver always assumes the internal
517          * PHY is at GMII address 1. On some chips, the PHY responds
518          * to accesses at all addresses, which could cause us to
519          * bogusly attach the PHY 32 times at probe type. Always
520          * restricting the lookup to address 1 is simpler than
521          * trying to figure out which chips revisions should be
522          * special-cased.
523          */
524         if (phy != 1)
525                 return(0);
526
527         /* Reading with autopolling on may trigger PCI errors */
528         autopoll = CSR_READ_4(sc, BGE_MI_MODE);
529         if (autopoll & BGE_MIMODE_AUTOPOLL) {
530                 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
531                 DELAY(40);
532         }
533
534         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
535             BGE_MIPHY(phy)|BGE_MIREG(reg));
536
537         for (i = 0; i < BGE_TIMEOUT; i++) {
538                 val = CSR_READ_4(sc, BGE_MI_COMM);
539                 if (!(val & BGE_MICOMM_BUSY))
540                         break;
541         }
542
543         if (i == BGE_TIMEOUT) {
544                 printf("bge%d: PHY read timed out\n", sc->bge_unit);
545                 val = 0;
546                 goto done;
547         }
548
549         val = CSR_READ_4(sc, BGE_MI_COMM);
550
551 done:
552         if (autopoll & BGE_MIMODE_AUTOPOLL) {
553                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
554                 DELAY(40);
555         }
556
557         if (val & BGE_MICOMM_READFAIL)
558                 return(0);
559
560         return(val & 0xFFFF);
561 }
562
563 static int
564 bge_miibus_writereg(dev, phy, reg, val)
565         device_t dev;
566         int phy, reg, val;
567 {
568         struct bge_softc *sc;
569         u_int32_t autopoll;
570         int i;
571
572         sc = device_get_softc(dev);
573
574         /* Reading with autopolling on may trigger PCI errors */
575         autopoll = CSR_READ_4(sc, BGE_MI_MODE);
576         if (autopoll & BGE_MIMODE_AUTOPOLL) {
577                 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
578                 DELAY(40);
579         }
580
581         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
582             BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
583
584         for (i = 0; i < BGE_TIMEOUT; i++) {
585                 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
586                         break;
587         }
588
589         if (autopoll & BGE_MIMODE_AUTOPOLL) {
590                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
591                 DELAY(40);
592         }
593
594         if (i == BGE_TIMEOUT) {
595                 printf("bge%d: PHY read timed out\n", sc->bge_unit);
596                 return(0);
597         }
598
599         return(0);
600 }
601
602 static void
603 bge_miibus_statchg(dev)
604         device_t dev;
605 {
606         struct bge_softc *sc;
607         struct mii_data *mii;
608
609         sc = device_get_softc(dev);
610         mii = device_get_softc(sc->bge_miibus);
611
612         BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
613         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_TX) {
614                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
615         } else {
616                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
617         }
618
619         if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
620                 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
621         } else {
622                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
623         }
624
625         return;
626 }
627
628 /*
629  * Handle events that have triggered interrupts.
630  */
631 static void
632 bge_handle_events(sc)
633         struct bge_softc                *sc;
634 {
635
636         return;
637 }
638
639 /*
640  * Memory management for jumbo frames.
641  */
642
643 static int
644 bge_alloc_jumbo_mem(sc)
645         struct bge_softc                *sc;
646 {
647         caddr_t                 ptr;
648         int             i;
649         struct bge_jpool_entry   *entry;
650
651         /* Grab a big chunk o' storage. */
652         sc->bge_cdata.bge_jumbo_buf = contigmalloc(BGE_JMEM, M_DEVBUF,
653                 M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
654
655         if (sc->bge_cdata.bge_jumbo_buf == NULL) {
656                 printf("bge%d: no memory for jumbo buffers!\n", sc->bge_unit);
657                 return(ENOBUFS);
658         }
659
660         SLIST_INIT(&sc->bge_jfree_listhead);
661         SLIST_INIT(&sc->bge_jinuse_listhead);
662
663         /*
664          * Now divide it up into 9K pieces and save the addresses
665          * in an array. Note that we play an evil trick here by using
666          * the first few bytes in the buffer to hold the the address
667          * of the softc structure for this interface. This is because
668          * bge_jfree() needs it, but it is called by the mbuf management
669          * code which will not pass it to us explicitly.
670          */
671         ptr = sc->bge_cdata.bge_jumbo_buf;
672         for (i = 0; i < BGE_JSLOTS; i++) {
673                 u_int64_t               **aptr;
674                 aptr = (u_int64_t **)ptr;
675                 aptr[0] = (u_int64_t *)sc;
676                 ptr += sizeof(u_int64_t);
677                 sc->bge_cdata.bge_jslots[i].bge_buf = ptr;
678                 sc->bge_cdata.bge_jslots[i].bge_inuse = 0;
679                 ptr += (BGE_JLEN - sizeof(u_int64_t));
680                 entry = malloc(sizeof(struct bge_jpool_entry), 
681                                M_DEVBUF, M_INTWAIT);
682                 entry->slot = i;
683                 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
684                     entry, jpool_entries);
685         }
686
687         return(0);
688 }
689
690 static void
691 bge_free_jumbo_mem(sc)
692         struct bge_softc *sc;
693 {
694         int i;
695         struct bge_jpool_entry *entry;
696  
697         for (i = 0; i < BGE_JSLOTS; i++) {
698                 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
699                 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
700                 free(entry, M_DEVBUF);
701         }
702
703         contigfree(sc->bge_cdata.bge_jumbo_buf, BGE_JMEM, M_DEVBUF);
704
705         return;
706 }
707
708 /*
709  * Allocate a jumbo buffer.
710  */
711 static void *
712 bge_jalloc(sc)
713         struct bge_softc                *sc;
714 {
715         struct bge_jpool_entry   *entry;
716         
717         entry = SLIST_FIRST(&sc->bge_jfree_listhead);
718         
719         if (entry == NULL) {
720                 printf("bge%d: no free jumbo buffers\n", sc->bge_unit);
721                 return(NULL);
722         }
723
724         SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
725         SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
726         sc->bge_cdata.bge_jslots[entry->slot].bge_inuse = 1;
727         return(sc->bge_cdata.bge_jslots[entry->slot].bge_buf);
728 }
729
730 /*
731  * Adjust usage count on a jumbo buffer.
732  */
733 static void
734 bge_jref(buf, size)
735         caddr_t                 buf;
736         u_int                   size;
737 {
738         struct bge_softc                *sc;
739         u_int64_t               **aptr;
740         int             i;
741
742         /* Extract the softc struct pointer. */
743         aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
744         sc = (struct bge_softc *)(aptr[0]);
745
746         if (sc == NULL)
747                 panic("bge_jref: can't find softc pointer!");
748
749         if (size != BGE_JUMBO_FRAMELEN)
750                 panic("bge_jref: adjusting refcount of buf of wrong size!");
751
752         /* calculate the slot this buffer belongs to */
753
754         i = ((vm_offset_t)aptr 
755              - (vm_offset_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
756
757         if ((i < 0) || (i >= BGE_JSLOTS))
758                 panic("bge_jref: asked to reference buffer "
759                     "that we don't manage!");
760         else if (sc->bge_cdata.bge_jslots[i].bge_inuse == 0)
761                 panic("bge_jref: buffer already free!");
762         else
763                 sc->bge_cdata.bge_jslots[i].bge_inuse++;
764
765         return;
766 }
767
768 /*
769  * Release a jumbo buffer.
770  */
771 static void
772 bge_jfree(buf, size)
773         caddr_t                 buf;
774         u_int                   size;
775 {
776         struct bge_softc                *sc;
777         u_int64_t               **aptr;
778         int                     i;
779         struct bge_jpool_entry   *entry;
780
781         /* Extract the softc struct pointer. */
782         aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
783         sc = (struct bge_softc *)(aptr[0]);
784
785         if (sc == NULL)
786                 panic("bge_jfree: can't find softc pointer!");
787
788         if (size != BGE_JUMBO_FRAMELEN)
789                 panic("bge_jfree: freeing buffer of wrong size!");
790
791         /* calculate the slot this buffer belongs to */
792
793         i = ((vm_offset_t)aptr 
794              - (vm_offset_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
795
796         if ((i < 0) || (i >= BGE_JSLOTS))
797                 panic("bge_jfree: asked to free buffer that we don't manage!");
798         else if (sc->bge_cdata.bge_jslots[i].bge_inuse == 0)
799                 panic("bge_jfree: buffer already free!");
800         else {
801                 sc->bge_cdata.bge_jslots[i].bge_inuse--;
802                 if(sc->bge_cdata.bge_jslots[i].bge_inuse == 0) {
803                         entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
804                         if (entry == NULL)
805                                 panic("bge_jfree: buffer not in use!");
806                         entry->slot = i;
807                         SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, 
808                                           jpool_entries);
809                         SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, 
810                                           entry, jpool_entries);
811                 }
812         }
813
814         return;
815 }
816
817
818 /*
819  * Intialize a standard receive ring descriptor.
820  */
821 static int
822 bge_newbuf_std(sc, i, m)
823         struct bge_softc        *sc;
824         int                     i;
825         struct mbuf             *m;
826 {
827         struct mbuf             *m_new = NULL;
828         struct bge_rx_bd        *r;
829
830         if (m == NULL) {
831                 MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
832                 if (m_new == NULL) {
833                         return(ENOBUFS);
834                 }
835
836                 MCLGET(m_new, MB_DONTWAIT);
837                 if (!(m_new->m_flags & M_EXT)) {
838                         m_freem(m_new);
839                         return(ENOBUFS);
840                 }
841                 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
842         } else {
843                 m_new = m;
844                 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
845                 m_new->m_data = m_new->m_ext.ext_buf;
846         }
847
848         if (!sc->bge_rx_alignment_bug)
849                 m_adj(m_new, ETHER_ALIGN);
850         sc->bge_cdata.bge_rx_std_chain[i] = m_new;
851         r = &sc->bge_rdata->bge_rx_std_ring[i];
852         BGE_HOSTADDR(r->bge_addr, vtophys(mtod(m_new, caddr_t)));
853         r->bge_flags = BGE_RXBDFLAG_END;
854         r->bge_len = m_new->m_len;
855         r->bge_idx = i;
856
857         return(0);
858 }
859
860 /*
861  * Initialize a jumbo receive ring descriptor. This allocates
862  * a jumbo buffer from the pool managed internally by the driver.
863  */
864 static int
865 bge_newbuf_jumbo(sc, i, m)
866         struct bge_softc *sc;
867         int i;
868         struct mbuf *m;
869 {
870         struct mbuf *m_new = NULL;
871         struct bge_rx_bd *r;
872
873         if (m == NULL) {
874                 caddr_t                 *buf = NULL;
875
876                 /* Allocate the mbuf. */
877                 MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
878                 if (m_new == NULL) {
879                         return(ENOBUFS);
880                 }
881
882                 /* Allocate the jumbo buffer */
883                 buf = bge_jalloc(sc);
884                 if (buf == NULL) {
885                         m_freem(m_new);
886                         printf("bge%d: jumbo allocation failed "
887                             "-- packet dropped!\n", sc->bge_unit);
888                         return(ENOBUFS);
889                 }
890
891                 /* Attach the buffer to the mbuf. */
892                 m_new->m_data = m_new->m_ext.ext_buf = (void *)buf;
893                 m_new->m_flags |= M_EXT | M_EXT_OLD;
894                 m_new->m_len = m_new->m_pkthdr.len =
895                     m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
896                 m_new->m_ext.ext_nfree.old = bge_jfree;
897                 m_new->m_ext.ext_nref.old = bge_jref;
898         } else {
899                 m_new = m;
900                 m_new->m_data = m_new->m_ext.ext_buf;
901                 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
902         }
903
904         if (!sc->bge_rx_alignment_bug)
905                 m_adj(m_new, ETHER_ALIGN);
906         /* Set up the descriptor. */
907         r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
908         sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
909         BGE_HOSTADDR(r->bge_addr, vtophys(mtod(m_new, caddr_t)));
910         r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
911         r->bge_len = m_new->m_len;
912         r->bge_idx = i;
913
914         return(0);
915 }
916
917 /*
918  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
919  * that's 1MB or memory, which is a lot. For now, we fill only the first
920  * 256 ring entries and hope that our CPU is fast enough to keep up with
921  * the NIC.
922  */
923 static int
924 bge_init_rx_ring_std(sc)
925         struct bge_softc *sc;
926 {
927         int i;
928
929         for (i = 0; i < BGE_SSLOTS; i++) {
930                 if (bge_newbuf_std(sc, i, NULL) == ENOBUFS)
931                         return(ENOBUFS);
932         };
933
934         sc->bge_std = i - 1;
935         CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
936
937         return(0);
938 }
939
940 static void
941 bge_free_rx_ring_std(sc)
942         struct bge_softc *sc;
943 {
944         int i;
945
946         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
947                 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
948                         m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
949                         sc->bge_cdata.bge_rx_std_chain[i] = NULL;
950                 }
951                 bzero((char *)&sc->bge_rdata->bge_rx_std_ring[i],
952                     sizeof(struct bge_rx_bd));
953         }
954
955         return;
956 }
957
958 static int
959 bge_init_rx_ring_jumbo(sc)
960         struct bge_softc *sc;
961 {
962         int i;
963         struct bge_rcb *rcb;
964
965         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
966                 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
967                         return(ENOBUFS);
968         };
969
970         sc->bge_jumbo = i - 1;
971
972         rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
973         rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
974         CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
975
976         CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
977
978         return(0);
979 }
980
981 static void
982 bge_free_rx_ring_jumbo(sc)
983         struct bge_softc *sc;
984 {
985         int i;
986
987         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
988                 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
989                         m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
990                         sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
991                 }
992                 bzero((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i],
993                     sizeof(struct bge_rx_bd));
994         }
995
996         return;
997 }
998
999 static void
1000 bge_free_tx_ring(sc)
1001         struct bge_softc *sc;
1002 {
1003         int i;
1004
1005         if (sc->bge_rdata->bge_tx_ring == NULL)
1006                 return;
1007
1008         for (i = 0; i < BGE_TX_RING_CNT; i++) {
1009                 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1010                         m_freem(sc->bge_cdata.bge_tx_chain[i]);
1011                         sc->bge_cdata.bge_tx_chain[i] = NULL;
1012                 }
1013                 bzero((char *)&sc->bge_rdata->bge_tx_ring[i],
1014                     sizeof(struct bge_tx_bd));
1015         }
1016
1017         return;
1018 }
1019
1020 static int
1021 bge_init_tx_ring(sc)
1022         struct bge_softc *sc;
1023 {
1024         sc->bge_txcnt = 0;
1025         sc->bge_tx_saved_considx = 0;
1026
1027         CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
1028         /* 5700 b2 errata */
1029         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1030                 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
1031
1032         CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1033         /* 5700 b2 errata */
1034         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1035                 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1036
1037         return(0);
1038 }
1039
1040 #define BGE_POLY        0xEDB88320
1041
1042 static u_int32_t
1043 bge_crc(addr)
1044         caddr_t addr;
1045 {
1046         u_int32_t idx, bit, data, crc;
1047
1048         /* Compute CRC for the address value. */
1049         crc = 0xFFFFFFFF; /* initial value */
1050
1051         for (idx = 0; idx < 6; idx++) {
1052                 for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
1053                         crc = (crc >> 1) ^ (((crc ^ data) & 1) ? BGE_POLY : 0);
1054         }
1055
1056         return(crc & 0x7F);
1057 }
1058
1059 static void
1060 bge_setmulti(sc)
1061         struct bge_softc *sc;
1062 {
1063         struct ifnet *ifp;
1064         struct ifmultiaddr *ifma;
1065         u_int32_t hashes[4] = { 0, 0, 0, 0 };
1066         int h, i;
1067
1068         ifp = &sc->arpcom.ac_if;
1069
1070         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1071                 for (i = 0; i < 4; i++)
1072                         CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1073                 return;
1074         }
1075
1076         /* First, zot all the existing filters. */
1077         for (i = 0; i < 4; i++)
1078                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1079
1080         /* Now program new ones. */
1081         for (ifma = ifp->if_multiaddrs.lh_first;
1082             ifma != NULL; ifma = ifma->ifma_link.le_next) {
1083                 if (ifma->ifma_addr->sa_family != AF_LINK)
1084                         continue;
1085                 h = bge_crc(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1086                 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1087         }
1088
1089         for (i = 0; i < 4; i++)
1090                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1091
1092         return;
1093 }
1094
1095 /*
1096  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1097  * self-test results.
1098  */
1099 static int
1100 bge_chipinit(sc)
1101         struct bge_softc *sc;
1102 {
1103         int                     i;
1104         u_int32_t               dma_rw_ctl;
1105
1106         /* Set endianness before we access any non-PCI registers. */
1107 #if BYTE_ORDER == BIG_ENDIAN
1108         pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
1109             BGE_BIGENDIAN_INIT, 4);
1110 #else
1111         pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
1112             BGE_LITTLEENDIAN_INIT, 4);
1113 #endif
1114
1115         /*
1116          * Check the 'ROM failed' bit on the RX CPU to see if
1117          * self-tests passed.
1118          */
1119         if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1120                 printf("bge%d: RX CPU self-diagnostics failed!\n",
1121                     sc->bge_unit);
1122                 return(ENODEV);
1123         }
1124
1125         /* Clear the MAC control register */
1126         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1127
1128         /*
1129          * Clear the MAC statistics block in the NIC's
1130          * internal memory.
1131          */
1132         for (i = BGE_STATS_BLOCK;
1133             i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1134                 BGE_MEMWIN_WRITE(sc, i, 0);
1135
1136         for (i = BGE_STATUS_BLOCK;
1137             i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1138                 BGE_MEMWIN_WRITE(sc, i, 0);
1139
1140         /* Set up the PCI DMA control register. */
1141         if (pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
1142             BGE_PCISTATE_PCI_BUSMODE) {
1143                 /* Conventional PCI bus */
1144                 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1145                     (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1146                     (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1147                     (0x0F);
1148         } else {
1149                 /* PCI-X bus */
1150                 /*
1151                  * The 5704 uses a different encoding of read/write
1152                  * watermarks.
1153                  */
1154                 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1155                         dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1156                             (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1157                             (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1158                 else
1159                         dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1160                             (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1161                             (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1162                             (0x0F);
1163
1164                 /*
1165                  * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1166                  * for hardware bugs.
1167                  */
1168                 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1169                     sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1170                         u_int32_t tmp;
1171
1172                         tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1173                         if (tmp == 0x6 || tmp == 0x7)
1174                                 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1175                 }
1176         }
1177
1178         if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1179             sc->bge_asicrev == BGE_ASICREV_BCM5704 ||
1180             sc->bge_asicrev == BGE_ASICREV_BCM5705)
1181                 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1182         pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1183
1184         /*
1185          * Set up general mode register.
1186          */
1187         CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_WORDSWAP_NONFRAME|
1188             BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1189             BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1190             BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
1191
1192         /*
1193          * Disable memory write invalidate.  Apparently it is not supported
1194          * properly by these devices.
1195          */
1196         PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
1197
1198 #ifdef __brokenalpha__
1199         /*
1200          * Must insure that we do not cross an 8K (bytes) boundary
1201          * for DMA reads.  Our highest limit is 1K bytes.  This is a 
1202          * restriction on some ALPHA platforms with early revision 
1203          * 21174 PCI chipsets, such as the AlphaPC 164lx 
1204          */
1205         PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL,
1206             BGE_PCI_READ_BNDRY_1024BYTES, 4);
1207 #endif
1208
1209         /* Set the timer prescaler (always 66Mhz) */
1210         CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1211
1212         return(0);
1213 }
1214
1215 static int
1216 bge_blockinit(sc)
1217         struct bge_softc *sc;
1218 {
1219         struct bge_rcb *rcb;
1220         volatile struct bge_rcb *vrcb;
1221         int i;
1222
1223         /*
1224          * Initialize the memory window pointer register so that
1225          * we can access the first 32K of internal NIC RAM. This will
1226          * allow us to set up the TX send ring RCBs and the RX return
1227          * ring RCBs, plus other things which live in NIC memory.
1228          */
1229         CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1230
1231         /* Note: the BCM5704 has a smaller mbuf space than other chips. */
1232
1233         if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
1234                 /* Configure mbuf memory pool */
1235                 if (sc->bge_extram) {
1236                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1237                             BGE_EXT_SSRAM);
1238                         if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1239                                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1240                         else
1241                                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1242                 } else {
1243                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1244                             BGE_BUFFPOOL_1);
1245                         if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1246                                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1247                         else
1248                                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1249                 }
1250
1251                 /* Configure DMA resource pool */
1252                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1253                     BGE_DMA_DESCRIPTORS);
1254                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1255         }
1256
1257         /* Configure mbuf pool watermarks */
1258         if (sc->bge_asicrev == BGE_ASICREV_BCM5705) {
1259                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1260                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1261         } else {
1262                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1263                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1264         }
1265         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1266
1267         /* Configure DMA resource watermarks */
1268         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1269         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1270
1271         /* Enable buffer manager */
1272         if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
1273                 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1274                     BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1275
1276                 /* Poll for buffer manager start indication */
1277                 for (i = 0; i < BGE_TIMEOUT; i++) {
1278                         if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1279                                 break;
1280                         DELAY(10);
1281                 }
1282
1283                 if (i == BGE_TIMEOUT) {
1284                         printf("bge%d: buffer manager failed to start\n",
1285                             sc->bge_unit);
1286                         return(ENXIO);
1287                 }
1288         }
1289
1290         /* Enable flow-through queues */
1291         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1292         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1293
1294         /* Wait until queue initialization is complete */
1295         for (i = 0; i < BGE_TIMEOUT; i++) {
1296                 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1297                         break;
1298                 DELAY(10);
1299         }
1300
1301         if (i == BGE_TIMEOUT) {
1302                 printf("bge%d: flow-through queue init failed\n",
1303                     sc->bge_unit);
1304                 return(ENXIO);
1305         }
1306
1307         /* Initialize the standard RX ring control block */
1308         rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1309         BGE_HOSTADDR(rcb->bge_hostaddr,
1310             vtophys(&sc->bge_rdata->bge_rx_std_ring));
1311         if (sc->bge_asicrev == BGE_ASICREV_BCM5705)
1312                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1313         else
1314                 rcb->bge_maxlen_flags =
1315                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1316         if (sc->bge_extram)
1317                 rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1318         else
1319                 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1320         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1321         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1322         CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1323         CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1324
1325         /*
1326          * Initialize the jumbo RX ring control block
1327          * We set the 'ring disabled' bit in the flags
1328          * field until we're actually ready to start
1329          * using this ring (i.e. once we set the MTU
1330          * high enough to require it).
1331          */
1332         if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
1333                 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1334                 BGE_HOSTADDR(rcb->bge_hostaddr,
1335                     vtophys(&sc->bge_rdata->bge_rx_jumbo_ring));
1336                 rcb->bge_maxlen_flags =
1337                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1338                     BGE_RCB_FLAG_RING_DISABLED);
1339                 if (sc->bge_extram)
1340                         rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1341                 else
1342                         rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1343                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1344                     rcb->bge_hostaddr.bge_addr_hi);
1345                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1346                     rcb->bge_hostaddr.bge_addr_lo);
1347                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1348                     rcb->bge_maxlen_flags);
1349                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1350
1351                 /* Set up dummy disabled mini ring RCB */
1352                 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1353                 rcb->bge_maxlen_flags =
1354                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1355                 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1356                     rcb->bge_maxlen_flags);
1357         }
1358
1359         /*
1360          * Set the BD ring replentish thresholds. The recommended
1361          * values are 1/8th the number of descriptors allocated to
1362          * each ring.
1363          */
1364         CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1365         CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1366
1367         /*
1368          * Disable all unused send rings by setting the 'ring disabled'
1369          * bit in the flags field of all the TX send ring control blocks.
1370          * These are located in NIC memory.
1371          */
1372         vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1373             BGE_SEND_RING_RCB);
1374         for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1375                 vrcb->bge_maxlen_flags =
1376                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1377                 vrcb->bge_nicaddr = 0;
1378                 vrcb++;
1379         }
1380
1381         /* Configure TX RCB 0 (we use only the first ring) */
1382         vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1383             BGE_SEND_RING_RCB);
1384         vrcb->bge_hostaddr.bge_addr_hi = 0;
1385         BGE_HOSTADDR(vrcb->bge_hostaddr, vtophys(&sc->bge_rdata->bge_tx_ring));
1386         vrcb->bge_nicaddr = BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT);
1387         if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
1388                 vrcb->bge_maxlen_flags =
1389                     BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0);
1390
1391         /* Disable all unused RX return rings */
1392         vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1393             BGE_RX_RETURN_RING_RCB);
1394         for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1395                 vrcb->bge_hostaddr.bge_addr_hi = 0;
1396                 vrcb->bge_hostaddr.bge_addr_lo = 0;
1397                 vrcb->bge_maxlen_flags =
1398                     BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1399                     BGE_RCB_FLAG_RING_DISABLED);
1400                 vrcb->bge_nicaddr = 0;
1401                 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1402                     (i * (sizeof(u_int64_t))), 0);
1403                 vrcb++;
1404         }
1405
1406         /* Initialize RX ring indexes */
1407         CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1408         CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1409         CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1410
1411         /*
1412          * Set up RX return ring 0
1413          * Note that the NIC address for RX return rings is 0x00000000.
1414          * The return rings live entirely within the host, so the
1415          * nicaddr field in the RCB isn't used.
1416          */
1417         vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1418             BGE_RX_RETURN_RING_RCB);
1419         vrcb->bge_hostaddr.bge_addr_hi = 0;
1420         BGE_HOSTADDR(vrcb->bge_hostaddr,
1421             vtophys(&sc->bge_rdata->bge_rx_return_ring));
1422         vrcb->bge_nicaddr = 0x00000000;
1423         vrcb->bge_maxlen_flags =
1424             BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0);
1425
1426         /* Set random backoff seed for TX */
1427         CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1428             sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1429             sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1430             sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] +
1431             BGE_TX_BACKOFF_SEED_MASK);
1432
1433         /* Set inter-packet gap */
1434         CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1435
1436         /*
1437          * Specify which ring to use for packets that don't match
1438          * any RX rules.
1439          */
1440         CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1441
1442         /*
1443          * Configure number of RX lists. One interrupt distribution
1444          * list, sixteen active lists, one bad frames class.
1445          */
1446         CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1447
1448         /* Inialize RX list placement stats mask. */
1449         CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1450         CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1451
1452         /* Disable host coalescing until we get it set up */
1453         CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1454
1455         /* Poll to make sure it's shut down. */
1456         for (i = 0; i < BGE_TIMEOUT; i++) {
1457                 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1458                         break;
1459                 DELAY(10);
1460         }
1461
1462         if (i == BGE_TIMEOUT) {
1463                 printf("bge%d: host coalescing engine failed to idle\n",
1464                     sc->bge_unit);
1465                 return(ENXIO);
1466         }
1467
1468         /* Set up host coalescing defaults */
1469         CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1470         CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1471         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1472         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1473         if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
1474                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1475                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1476         }
1477         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1478         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1479
1480         /* Set up address of statistics block */
1481         if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
1482                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, 0);
1483                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1484                     vtophys(&sc->bge_rdata->bge_info.bge_stats));
1485
1486                 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1487                 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1488                 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1489         }
1490
1491         /* Set up address of status block */
1492         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, 0);
1493         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1494             vtophys(&sc->bge_rdata->bge_status_block));
1495
1496         sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1497         sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1498
1499         /* Turn on host coalescing state machine */
1500         CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1501
1502         /* Turn on RX BD completion state machine and enable attentions */
1503         CSR_WRITE_4(sc, BGE_RBDC_MODE,
1504             BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1505
1506         /* Turn on RX list placement state machine */
1507         CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1508
1509         /* Turn on RX list selector state machine. */
1510         if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
1511                 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1512
1513         /* Turn on DMA, clear stats */
1514         CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1515             BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1516             BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1517             BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1518             (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1519
1520         /* Set misc. local control, enable interrupts on attentions */
1521         CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1522
1523 #ifdef notdef
1524         /* Assert GPIO pins for PHY reset */
1525         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1526             BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1527         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1528             BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1529 #endif
1530
1531         /* Turn on DMA completion state machine */
1532         if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
1533                 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1534
1535         /* Turn on write DMA state machine */
1536         CSR_WRITE_4(sc, BGE_WDMA_MODE,
1537             BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1538         
1539         /* Turn on read DMA state machine */
1540         CSR_WRITE_4(sc, BGE_RDMA_MODE,
1541             BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1542
1543         /* Turn on RX data completion state machine */
1544         CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1545
1546         /* Turn on RX BD initiator state machine */
1547         CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1548
1549         /* Turn on RX data and RX BD initiator state machine */
1550         CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1551
1552         /* Turn on Mbuf cluster free state machine */
1553         if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
1554                 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1555
1556         /* Turn on send BD completion state machine */
1557         CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1558
1559         /* Turn on send data completion state machine */
1560         CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1561
1562         /* Turn on send data initiator state machine */
1563         CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1564
1565         /* Turn on send BD initiator state machine */
1566         CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1567
1568         /* Turn on send BD selector state machine */
1569         CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1570
1571         CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1572         CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1573             BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1574
1575         /* ack/clear link change events */
1576         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1577             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1578             BGE_MACSTAT_LINK_CHANGED);
1579
1580         /* Enable PHY auto polling (for MII/GMII only) */
1581         if (sc->bge_tbi) {
1582                 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1583         } else {
1584                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1585                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700)
1586                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1587                             BGE_EVTENB_MI_INTERRUPT);
1588         }
1589
1590         /* Enable link state change attentions. */
1591         BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1592
1593         return(0);
1594 }
1595
1596 /*
1597  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1598  * against our list and return its name if we find a match. Note
1599  * that since the Broadcom controller contains VPD support, we
1600  * can get the device name string from the controller itself instead
1601  * of the compiled-in string. This is a little slow, but it guarantees
1602  * we'll always announce the right product name.
1603  */
1604 static int
1605 bge_probe(dev)
1606         device_t dev;
1607 {
1608         struct bge_type *t;
1609         struct bge_softc *sc;
1610         char *descbuf;
1611
1612         t = bge_devs;
1613
1614         sc = device_get_softc(dev);
1615         bzero(sc, sizeof(struct bge_softc));
1616         sc->bge_unit = device_get_unit(dev);
1617         sc->bge_dev = dev;
1618
1619         while(t->bge_name != NULL) {
1620                 if ((pci_get_vendor(dev) == t->bge_vid) &&
1621                     (pci_get_device(dev) == t->bge_did)) {
1622 #ifdef notdef
1623                         bge_vpd_read(sc);
1624                         device_set_desc(dev, sc->bge_vpd_prodname);
1625 #endif
1626                         descbuf = malloc(BGE_DEVDESC_MAX, M_TEMP, M_INTWAIT);
1627                         snprintf(descbuf, BGE_DEVDESC_MAX,
1628                             "%s, ASIC rev. %#04x", t->bge_name,
1629                             pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >> 16);
1630                         device_set_desc_copy(dev, descbuf);
1631                         if (pci_get_subvendor(dev) == PCI_VENDOR_DELL)
1632                                 sc->bge_no_3_led = 1;
1633                         free(descbuf, M_TEMP);
1634                         return(0);
1635                 }
1636                 t++;
1637         }
1638
1639         return(ENXIO);
1640 }
1641
1642 static int
1643 bge_attach(dev)
1644         device_t dev;
1645 {
1646         int s;
1647         u_int32_t command;
1648         struct ifnet *ifp;
1649         struct bge_softc *sc;
1650         u_int32_t hwcfg = 0;
1651         u_int32_t mac_addr = 0;
1652         int unit, error = 0, rid;
1653         uint8_t ether_addr[ETHER_ADDR_LEN];
1654
1655         s = splimp();
1656
1657         sc = device_get_softc(dev);
1658         unit = device_get_unit(dev);
1659         sc->bge_dev = dev;
1660         sc->bge_unit = unit;
1661         callout_init(&sc->bge_stat_timer);
1662
1663         /*
1664          * Map control/status registers.
1665          */
1666         command = pci_read_config(dev, PCIR_COMMAND, 4);
1667         command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1668         pci_write_config(dev, PCIR_COMMAND, command, 4);
1669         command = pci_read_config(dev, PCIR_COMMAND, 4);
1670
1671         if (!(command & PCIM_CMD_MEMEN)) {
1672                 printf("bge%d: failed to enable memory mapping!\n", unit);
1673                 error = ENXIO;
1674                 goto fail;
1675         }
1676
1677         rid = BGE_PCI_BAR0;
1678         sc->bge_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
1679             0, ~0, 1, RF_ACTIVE);
1680
1681         if (sc->bge_res == NULL) {
1682                 printf ("bge%d: couldn't map memory\n", unit);
1683                 error = ENXIO;
1684                 goto fail;
1685         }
1686
1687         sc->bge_btag = rman_get_bustag(sc->bge_res);
1688         sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
1689         sc->bge_vhandle = (vm_offset_t)rman_get_virtual(sc->bge_res);
1690
1691         /*
1692          * XXX FIXME: rman_get_virtual() on the alpha is currently
1693          * broken and returns a physical address instead of a kernel
1694          * virtual address. Consequently, we need to do a little
1695          * extra mangling of the vhandle on the alpha. This should
1696          * eventually be fixed! The whole idea here is to get rid
1697          * of platform dependencies.
1698          */
1699 #ifdef __alpha__
1700         if (pci_cvt_to_bwx(sc->bge_vhandle))
1701                 sc->bge_vhandle = pci_cvt_to_bwx(sc->bge_vhandle);
1702         else
1703                 sc->bge_vhandle = pci_cvt_to_dense(sc->bge_vhandle);
1704         sc->bge_vhandle = ALPHA_PHYS_TO_K0SEG(sc->bge_vhandle);
1705 #endif
1706
1707         /* Allocate interrupt */
1708         rid = 0;
1709         
1710         sc->bge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1711             RF_SHAREABLE | RF_ACTIVE);
1712
1713         if (sc->bge_irq == NULL) {
1714                 printf("bge%d: couldn't map interrupt\n", unit);
1715                 error = ENXIO;
1716                 goto fail;
1717         }
1718
1719         error = bus_setup_intr(dev, sc->bge_irq, INTR_TYPE_NET,
1720            bge_intr, sc, &sc->bge_intrhand);
1721
1722         if (error) {
1723                 bge_release_resources(sc);
1724                 printf("bge%d: couldn't set up irq\n", unit);
1725                 goto fail;
1726         }
1727
1728         sc->bge_unit = unit;
1729
1730         /* Try to reset the chip. */
1731         bge_reset(sc);
1732
1733         if (bge_chipinit(sc)) {
1734                 printf("bge%d: chip initialization failed\n", sc->bge_unit);
1735                 bge_release_resources(sc);
1736                 error = ENXIO;
1737                 goto fail;
1738         }
1739
1740         /*
1741          * Get station address from the EEPROM.
1742          */
1743         mac_addr = bge_readmem_ind(sc, 0x0c14);
1744         if ((mac_addr >> 16) == 0x484b) {
1745                 ether_addr[0] = (uint8_t)(mac_addr >> 8);
1746                 ether_addr[1] = (uint8_t)mac_addr;
1747                 mac_addr = bge_readmem_ind(sc, 0x0c18);
1748                 ether_addr[2] = (uint8_t)(mac_addr >> 24);
1749                 ether_addr[3] = (uint8_t)(mac_addr >> 16);
1750                 ether_addr[4] = (uint8_t)(mac_addr >> 8);
1751                 ether_addr[5] = (uint8_t)mac_addr;
1752         } else if (bge_read_eeprom(sc, ether_addr,
1753             BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1754                 printf("bge%d: failed to read station address\n", unit);
1755                 bge_release_resources(sc);
1756                 error = ENXIO;
1757                 goto fail;
1758         }
1759
1760         /* Allocate the general information block and ring buffers. */
1761         sc->bge_rdata = contigmalloc(sizeof(struct bge_ring_data), M_DEVBUF,
1762             M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1763
1764         if (sc->bge_rdata == NULL) {
1765                 bge_release_resources(sc);
1766                 error = ENXIO;
1767                 printf("bge%d: no memory for list buffers!\n", sc->bge_unit);
1768                 goto fail;
1769         }
1770
1771         bzero(sc->bge_rdata, sizeof(struct bge_ring_data));
1772
1773         /* Save ASIC rev. */
1774
1775         sc->bge_chipid =
1776             pci_read_config(dev, BGE_PCI_MISC_CTL, 4) &
1777             BGE_PCIMISCCTL_ASICREV;
1778         sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
1779         sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
1780
1781         /*
1782          * Try to allocate memory for jumbo buffers.
1783          * The 5705 does not appear to support jumbo frames.
1784          */
1785         if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
1786                 if (bge_alloc_jumbo_mem(sc)) {
1787                         printf("bge%d: jumbo buffer allocation "
1788                             "failed\n", sc->bge_unit);
1789                         bge_release_resources(sc);
1790                         error = ENXIO;
1791                         goto fail;
1792                 }
1793         }
1794
1795         /* Set default tuneable values. */
1796         sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
1797         sc->bge_rx_coal_ticks = 150;
1798         sc->bge_tx_coal_ticks = 150;
1799         sc->bge_rx_max_coal_bds = 64;
1800         sc->bge_tx_max_coal_bds = 128;
1801
1802         /* 5705 limits RX return ring to 512 entries. */
1803         if (sc->bge_asicrev == BGE_ASICREV_BCM5705)
1804                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1805         else
1806                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1807
1808         /* Set up ifnet structure */
1809         ifp = &sc->arpcom.ac_if;
1810         ifp->if_softc = sc;
1811         if_initname(ifp, "bge", sc->bge_unit);
1812         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1813         ifp->if_ioctl = bge_ioctl;
1814         ifp->if_start = bge_start;
1815         ifp->if_watchdog = bge_watchdog;
1816         ifp->if_init = bge_init;
1817         ifp->if_mtu = ETHERMTU;
1818         ifp->if_snd.ifq_maxlen = BGE_TX_RING_CNT - 1;
1819         ifp->if_hwassist = BGE_CSUM_FEATURES;
1820         ifp->if_capabilities = IFCAP_HWCSUM;
1821         ifp->if_capenable = ifp->if_capabilities;
1822
1823         /*
1824          * Figure out what sort of media we have by checking the
1825          * hardware config word in the first 32k of NIC internal memory,
1826          * or fall back to examining the EEPROM if necessary.
1827          * Note: on some BCM5700 cards, this value appears to be unset.
1828          * If that's the case, we have to rely on identifying the NIC
1829          * by its PCI subsystem ID, as we do below for the SysKonnect
1830          * SK-9D41.
1831          */
1832         if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER)
1833                 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
1834         else {
1835                 bge_read_eeprom(sc, (caddr_t)&hwcfg,
1836                                 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
1837                 hwcfg = ntohl(hwcfg);
1838         }
1839
1840         if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
1841                 sc->bge_tbi = 1;
1842
1843         /* The SysKonnect SK-9D41 is a 1000baseSX card. */
1844         if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) ==
1845              PCI_PRODUCT_SCHNEIDERKOCH_SK_9D41)
1846                 sc->bge_tbi = 1;
1847
1848         if (sc->bge_tbi) {
1849                 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
1850                     bge_ifmedia_upd, bge_ifmedia_sts);
1851                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1852                 ifmedia_add(&sc->bge_ifmedia,
1853                     IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1854                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1855                 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
1856         } else {
1857                 /*
1858                  * Do transceiver setup.
1859                  */
1860                 if (mii_phy_probe(dev, &sc->bge_miibus,
1861                     bge_ifmedia_upd, bge_ifmedia_sts)) {
1862                         printf("bge%d: MII without any PHY!\n", sc->bge_unit);
1863                         bge_release_resources(sc);
1864                         bge_free_jumbo_mem(sc);
1865                         error = ENXIO;
1866                         goto fail;
1867                 }
1868         }
1869
1870         /*
1871          * When using the BCM5701 in PCI-X mode, data corruption has
1872          * been observed in the first few bytes of some received packets.
1873          * Aligning the packet buffer in memory eliminates the corruption.
1874          * Unfortunately, this misaligns the packet payloads.  On platforms
1875          * which do not support unaligned accesses, we will realign the
1876          * payloads by copying the received packets.
1877          */
1878         switch (sc->bge_chipid) {
1879         case BGE_CHIPID_BCM5701_A0:
1880         case BGE_CHIPID_BCM5701_B0:
1881         case BGE_CHIPID_BCM5701_B2:
1882         case BGE_CHIPID_BCM5701_B5:
1883                 /* If in PCI-X mode, work around the alignment bug. */
1884                 if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
1885                     (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
1886                     BGE_PCISTATE_PCI_BUSSPEED)
1887                         sc->bge_rx_alignment_bug = 1;
1888                 break;
1889         }
1890
1891         /*
1892          * Call MI attach routine.
1893          */
1894         ether_ifattach(ifp, ether_addr);
1895
1896 fail:
1897         splx(s);
1898
1899         return(error);
1900 }
1901
1902 static int
1903 bge_detach(dev)
1904         device_t dev;
1905 {
1906         struct bge_softc *sc;
1907         struct ifnet *ifp;
1908         int s;
1909
1910         s = splimp();
1911
1912         sc = device_get_softc(dev);
1913         ifp = &sc->arpcom.ac_if;
1914
1915         ether_ifdetach(ifp);
1916         bge_stop(sc);
1917         bge_reset(sc);
1918
1919         if (sc->bge_tbi) {
1920                 ifmedia_removeall(&sc->bge_ifmedia);
1921         } else {
1922                 bus_generic_detach(dev);
1923                 device_delete_child(dev, sc->bge_miibus);
1924         }
1925
1926         bge_release_resources(sc);
1927         if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
1928                 bge_free_jumbo_mem(sc);
1929
1930         splx(s);
1931
1932         return(0);
1933 }
1934
1935 static void
1936 bge_release_resources(sc)
1937         struct bge_softc *sc;
1938 {
1939         device_t dev;
1940
1941         dev = sc->bge_dev;
1942
1943         if (sc->bge_vpd_prodname != NULL)
1944                 free(sc->bge_vpd_prodname, M_DEVBUF);
1945
1946         if (sc->bge_vpd_readonly != NULL)
1947                 free(sc->bge_vpd_readonly, M_DEVBUF);
1948
1949         if (sc->bge_intrhand != NULL)
1950                 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
1951
1952         if (sc->bge_irq != NULL)
1953                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->bge_irq);
1954
1955         if (sc->bge_res != NULL)
1956                 bus_release_resource(dev, SYS_RES_MEMORY,
1957                     BGE_PCI_BAR0, sc->bge_res);
1958
1959         if (sc->bge_rdata != NULL)
1960                 contigfree(sc->bge_rdata,
1961                     sizeof(struct bge_ring_data), M_DEVBUF);
1962
1963         return;
1964 }
1965
1966 static void
1967 bge_reset(sc)
1968         struct bge_softc *sc;
1969 {
1970         device_t dev;
1971         u_int32_t cachesize, command, pcistate;
1972         int i, val = 0;
1973
1974         dev = sc->bge_dev;
1975
1976         /* Save some important PCI state. */
1977         cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
1978         command = pci_read_config(dev, BGE_PCI_CMD, 4);
1979         pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
1980
1981         pci_write_config(dev, BGE_PCI_MISC_CTL,
1982             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1983             BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4);
1984
1985         /* Issue global reset */
1986         bge_writereg_ind(sc, BGE_MISC_CFG,
1987             BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1));
1988
1989         DELAY(1000);
1990
1991         /* Reset some of the PCI state that got zapped by reset */
1992         pci_write_config(dev, BGE_PCI_MISC_CTL,
1993             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1994             BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4);
1995         pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
1996         pci_write_config(dev, BGE_PCI_CMD, command, 4);
1997         bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
1998
1999         /*
2000          * Prevent PXE restart: write a magic number to the
2001          * general communications memory at 0xB50.
2002          */
2003         bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2004         /*
2005          * Poll the value location we just wrote until
2006          * we see the 1's complement of the magic number.
2007          * This indicates that the firmware initialization
2008          * is complete.
2009          */
2010         for (i = 0; i < BGE_TIMEOUT; i++) {
2011                 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2012                 if (val == ~BGE_MAGIC_NUMBER)
2013                         break;
2014                 DELAY(10);
2015         }
2016         
2017         if (i == BGE_TIMEOUT) {
2018                 printf("bge%d: firmware handshake timed out\n", sc->bge_unit);
2019                 return;
2020         }
2021
2022         /*
2023          * XXX Wait for the value of the PCISTATE register to
2024          * return to its original pre-reset state. This is a
2025          * fairly good indicator of reset completion. If we don't
2026          * wait for the reset to fully complete, trying to read
2027          * from the device's non-PCI registers may yield garbage
2028          * results.
2029          */
2030         for (i = 0; i < BGE_TIMEOUT; i++) {
2031                 if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
2032                         break;
2033                 DELAY(10);
2034         }
2035
2036         /* Enable memory arbiter. */
2037         if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
2038                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2039
2040         /* Fix up byte swapping */
2041         CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_BYTESWAP_NONFRAME|
2042             BGE_MODECTL_BYTESWAP_DATA);
2043
2044         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2045
2046         DELAY(10000);
2047
2048         return;
2049 }
2050
2051 /*
2052  * Frame reception handling. This is called if there's a frame
2053  * on the receive return list.
2054  *
2055  * Note: we have to be able to handle two possibilities here:
2056  * 1) the frame is from the jumbo recieve ring
2057  * 2) the frame is from the standard receive ring
2058  */
2059
2060 static void
2061 bge_rxeof(sc)
2062         struct bge_softc *sc;
2063 {
2064         struct ifnet *ifp;
2065         int stdcnt = 0, jumbocnt = 0;
2066
2067         ifp = &sc->arpcom.ac_if;
2068
2069         while(sc->bge_rx_saved_considx !=
2070             sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
2071                 struct bge_rx_bd        *cur_rx;
2072                 u_int32_t               rxidx;
2073                 struct mbuf             *m = NULL;
2074                 u_int16_t               vlan_tag = 0;
2075                 int                     have_tag = 0;
2076
2077                 cur_rx =
2078             &sc->bge_rdata->bge_rx_return_ring[sc->bge_rx_saved_considx];
2079
2080                 rxidx = cur_rx->bge_idx;
2081                 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
2082
2083                 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2084                         have_tag = 1;
2085                         vlan_tag = cur_rx->bge_vlan_tag;
2086                 }
2087
2088                 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2089                         BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2090                         m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
2091                         sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
2092                         jumbocnt++;
2093                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2094                                 ifp->if_ierrors++;
2095                                 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2096                                 continue;
2097                         }
2098                         if (bge_newbuf_jumbo(sc,
2099                             sc->bge_jumbo, NULL) == ENOBUFS) {
2100                                 ifp->if_ierrors++;
2101                                 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2102                                 continue;
2103                         }
2104                 } else {
2105                         BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2106                         m = sc->bge_cdata.bge_rx_std_chain[rxidx];
2107                         sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
2108                         stdcnt++;
2109                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2110                                 ifp->if_ierrors++;
2111                                 bge_newbuf_std(sc, sc->bge_std, m);
2112                                 continue;
2113                         }
2114                         if (bge_newbuf_std(sc, sc->bge_std,
2115                             NULL) == ENOBUFS) {
2116                                 ifp->if_ierrors++;
2117                                 bge_newbuf_std(sc, sc->bge_std, m);
2118                                 continue;
2119                         }
2120                 }
2121
2122                 ifp->if_ipackets++;
2123 #ifndef __i386__
2124                 /*
2125                  * The i386 allows unaligned accesses, but for other
2126                  * platforms we must make sure the payload is aligned.
2127                  */
2128                 if (sc->bge_rx_alignment_bug) {
2129                         bcopy(m->m_data, m->m_data + ETHER_ALIGN,
2130                             cur_rx->bge_len);
2131                         m->m_data += ETHER_ALIGN;
2132                 }
2133 #endif
2134                 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
2135                 m->m_pkthdr.rcvif = ifp;
2136
2137 #if 0 /* currently broken for some packets, possibly related to TCP options */
2138                 if (ifp->if_hwassist) {
2139                         m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2140                         if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
2141                                 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2142                         if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
2143                                 m->m_pkthdr.csum_data =
2144                                     cur_rx->bge_tcp_udp_csum;
2145                                 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
2146                         }
2147                 }
2148 #endif
2149
2150                 /*
2151                  * If we received a packet with a vlan tag, pass it
2152                  * to vlan_input() instead of ether_input().
2153                  */
2154                 if (have_tag) {
2155                         VLAN_INPUT_TAG(m, vlan_tag);
2156                         have_tag = vlan_tag = 0;
2157                         continue;
2158                 }
2159
2160                 (*ifp->if_input)(ifp, m);
2161         }
2162
2163         CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2164         if (stdcnt)
2165                 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2166         if (jumbocnt)
2167                 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2168
2169         return;
2170 }
2171
2172 static void
2173 bge_txeof(sc)
2174         struct bge_softc *sc;
2175 {
2176         struct bge_tx_bd *cur_tx = NULL;
2177         struct ifnet *ifp;
2178
2179         ifp = &sc->arpcom.ac_if;
2180
2181         /*
2182          * Go through our tx ring and free mbufs for those
2183          * frames that have been sent.
2184          */
2185         while (sc->bge_tx_saved_considx !=
2186             sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
2187                 u_int32_t               idx = 0;
2188
2189                 idx = sc->bge_tx_saved_considx;
2190                 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
2191                 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2192                         ifp->if_opackets++;
2193                 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
2194                         m_freem(sc->bge_cdata.bge_tx_chain[idx]);
2195                         sc->bge_cdata.bge_tx_chain[idx] = NULL;
2196                 }
2197                 sc->bge_txcnt--;
2198                 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2199                 ifp->if_timer = 0;
2200         }
2201
2202         if (cur_tx != NULL)
2203                 ifp->if_flags &= ~IFF_OACTIVE;
2204
2205         return;
2206 }
2207
2208 static void
2209 bge_intr(xsc)
2210         void *xsc;
2211 {
2212         struct bge_softc *sc;
2213         struct ifnet *ifp;
2214         u_int32_t status;
2215
2216         sc = xsc;
2217         ifp = &sc->arpcom.ac_if;
2218
2219 #ifdef notdef
2220         /* Avoid this for now -- checking this register is expensive. */
2221         /* Make sure this is really our interrupt. */
2222         if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
2223                 return;
2224 #endif
2225         /* Ack interrupt and stop others from occuring. */
2226         CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2227
2228         /*
2229          * Process link state changes.
2230          * Grrr. The link status word in the status block does
2231          * not work correctly on the BCM5700 rev AX and BX chips,
2232          * according to all available information. Hence, we have
2233          * to enable MII interrupts in order to properly obtain
2234          * async link changes. Unfortunately, this also means that
2235          * we have to read the MAC status register to detect link
2236          * changes, thereby adding an additional register access to
2237          * the interrupt handler.
2238          */
2239
2240         if (sc->bge_asicrev == BGE_ASICREV_BCM5700) {
2241                 status = CSR_READ_4(sc, BGE_MAC_STS);
2242                 if (status & BGE_MACSTAT_MI_INTERRUPT) {
2243                         sc->bge_link = 0;
2244                         callout_stop(&sc->bge_stat_timer);
2245                         bge_tick(sc);
2246                         /* Clear the interrupt */
2247                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2248                             BGE_EVTENB_MI_INTERRUPT);
2249                         bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
2250                         bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
2251                             BRGPHY_INTRS);
2252                 }
2253         } else {
2254                 if ((sc->bge_rdata->bge_status_block.bge_status &
2255                     BGE_STATFLAG_UPDATED) &&
2256                     (sc->bge_rdata->bge_status_block.bge_status &
2257                     BGE_STATFLAG_LINKSTATE_CHANGED)) {
2258                         sc->bge_rdata->bge_status_block.bge_status &=
2259                                 ~(BGE_STATFLAG_UPDATED|
2260                                 BGE_STATFLAG_LINKSTATE_CHANGED);
2261                         /*
2262                          * Sometimes PCS encoding errors are detected in
2263                          * TBI mode (on fiber NICs), and for some reason
2264                          * the chip will signal them as link changes.
2265                          * If we get a link change event, but the 'PCS
2266                          * encoding error' bit in the MAC status register
2267                          * is set, don't bother doing a link check.
2268                          * This avoids spurious "gigabit link up" messages
2269                          * that sometimes appear on fiber NICs during
2270                          * periods of heavy traffic. (There should be no
2271                          * effect on copper NICs.)
2272                          */
2273                         status = CSR_READ_4(sc, BGE_MAC_STS);
2274                         if (!(status & (BGE_MACSTAT_PORT_DECODE_ERROR|
2275                             BGE_MACSTAT_MI_COMPLETE))) {
2276                                 sc->bge_link = 0;
2277                                 callout_stop(&sc->bge_stat_timer);
2278                                 bge_tick(sc);
2279                         }
2280                         sc->bge_link = 0;
2281                         callout_stop(&sc->bge_stat_timer);
2282                         bge_tick(sc);
2283                         /* Clear the interrupt */
2284                         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
2285                             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
2286                             BGE_MACSTAT_LINK_CHANGED);
2287
2288                         /* Force flush the status block cached by PCI bridge */
2289                         CSR_READ_4(sc, BGE_MBX_IRQ0_LO);
2290                 }
2291         }
2292
2293         if (ifp->if_flags & IFF_RUNNING) {
2294                 /* Check RX return ring producer/consumer */
2295                 bge_rxeof(sc);
2296
2297                 /* Check TX ring producer/consumer */
2298                 bge_txeof(sc);
2299         }
2300
2301         bge_handle_events(sc);
2302
2303         /* Re-enable interrupts. */
2304         CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2305
2306         if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL)
2307                 bge_start(ifp);
2308
2309         return;
2310 }
2311
2312 static void
2313 bge_tick(xsc)
2314         void *xsc;
2315 {
2316         struct bge_softc *sc;
2317         struct mii_data *mii = NULL;
2318         struct ifmedia *ifm = NULL;
2319         struct ifnet *ifp;
2320         int s;
2321
2322         sc = xsc;
2323         ifp = &sc->arpcom.ac_if;
2324
2325         s = splimp();
2326
2327         if (sc->bge_asicrev == BGE_ASICREV_BCM5705)
2328                 bge_stats_update_regs(sc);
2329         else
2330                 bge_stats_update(sc);
2331         callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
2332         if (sc->bge_link) {
2333                 splx(s);
2334                 return;
2335         }
2336
2337         if (sc->bge_tbi) {
2338                 ifm = &sc->bge_ifmedia;
2339                 if (CSR_READ_4(sc, BGE_MAC_STS) &
2340                     BGE_MACSTAT_TBI_PCS_SYNCHED) {
2341                         sc->bge_link++;
2342                         CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
2343                         printf("bge%d: gigabit link up\n", sc->bge_unit);
2344                         if (ifp->if_snd.ifq_head != NULL)
2345                                 bge_start(ifp);
2346                 }
2347                 splx(s);
2348                 return;
2349         }
2350
2351         mii = device_get_softc(sc->bge_miibus);
2352         mii_tick(mii);
2353  
2354         if (!sc->bge_link) {
2355                 mii_pollstat(mii);
2356                 if (mii->mii_media_status & IFM_ACTIVE &&
2357                     IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2358                         sc->bge_link++;
2359                         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_TX ||
2360                             IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
2361                                 printf("bge%d: gigabit link up\n",
2362                                    sc->bge_unit);
2363                         if (ifp->if_snd.ifq_head != NULL)
2364                                 bge_start(ifp);
2365                 }
2366         }
2367
2368         splx(s);
2369
2370         return;
2371 }
2372
2373 static void
2374 bge_stats_update_regs(sc)
2375         struct bge_softc *sc;
2376 {
2377         struct ifnet *ifp;
2378         struct bge_mac_stats_regs stats;
2379         u_int32_t *s;
2380         int i;
2381
2382         ifp = &sc->arpcom.ac_if;
2383
2384         s = (u_int32_t *)&stats;
2385         for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) {
2386                 *s = CSR_READ_4(sc, BGE_RX_STATS + i);
2387                 s++;
2388         }
2389
2390         ifp->if_collisions +=
2391            (stats.dot3StatsSingleCollisionFrames +
2392            stats.dot3StatsMultipleCollisionFrames +
2393            stats.dot3StatsExcessiveCollisions +
2394            stats.dot3StatsLateCollisions) -
2395            ifp->if_collisions;
2396
2397         return;
2398 }
2399
2400 static void
2401 bge_stats_update(sc)
2402         struct bge_softc *sc;
2403 {
2404         struct ifnet *ifp;
2405         struct bge_stats *stats;
2406
2407         ifp = &sc->arpcom.ac_if;
2408
2409         stats = (struct bge_stats *)(sc->bge_vhandle +
2410             BGE_MEMWIN_START + BGE_STATS_BLOCK);
2411
2412         ifp->if_collisions +=
2413            (stats->txstats.dot3StatsSingleCollisionFrames.bge_addr_lo +
2414            stats->txstats.dot3StatsMultipleCollisionFrames.bge_addr_lo +
2415            stats->txstats.dot3StatsExcessiveCollisions.bge_addr_lo +
2416            stats->txstats.dot3StatsLateCollisions.bge_addr_lo) -
2417            ifp->if_collisions;
2418
2419 #ifdef notdef
2420         ifp->if_collisions +=
2421            (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2422            sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2423            sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2424            sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2425            ifp->if_collisions;
2426 #endif
2427
2428         return;
2429 }
2430
2431 /*
2432  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2433  * pointers to descriptors.
2434  */
2435 static int
2436 bge_encap(sc, m_head, txidx)
2437         struct bge_softc *sc;
2438         struct mbuf *m_head;
2439         u_int32_t *txidx;
2440 {
2441         struct bge_tx_bd        *f = NULL;
2442         struct mbuf             *m;
2443         u_int32_t               frag, cur, cnt = 0;
2444         u_int16_t               csum_flags = 0;
2445         struct ifvlan           *ifv = NULL;
2446
2447         if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
2448             m_head->m_pkthdr.rcvif != NULL &&
2449             m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
2450                 ifv = m_head->m_pkthdr.rcvif->if_softc;
2451
2452         m = m_head;
2453         cur = frag = *txidx;
2454
2455         if (m_head->m_pkthdr.csum_flags) {
2456                 if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2457                         csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2458                 if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2459                         csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2460                 if (m_head->m_flags & M_LASTFRAG)
2461                         csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
2462                 else if (m_head->m_flags & M_FRAG)
2463                         csum_flags |= BGE_TXBDFLAG_IP_FRAG;
2464         }
2465         /*
2466          * Start packing the mbufs in this chain into
2467          * the fragment pointers. Stop when we run out
2468          * of fragments or hit the end of the mbuf chain.
2469          */
2470         for (m = m_head; m != NULL; m = m->m_next) {
2471                 if (m->m_len != 0) {
2472                         f = &sc->bge_rdata->bge_tx_ring[frag];
2473                         if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
2474                                 break;
2475                         BGE_HOSTADDR(f->bge_addr,
2476                             vtophys(mtod(m, vm_offset_t)));
2477                         f->bge_len = m->m_len;
2478                         f->bge_flags = csum_flags;
2479                         if (ifv != NULL) {
2480                                 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
2481                                 f->bge_vlan_tag = ifv->ifv_tag;
2482                         } else {
2483                                 f->bge_vlan_tag = 0;
2484                         }
2485                         /*
2486                          * Sanity check: avoid coming within 16 descriptors
2487                          * of the end of the ring.
2488                          */
2489                         if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
2490                                 return(ENOBUFS);
2491                         cur = frag;
2492                         BGE_INC(frag, BGE_TX_RING_CNT);
2493                         cnt++;
2494                 }
2495         }
2496
2497         if (m != NULL)
2498                 return(ENOBUFS);
2499
2500         if (frag == sc->bge_tx_saved_considx)
2501                 return(ENOBUFS);
2502
2503         sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
2504         sc->bge_cdata.bge_tx_chain[cur] = m_head;
2505         sc->bge_txcnt += cnt;
2506
2507         *txidx = frag;
2508
2509         return(0);
2510 }
2511
2512 /*
2513  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2514  * to the mbuf data regions directly in the transmit descriptors.
2515  */
2516 static void
2517 bge_start(ifp)
2518         struct ifnet *ifp;
2519 {
2520         struct bge_softc *sc;
2521         struct mbuf *m_head = NULL;
2522         u_int32_t prodidx = 0;
2523
2524         sc = ifp->if_softc;
2525
2526         if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
2527                 return;
2528
2529         prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
2530
2531         while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
2532                 IF_DEQUEUE(&ifp->if_snd, m_head);
2533                 if (m_head == NULL)
2534                         break;
2535
2536                 /*
2537                  * XXX
2538                  * safety overkill.  If this is a fragmented packet chain
2539                  * with delayed TCP/UDP checksums, then only encapsulate
2540                  * it if we have enough descriptors to handle the entire
2541                  * chain at once.
2542                  * (paranoia -- may not actually be needed)
2543                  */
2544                 if (m_head->m_flags & M_FIRSTFRAG &&
2545                     m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2546                         if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2547                             m_head->m_pkthdr.csum_data + 16) {
2548                                 IF_PREPEND(&ifp->if_snd, m_head);
2549                                 ifp->if_flags |= IFF_OACTIVE;
2550                                 break;
2551                         }
2552                 }
2553
2554                 /*
2555                  * Pack the data into the transmit ring. If we
2556                  * don't have room, set the OACTIVE flag and wait
2557                  * for the NIC to drain the ring.
2558                  */
2559                 if (bge_encap(sc, m_head, &prodidx)) {
2560                         IF_PREPEND(&ifp->if_snd, m_head);
2561                         ifp->if_flags |= IFF_OACTIVE;
2562                         break;
2563                 }
2564
2565                 /*
2566                  * If there's a BPF listener, bounce a copy of this frame
2567                  * to him.
2568                  */
2569                 if (ifp->if_bpf)
2570                         bpf_mtap(ifp, m_head);
2571         }
2572
2573         /* Transmit */
2574         CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2575         /* 5700 b2 errata */
2576         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
2577                 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2578
2579         /*
2580          * Set a timeout in case the chip goes out to lunch.
2581          */
2582         ifp->if_timer = 5;
2583
2584         return;
2585 }
2586
2587 static void
2588 bge_init(xsc)
2589         void *xsc;
2590 {
2591         struct bge_softc *sc = xsc;
2592         struct ifnet *ifp;
2593         u_int16_t *m;
2594         int s;
2595
2596         s = splimp();
2597
2598         ifp = &sc->arpcom.ac_if;
2599
2600         if (ifp->if_flags & IFF_RUNNING) {
2601                 splx(s);
2602                 return;
2603         }
2604
2605         /* Cancel pending I/O and flush buffers. */
2606         bge_stop(sc);
2607         bge_reset(sc);
2608         bge_chipinit(sc);
2609
2610         /*
2611          * Init the various state machines, ring
2612          * control blocks and firmware.
2613          */
2614         if (bge_blockinit(sc)) {
2615                 printf("bge%d: initialization failure\n", sc->bge_unit);
2616                 splx(s);
2617                 return;
2618         }
2619
2620         ifp = &sc->arpcom.ac_if;
2621
2622         /* Specify MTU. */
2623         CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
2624             ETHER_HDR_LEN + ETHER_CRC_LEN);
2625
2626         /* Load our MAC address. */
2627         m = (u_int16_t *)&sc->arpcom.ac_enaddr[0];
2628         CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
2629         CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
2630
2631         /* Enable or disable promiscuous mode as needed. */
2632         if (ifp->if_flags & IFF_PROMISC) {
2633                 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2634         } else {
2635                 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2636         }
2637
2638         /* Program multicast filter. */
2639         bge_setmulti(sc);
2640
2641         /* Init RX ring. */
2642         bge_init_rx_ring_std(sc);
2643
2644         /*
2645          * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
2646          * memory to insure that the chip has in fact read the first
2647          * entry of the ring.
2648          */
2649         if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
2650                 u_int32_t               v, i;
2651                 for (i = 0; i < 10; i++) {
2652                         DELAY(20);
2653                         v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
2654                         if (v == (MCLBYTES - ETHER_ALIGN))
2655                                 break;
2656                 }
2657                 if (i == 10)
2658                         printf ("bge%d: 5705 A0 chip failed to load RX ring\n",
2659                             sc->bge_unit);
2660         }
2661
2662         /* Init jumbo RX ring. */
2663         if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2664                 bge_init_rx_ring_jumbo(sc);
2665
2666         /* Init our RX return ring index */
2667         sc->bge_rx_saved_considx = 0;
2668
2669         /* Init TX ring. */
2670         bge_init_tx_ring(sc);
2671
2672         /* Turn on transmitter */
2673         BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
2674
2675         /* Turn on receiver */
2676         BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2677
2678         /* Tell firmware we're alive. */
2679         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2680
2681         /* Enable host interrupts. */
2682         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
2683         BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2684         CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2685
2686         bge_ifmedia_upd(ifp);
2687
2688         ifp->if_flags |= IFF_RUNNING;
2689         ifp->if_flags &= ~IFF_OACTIVE;
2690
2691         splx(s);
2692
2693         callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
2694 }
2695
2696 /*
2697  * Set media options.
2698  */
2699 static int
2700 bge_ifmedia_upd(ifp)
2701         struct ifnet *ifp;
2702 {
2703         struct bge_softc *sc;
2704         struct mii_data *mii;
2705         struct ifmedia *ifm;
2706
2707         sc = ifp->if_softc;
2708         ifm = &sc->bge_ifmedia;
2709
2710         /* If this is a 1000baseX NIC, enable the TBI port. */
2711         if (sc->bge_tbi) {
2712                 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2713                         return(EINVAL);
2714                 switch(IFM_SUBTYPE(ifm->ifm_media)) {
2715                 case IFM_AUTO:
2716                         break;
2717                 case IFM_1000_SX:
2718                         if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2719                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
2720                                     BGE_MACMODE_HALF_DUPLEX);
2721                         } else {
2722                                 BGE_SETBIT(sc, BGE_MAC_MODE,
2723                                     BGE_MACMODE_HALF_DUPLEX);
2724                         }
2725                         break;
2726                 default:
2727                         return(EINVAL);
2728                 }
2729                 return(0);
2730         }
2731
2732         mii = device_get_softc(sc->bge_miibus);
2733         sc->bge_link = 0;
2734         if (mii->mii_instance) {
2735                 struct mii_softc *miisc;
2736                 for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
2737                     miisc = LIST_NEXT(miisc, mii_list))
2738                         mii_phy_reset(miisc);
2739         }
2740         mii_mediachg(mii);
2741
2742         return(0);
2743 }
2744
2745 /*
2746  * Report current media status.
2747  */
2748 static void
2749 bge_ifmedia_sts(ifp, ifmr)
2750         struct ifnet *ifp;
2751         struct ifmediareq *ifmr;
2752 {
2753         struct bge_softc *sc;
2754         struct mii_data *mii;
2755
2756         sc = ifp->if_softc;
2757
2758         if (sc->bge_tbi) {
2759                 ifmr->ifm_status = IFM_AVALID;
2760                 ifmr->ifm_active = IFM_ETHER;
2761                 if (CSR_READ_4(sc, BGE_MAC_STS) &
2762                     BGE_MACSTAT_TBI_PCS_SYNCHED)
2763                         ifmr->ifm_status |= IFM_ACTIVE;
2764                 ifmr->ifm_active |= IFM_1000_SX;
2765                 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
2766                         ifmr->ifm_active |= IFM_HDX;    
2767                 else
2768                         ifmr->ifm_active |= IFM_FDX;
2769                 return;
2770         }
2771
2772         mii = device_get_softc(sc->bge_miibus);
2773         mii_pollstat(mii);
2774         ifmr->ifm_active = mii->mii_media_active;
2775         ifmr->ifm_status = mii->mii_media_status;
2776
2777         return;
2778 }
2779
2780 static int
2781 bge_ioctl(ifp, command, data, cr)
2782         struct ifnet *ifp;
2783         u_long command;
2784         caddr_t data;
2785         struct ucred *cr;
2786 {
2787         struct bge_softc *sc = ifp->if_softc;
2788         struct ifreq *ifr = (struct ifreq *) data;
2789         int s, mask, error = 0;
2790         struct mii_data *mii;
2791
2792         s = splimp();
2793
2794         switch(command) {
2795         case SIOCSIFADDR:
2796         case SIOCGIFADDR:
2797                 error = ether_ioctl(ifp, command, data);
2798                 break;
2799         case SIOCSIFMTU:
2800                 /* Disallow jumbo frames on 5705. */
2801                 if ((sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2802                     ifr->ifr_mtu > ETHERMTU) || ifr->ifr_mtu > BGE_JUMBO_MTU)
2803                         error = EINVAL;
2804                 else {
2805                         ifp->if_mtu = ifr->ifr_mtu;
2806                         ifp->if_flags &= ~IFF_RUNNING;
2807                         bge_init(sc);
2808                 }
2809                 break;
2810         case SIOCSIFFLAGS:
2811                 if (ifp->if_flags & IFF_UP) {
2812                         /*
2813                          * If only the state of the PROMISC flag changed,
2814                          * then just use the 'set promisc mode' command
2815                          * instead of reinitializing the entire NIC. Doing
2816                          * a full re-init means reloading the firmware and
2817                          * waiting for it to start up, which may take a
2818                          * second or two.
2819                          */
2820                         if (ifp->if_flags & IFF_RUNNING &&
2821                             ifp->if_flags & IFF_PROMISC &&
2822                             !(sc->bge_if_flags & IFF_PROMISC)) {
2823                                 BGE_SETBIT(sc, BGE_RX_MODE,
2824                                     BGE_RXMODE_RX_PROMISC);
2825                         } else if (ifp->if_flags & IFF_RUNNING &&
2826                             !(ifp->if_flags & IFF_PROMISC) &&
2827                             sc->bge_if_flags & IFF_PROMISC) {
2828                                 BGE_CLRBIT(sc, BGE_RX_MODE,
2829                                     BGE_RXMODE_RX_PROMISC);
2830                         } else
2831                                 bge_init(sc);
2832                 } else {
2833                         if (ifp->if_flags & IFF_RUNNING) {
2834                                 bge_stop(sc);
2835                         }
2836                 }
2837                 sc->bge_if_flags = ifp->if_flags;
2838                 error = 0;
2839                 break;
2840         case SIOCADDMULTI:
2841         case SIOCDELMULTI:
2842                 if (ifp->if_flags & IFF_RUNNING) {
2843                         bge_setmulti(sc);
2844                         error = 0;
2845                 }
2846                 break;
2847         case SIOCSIFMEDIA:
2848         case SIOCGIFMEDIA:
2849                 if (sc->bge_tbi) {
2850                         error = ifmedia_ioctl(ifp, ifr,
2851                             &sc->bge_ifmedia, command);
2852                 } else {
2853                         mii = device_get_softc(sc->bge_miibus);
2854                         error = ifmedia_ioctl(ifp, ifr,
2855                             &mii->mii_media, command);
2856                 }
2857                 break;
2858         case SIOCSIFCAP:
2859                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2860                 if (mask & IFCAP_HWCSUM) {
2861                         if (IFCAP_HWCSUM & ifp->if_capenable)
2862                                 ifp->if_capenable &= ~IFCAP_HWCSUM;
2863                         else
2864                                 ifp->if_capenable |= IFCAP_HWCSUM;
2865                 }
2866                 error = 0;
2867                 break;
2868         default:
2869                 error = EINVAL;
2870                 break;
2871         }
2872
2873         (void)splx(s);
2874
2875         return(error);
2876 }
2877
2878 static void
2879 bge_watchdog(ifp)
2880         struct ifnet *ifp;
2881 {
2882         struct bge_softc *sc;
2883
2884         sc = ifp->if_softc;
2885
2886         printf("bge%d: watchdog timeout -- resetting\n", sc->bge_unit);
2887
2888         ifp->if_flags &= ~IFF_RUNNING;
2889         bge_init(sc);
2890
2891         ifp->if_oerrors++;
2892
2893         return;
2894 }
2895
2896 /*
2897  * Stop the adapter and free any mbufs allocated to the
2898  * RX and TX lists.
2899  */
2900 static void
2901 bge_stop(sc)
2902         struct bge_softc *sc;
2903 {
2904         struct ifnet *ifp;
2905         struct ifmedia_entry *ifm;
2906         struct mii_data *mii = NULL;
2907         int mtmp, itmp;
2908
2909         ifp = &sc->arpcom.ac_if;
2910
2911         if (!sc->bge_tbi)
2912                 mii = device_get_softc(sc->bge_miibus);
2913
2914         callout_stop(&sc->bge_stat_timer);
2915
2916         /*
2917          * Disable all of the receiver blocks
2918          */
2919         BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2920         BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2921         BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2922         if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
2923                 BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2924         BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
2925         BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2926         BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
2927
2928         /*
2929          * Disable all of the transmit blocks
2930          */
2931         BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2932         BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2933         BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2934         BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
2935         BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
2936         if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
2937                 BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2938         BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2939
2940         /*
2941          * Shut down all of the memory managers and related
2942          * state machines.
2943          */
2944         BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
2945         BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
2946         if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
2947                 BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2948         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2949         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2950         if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
2951                 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
2952                 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2953         }
2954
2955         /* Disable host interrupts. */
2956         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2957         CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2958
2959         /*
2960          * Tell firmware we're shutting down.
2961          */
2962         BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2963
2964         /* Free the RX lists. */
2965         bge_free_rx_ring_std(sc);
2966
2967         /* Free jumbo RX list. */
2968         if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
2969                 bge_free_rx_ring_jumbo(sc);
2970
2971         /* Free TX buffers. */
2972         bge_free_tx_ring(sc);
2973
2974         /*
2975          * Isolate/power down the PHY, but leave the media selection
2976          * unchanged so that things will be put back to normal when
2977          * we bring the interface back up.
2978          */
2979         if (!sc->bge_tbi) {
2980                 itmp = ifp->if_flags;
2981                 ifp->if_flags |= IFF_UP;
2982                 ifm = mii->mii_media.ifm_cur;
2983                 mtmp = ifm->ifm_media;
2984                 ifm->ifm_media = IFM_ETHER|IFM_NONE;
2985                 mii_mediachg(mii);
2986                 ifm->ifm_media = mtmp;
2987                 ifp->if_flags = itmp;
2988         }
2989
2990         sc->bge_link = 0;
2991
2992         sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
2993
2994         ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2995
2996         return;
2997 }
2998
2999 /*
3000  * Stop all chip I/O so that the kernel's probe routines don't
3001  * get confused by errant DMAs when rebooting.
3002  */
3003 static void
3004 bge_shutdown(dev)
3005         device_t dev;
3006 {
3007         struct bge_softc *sc;
3008
3009         sc = device_get_softc(dev);
3010
3011         bge_stop(sc); 
3012         bge_reset(sc);
3013
3014         return;
3015 }