Kernel tree reorganization stage 2: Major cvs repository work.
[dragonfly.git] / sys / kern / kern_synch.c
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *      This product includes software developed by the University of
21  *      California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *      @(#)kern_synch.c        8.9 (Berkeley) 5/19/95
39  * $FreeBSD: src/sys/kern/kern_synch.c,v 1.87.2.6 2002/10/13 07:29:53 kbyanc Exp $
40  * $DragonFly: src/sys/kern/kern_synch.c,v 1.20 2003/08/03 10:07:41 hmp Exp $
41  */
42
43 #include "opt_ktrace.h"
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/proc.h>
48 #include <sys/kernel.h>
49 #include <sys/signalvar.h>
50 #include <sys/resourcevar.h>
51 #include <sys/vmmeter.h>
52 #include <sys/sysctl.h>
53 #include <sys/thread2.h>
54 #ifdef KTRACE
55 #include <sys/uio.h>
56 #include <sys/ktrace.h>
57 #endif
58 #include <sys/xwait.h>
59
60 #include <machine/cpu.h>
61 #include <machine/ipl.h>
62 #include <machine/smp.h>
63
64 static void sched_setup __P((void *dummy));
65 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
66
67 int     hogticks;
68 int     lbolt;
69 int     sched_quantum;          /* Roundrobin scheduling quantum in ticks. */
70 int     ncpus;
71
72 static struct callout loadav_callout;
73
74 struct loadavg averunnable =
75         { {0, 0, 0}, FSCALE };  /* load average, of runnable procs */
76 /*
77  * Constants for averages over 1, 5, and 15 minutes
78  * when sampling at 5 second intervals.
79  */
80 static fixpt_t cexp[3] = {
81         0.9200444146293232 * FSCALE,    /* exp(-1/12) */
82         0.9834714538216174 * FSCALE,    /* exp(-1/60) */
83         0.9944598480048967 * FSCALE,    /* exp(-1/180) */
84 };
85
86 static void     endtsleep __P((void *));
87 static void     loadav __P((void *arg));
88 static void     maybe_resched __P((struct proc *chk));
89 static void     roundrobin __P((void *arg));
90 static void     schedcpu __P((void *arg));
91 static void     updatepri __P((struct proc *p));
92 static void     crit_panicints(void);
93
94 static int
95 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
96 {
97         int error, new_val;
98
99         new_val = sched_quantum * tick;
100         error = sysctl_handle_int(oidp, &new_val, 0, req);
101         if (error != 0 || req->newptr == NULL)
102                 return (error);
103         if (new_val < tick)
104                 return (EINVAL);
105         sched_quantum = new_val / tick;
106         hogticks = 2 * sched_quantum;
107         return (0);
108 }
109
110 SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
111         0, sizeof sched_quantum, sysctl_kern_quantum, "I", "");
112
113 /*
114  * Arrange to reschedule if necessary by checking to see if the current
115  * process is on the highest priority user scheduling queue.  This may
116  * be run from an interrupt so we have to follow any preemption chains
117  * back to the original process.
118  */
119 static void
120 maybe_resched(struct proc *chk)
121 {
122         struct proc *cur = lwkt_preempted_proc();
123
124         if (cur == NULL)
125                 return;
126
127         /*
128          * Check the user queue (realtime, normal, idle).  Lower numbers
129          * indicate higher priority queues.  Lower numbers are also better
130          * for p_priority.
131          */
132         if (chk->p_rtprio.type < cur->p_rtprio.type) {
133                 need_resched();
134         } else if (chk->p_rtprio.type == cur->p_rtprio.type) {
135                 if (chk->p_rtprio.type == RTP_PRIO_NORMAL) {
136                         if (chk->p_priority / PPQ < cur->p_priority / PPQ)
137                                 need_resched();
138                 } else {
139                         if (chk->p_rtprio.prio < cur->p_rtprio.prio)
140                                 need_resched();
141                 }
142         }
143 }
144
145 int 
146 roundrobin_interval(void)
147 {
148         return (sched_quantum);
149 }
150
151 /*
152  * Force switch among equal priority processes every 100ms.
153  */
154 #ifdef SMP
155
156 static void
157 roundrobin_remote(void *arg)
158 {
159         struct proc *p = lwkt_preempted_proc();
160         if (p == NULL || RTP_PRIO_NEED_RR(p->p_rtprio.type))
161                 need_resched();
162 }
163
164 #endif
165
166 static void
167 roundrobin(void *arg)
168 {
169         struct proc *p = lwkt_preempted_proc();
170         if (p == NULL || RTP_PRIO_NEED_RR(p->p_rtprio.type))
171                 need_resched();
172 #ifdef SMP
173         lwkt_send_ipiq_mask(mycpu->gd_other_cpus, roundrobin_remote, NULL);
174 #endif
175         timeout(roundrobin, NULL, sched_quantum);
176 }
177
178 #ifdef SMP
179
180 void
181 resched_cpus(u_int32_t mask)
182 {
183         lwkt_send_ipiq_mask(mask, roundrobin_remote, NULL);
184 }
185
186 #endif
187
188 /*
189  * Constants for digital decay and forget:
190  *      90% of (p_estcpu) usage in 5 * loadav time
191  *      95% of (p_pctcpu) usage in 60 seconds (load insensitive)
192  *          Note that, as ps(1) mentions, this can let percentages
193  *          total over 100% (I've seen 137.9% for 3 processes).
194  *
195  * Note that schedclock() updates p_estcpu and p_cpticks asynchronously.
196  *
197  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
198  * That is, the system wants to compute a value of decay such
199  * that the following for loop:
200  *      for (i = 0; i < (5 * loadavg); i++)
201  *              p_estcpu *= decay;
202  * will compute
203  *      p_estcpu *= 0.1;
204  * for all values of loadavg:
205  *
206  * Mathematically this loop can be expressed by saying:
207  *      decay ** (5 * loadavg) ~= .1
208  *
209  * The system computes decay as:
210  *      decay = (2 * loadavg) / (2 * loadavg + 1)
211  *
212  * We wish to prove that the system's computation of decay
213  * will always fulfill the equation:
214  *      decay ** (5 * loadavg) ~= .1
215  *
216  * If we compute b as:
217  *      b = 2 * loadavg
218  * then
219  *      decay = b / (b + 1)
220  *
221  * We now need to prove two things:
222  *      1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
223  *      2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
224  *
225  * Facts:
226  *         For x close to zero, exp(x) =~ 1 + x, since
227  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
228  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
229  *         For x close to zero, ln(1+x) =~ x, since
230  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
231  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
232  *         ln(.1) =~ -2.30
233  *
234  * Proof of (1):
235  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
236  *      solving for factor,
237  *      ln(factor) =~ (-2.30/5*loadav), or
238  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
239  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
240  *
241  * Proof of (2):
242  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
243  *      solving for power,
244  *      power*ln(b/(b+1)) =~ -2.30, or
245  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
246  *
247  * Actual power values for the implemented algorithm are as follows:
248  *      loadav: 1       2       3       4
249  *      power:  5.68    10.32   14.94   19.55
250  */
251
252 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
253 #define loadfactor(loadav)      (2 * (loadav))
254 #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
255
256 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
257 static fixpt_t  ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
258 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
259
260 /* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
261 static int      fscale __unused = FSCALE;
262 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
263
264 /*
265  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
266  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
267  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
268  *
269  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
270  *      1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
271  *
272  * If you don't want to bother with the faster/more-accurate formula, you
273  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
274  * (more general) method of calculating the %age of CPU used by a process.
275  */
276 #define CCPU_SHIFT      11
277
278 /*
279  * Recompute process priorities, every hz ticks.
280  */
281 /* ARGSUSED */
282 static void
283 schedcpu(void *arg)
284 {
285         fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
286         struct proc *p;
287         struct proc *curp;
288         int realstathz, s;
289
290         curp = lwkt_preempted_proc(); /* YYY temporary hack */
291
292         realstathz = stathz ? stathz : hz;
293         FOREACH_PROC_IN_SYSTEM(p) {
294                 /*
295                  * Increment time in/out of memory and sleep time
296                  * (if sleeping).  We ignore overflow; with 16-bit int's
297                  * (remember them?) overflow takes 45 days.
298                  */
299                 p->p_swtime++;
300                 if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
301                         p->p_slptime++;
302                 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
303                 /*
304                  * If the process has slept the entire second,
305                  * stop recalculating its priority until it wakes up.
306                  */
307                 if (p->p_slptime > 1)
308                         continue;
309                 s = splhigh();  /* prevent state changes and protect run queue */
310                 /*
311                  * p_pctcpu is only for ps.
312                  */
313 #if     (FSHIFT >= CCPU_SHIFT)
314                 p->p_pctcpu += (realstathz == 100)?
315                         ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
316                         100 * (((fixpt_t) p->p_cpticks)
317                                 << (FSHIFT - CCPU_SHIFT)) / realstathz;
318 #else
319                 p->p_pctcpu += ((FSCALE - ccpu) *
320                         (p->p_cpticks * FSCALE / realstathz)) >> FSHIFT;
321 #endif
322                 p->p_cpticks = 0;
323                 p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
324                 resetpriority(p);
325                 splx(s);
326         }
327         wakeup((caddr_t)&lbolt);
328         timeout(schedcpu, (void *)0, hz);
329 }
330
331 /*
332  * Recalculate the priority of a process after it has slept for a while.
333  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
334  * least six times the loadfactor will decay p_estcpu to zero.
335  */
336 static void
337 updatepri(struct proc *p)
338 {
339         unsigned int newcpu = p->p_estcpu;
340         fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
341
342         if (p->p_slptime > 5 * loadfac) {
343                 p->p_estcpu = 0;
344         } else {
345                 p->p_slptime--; /* the first time was done in schedcpu */
346                 while (newcpu && --p->p_slptime)
347                         newcpu = decay_cpu(loadfac, newcpu);
348                 p->p_estcpu = newcpu;
349         }
350         resetpriority(p);
351 }
352
353 /*
354  * We're only looking at 7 bits of the address; everything is
355  * aligned to 4, lots of things are aligned to greater powers
356  * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
357  */
358 #define TABLESIZE       128
359 static TAILQ_HEAD(slpquehead, thread) slpque[TABLESIZE];
360 #define LOOKUP(x)       (((intptr_t)(x) >> 8) & (TABLESIZE - 1))
361
362 /*
363  * During autoconfiguration or after a panic, a sleep will simply
364  * lower the priority briefly to allow interrupts, then return.
365  * The priority to be used (safepri) is machine-dependent, thus this
366  * value is initialized and maintained in the machine-dependent layers.
367  * This priority will typically be 0, or the lowest priority
368  * that is safe for use on the interrupt stack; it can be made
369  * higher to block network software interrupts after panics.
370  */
371 int safepri;
372
373 void
374 sleepinit(void)
375 {
376         int i;
377
378         sched_quantum = hz/10;
379         hogticks = 2 * sched_quantum;
380         for (i = 0; i < TABLESIZE; i++)
381                 TAILQ_INIT(&slpque[i]);
382 }
383
384 /*
385  * General sleep call.  Suspends the current process until a wakeup is
386  * performed on the specified identifier.  The process will then be made
387  * runnable with the specified priority.  Sleeps at most timo/hz seconds
388  * (0 means no timeout).  If flags includes PCATCH flag, signals are checked
389  * before and after sleeping, else signals are not checked.  Returns 0 if
390  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
391  * signal needs to be delivered, ERESTART is returned if the current system
392  * call should be restarted if possible, and EINTR is returned if the system
393  * call should be interrupted by the signal (return EINTR).
394  *
395  * If the process has P_CURPROC set mi_switch() will not re-queue it to
396  * the userland scheduler queues because we are in a SSLEEP state.  If
397  * we are not the current process then we have to remove ourselves from
398  * the scheduler queues.
399  *
400  * YYY priority now unused
401  */
402 int
403 tsleep(ident, flags, wmesg, timo)
404         void *ident;
405         int flags, timo;
406         const char *wmesg;
407 {
408         struct thread *td = curthread;
409         struct proc *p = td->td_proc;           /* may be NULL */
410         int s, sig = 0, catch = flags & PCATCH;
411         int id = LOOKUP(ident);
412         struct callout_handle thandle;
413
414         /*
415          * NOTE: removed KTRPOINT, it could cause races due to blocking
416          * even in stable.  Just scrap it for now.
417          */
418         if (cold || panicstr) {
419                 /*
420                  * After a panic, or during autoconfiguration,
421                  * just give interrupts a chance, then just return;
422                  * don't run any other procs or panic below,
423                  * in case this is the idle process and already asleep.
424                  */
425                 crit_panicints();
426                 return (0);
427         }
428         KKASSERT(td != &mycpu->gd_idlethread);  /* you must be kidding! */
429         s = splhigh();
430         KASSERT(ident != NULL, ("tsleep: no ident"));
431         KASSERT(p == NULL || p->p_stat == SRUN, ("tsleep %p %s %d",
432                 ident, wmesg, p->p_stat));
433
434         crit_enter();
435         td->td_wchan = ident;
436         td->td_wmesg = wmesg;
437         if (p) 
438                 p->p_slptime = 0;
439         lwkt_deschedule_self();
440         TAILQ_INSERT_TAIL(&slpque[id], td, td_threadq);
441         if (timo)
442                 thandle = timeout(endtsleep, (void *)td, timo);
443         /*
444          * We put ourselves on the sleep queue and start our timeout
445          * before calling CURSIG, as we could stop there, and a wakeup
446          * or a SIGCONT (or both) could occur while we were stopped.
447          * A SIGCONT would cause us to be marked as SSLEEP
448          * without resuming us, thus we must be ready for sleep
449          * when CURSIG is called.  If the wakeup happens while we're
450          * stopped, td->td_wchan will be 0 upon return from CURSIG.
451          */
452         if (p) {
453                 if (catch) {
454                         p->p_flag |= P_SINTR;
455                         if ((sig = CURSIG(p))) {
456                                 if (td->td_wchan) {
457                                         unsleep(td);
458                                         lwkt_schedule_self();
459                                 }
460                                 p->p_stat = SRUN;
461                                 goto resume;
462                         }
463                         if (td->td_wchan == NULL) {
464                                 catch = 0;
465                                 goto resume;
466                         }
467                 } else {
468                         sig = 0;
469                 }
470
471                 /*
472                  * If we are not the current process we have to remove ourself
473                  * from the run queue.
474                  */
475                 KASSERT(p->p_stat == SRUN, ("PSTAT NOT SRUN %d %d", p->p_pid, p->p_stat));
476                 /*
477                  * If this is the current 'user' process schedule another one.
478                  */
479                 clrrunnable(p, SSLEEP);
480                 p->p_stats->p_ru.ru_nvcsw++;
481                 KKASSERT(td->td_release || (p->p_flag & P_CURPROC) == 0);
482                 mi_switch();
483                 KASSERT(p->p_stat == SRUN, ("tsleep: stat not srun"));
484         } else {
485                 lwkt_switch();
486         }
487 resume:
488         crit_exit();
489         if (p)
490                 p->p_flag &= ~P_SINTR;
491         splx(s);
492         if (td->td_flags & TDF_TIMEOUT) {
493                 td->td_flags &= ~TDF_TIMEOUT;
494                 if (sig == 0)
495                         return (EWOULDBLOCK);
496         } else if (timo) {
497                 untimeout(endtsleep, (void *)td, thandle);
498         }
499         if (p) {
500                 if (catch && (sig != 0 || (sig = CURSIG(p)))) {
501                         if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
502                                 return (EINTR);
503                         return (ERESTART);
504                 }
505         }
506         return (0);
507 }
508
509 /*
510  * Implement the timeout for tsleep.  We interlock against
511  * wchan when setting TDF_TIMEOUT.  For processes we remove
512  * the sleep if the process is stopped rather then sleeping,
513  * so it remains stopped.
514  */
515 static void
516 endtsleep(void *arg)
517 {
518         thread_t td = arg;
519         struct proc *p;
520         int s;
521
522         s = splhigh();
523         if (td->td_wchan) {
524                 td->td_flags |= TDF_TIMEOUT;
525                 if ((p = td->td_proc) != NULL) {
526                         if (p->p_stat == SSLEEP)
527                                 setrunnable(p);
528                         else
529                                 unsleep(td);
530                 } else {
531                         unsleep(td);
532                         lwkt_schedule(td);
533                 }
534         }
535         splx(s);
536 }
537
538 /*
539  * Remove a process from its wait queue
540  */
541 void
542 unsleep(struct thread *td)
543 {
544         int s;
545
546         s = splhigh();
547         if (td->td_wchan) {
548 #if 0
549                 if (p->p_flag & P_XSLEEP) {
550                         struct xwait *w = p->p_wchan;
551                         TAILQ_REMOVE(&w->waitq, p, p_procq);
552                         p->p_flag &= ~P_XSLEEP;
553                 } else
554 #endif
555                 TAILQ_REMOVE(&slpque[LOOKUP(td->td_wchan)], td, td_threadq);
556                 td->td_wchan = NULL;
557         }
558         splx(s);
559 }
560
561 #if 0
562 /*
563  * Make all processes sleeping on the explicit lock structure runnable.
564  */
565 void
566 xwakeup(struct xwait *w)
567 {
568         struct proc *p;
569         int s;
570
571         s = splhigh();
572         ++w->gen;
573         while ((p = TAILQ_FIRST(&w->waitq)) != NULL) {
574                 TAILQ_REMOVE(&w->waitq, p, p_procq);
575                 KASSERT(p->p_wchan == w && (p->p_flag & P_XSLEEP),
576                     ("xwakeup: wchan mismatch for %p (%p/%p) %08x", p, p->p_wchan, w, p->p_flag & P_XSLEEP));
577                 p->p_wchan = NULL;
578                 p->p_flag &= ~P_XSLEEP;
579                 if (p->p_stat == SSLEEP) {
580                         /* OPTIMIZED EXPANSION OF setrunnable(p); */
581                         if (p->p_slptime > 1)
582                                 updatepri(p);
583                         p->p_slptime = 0;
584                         p->p_stat = SRUN;
585                         if (p->p_flag & P_INMEM) {
586                                 setrunqueue(p);
587                                 maybe_resched(p);
588                         } else {
589                                 p->p_flag |= P_SWAPINREQ;
590                                 wakeup((caddr_t)&proc0);
591                         }
592                 }
593         }
594         splx(s);
595 }
596 #endif
597
598 /*
599  * Make all processes sleeping on the specified identifier runnable.
600  */
601 static void
602 _wakeup(void *ident, int count)
603 {
604         struct slpquehead *qp;
605         struct thread *td;
606         struct thread *ntd;
607         struct proc *p;
608         int s;
609         int id = LOOKUP(ident);
610
611         s = splhigh();
612         qp = &slpque[id];
613 restart:
614         for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
615                 ntd = TAILQ_NEXT(td, td_threadq);
616                 if (td->td_wchan == ident) {
617                         TAILQ_REMOVE(qp, td, td_threadq);
618                         td->td_wchan = NULL;
619                         if ((p = td->td_proc) != NULL && p->p_stat == SSLEEP) {
620                                 /* OPTIMIZED EXPANSION OF setrunnable(p); */
621                                 if (p->p_slptime > 1)
622                                         updatepri(p);
623                                 p->p_slptime = 0;
624                                 p->p_stat = SRUN;
625                                 if (p->p_flag & P_INMEM) {
626                                         setrunqueue(p);
627                                         if (p->p_flag & P_CURPROC)
628                                             maybe_resched(p);
629                                 } else {
630                                         p->p_flag |= P_SWAPINREQ;
631                                         wakeup((caddr_t)&proc0);
632                                 }
633                                 /* END INLINE EXPANSION */
634                         } else if (p == NULL) {
635                                 lwkt_schedule(td);
636                         }
637                         if (--count == 0)
638                                 break;
639                         goto restart;
640                 }
641         }
642         splx(s);
643 }
644
645 void
646 wakeup(void *ident)
647 {
648     _wakeup(ident, 0);
649 }
650
651 void
652 wakeup_one(void *ident)
653 {
654     _wakeup(ident, 1);
655 }
656
657 /*
658  * The machine independent parts of mi_switch().
659  * Must be called at splstatclock() or higher.
660  */
661 void
662 mi_switch()
663 {
664         struct thread *td = curthread;
665         struct proc *p = td->td_proc;   /* XXX */
666         struct rlimit *rlim;
667         int x;
668         u_int64_t ttime;
669
670         /*
671          * XXX this spl is almost unnecessary.  It is partly to allow for
672          * sloppy callers that don't do it (issignal() via CURSIG() is the
673          * main offender).  It is partly to work around a bug in the i386
674          * cpu_switch() (the ipl is not preserved).  We ran for years
675          * without it.  I think there was only a interrupt latency problem.
676          * The main caller, tsleep(), does an splx() a couple of instructions
677          * after calling here.  The buggy caller, issignal(), usually calls
678          * here at spl0() and sometimes returns at splhigh().  The process
679          * then runs for a little too long at splhigh().  The ipl gets fixed
680          * when the process returns to user mode (or earlier).
681          *
682          * It would probably be better to always call here at spl0(). Callers
683          * are prepared to give up control to another process, so they must
684          * be prepared to be interrupted.  The clock stuff here may not
685          * actually need splstatclock().
686          */
687         x = splstatclock();
688         clear_resched();
689
690         /*
691          * Check if the process exceeds its cpu resource allocation.
692          * If over max, kill it.  Time spent in interrupts is not 
693          * included.  YYY 64 bit match is expensive.  Ick.
694          */
695         ttime = td->td_sticks + td->td_uticks;
696         if (p->p_stat != SZOMB && p->p_limit->p_cpulimit != RLIM_INFINITY &&
697             ttime > p->p_limit->p_cpulimit) {
698                 rlim = &p->p_rlimit[RLIMIT_CPU];
699                 if (ttime / (rlim_t)1000000 >= rlim->rlim_max) {
700                         killproc(p, "exceeded maximum CPU limit");
701                 } else {
702                         psignal(p, SIGXCPU);
703                         if (rlim->rlim_cur < rlim->rlim_max) {
704                                 /* XXX: we should make a private copy */
705                                 rlim->rlim_cur += 5;
706                         }
707                 }
708         }
709
710         /*
711          * Pick a new current process and record its start time.  If we
712          * are in a SSTOPped state we deschedule ourselves.  YYY this needs
713          * to be cleaned up, remember that LWKTs stay on their run queue
714          * which works differently then the user scheduler which removes
715          * the process from the runq when it runs it.
716          */
717         mycpu->gd_cnt.v_swtch++;
718         if (p->p_stat == SSTOP)
719                 lwkt_deschedule_self();
720         lwkt_switch();
721
722         splx(x);
723 }
724
725 /*
726  * Change process state to be runnable,
727  * placing it on the run queue if it is in memory,
728  * and awakening the swapper if it isn't in memory.
729  */
730 void
731 setrunnable(struct proc *p)
732 {
733         int s;
734
735         s = splhigh();
736         switch (p->p_stat) {
737         case 0:
738         case SRUN:
739         case SZOMB:
740         default:
741                 panic("setrunnable");
742         case SSTOP:
743         case SSLEEP:
744                 unsleep(p->p_thread);   /* e.g. when sending signals */
745                 break;
746
747         case SIDL:
748                 break;
749         }
750         p->p_stat = SRUN;
751         if (p->p_flag & P_INMEM)
752                 setrunqueue(p);
753         splx(s);
754         if (p->p_slptime > 1)
755                 updatepri(p);
756         p->p_slptime = 0;
757         if ((p->p_flag & P_INMEM) == 0) {
758                 p->p_flag |= P_SWAPINREQ;
759                 wakeup((caddr_t)&proc0);
760         } else {
761                 maybe_resched(p);
762         }
763 }
764
765 /*
766  * Change the process state to NOT be runnable, removing it from the run
767  * queue.  If P_CURPROC is not set and we are in SRUN the process is on the
768  * run queue (If P_INMEM is not set then it isn't because it is swapped).
769  */
770 void
771 clrrunnable(struct proc *p, int stat)
772 {
773         int s;
774
775         s = splhigh();
776         switch(p->p_stat) {
777         case SRUN:
778                 if (p->p_flag & P_ONRUNQ)
779                         remrunqueue(p);
780                 break;
781         default:
782                 break;
783         }
784         p->p_stat = stat;
785         splx(s);
786 }
787
788 /*
789  * Compute the priority of a process when running in user mode.
790  * Arrange to reschedule if the resulting priority is better
791  * than that of the current process.
792  *
793  * YYY real time / idle procs do not use p_priority XXX
794  */
795 void
796 resetpriority(struct proc *p)
797 {
798         unsigned int newpriority;
799         int opq;
800         int npq;
801
802         if (p->p_rtprio.type != RTP_PRIO_NORMAL)
803                 return;
804         newpriority = PUSER + p->p_estcpu / INVERSE_ESTCPU_WEIGHT +
805             NICE_WEIGHT * p->p_nice;
806         newpriority = min(newpriority, MAXPRI);
807         npq = newpriority / PPQ;
808         crit_enter();
809         opq = p->p_priority / PPQ;
810         if (p->p_stat == SRUN && (p->p_flag & P_ONRUNQ) && opq != npq) {
811                 /*
812                  * We have to move the process to another queue
813                  */
814                 remrunqueue(p);
815                 p->p_priority = newpriority;
816                 setrunqueue(p);
817         } else {
818                 /*
819                  * We can just adjust the priority and it will be picked
820                  * up later.
821                  */
822                 KKASSERT(opq == npq || (p->p_flag & P_ONRUNQ) == 0);
823                 p->p_priority = newpriority;
824         }
825         crit_exit();
826         maybe_resched(p);
827 }
828
829 /*
830  * Compute a tenex style load average of a quantity on
831  * 1, 5 and 15 minute intervals.
832  */
833 static void
834 loadav(void *arg)
835 {
836         int i, nrun;
837         struct loadavg *avg;
838         struct proc *p;
839
840         avg = &averunnable;
841         nrun = 0;
842         FOREACH_PROC_IN_SYSTEM(p) {
843                 switch (p->p_stat) {
844                 case SRUN:
845                 case SIDL:
846                         nrun++;
847                 }
848         }
849         for (i = 0; i < 3; i++)
850                 avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
851                     nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
852
853         /*
854          * Schedule the next update to occur after 5 seconds, but add a
855          * random variation to avoid synchronisation with processes that
856          * run at regular intervals.
857          */
858         callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
859             loadav, NULL);
860 }
861
862 /* ARGSUSED */
863 static void
864 sched_setup(dummy)
865         void *dummy;
866 {
867
868         callout_init(&loadav_callout);
869
870         /* Kick off timeout driven events by calling first time. */
871         roundrobin(NULL);
872         schedcpu(NULL);
873         loadav(NULL);
874 }
875
876 /*
877  * We adjust the priority of the current process.  The priority of
878  * a process gets worse as it accumulates CPU time.  The cpu usage
879  * estimator (p_estcpu) is increased here.  resetpriority() will
880  * compute a different priority each time p_estcpu increases by
881  * INVERSE_ESTCPU_WEIGHT
882  * (until MAXPRI is reached).  The cpu usage estimator ramps up
883  * quite quickly when the process is running (linearly), and decays
884  * away exponentially, at a rate which is proportionally slower when
885  * the system is busy.  The basic principle is that the system will
886  * 90% forget that the process used a lot of CPU time in 5 * loadav
887  * seconds.  This causes the system to favor processes which haven't
888  * run much recently, and to round-robin among other processes.
889  */
890 void
891 schedclock(p)
892         struct proc *p;
893 {
894
895         p->p_cpticks++;
896         p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
897         if ((p->p_estcpu % INVERSE_ESTCPU_WEIGHT) == 0)
898                 resetpriority(p);
899 }
900
901 static
902 void
903 crit_panicints(void)
904 {
905     int s;
906     int cpri;
907
908     s = splhigh();
909     cpri = crit_panic_save();
910     splx(safepri);
911     crit_panic_restore(cpri);
912     splx(s);
913 }
914