Import GCC-8 to a new vendor branch
[dragonfly.git] / contrib / gcc-8.0 / gcc / bitmap.h
1 /* Functions to support general ended bitmaps.
2    Copyright (C) 1997-2018 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19
20 #ifndef GCC_BITMAP_H
21 #define GCC_BITMAP_H
22
23 /* Implementation of sparse integer sets as a linked list.
24
25    This sparse set representation is suitable for sparse sets with an
26    unknown (a priori) universe.  The set is represented as a double-linked
27    list of container nodes (struct bitmap_element).  Each node consists
28    of an index for the first member that could be held in the container,
29    a small array of integers that represent the members in the container,
30    and pointers to the next and previous element in the linked list.  The
31    elements in the list are sorted in ascending order, i.e. the head of
32    the list holds the element with the smallest member of the set.
33
34    For a given member I in the set:
35      - the element for I will have index is I / (bits per element)
36      - the position for I within element is I % (bits per element)
37
38    This representation is very space-efficient for large sparse sets, and
39    the size of the set can be changed dynamically without much overhead.
40    An important parameter is the number of bits per element.  In this
41    implementation, there are 128 bits per element.  This results in a
42    high storage overhead *per element*, but a small overall overhead if
43    the set is very sparse.
44
45    The downside is that many operations are relatively slow because the
46    linked list has to be traversed to test membership (i.e. member_p/
47    add_member/remove_member).  To improve the performance of this set
48    representation, the last accessed element and its index are cached.
49    For membership tests on members close to recently accessed members,
50    the cached last element improves membership test to a constant-time
51    operation.
52
53    The following operations can always be performed in O(1) time:
54
55      * clear                    : bitmap_clear
56      * choose_one               : (not implemented, but could be
57                                    implemented in constant time)
58
59    The following operations can be performed in O(E) time worst-case (with
60    E the number of elements in the linked list), but in O(1) time with a
61    suitable access patterns:
62
63      * member_p                 : bitmap_bit_p
64      * add_member               : bitmap_set_bit
65      * remove_member            : bitmap_clear_bit
66
67    The following operations can be performed in O(E) time:
68
69      * cardinality              : bitmap_count_bits
70      * set_size                 : bitmap_last_set_bit (but this could
71                                   in constant time with a pointer to
72                                   the last element in the chain)
73
74    Additionally, the linked-list sparse set representation supports
75    enumeration of the members in O(E) time:
76
77      * forall                   : EXECUTE_IF_SET_IN_BITMAP
78      * set_copy                 : bitmap_copy
79      * set_intersection         : bitmap_intersect_p /
80                                   bitmap_and / bitmap_and_into /
81                                   EXECUTE_IF_AND_IN_BITMAP
82      * set_union                : bitmap_ior / bitmap_ior_into
83      * set_difference           : bitmap_intersect_compl_p /
84                                   bitmap_and_comp / bitmap_and_comp_into /
85                                   EXECUTE_IF_AND_COMPL_IN_BITMAP
86      * set_disjuction           : bitmap_xor_comp / bitmap_xor_comp_into
87      * set_compare              : bitmap_equal_p
88
89    Some operations on 3 sets that occur frequently in data flow problems
90    are also implemented:
91
92      * A | (B & C)              : bitmap_ior_and_into
93      * A | (B & ~C)             : bitmap_ior_and_compl /
94                                   bitmap_ior_and_compl_into
95
96    The storage requirements for linked-list sparse sets are O(E), with E->N
97    in the worst case (a sparse set with large distances between the values
98    of the set members).
99
100    The linked-list set representation works well for problems involving very
101    sparse sets.  The canonical example in GCC is, of course, the "set of
102    sets" for some CFG-based data flow problems (liveness analysis, dominance
103    frontiers, etc.).
104    
105    This representation also works well for data flow problems where the size
106    of the set may grow dynamically, but care must be taken that the member_p,
107    add_member, and remove_member operations occur with a suitable access
108    pattern.
109    
110    For random-access sets with a known, relatively small universe size, the
111    SparseSet or simple bitmap representations may be more efficient than a
112    linked-list set.  For random-access sets of unknown universe, a hash table
113    or a balanced binary tree representation is likely to be a more suitable
114    choice.
115
116    Traversing linked lists is usually cache-unfriendly, even with the last
117    accessed element cached.
118    
119    Cache performance can be improved by keeping the elements in the set
120    grouped together in memory, using a dedicated obstack for a set (or group
121    of related sets).  Elements allocated on obstacks are released to a
122    free-list and taken off the free list.  If multiple sets are allocated on
123    the same obstack, elements freed from one set may be re-used for one of
124    the other sets.  This usually helps avoid cache misses.
125
126    A single free-list is used for all sets allocated in GGC space.  This is
127    bad for persistent sets, so persistent sets should be allocated on an
128    obstack whenever possible.  */
129
130 #include "obstack.h"
131
132 /* Bitmap memory usage.  */
133 struct bitmap_usage: public mem_usage
134 {
135   /* Default contructor.  */
136   bitmap_usage (): m_nsearches (0), m_search_iter (0) {}
137   /* Constructor.  */
138   bitmap_usage (size_t allocated, size_t times, size_t peak,
139              uint64_t nsearches, uint64_t search_iter)
140     : mem_usage (allocated, times, peak),
141     m_nsearches (nsearches), m_search_iter (search_iter) {}
142
143   /* Sum the usage with SECOND usage.  */
144   bitmap_usage
145   operator+ (const bitmap_usage &second)
146   {
147     return bitmap_usage (m_allocated + second.m_allocated,
148                              m_times + second.m_times,
149                              m_peak + second.m_peak,
150                              m_nsearches + second.m_nsearches,
151                              m_search_iter + second.m_search_iter);
152   }
153
154   /* Dump usage coupled to LOC location, where TOTAL is sum of all rows.  */
155   inline void
156   dump (mem_location *loc, mem_usage &total) const
157   {
158     char *location_string = loc->to_string ();
159
160     fprintf (stderr, "%-48s %10" PRIu64 ":%5.1f%%"
161              "%10" PRIu64 "%10" PRIu64 ":%5.1f%%"
162              "%12" PRIu64 "%12" PRIu64 "%10s\n",
163              location_string, (uint64_t)m_allocated,
164              get_percent (m_allocated, total.m_allocated),
165              (uint64_t)m_peak, (uint64_t)m_times,
166              get_percent (m_times, total.m_times),
167              m_nsearches, m_search_iter,
168              loc->m_ggc ? "ggc" : "heap");
169
170     free (location_string);
171   }
172
173   /* Dump header with NAME.  */
174   static inline void
175   dump_header (const char *name)
176   {
177     fprintf (stderr, "%-48s %11s%16s%17s%12s%12s%10s\n", name, "Leak", "Peak",
178              "Times", "N searches", "Search iter", "Type");
179     print_dash_line ();
180   }
181
182   /* Number search operations.  */
183   uint64_t m_nsearches;
184   /* Number of search iterations.  */
185   uint64_t m_search_iter;
186 };
187
188 /* Bitmap memory description.  */
189 extern mem_alloc_description<bitmap_usage> bitmap_mem_desc;
190
191 /* Fundamental storage type for bitmap.  */
192
193 typedef unsigned long BITMAP_WORD;
194 /* BITMAP_WORD_BITS needs to be unsigned, but cannot contain casts as
195    it is used in preprocessor directives -- hence the 1u.  */
196 #define BITMAP_WORD_BITS (CHAR_BIT * SIZEOF_LONG * 1u)
197
198 /* Number of words to use for each element in the linked list.  */
199
200 #ifndef BITMAP_ELEMENT_WORDS
201 #define BITMAP_ELEMENT_WORDS ((128 + BITMAP_WORD_BITS - 1) / BITMAP_WORD_BITS)
202 #endif
203
204 /* Number of bits in each actual element of a bitmap.  */
205
206 #define BITMAP_ELEMENT_ALL_BITS (BITMAP_ELEMENT_WORDS * BITMAP_WORD_BITS)
207
208 /* Obstack for allocating bitmaps and elements from.  */
209 struct GTY (()) bitmap_obstack {
210   struct bitmap_element *elements;
211   struct bitmap_head *heads;
212   struct obstack GTY ((skip)) obstack;
213 };
214
215 /* Bitmap set element.  We use a linked list to hold only the bits that
216    are set.  This allows for use to grow the bitset dynamically without
217    having to realloc and copy a giant bit array.
218
219    The free list is implemented as a list of lists.  There is one
220    outer list connected together by prev fields.  Each element of that
221    outer is an inner list (that may consist only of the outer list
222    element) that are connected by the next fields.  The prev pointer
223    is undefined for interior elements.  This allows
224    bitmap_elt_clear_from to be implemented in unit time rather than
225    linear in the number of elements to be freed.  */
226
227 struct GTY((chain_next ("%h.next"), chain_prev ("%h.prev"))) bitmap_element {
228   struct bitmap_element *next;  /* Next element.  */
229   struct bitmap_element *prev;  /* Previous element.  */
230   unsigned int indx;                    /* regno/BITMAP_ELEMENT_ALL_BITS.  */
231   BITMAP_WORD bits[BITMAP_ELEMENT_WORDS]; /* Bits that are set.  */
232 };
233
234 /* Head of bitmap linked list.  The 'current' member points to something
235    already pointed to by the chain started by first, so GTY((skip)) it.  */
236
237 struct GTY(()) bitmap_head {
238   unsigned int indx;                    /* Index of last element looked at.  */
239   unsigned int descriptor_id;           /* Unique identifier for the allocation
240                                            site of this bitmap, for detailed
241                                            statistics gathering.  */
242   bitmap_element *first;                /* First element in linked list.  */
243   bitmap_element * GTY((skip(""))) current; /* Last element looked at.  */
244   bitmap_obstack *obstack;              /* Obstack to allocate elements from.
245                                            If NULL, then use GGC allocation.  */
246 };
247
248 /* Global data */
249 extern bitmap_element bitmap_zero_bits; /* Zero bitmap element */
250 extern bitmap_obstack bitmap_default_obstack;   /* Default bitmap obstack */
251
252 /* Clear a bitmap by freeing up the linked list.  */
253 extern void bitmap_clear (bitmap);
254
255 /* Copy a bitmap to another bitmap.  */
256 extern void bitmap_copy (bitmap, const_bitmap);
257
258 /* Move a bitmap to another bitmap.  */
259 extern void bitmap_move (bitmap, bitmap);
260
261 /* True if two bitmaps are identical.  */
262 extern bool bitmap_equal_p (const_bitmap, const_bitmap);
263
264 /* True if the bitmaps intersect (their AND is non-empty).  */
265 extern bool bitmap_intersect_p (const_bitmap, const_bitmap);
266
267 /* True if the complement of the second intersects the first (their
268    AND_COMPL is non-empty).  */
269 extern bool bitmap_intersect_compl_p (const_bitmap, const_bitmap);
270
271 /* True if MAP is an empty bitmap.  */
272 inline bool bitmap_empty_p (const_bitmap map)
273 {
274   return !map->first;
275 }
276
277 /* True if the bitmap has only a single bit set.  */
278 extern bool bitmap_single_bit_set_p (const_bitmap);
279
280 /* Count the number of bits set in the bitmap.  */
281 extern unsigned long bitmap_count_bits (const_bitmap);
282
283 /* Count the number of unique bits set across the two bitmaps.  */
284 extern unsigned long bitmap_count_unique_bits (const_bitmap, const_bitmap);
285
286 /* Boolean operations on bitmaps.  The _into variants are two operand
287    versions that modify the first source operand.  The other variants
288    are three operand versions that to not destroy the source bitmaps.
289    The operations supported are &, & ~, |, ^.  */
290 extern void bitmap_and (bitmap, const_bitmap, const_bitmap);
291 extern bool bitmap_and_into (bitmap, const_bitmap);
292 extern bool bitmap_and_compl (bitmap, const_bitmap, const_bitmap);
293 extern bool bitmap_and_compl_into (bitmap, const_bitmap);
294 #define bitmap_compl_and(DST, A, B) bitmap_and_compl (DST, B, A)
295 extern void bitmap_compl_and_into (bitmap, const_bitmap);
296 extern void bitmap_clear_range (bitmap, unsigned int, unsigned int);
297 extern void bitmap_set_range (bitmap, unsigned int, unsigned int);
298 extern bool bitmap_ior (bitmap, const_bitmap, const_bitmap);
299 extern bool bitmap_ior_into (bitmap, const_bitmap);
300 extern void bitmap_xor (bitmap, const_bitmap, const_bitmap);
301 extern void bitmap_xor_into (bitmap, const_bitmap);
302
303 /* DST = A | (B & C).  Return true if DST changes.  */
304 extern bool bitmap_ior_and_into (bitmap DST, const_bitmap B, const_bitmap C);
305 /* DST = A | (B & ~C).  Return true if DST changes.  */
306 extern bool bitmap_ior_and_compl (bitmap DST, const_bitmap A,
307                                   const_bitmap B, const_bitmap C);
308 /* A |= (B & ~C).  Return true if A changes.  */
309 extern bool bitmap_ior_and_compl_into (bitmap A,
310                                        const_bitmap B, const_bitmap C);
311
312 /* Clear a single bit in a bitmap.  Return true if the bit changed.  */
313 extern bool bitmap_clear_bit (bitmap, int);
314
315 /* Set a single bit in a bitmap.  Return true if the bit changed.  */
316 extern bool bitmap_set_bit (bitmap, int);
317
318 /* Return true if a register is set in a register set.  */
319 extern int bitmap_bit_p (bitmap, int);
320
321 /* Debug functions to print a bitmap linked list.  */
322 extern void debug_bitmap (const_bitmap);
323 extern void debug_bitmap_file (FILE *, const_bitmap);
324
325 /* Print a bitmap.  */
326 extern void bitmap_print (FILE *, const_bitmap, const char *, const char *);
327
328 /* Initialize and release a bitmap obstack.  */
329 extern void bitmap_obstack_initialize (bitmap_obstack *);
330 extern void bitmap_obstack_release (bitmap_obstack *);
331 extern void bitmap_register (bitmap MEM_STAT_DECL);
332 extern void dump_bitmap_statistics (void);
333
334 /* Initialize a bitmap header.  OBSTACK indicates the bitmap obstack
335    to allocate from, NULL for GC'd bitmap.  */
336
337 static inline void
338 bitmap_initialize (bitmap head, bitmap_obstack *obstack CXX_MEM_STAT_INFO)
339 {
340   head->first = head->current = NULL;
341   head->obstack = obstack;
342   if (GATHER_STATISTICS)
343     bitmap_register (head PASS_MEM_STAT);
344 }
345
346 /* Allocate and free bitmaps from obstack, malloc and gc'd memory.  */
347 extern bitmap bitmap_alloc (bitmap_obstack *obstack CXX_MEM_STAT_INFO);
348 #define BITMAP_ALLOC bitmap_alloc
349 extern bitmap bitmap_gc_alloc (ALONE_CXX_MEM_STAT_INFO);
350 #define BITMAP_GGC_ALLOC bitmap_gc_alloc
351 extern void bitmap_obstack_free (bitmap);
352
353 /* A few compatibility/functions macros for compatibility with sbitmaps */
354 inline void dump_bitmap (FILE *file, const_bitmap map)
355 {
356   bitmap_print (file, map, "", "\n");
357 }
358 extern void debug (const bitmap_head &ref);
359 extern void debug (const bitmap_head *ptr);
360
361 extern unsigned bitmap_first_set_bit (const_bitmap);
362 extern unsigned bitmap_last_set_bit (const_bitmap);
363
364 /* Compute bitmap hash (for purposes of hashing etc.)  */
365 extern hashval_t bitmap_hash (const_bitmap);
366
367 /* Do any cleanup needed on a bitmap when it is no longer used.  */
368 #define BITMAP_FREE(BITMAP) \
369        ((void) (bitmap_obstack_free ((bitmap) BITMAP), (BITMAP) = (bitmap) NULL))
370
371 /* Iterator for bitmaps.  */
372
373 struct bitmap_iterator
374 {
375   /* Pointer to the current bitmap element.  */
376   bitmap_element *elt1;
377
378   /* Pointer to 2nd bitmap element when two are involved.  */
379   bitmap_element *elt2;
380
381   /* Word within the current element.  */
382   unsigned word_no;
383
384   /* Contents of the actually processed word.  When finding next bit
385      it is shifted right, so that the actual bit is always the least
386      significant bit of ACTUAL.  */
387   BITMAP_WORD bits;
388 };
389
390 /* Initialize a single bitmap iterator.  START_BIT is the first bit to
391    iterate from.  */
392
393 static inline void
394 bmp_iter_set_init (bitmap_iterator *bi, const_bitmap map,
395                    unsigned start_bit, unsigned *bit_no)
396 {
397   bi->elt1 = map->first;
398   bi->elt2 = NULL;
399
400   /* Advance elt1 until it is not before the block containing start_bit.  */
401   while (1)
402     {
403       if (!bi->elt1)
404         {
405           bi->elt1 = &bitmap_zero_bits;
406           break;
407         }
408
409       if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
410         break;
411       bi->elt1 = bi->elt1->next;
412     }
413
414   /* We might have gone past the start bit, so reinitialize it.  */
415   if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
416     start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
417
418   /* Initialize for what is now start_bit.  */
419   bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
420   bi->bits = bi->elt1->bits[bi->word_no];
421   bi->bits >>= start_bit % BITMAP_WORD_BITS;
422
423   /* If this word is zero, we must make sure we're not pointing at the
424      first bit, otherwise our incrementing to the next word boundary
425      will fail.  It won't matter if this increment moves us into the
426      next word.  */
427   start_bit += !bi->bits;
428
429   *bit_no = start_bit;
430 }
431
432 /* Initialize an iterator to iterate over the intersection of two
433    bitmaps.  START_BIT is the bit to commence from.  */
434
435 static inline void
436 bmp_iter_and_init (bitmap_iterator *bi, const_bitmap map1, const_bitmap map2,
437                    unsigned start_bit, unsigned *bit_no)
438 {
439   bi->elt1 = map1->first;
440   bi->elt2 = map2->first;
441
442   /* Advance elt1 until it is not before the block containing
443      start_bit.  */
444   while (1)
445     {
446       if (!bi->elt1)
447         {
448           bi->elt2 = NULL;
449           break;
450         }
451
452       if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
453         break;
454       bi->elt1 = bi->elt1->next;
455     }
456
457   /* Advance elt2 until it is not before elt1.  */
458   while (1)
459     {
460       if (!bi->elt2)
461         {
462           bi->elt1 = bi->elt2 = &bitmap_zero_bits;
463           break;
464         }
465
466       if (bi->elt2->indx >= bi->elt1->indx)
467         break;
468       bi->elt2 = bi->elt2->next;
469     }
470
471   /* If we're at the same index, then we have some intersecting bits.  */
472   if (bi->elt1->indx == bi->elt2->indx)
473     {
474       /* We might have advanced beyond the start_bit, so reinitialize
475          for that.  */
476       if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
477         start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
478
479       bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
480       bi->bits = bi->elt1->bits[bi->word_no] & bi->elt2->bits[bi->word_no];
481       bi->bits >>= start_bit % BITMAP_WORD_BITS;
482     }
483   else
484     {
485       /* Otherwise we must immediately advance elt1, so initialize for
486          that.  */
487       bi->word_no = BITMAP_ELEMENT_WORDS - 1;
488       bi->bits = 0;
489     }
490
491   /* If this word is zero, we must make sure we're not pointing at the
492      first bit, otherwise our incrementing to the next word boundary
493      will fail.  It won't matter if this increment moves us into the
494      next word.  */
495   start_bit += !bi->bits;
496
497   *bit_no = start_bit;
498 }
499
500 /* Initialize an iterator to iterate over the bits in MAP1 & ~MAP2.
501    */
502
503 static inline void
504 bmp_iter_and_compl_init (bitmap_iterator *bi,
505                          const_bitmap map1, const_bitmap map2,
506                          unsigned start_bit, unsigned *bit_no)
507 {
508   bi->elt1 = map1->first;
509   bi->elt2 = map2->first;
510
511   /* Advance elt1 until it is not before the block containing start_bit.  */
512   while (1)
513     {
514       if (!bi->elt1)
515         {
516           bi->elt1 = &bitmap_zero_bits;
517           break;
518         }
519
520       if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
521         break;
522       bi->elt1 = bi->elt1->next;
523     }
524
525   /* Advance elt2 until it is not before elt1.  */
526   while (bi->elt2 && bi->elt2->indx < bi->elt1->indx)
527     bi->elt2 = bi->elt2->next;
528
529   /* We might have advanced beyond the start_bit, so reinitialize for
530      that.  */
531   if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
532     start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
533
534   bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
535   bi->bits = bi->elt1->bits[bi->word_no];
536   if (bi->elt2 && bi->elt1->indx == bi->elt2->indx)
537     bi->bits &= ~bi->elt2->bits[bi->word_no];
538   bi->bits >>= start_bit % BITMAP_WORD_BITS;
539
540   /* If this word is zero, we must make sure we're not pointing at the
541      first bit, otherwise our incrementing to the next word boundary
542      will fail.  It won't matter if this increment moves us into the
543      next word.  */
544   start_bit += !bi->bits;
545
546   *bit_no = start_bit;
547 }
548
549 /* Advance to the next bit in BI.  We don't advance to the next
550    nonzero bit yet.  */
551
552 static inline void
553 bmp_iter_next (bitmap_iterator *bi, unsigned *bit_no)
554 {
555   bi->bits >>= 1;
556   *bit_no += 1;
557 }
558
559 /* Advance to first set bit in BI.  */
560
561 static inline void
562 bmp_iter_next_bit (bitmap_iterator * bi, unsigned *bit_no)
563 {
564 #if (GCC_VERSION >= 3004)
565   {
566     unsigned int n = __builtin_ctzl (bi->bits);
567     gcc_assert (sizeof (unsigned long) == sizeof (BITMAP_WORD));
568     bi->bits >>= n;
569     *bit_no += n;
570   }
571 #else
572   while (!(bi->bits & 1))
573     {
574       bi->bits >>= 1;
575       *bit_no += 1;
576     }
577 #endif
578 }
579
580 /* Advance to the next nonzero bit of a single bitmap, we will have
581    already advanced past the just iterated bit.  Return true if there
582    is a bit to iterate.  */
583
584 static inline bool
585 bmp_iter_set (bitmap_iterator *bi, unsigned *bit_no)
586 {
587   /* If our current word is nonzero, it contains the bit we want.  */
588   if (bi->bits)
589     {
590     next_bit:
591       bmp_iter_next_bit (bi, bit_no);
592       return true;
593     }
594
595   /* Round up to the word boundary.  We might have just iterated past
596      the end of the last word, hence the -1.  It is not possible for
597      bit_no to point at the beginning of the now last word.  */
598   *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
599              / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
600   bi->word_no++;
601
602   while (1)
603     {
604       /* Find the next nonzero word in this elt.  */
605       while (bi->word_no != BITMAP_ELEMENT_WORDS)
606         {
607           bi->bits = bi->elt1->bits[bi->word_no];
608           if (bi->bits)
609             goto next_bit;
610           *bit_no += BITMAP_WORD_BITS;
611           bi->word_no++;
612         }
613
614       /* Make sure we didn't remove the element while iterating.  */
615       gcc_checking_assert (bi->elt1->indx != -1U);
616
617       /* Advance to the next element.  */
618       bi->elt1 = bi->elt1->next;
619       if (!bi->elt1)
620         return false;
621       *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
622       bi->word_no = 0;
623     }
624 }
625
626 /* Advance to the next nonzero bit of an intersecting pair of
627    bitmaps.  We will have already advanced past the just iterated bit.
628    Return true if there is a bit to iterate.  */
629
630 static inline bool
631 bmp_iter_and (bitmap_iterator *bi, unsigned *bit_no)
632 {
633   /* If our current word is nonzero, it contains the bit we want.  */
634   if (bi->bits)
635     {
636     next_bit:
637       bmp_iter_next_bit (bi, bit_no);
638       return true;
639     }
640
641   /* Round up to the word boundary.  We might have just iterated past
642      the end of the last word, hence the -1.  It is not possible for
643      bit_no to point at the beginning of the now last word.  */
644   *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
645              / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
646   bi->word_no++;
647
648   while (1)
649     {
650       /* Find the next nonzero word in this elt.  */
651       while (bi->word_no != BITMAP_ELEMENT_WORDS)
652         {
653           bi->bits = bi->elt1->bits[bi->word_no] & bi->elt2->bits[bi->word_no];
654           if (bi->bits)
655             goto next_bit;
656           *bit_no += BITMAP_WORD_BITS;
657           bi->word_no++;
658         }
659
660       /* Advance to the next identical element.  */
661       do
662         {
663           /* Make sure we didn't remove the element while iterating.  */
664           gcc_checking_assert (bi->elt1->indx != -1U);
665
666           /* Advance elt1 while it is less than elt2.  We always want
667              to advance one elt.  */
668           do
669             {
670               bi->elt1 = bi->elt1->next;
671               if (!bi->elt1)
672                 return false;
673             }
674           while (bi->elt1->indx < bi->elt2->indx);
675
676           /* Make sure we didn't remove the element while iterating.  */
677           gcc_checking_assert (bi->elt2->indx != -1U);
678
679           /* Advance elt2 to be no less than elt1.  This might not
680              advance.  */
681           while (bi->elt2->indx < bi->elt1->indx)
682             {
683               bi->elt2 = bi->elt2->next;
684               if (!bi->elt2)
685                 return false;
686             }
687         }
688       while (bi->elt1->indx != bi->elt2->indx);
689
690       *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
691       bi->word_no = 0;
692     }
693 }
694
695 /* Advance to the next nonzero bit in the intersection of
696    complemented bitmaps.  We will have already advanced past the just
697    iterated bit.  */
698
699 static inline bool
700 bmp_iter_and_compl (bitmap_iterator *bi, unsigned *bit_no)
701 {
702   /* If our current word is nonzero, it contains the bit we want.  */
703   if (bi->bits)
704     {
705     next_bit:
706       bmp_iter_next_bit (bi, bit_no);
707       return true;
708     }
709
710   /* Round up to the word boundary.  We might have just iterated past
711      the end of the last word, hence the -1.  It is not possible for
712      bit_no to point at the beginning of the now last word.  */
713   *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
714              / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
715   bi->word_no++;
716
717   while (1)
718     {
719       /* Find the next nonzero word in this elt.  */
720       while (bi->word_no != BITMAP_ELEMENT_WORDS)
721         {
722           bi->bits = bi->elt1->bits[bi->word_no];
723           if (bi->elt2 && bi->elt2->indx == bi->elt1->indx)
724             bi->bits &= ~bi->elt2->bits[bi->word_no];
725           if (bi->bits)
726             goto next_bit;
727           *bit_no += BITMAP_WORD_BITS;
728           bi->word_no++;
729         }
730
731       /* Make sure we didn't remove the element while iterating.  */
732       gcc_checking_assert (bi->elt1->indx != -1U);
733
734       /* Advance to the next element of elt1.  */
735       bi->elt1 = bi->elt1->next;
736       if (!bi->elt1)
737         return false;
738
739       /* Make sure we didn't remove the element while iterating.  */
740       gcc_checking_assert (! bi->elt2 || bi->elt2->indx != -1U);
741
742       /* Advance elt2 until it is no less than elt1.  */
743       while (bi->elt2 && bi->elt2->indx < bi->elt1->indx)
744         bi->elt2 = bi->elt2->next;
745
746       *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
747       bi->word_no = 0;
748     }
749 }
750
751 /* If you are modifying a bitmap you are currently iterating over you
752    have to ensure to
753      - never remove the current bit;
754      - if you set or clear a bit before the current bit this operation
755        will not affect the set of bits you are visiting during the iteration;
756      - if you set or clear a bit after the current bit it is unspecified
757        whether that affects the set of bits you are visiting during the
758        iteration.
759    If you want to remove the current bit you can delay this to the next
760    iteration (and after the iteration in case the last iteration is
761    affected).  */
762
763 /* Loop over all bits set in BITMAP, starting with MIN and setting
764    BITNUM to the bit number.  ITER is a bitmap iterator.  BITNUM
765    should be treated as a read-only variable as it contains loop
766    state.  */
767
768 #ifndef EXECUTE_IF_SET_IN_BITMAP
769 /* See sbitmap.h for the other definition of EXECUTE_IF_SET_IN_BITMAP.  */
770 #define EXECUTE_IF_SET_IN_BITMAP(BITMAP, MIN, BITNUM, ITER)             \
771   for (bmp_iter_set_init (&(ITER), (BITMAP), (MIN), &(BITNUM));         \
772        bmp_iter_set (&(ITER), &(BITNUM));                               \
773        bmp_iter_next (&(ITER), &(BITNUM)))
774 #endif
775
776 /* Loop over all the bits set in BITMAP1 & BITMAP2, starting with MIN
777    and setting BITNUM to the bit number.  ITER is a bitmap iterator.
778    BITNUM should be treated as a read-only variable as it contains
779    loop state.  */
780
781 #define EXECUTE_IF_AND_IN_BITMAP(BITMAP1, BITMAP2, MIN, BITNUM, ITER)   \
782   for (bmp_iter_and_init (&(ITER), (BITMAP1), (BITMAP2), (MIN),         \
783                           &(BITNUM));                                   \
784        bmp_iter_and (&(ITER), &(BITNUM));                               \
785        bmp_iter_next (&(ITER), &(BITNUM)))
786
787 /* Loop over all the bits set in BITMAP1 & ~BITMAP2, starting with MIN
788    and setting BITNUM to the bit number.  ITER is a bitmap iterator.
789    BITNUM should be treated as a read-only variable as it contains
790    loop state.  */
791
792 #define EXECUTE_IF_AND_COMPL_IN_BITMAP(BITMAP1, BITMAP2, MIN, BITNUM, ITER) \
793   for (bmp_iter_and_compl_init (&(ITER), (BITMAP1), (BITMAP2), (MIN),   \
794                                 &(BITNUM));                             \
795        bmp_iter_and_compl (&(ITER), &(BITNUM));                         \
796        bmp_iter_next (&(ITER), &(BITNUM)))
797
798 /* A class that ties the lifetime of a bitmap to its scope.  */
799 class auto_bitmap
800 {
801  public:
802   auto_bitmap () { bitmap_initialize (&m_bits, &bitmap_default_obstack); }
803   explicit auto_bitmap (bitmap_obstack *o) { bitmap_initialize (&m_bits, o); }
804   ~auto_bitmap () { bitmap_clear (&m_bits); }
805   // Allow calling bitmap functions on our bitmap.
806   operator bitmap () { return &m_bits; }
807
808  private:
809   // Prevent making a copy that references our bitmap.
810   auto_bitmap (const auto_bitmap &);
811   auto_bitmap &operator = (const auto_bitmap &);
812 #if __cplusplus >= 201103L
813   auto_bitmap (auto_bitmap &&);
814   auto_bitmap &operator = (auto_bitmap &&);
815 #endif
816
817   bitmap_head m_bits;
818 };
819
820 #endif /* GCC_BITMAP_H */