Nuke usbdevs and references to it.
[dragonfly.git] / sys / dev / netif / rum / if_rum.c
1 /*      $OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $      */
2 /*      $DragonFly: src/sys/dev/netif/rum/if_rum.c,v 1.21 2007/11/05 19:09:43 hasso Exp $       */
3
4 /*-
5  * Copyright (c) 2005, 2006 Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20
21 /*-
22  * Ralink Technology RT2501USB/RT2601USB chipset driver
23  * http://www.ralinktech.com/
24  */
25
26 #include <sys/param.h>
27 #include <sys/bus.h>
28 #include <sys/endian.h>
29 #include <sys/kernel.h>
30 #include <sys/malloc.h>
31 #include <sys/mbuf.h>
32 #include <sys/rman.h>
33 #include <sys/serialize.h>
34 #include <sys/socket.h>
35 #include <sys/sockio.h>
36
37 #include <net/bpf.h>
38 #include <net/ethernet.h>
39 #include <net/if.h>
40 #include <net/if_arp.h>
41 #include <net/if_dl.h>
42 #include <net/if_media.h>
43 #include <net/ifq_var.h>
44
45 #include <netproto/802_11/ieee80211_var.h>
46 #include <netproto/802_11/ieee80211_radiotap.h>
47 #include <netproto/802_11/wlan_ratectl/onoe/ieee80211_onoe_param.h>
48
49 #include <bus/usb/usb.h>
50 #include <bus/usb/usbdi.h>
51 #include <bus/usb/usbdi_util.h>
52
53 #include "if_rumreg.h"
54 #include "if_rumvar.h"
55 #include "rum_ucode.h"
56
57 #ifdef USB_DEBUG
58 #define RUM_DEBUG
59 #endif
60
61 #ifdef RUM_DEBUG
62 #define DPRINTF(x)      do { if (rum_debug) kprintf x; } while (0)
63 #define DPRINTFN(n, x)  do { if (rum_debug >= (n)) kprintf x; } while (0)
64 int rum_debug = 0;
65 #else
66 #define DPRINTF(x)
67 #define DPRINTFN(n, x)
68 #endif
69
70 /* various supported device vendors/products */
71 static const struct usb_devno rum_devs[] = {
72         { USB_DEVICE(0x0411, 0x00d8) }, /* Melco WLI-U2-SG54HP */
73         { USB_DEVICE(0x0411, 0x00d9) }, /* Melco WLI-U2-G54HP */
74         { USB_DEVICE(0x050d, 0x705a) }, /* Belkin F5D7050A */
75         { USB_DEVICE(0x050d, 0x905b) }, /* Belkin F5D9050 ver3 */
76         { USB_DEVICE(0x06f8, 0xe010) }, /* Guillemot HWGUSB2-54-LB */
77         { USB_DEVICE(0x06f8, 0xe020) }, /* Guillemot HWGUSB2-54V2-AP */
78         { USB_DEVICE(0x0769, 0x31f3) }, /* Surecom RT2573 */
79         { USB_DEVICE(0x07b8, 0xb21b) }, /* AboCom HWU54DM */
80         { USB_DEVICE(0x07b8, 0xb21c) }, /* AboCom RT2573 */
81         { USB_DEVICE(0x07b8, 0xb21d) }, /* AboCom RT2573 */
82         { USB_DEVICE(0x07b8, 0xb21e) }, /* AboCom RT2573 */
83         { USB_DEVICE(0x07b8, 0xb21f) }, /* AboCom WUG2700 */
84         { USB_DEVICE(0x07d1, 0x3c03) }, /* D-Link DWL-G122 rev c1 */
85         { USB_DEVICE(0x07d1, 0x3c04) }, /* D-Link WUA-1340 */
86         { USB_DEVICE(0x0b05, 0x1723) }, /* Asus WL-167g */
87         { USB_DEVICE(0x0b05, 0x1724) }, /* Asus WL-167g */
88         { USB_DEVICE(0x0db0, 0x6874) }, /* MSI RT2573 */
89         { USB_DEVICE(0x0db0, 0x6877) }, /* MSI RT2573 */
90         { USB_DEVICE(0x0db0, 0xa861) }, /* MSI RT2573 */
91         { USB_DEVICE(0x0db0, 0xa874) }, /* MSI RT2573 */
92         { USB_DEVICE(0x0df6, 0x90ac) }, /* Sitecom WL-172 */
93         { USB_DEVICE(0x0df6, 0x9712) }, /* Sitecom WL-113 rev 2 */
94         { USB_DEVICE(0x0eb0, 0x9021) }, /* Nova Technology RT2573 */
95         { USB_DEVICE(0x1044, 0x8008) }, /* GIGABYTE GN-WB01GS */
96         { USB_DEVICE(0x1044, 0x800a) }, /* GIGABYTE GN-WI05GS */
97         { USB_DEVICE(0x1371, 0x9022) }, /* (really) C-Net RT2573 */
98         { USB_DEVICE(0x1371, 0x9032) }, /* (really) C-Net CWD854F */
99         { USB_DEVICE(0x1472, 0x0009) }, /* Huawei RT2573 */
100         { USB_DEVICE(0x148f, 0x2573) }, /* Ralink RT2573 */
101         { USB_DEVICE(0x148f, 0x2671) }, /* Ralink RT2671 */
102         { USB_DEVICE(0x148f, 0x9021) }, /* Ralink RT2573 */
103         { USB_DEVICE(0x14b2, 0x3c22) }, /* Conceptronic C54RU */
104         { USB_DEVICE(0x1631, 0xc019) }, /* Good Way Technology RT2573 */
105         { USB_DEVICE(0x1690, 0x0722) }, /* Gigaset RT2573 */
106         { USB_DEVICE(0x1737, 0x0020) }, /* Linksys WUSB54GC */
107         { USB_DEVICE(0x1737, 0x0023) }, /* Linksys WUSB54GR */
108         { USB_DEVICE(0x18c5, 0x0002) }, /* AMIT CG-WLUSB2GO */
109         { USB_DEVICE(0x18e8, 0x6196) }, /* Qcom RT2573 */
110         { USB_DEVICE(0x18e8, 0x6229) }, /* Qcom RT2573 */
111         { USB_DEVICE(0x2019, 0xab01) }, /* Planex GW-US54HP */
112         { USB_DEVICE(0x2019, 0xab50) }, /* Planex GW-US54Mini2 */
113         { USB_DEVICE(0x2019, 0xed02) }, /* Planex GW-USMM */
114 };
115
116 static int              rum_alloc_tx_list(struct rum_softc *);
117 static void             rum_free_tx_list(struct rum_softc *);
118 static int              rum_alloc_rx_list(struct rum_softc *);
119 static void             rum_free_rx_list(struct rum_softc *);
120 static int              rum_media_change(struct ifnet *);
121 static void             rum_next_scan(void *);
122 static void             rum_task(void *);
123 static int              rum_newstate(struct ieee80211com *,
124                             enum ieee80211_state, int);
125 static void             rum_txeof(usbd_xfer_handle, usbd_private_handle,
126                             usbd_status);
127 static void             rum_rxeof(usbd_xfer_handle, usbd_private_handle,
128                             usbd_status);
129 static uint8_t          rum_rxrate(struct rum_rx_desc *);
130 static uint8_t          rum_plcp_signal(int);
131 static void             rum_setup_tx_desc(struct rum_softc *,
132                             struct rum_tx_desc *, uint32_t, uint16_t, int,
133                             int);
134 static int              rum_tx_data(struct rum_softc *, struct mbuf *,
135                             struct ieee80211_node *);
136 static void             rum_start(struct ifnet *);
137 static void             rum_watchdog(struct ifnet *);
138 static int              rum_ioctl(struct ifnet *, u_long, caddr_t,
139                                   struct ucred *);
140 static void             rum_eeprom_read(struct rum_softc *, uint16_t, void *,
141                             int);
142 static uint32_t         rum_read(struct rum_softc *, uint16_t);
143 static void             rum_read_multi(struct rum_softc *, uint16_t, void *,
144                             int);
145 static void             rum_write(struct rum_softc *, uint16_t, uint32_t);
146 static void             rum_write_multi(struct rum_softc *, uint16_t, void *,
147                             size_t);
148 static void             rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
149 static uint8_t          rum_bbp_read(struct rum_softc *, uint8_t);
150 static void             rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
151 static void             rum_select_antenna(struct rum_softc *);
152 static void             rum_enable_mrr(struct rum_softc *);
153 static void             rum_set_txpreamble(struct rum_softc *);
154 static void             rum_set_basicrates(struct rum_softc *);
155 static void             rum_select_band(struct rum_softc *,
156                             struct ieee80211_channel *);
157 static void             rum_set_chan(struct rum_softc *,
158                             struct ieee80211_channel *);
159 static void             rum_enable_tsf_sync(struct rum_softc *);
160 static void             rum_update_slot(struct rum_softc *);
161 static void             rum_set_bssid(struct rum_softc *, const uint8_t *);
162 static void             rum_set_macaddr(struct rum_softc *, const uint8_t *);
163 static void             rum_update_promisc(struct rum_softc *);
164 static const char       *rum_get_rf(int);
165 static void             rum_read_eeprom(struct rum_softc *);
166 static int              rum_bbp_init(struct rum_softc *);
167 static void             rum_init(void *);
168 static void             rum_stop(struct rum_softc *);
169 static int              rum_load_microcode(struct rum_softc *, const uint8_t *,
170                             size_t);
171 static int              rum_prepare_beacon(struct rum_softc *);
172
173 static void             rum_stats_timeout(void *);
174 static void             rum_stats_update(usbd_xfer_handle, usbd_private_handle,
175                                          usbd_status);
176 static void             rum_stats(struct ieee80211com *,
177                                   struct ieee80211_node *,
178                                   struct ieee80211_ratectl_stats *);
179 static void             rum_ratectl_change(struct ieee80211com *ic, u_int,
180                                            u_int);
181 static int              rum_get_rssi(struct rum_softc *, uint8_t);
182
183 /*
184  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
185  */
186 static const struct ieee80211_rateset rum_rateset_11a =
187         { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
188
189 static const struct ieee80211_rateset rum_rateset_11b =
190         { 4, { 2, 4, 11, 22 } };
191
192 static const struct ieee80211_rateset rum_rateset_11g =
193         { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
194
195 static const struct {
196         uint32_t        reg;
197         uint32_t        val;
198 } rum_def_mac[] = {
199         RT2573_DEF_MAC
200 };
201
202 static const struct {
203         uint8_t reg;
204         uint8_t val;
205 } rum_def_bbp[] = {
206         RT2573_DEF_BBP
207 };
208
209 static const struct rfprog {
210         uint8_t         chan;
211         uint32_t        r1, r2, r3, r4;
212 }  rum_rf5226[] = {
213         RT2573_RF5226
214 }, rum_rf5225[] = {
215         RT2573_RF5225
216 };
217
218 static device_probe_t rum_match;
219 static device_attach_t rum_attach;
220 static device_detach_t rum_detach;
221
222 static devclass_t rum_devclass;
223
224 static kobj_method_t rum_methods[] = {
225         DEVMETHOD(device_probe, rum_match),
226         DEVMETHOD(device_attach, rum_attach),
227         DEVMETHOD(device_detach, rum_detach),
228         {0,0}
229 };
230
231 static driver_t rum_driver = {
232         "rum",
233         rum_methods,
234         sizeof(struct rum_softc)
235 };
236
237 MODULE_DEPEND(rum, usb, 1, 1, 1);
238 DRIVER_MODULE(rum, uhub, rum_driver, rum_devclass, usbd_driver_load, 0);
239
240 static int
241 rum_match(device_t self)
242 {
243         struct usb_attach_arg *uaa = device_get_ivars(self);
244
245         if (uaa->iface != NULL)
246                 return UMATCH_NONE;
247
248         return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ?
249             UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
250 }
251
252 static int
253 rum_attach(device_t self)
254 {
255         struct rum_softc *sc = device_get_softc(self);
256         struct usb_attach_arg *uaa = device_get_ivars(self);
257         struct ieee80211com *ic = &sc->sc_ic;
258         struct ifnet *ifp = &ic->ic_if;
259         usb_interface_descriptor_t *id;
260         usb_endpoint_descriptor_t *ed;
261         usbd_status error;
262         char devinfo[1024];
263         int i, ntries;
264         uint32_t tmp;
265
266         sc->sc_udev = uaa->device;
267
268         usbd_devinfo(uaa->device, 0, devinfo);
269         sc->sc_dev = self;
270         device_set_desc_copy(self, devinfo);
271
272         if (usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0) != 0) {
273                 kprintf("%s: could not set configuration no\n",
274                     device_get_nameunit(sc->sc_dev));
275                 return ENXIO;
276         }
277
278         /* get the first interface handle */
279         error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
280             &sc->sc_iface);
281         if (error != 0) {
282                 kprintf("%s: could not get interface handle\n",
283                     device_get_nameunit(sc->sc_dev));
284                 return ENXIO;
285         }
286
287         /*
288          * Find endpoints.
289          */
290         id = usbd_get_interface_descriptor(sc->sc_iface);
291
292         sc->sc_rx_no = sc->sc_tx_no = -1;
293         for (i = 0; i < id->bNumEndpoints; i++) {
294                 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
295                 if (ed == NULL) {
296                         kprintf("%s: no endpoint descriptor for iface %d\n",
297                             device_get_nameunit(sc->sc_dev), i);
298                         return ENXIO;
299                 }
300
301                 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
302                     UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
303                         sc->sc_rx_no = ed->bEndpointAddress;
304                 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
305                     UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
306                         sc->sc_tx_no = ed->bEndpointAddress;
307         }
308         if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
309                 kprintf("%s: missing endpoint\n", device_get_nameunit(sc->sc_dev));
310                 return ENXIO;
311         }
312
313         usb_init_task(&sc->sc_task, rum_task, sc);
314
315         callout_init(&sc->scan_ch);
316         callout_init(&sc->stats_ch);
317
318         /* retrieve RT2573 rev. no */
319         for (ntries = 0; ntries < 1000; ntries++) {
320                 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
321                         break;
322                 DELAY(1000);
323         }
324         if (ntries == 1000) {
325                 kprintf("%s: timeout waiting for chip to settle\n",
326                     device_get_nameunit(sc->sc_dev));
327                 return ENXIO;
328         }
329
330         /* retrieve MAC address and various other things from EEPROM */
331         rum_read_eeprom(sc);
332
333         kprintf("%s: MAC/BBP RT%04x (rev 0x%05x), RF %s, address %6D\n",
334             device_get_nameunit(sc->sc_dev), sc->macbbp_rev, tmp,
335             rum_get_rf(sc->rf_rev), ic->ic_myaddr, ":");
336
337         error = rum_load_microcode(sc, rt2573, sizeof(rt2573));
338         if (error != 0) {
339                 device_printf(self, "can't load microcode\n");
340                 return ENXIO;
341         }
342
343         ic->ic_phytype = IEEE80211_T_OFDM;      /* not only, but not used */
344         ic->ic_opmode = IEEE80211_M_STA;        /* default to BSS mode */
345         ic->ic_state = IEEE80211_S_INIT;
346
347         /* set device capabilities */
348         ic->ic_caps =
349             IEEE80211_C_IBSS |          /* IBSS mode supported */
350             IEEE80211_C_MONITOR |       /* monitor mode supported */
351             IEEE80211_C_HOSTAP |        /* HostAp mode supported */
352             IEEE80211_C_TXPMGT |        /* tx power management */
353             IEEE80211_C_SHPREAMBLE |    /* short preamble supported */
354             IEEE80211_C_SHSLOT |        /* short slot time supported */
355             IEEE80211_C_WPA;            /* WPA 1+2 */
356
357         if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
358                 /* set supported .11a rates */
359                 ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a;
360
361                 /* set supported .11a channels */
362                 for (i = 34; i <= 46; i += 4) {
363                         ic->ic_channels[i].ic_freq =
364                             ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
365                         ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
366                 }
367                 for (i = 36; i <= 64; i += 4) {
368                         ic->ic_channels[i].ic_freq =
369                             ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
370                         ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
371                 }
372                 for (i = 100; i <= 140; i += 4) {
373                         ic->ic_channels[i].ic_freq =
374                             ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
375                         ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
376                 }
377                 for (i = 149; i <= 165; i += 4) {
378                         ic->ic_channels[i].ic_freq =
379                             ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
380                         ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
381                 }
382         }
383
384         /* set supported .11b and .11g rates */
385         ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b;
386         ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g;
387
388         /* set supported .11b and .11g channels (1 through 14) */
389         for (i = 1; i <= 14; i++) {
390                 ic->ic_channels[i].ic_freq =
391                     ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
392                 ic->ic_channels[i].ic_flags =
393                     IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
394                     IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
395         }
396
397         sc->sc_sifs = IEEE80211_DUR_SIFS;       /* Default SIFS */
398
399         if_initname(ifp, device_get_name(self), device_get_unit(self));
400         ifp->if_softc = sc;
401         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
402         ifp->if_init = rum_init;
403         ifp->if_ioctl = rum_ioctl;
404         ifp->if_start = rum_start;
405         ifp->if_watchdog = rum_watchdog;
406         ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
407         ifq_set_ready(&ifp->if_snd);
408
409         ic->ic_ratectl.rc_st_ratectl_cap = IEEE80211_RATECTL_CAP_ONOE;
410         ic->ic_ratectl.rc_st_ratectl = IEEE80211_RATECTL_ONOE;
411         ic->ic_ratectl.rc_st_valid_stats =
412                 IEEE80211_RATECTL_STATS_PKT_NORETRY |
413                 IEEE80211_RATECTL_STATS_PKT_OK |
414                 IEEE80211_RATECTL_STATS_PKT_ERR |
415                 IEEE80211_RATECTL_STATS_RETRIES;
416         ic->ic_ratectl.rc_st_stats = rum_stats;
417         ic->ic_ratectl.rc_st_change = rum_ratectl_change;
418
419         ieee80211_ifattach(ic);
420
421         /* Enable software beacon missing handling. */
422         ic->ic_flags_ext |= IEEE80211_FEXT_SWBMISS;
423
424         /* override state transition machine */
425         sc->sc_newstate = ic->ic_newstate;
426         ic->ic_newstate = rum_newstate;
427         ieee80211_media_init(ic, rum_media_change, ieee80211_media_status);
428
429         bpfattach_dlt(ifp, DLT_IEEE802_11_RADIO,
430             sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
431             &sc->sc_drvbpf);
432
433         sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
434         sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
435         sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
436
437         sc->sc_txtap_len = sizeof sc->sc_txtapu;
438         sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
439         sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
440
441         if (bootverbose)
442                 ieee80211_announce(ic);
443
444         return 0;
445 }
446
447 static int
448 rum_detach(device_t self)
449 {
450         struct rum_softc *sc = device_get_softc(self);
451         struct ifnet *ifp = &sc->sc_ic.ic_if;
452 #ifdef INVARIANTS
453         int i;
454 #endif
455
456         crit_enter();
457
458         callout_stop(&sc->scan_ch);
459         callout_stop(&sc->stats_ch);
460
461         lwkt_serialize_enter(ifp->if_serializer);
462         rum_stop(sc);
463         lwkt_serialize_exit(ifp->if_serializer);
464
465         usb_rem_task(sc->sc_udev, &sc->sc_task);
466
467         bpfdetach(ifp);
468         ieee80211_ifdetach(&sc->sc_ic); /* free all nodes */
469
470         crit_exit();
471
472         KKASSERT(sc->stats_xfer == NULL);
473         KKASSERT(sc->sc_rx_pipeh == NULL);
474         KKASSERT(sc->sc_tx_pipeh == NULL);
475
476 #ifdef INVARIANTS
477         /*
478          * Make sure TX/RX list is empty
479          */
480         for (i = 0; i < RT2573_TX_LIST_COUNT; i++) {
481                 struct rum_tx_data *data = &sc->tx_data[i];
482
483                 KKASSERT(data->xfer == NULL);
484                 KKASSERT(data->ni == NULL);
485                 KKASSERT(data->m == NULL);
486         }
487         for (i = 0; i < RT2573_RX_LIST_COUNT; i++) {
488                 struct rum_rx_data *data = &sc->rx_data[i];
489
490                 KKASSERT(data->xfer == NULL);
491                 KKASSERT(data->m == NULL);
492         }
493 #endif
494         return 0;
495 }
496
497 static int
498 rum_alloc_tx_list(struct rum_softc *sc)
499 {
500         int i;
501
502         sc->tx_queued = 0;
503         for (i = 0; i < RT2573_TX_LIST_COUNT; i++) {
504                 struct rum_tx_data *data = &sc->tx_data[i];
505
506                 data->sc = sc;
507
508                 data->xfer = usbd_alloc_xfer(sc->sc_udev);
509                 if (data->xfer == NULL) {
510                         kprintf("%s: could not allocate tx xfer\n",
511                             device_get_nameunit(sc->sc_dev));
512                         return ENOMEM;
513                 }
514
515                 data->buf = usbd_alloc_buffer(data->xfer,
516                     RT2573_TX_DESC_SIZE + IEEE80211_MAX_LEN);
517                 if (data->buf == NULL) {
518                         kprintf("%s: could not allocate tx buffer\n",
519                             device_get_nameunit(sc->sc_dev));
520                         return ENOMEM;
521                 }
522
523                 /* clean Tx descriptor */
524                 bzero(data->buf, RT2573_TX_DESC_SIZE);
525         }
526         return 0;
527 }
528
529 static void
530 rum_free_tx_list(struct rum_softc *sc)
531 {
532         int i;
533
534         for (i = 0; i < RT2573_TX_LIST_COUNT; i++) {
535                 struct rum_tx_data *data = &sc->tx_data[i];
536
537                 if (data->xfer != NULL) {
538                         usbd_free_xfer(data->xfer);
539                         data->xfer = NULL;
540                 }
541                 if (data->ni != NULL) {
542                         ieee80211_free_node(data->ni);
543                         data->ni = NULL;
544                 }
545                 if (data->m != NULL) {
546                         m_freem(data->m);
547                         data->m = NULL;
548                 }
549         }
550         sc->tx_queued = 0;
551 }
552
553 static int
554 rum_alloc_rx_list(struct rum_softc *sc)
555 {
556         int i;
557
558         for (i = 0; i < RT2573_RX_LIST_COUNT; i++) {
559                 struct rum_rx_data *data = &sc->rx_data[i];
560
561                 data->sc = sc;
562
563                 data->xfer = usbd_alloc_xfer(sc->sc_udev);
564                 if (data->xfer == NULL) {
565                         kprintf("%s: could not allocate rx xfer\n",
566                             device_get_nameunit(sc->sc_dev));
567                         return ENOMEM;
568                 }
569
570                 if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
571                         kprintf("%s: could not allocate rx buffer\n",
572                             device_get_nameunit(sc->sc_dev));
573                         return ENOMEM;
574                 }
575
576                 data->m = m_getcl(MB_WAIT, MT_DATA, M_PKTHDR);
577
578                 data->buf = mtod(data->m, uint8_t *);
579                 bzero(data->buf, sizeof(struct rum_rx_desc));
580         }
581         return 0;
582 }
583
584 static void
585 rum_free_rx_list(struct rum_softc *sc)
586 {
587         int i;
588
589         for (i = 0; i < RT2573_RX_LIST_COUNT; i++) {
590                 struct rum_rx_data *data = &sc->rx_data[i];
591
592                 if (data->xfer != NULL) {
593                         usbd_free_xfer(data->xfer);
594                         data->xfer = NULL;
595                 }
596                 if (data->m != NULL) {
597                         m_freem(data->m);
598                         data->m = NULL;
599                 }
600         }
601 }
602
603 static int
604 rum_media_change(struct ifnet *ifp)
605 {
606         int error;
607
608         error = ieee80211_media_change(ifp);
609         if (error != ENETRESET)
610                 return error;
611
612         if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
613                 rum_init(ifp->if_softc);
614
615         return 0;
616 }
617
618 /*
619  * This function is called periodically (every 200ms) during scanning to
620  * switch from one channel to another.
621  */
622 static void
623 rum_next_scan(void *arg)
624 {
625         struct rum_softc *sc = arg;
626         struct ieee80211com *ic = &sc->sc_ic;
627         struct ifnet *ifp = &ic->ic_if;
628
629         if (sc->sc_stopped)
630                 return;
631
632         crit_enter();
633
634         if (ic->ic_state == IEEE80211_S_SCAN) {
635                 lwkt_serialize_enter(ifp->if_serializer);
636                 ieee80211_next_scan(ic);
637                 lwkt_serialize_exit(ifp->if_serializer);
638         }
639
640         crit_exit();
641 }
642
643 static void
644 rum_task(void *xarg)
645 {
646         struct rum_softc *sc = xarg;
647         struct ieee80211com *ic = &sc->sc_ic;
648         struct ifnet *ifp = &ic->ic_if;
649         enum ieee80211_state nstate;
650         struct ieee80211_node *ni;
651         int arg;
652
653         if (sc->sc_stopped)
654                 return;
655
656         crit_enter();
657
658         nstate = sc->sc_state;
659         arg = sc->sc_arg;
660
661         KASSERT(nstate != IEEE80211_S_INIT,
662                 ("->INIT state transition should not be defered\n"));
663         rum_set_chan(sc, ic->ic_curchan);
664
665         switch (nstate) {
666         case IEEE80211_S_RUN:
667                 ni = ic->ic_bss;
668
669                 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
670                         rum_update_slot(sc);
671                         rum_enable_mrr(sc);
672                         rum_set_txpreamble(sc);
673                         rum_set_basicrates(sc);
674                         rum_set_bssid(sc, ni->ni_bssid);
675                 }
676
677                 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
678                     ic->ic_opmode == IEEE80211_M_IBSS)
679                         rum_prepare_beacon(sc);
680
681                 if (ic->ic_opmode != IEEE80211_M_MONITOR)
682                         rum_enable_tsf_sync(sc);
683
684                 /* clear statistic registers (STA_CSR0 to STA_CSR5) */
685                 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
686                 callout_reset(&sc->stats_ch, 4 * hz / 5, rum_stats_timeout, sc);
687                 break;
688
689         case IEEE80211_S_SCAN:
690                 callout_reset(&sc->scan_ch, hz / 5, rum_next_scan, sc);
691                 break;
692
693         default:
694                 break;
695         }
696
697         lwkt_serialize_enter(ifp->if_serializer);
698         ieee80211_ratectl_newstate(ic, nstate);
699         sc->sc_newstate(ic, nstate, arg);
700         lwkt_serialize_exit(ifp->if_serializer);
701
702         crit_exit();
703 }
704
705 static int
706 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
707 {
708         struct rum_softc *sc = ic->ic_if.if_softc;
709         struct ifnet *ifp = &ic->ic_if;
710
711         crit_enter();
712
713         ASSERT_SERIALIZED(ifp->if_serializer);
714
715         callout_stop(&sc->scan_ch);
716         callout_stop(&sc->stats_ch);
717
718         /* do it in a process context */
719         sc->sc_state = nstate;
720         sc->sc_arg = arg;
721
722         lwkt_serialize_exit(ifp->if_serializer);
723         usb_rem_task(sc->sc_udev, &sc->sc_task);
724
725         if (nstate == IEEE80211_S_INIT) {
726                 lwkt_serialize_enter(ifp->if_serializer);
727                 ieee80211_ratectl_newstate(ic, nstate);
728                 sc->sc_newstate(ic, nstate, arg);
729         } else {
730                 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
731                 lwkt_serialize_enter(ifp->if_serializer);
732         }
733
734         crit_exit();
735         return 0;
736 }
737
738 /* quickly determine if a given rate is CCK or OFDM */
739 #define RUM_RATE_IS_OFDM(rate)  ((rate) >= 12 && (rate) != 22)
740
741 #define RUM_ACK_SIZE    (sizeof(struct ieee80211_frame_ack) + IEEE80211_CRC_LEN)
742
743 static void
744 rum_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
745 {
746         struct rum_tx_data *data = priv;
747         struct rum_softc *sc = data->sc;
748         struct ieee80211com *ic = &sc->sc_ic;
749         struct ifnet *ifp = &ic->ic_if;
750         struct ieee80211_node *ni;
751
752         if (sc->sc_stopped)
753                 return;
754
755         crit_enter();
756
757         if (status != USBD_NORMAL_COMPLETION) {
758                 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) {
759                         crit_exit();
760                         return;
761                 }
762
763                 kprintf("%s: could not transmit buffer: %s\n",
764                     device_get_nameunit(sc->sc_dev), usbd_errstr(status));
765
766                 if (status == USBD_STALLED)
767                         usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
768
769                 ifp->if_oerrors++;
770                 crit_exit();
771                 return;
772         }
773
774         m_freem(data->m);
775         data->m = NULL;
776         ni = data->ni;
777         data->ni = NULL;
778
779         bzero(data->buf, sizeof(struct rum_tx_data));
780         sc->tx_queued--;
781         ifp->if_opackets++;     /* XXX may fail too */
782
783         DPRINTFN(10, ("tx done\n"));
784
785         sc->sc_tx_timer = 0;
786         ifp->if_flags &= ~IFF_OACTIVE;
787
788         lwkt_serialize_enter(ifp->if_serializer);
789         ieee80211_free_node(ni);
790         ifp->if_start(ifp);
791         lwkt_serialize_exit(ifp->if_serializer);
792
793         crit_exit();
794 }
795
796 static void
797 rum_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
798 {
799         struct rum_rx_data *data = priv;
800         struct rum_softc *sc = data->sc;
801         struct ieee80211com *ic = &sc->sc_ic;
802         struct ifnet *ifp = &ic->ic_if;
803         struct rum_rx_desc *desc;
804         struct ieee80211_frame_min *wh;
805         struct ieee80211_node *ni;
806         struct mbuf *mnew, *m;
807         int len, rssi;
808
809         if (sc->sc_stopped)
810                 return;
811
812         crit_enter();
813
814         if (status != USBD_NORMAL_COMPLETION) {
815                 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) {
816                         crit_exit();
817                         return;
818                 }
819
820                 if (status == USBD_STALLED)
821                         usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
822                 goto skip;
823         }
824
825         usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
826
827         if (len < RT2573_RX_DESC_SIZE + sizeof(struct ieee80211_frame_min)) {
828                 DPRINTF(("%s: xfer too short %d\n", device_get_nameunit(sc->sc_dev),
829                     len));
830                 ifp->if_ierrors++;
831                 goto skip;
832         }
833
834         desc = (struct rum_rx_desc *)data->buf;
835
836         if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) {
837                 /*
838                  * This should not happen since we did not request to receive
839                  * those frames when we filled RT2573_TXRX_CSR0.
840                  */
841                 DPRINTFN(5, ("CRC error\n"));
842                 ifp->if_ierrors++;
843                 goto skip;
844         }
845
846         mnew = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
847         if (mnew == NULL) {
848                 kprintf("%s: could not allocate rx mbuf\n",
849                     device_get_nameunit(sc->sc_dev));
850                 ifp->if_ierrors++;
851                 goto skip;
852         }
853
854         m = data->m;
855         data->m = NULL;
856         data->buf = NULL;
857
858         lwkt_serialize_enter(ifp->if_serializer);
859
860         /* finalize mbuf */
861         m->m_pkthdr.rcvif = ifp;
862         m->m_data = (caddr_t)(desc + 1);
863         m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
864
865         rssi = rum_get_rssi(sc, desc->rssi);
866
867         wh = mtod(m, struct ieee80211_frame_min *);
868         ni = ieee80211_find_rxnode(ic, wh);
869
870         /* Error happened during RSSI conversion. */
871         if (rssi < 0)
872                 rssi = ni->ni_rssi;
873
874         if (sc->sc_drvbpf != NULL) {
875                 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
876
877                 tap->wr_flags = 0;
878                 tap->wr_rate = rum_rxrate(desc);
879                 tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
880                 tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
881                 tap->wr_antenna = sc->rx_ant;
882                 tap->wr_antsignal = rssi;
883
884                 bpf_ptap(sc->sc_drvbpf, m, tap, sc->sc_rxtap_len);
885         }
886
887         /* send the frame to the 802.11 layer */
888         ieee80211_input(ic, m, ni, rssi, 0);
889
890         /* node is no longer needed */
891         ieee80211_free_node(ni);
892
893         if ((ifp->if_flags & IFF_OACTIVE) == 0)
894                 ifp->if_start(ifp);
895
896         lwkt_serialize_exit(ifp->if_serializer);
897
898         data->m = mnew;
899         data->buf = mtod(data->m, uint8_t *);
900
901         DPRINTFN(15, ("rx done\n"));
902
903 skip:   /* setup a new transfer */
904         bzero(data->buf, sizeof(struct rum_rx_desc));
905         usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
906             USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
907         usbd_transfer(xfer);
908
909         crit_exit();
910 }
911
912 /*
913  * This function is only used by the Rx radiotap code. It returns the rate at
914  * which a given frame was received.
915  */
916 static uint8_t
917 rum_rxrate(struct rum_rx_desc *desc)
918 {
919         if (le32toh(desc->flags) & RT2573_RX_OFDM) {
920                 /* reverse function of rum_plcp_signal */
921                 switch (desc->rate) {
922                 case 0xb:       return 12;
923                 case 0xf:       return 18;
924                 case 0xa:       return 24;
925                 case 0xe:       return 36;
926                 case 0x9:       return 48;
927                 case 0xd:       return 72;
928                 case 0x8:       return 96;
929                 case 0xc:       return 108;
930                 }
931         } else {
932                 if (desc->rate == 10)
933                         return 2;
934                 if (desc->rate == 20)
935                         return 4;
936                 if (desc->rate == 55)
937                         return 11;
938                 if (desc->rate == 110)
939                         return 22;
940         }
941         return 2;       /* should not get there */
942 }
943
944 static uint8_t
945 rum_plcp_signal(int rate)
946 {
947         switch (rate) {
948         /* CCK rates (returned values are device-dependent) */
949         case 2:         return 0x0;
950         case 4:         return 0x1;
951         case 11:        return 0x2;
952         case 22:        return 0x3;
953
954         /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
955         case 12:        return 0xb;
956         case 18:        return 0xf;
957         case 24:        return 0xa;
958         case 36:        return 0xe;
959         case 48:        return 0x9;
960         case 72:        return 0xd;
961         case 96:        return 0x8;
962         case 108:       return 0xc;
963
964         /* unsupported rates (should not get there) */
965         default:        return 0xff;
966         }
967 }
968
969 static void
970 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
971     uint32_t flags, uint16_t xflags, int len, int rate)
972 {
973         struct ieee80211com *ic = &sc->sc_ic;
974         uint16_t plcp_length;
975         int remainder;
976
977         desc->flags = htole32(flags);
978         desc->flags |= htole32(len << 16);
979
980         desc->xflags = htole16(xflags);
981
982         desc->wme = htole16(
983             RT2573_QID(0) |
984             RT2573_AIFSN(2) |
985             RT2573_LOGCWMIN(4) |
986             RT2573_LOGCWMAX(10));
987
988         /* setup PLCP fields */
989         desc->plcp_signal  = rum_plcp_signal(rate);
990         desc->plcp_service = 4;
991
992         len += IEEE80211_CRC_LEN;
993         if (RUM_RATE_IS_OFDM(rate)) {
994                 desc->flags |= htole32(RT2573_TX_OFDM);
995
996                 plcp_length = len & 0xfff;
997                 desc->plcp_length_hi = plcp_length >> 6;
998                 desc->plcp_length_lo = plcp_length & 0x3f;
999         } else {
1000                 plcp_length = (16 * len + rate - 1) / rate;
1001                 if (rate == 22) {
1002                         remainder = (16 * len) % 22;
1003                         if (remainder != 0 && remainder < 7)
1004                                 desc->plcp_service |= RT2573_PLCP_LENGEXT;
1005                 }
1006                 desc->plcp_length_hi = plcp_length >> 8;
1007                 desc->plcp_length_lo = plcp_length & 0xff;
1008
1009                 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1010                         desc->plcp_signal |= 0x08;
1011         }
1012         desc->flags |= htole32(RT2573_TX_VALID);
1013 }
1014
1015 #define RUM_TX_TIMEOUT  5000
1016
1017 static int
1018 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1019 {
1020         struct ieee80211com *ic = &sc->sc_ic;
1021         struct ifnet *ifp = &ic->ic_if;
1022         struct rum_tx_desc *desc;
1023         struct rum_tx_data *data;
1024         struct ieee80211_frame *wh;
1025         uint32_t flags = 0;
1026         uint16_t dur;
1027         usbd_status error;
1028         int xferlen, rate, rateidx;
1029
1030         wh = mtod(m0, struct ieee80211_frame *);
1031
1032         if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1033                 if (ieee80211_crypto_encap(ic, ni, m0) == NULL) {
1034                         m_freem(m0);
1035                         return ENOBUFS;
1036                 }
1037
1038                 /* packet header may have moved, reset our local pointer */
1039                 wh = mtod(m0, struct ieee80211_frame *);
1040         }
1041
1042         /* pickup a rate */
1043         if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1044             IEEE80211_FC0_TYPE_MGT) {
1045                 /* mgmt frames are sent at the lowest available bit-rate */
1046                 rateidx = 0;
1047         } else {
1048                 ieee80211_ratectl_findrate(ni, m0->m_pkthdr.len, &rateidx, 1);
1049         }
1050         rate = IEEE80211_RS_RATE(&ni->ni_rates, rateidx);
1051
1052         data = &sc->tx_data[0];
1053         desc = (struct rum_tx_desc *)data->buf;
1054
1055         data->m = m0;
1056         data->ni = ni;
1057
1058         if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1059                 flags |= RT2573_TX_ACK;
1060
1061                 dur = ieee80211_txtime(ni, RUM_ACK_SIZE,
1062                         ieee80211_ack_rate(ni, rate), ic->ic_flags) +
1063                         sc->sc_sifs;
1064                 *(uint16_t *)wh->i_dur = htole16(dur);
1065
1066                 /* tell hardware to set timestamp in probe responses */
1067                 if ((wh->i_fc[0] &
1068                     (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1069                     (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1070                         flags |= RT2573_TX_TIMESTAMP;
1071         }
1072
1073         if (sc->sc_drvbpf != NULL) {
1074                 struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1075
1076                 tap->wt_flags = 0;
1077                 tap->wt_rate = rate;
1078                 tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
1079                 tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
1080                 tap->wt_antenna = sc->tx_ant;
1081
1082                 bpf_ptap(sc->sc_drvbpf, m0, tap, sc->sc_txtap_len);
1083         }
1084
1085         m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1086         rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1087
1088         /* Align end on a 4-bytes boundary */
1089         xferlen = roundup(RT2573_TX_DESC_SIZE + m0->m_pkthdr.len, 4);
1090
1091         /*
1092          * No space left in the last URB to store the extra 4 bytes, force
1093          * sending of another URB.
1094          */
1095         if ((xferlen % 64) == 0)
1096                 xferlen += 4;
1097
1098         DPRINTFN(10, ("sending frame len=%u rate=%u xfer len=%u\n",
1099             m0->m_pkthdr.len + RT2573_TX_DESC_SIZE, rate, xferlen));
1100
1101         lwkt_serialize_exit(ifp->if_serializer);
1102
1103         usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1104             USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1105
1106         error = usbd_transfer(data->xfer);
1107         if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1108                 m_freem(m0);
1109                 data->m = NULL;
1110                 data->ni = NULL;
1111         } else {
1112                 sc->tx_queued++;
1113                 error = 0;
1114         }
1115
1116         lwkt_serialize_enter(ifp->if_serializer);
1117         return error;
1118 }
1119
1120 static void
1121 rum_start(struct ifnet *ifp)
1122 {
1123         struct rum_softc *sc = ifp->if_softc;
1124         struct ieee80211com *ic = &sc->sc_ic;
1125
1126         ASSERT_SERIALIZED(ifp->if_serializer);
1127
1128         if (sc->sc_stopped)
1129                 return;
1130
1131         crit_enter();
1132
1133         if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
1134                 crit_exit();
1135                 return;
1136         }
1137
1138         for (;;) {
1139                 struct ieee80211_node *ni;
1140                 struct mbuf *m0;
1141
1142                 if (!IF_QEMPTY(&ic->ic_mgtq)) {
1143                         if (sc->tx_queued >= RT2573_TX_LIST_COUNT) {
1144                                 ifp->if_flags |= IFF_OACTIVE;
1145                                 break;
1146                         }
1147                         IF_DEQUEUE(&ic->ic_mgtq, m0);
1148
1149                         ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1150                         m0->m_pkthdr.rcvif = NULL;
1151
1152                         BPF_MTAP(ifp, m0);
1153
1154                         if (rum_tx_data(sc, m0, ni) != 0) {
1155                                 ieee80211_free_node(ni);
1156                                 break;
1157                         }
1158                 } else {
1159                         struct ether_header *eh;
1160
1161                         if (ic->ic_state != IEEE80211_S_RUN)
1162                                 break;
1163
1164                         m0 = ifq_poll(&ifp->if_snd);
1165                         if (m0 == NULL)
1166                                 break;
1167                         if (sc->tx_queued >= RT2573_TX_LIST_COUNT) {
1168                                 ifp->if_flags |= IFF_OACTIVE;
1169                                 break;
1170                         }
1171                         ifq_dequeue(&ifp->if_snd, m0);
1172
1173                         if (m0->m_len < sizeof(struct ether_header)) {
1174                                 m0 = m_pullup(m0, sizeof(struct ether_header));
1175                                 if (m0 == NULL) {
1176                                         ifp->if_oerrors++;
1177                                         continue;
1178                                 }
1179                         }
1180                         eh = mtod(m0, struct ether_header *);
1181
1182                         ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1183                         if (ni == NULL) {
1184                                 m_freem(m0);
1185                                 continue;
1186                         }
1187
1188                         BPF_MTAP(ifp, m0);
1189
1190                         m0 = ieee80211_encap(ic, m0, ni);
1191                         if (m0 == NULL) {
1192                                 ieee80211_free_node(ni);
1193                                 continue;
1194                         }
1195
1196                         if (ic->ic_rawbpf != NULL)
1197                                 bpf_mtap(ic->ic_rawbpf, m0);
1198
1199                         if (rum_tx_data(sc, m0, ni) != 0) {
1200                                 ieee80211_free_node(ni);
1201                                 ifp->if_oerrors++;
1202                                 break;
1203                         }
1204                 }
1205
1206                 sc->sc_tx_timer = 5;
1207                 ifp->if_timer = 1;
1208         }
1209
1210         crit_exit();
1211 }
1212
1213 static void
1214 rum_watchdog(struct ifnet *ifp)
1215 {
1216         struct rum_softc *sc = ifp->if_softc;
1217
1218         ASSERT_SERIALIZED(ifp->if_serializer);
1219
1220         crit_enter();
1221
1222         ifp->if_timer = 0;
1223
1224         if (sc->sc_tx_timer > 0) {
1225                 if (--sc->sc_tx_timer == 0) {
1226                         kprintf("%s: device timeout\n", device_get_nameunit(sc->sc_dev));
1227                         /*rum_init(sc); XXX needs a process context! */
1228                         ifp->if_oerrors++;
1229
1230                         crit_exit();
1231                         return;
1232                 }
1233                 ifp->if_timer = 1;
1234         }
1235
1236         ieee80211_watchdog(&sc->sc_ic);
1237
1238         crit_exit();
1239 }
1240
1241 static int
1242 rum_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
1243 {
1244         struct rum_softc *sc = ifp->if_softc;
1245         struct ieee80211com *ic = &sc->sc_ic;
1246         int error = 0;
1247
1248         ASSERT_SERIALIZED(ifp->if_serializer);
1249
1250         crit_enter();
1251
1252         switch (cmd) {
1253         case SIOCSIFFLAGS:
1254                 if (ifp->if_flags & IFF_UP) {
1255                         if (ifp->if_flags & IFF_RUNNING) {
1256                                 lwkt_serialize_exit(ifp->if_serializer);
1257                                 rum_update_promisc(sc);
1258                                 lwkt_serialize_enter(ifp->if_serializer);
1259                         } else {
1260                                 rum_init(sc);
1261                         }
1262                 } else {
1263                         if (ifp->if_flags & IFF_RUNNING)
1264                                 rum_stop(sc);
1265                 }
1266                 break;
1267         default:
1268                 error = ieee80211_ioctl(ic, cmd, data, cr);
1269                 break;
1270         }
1271
1272         if (error == ENETRESET) {
1273                 struct ieee80211req *ireq = (struct ieee80211req *)data;
1274
1275                 if (cmd == SIOCS80211 &&
1276                     ireq->i_type == IEEE80211_IOC_CHANNEL &&
1277                     ic->ic_opmode == IEEE80211_M_MONITOR) {
1278                         /*
1279                          * This allows for fast channel switching in monitor
1280                          * mode (used by kismet). In IBSS mode, we must
1281                          * explicitly reset the interface to generate a new
1282                          * beacon frame.
1283                          */
1284                         lwkt_serialize_exit(ifp->if_serializer);
1285                         rum_set_chan(sc, ic->ic_ibss_chan);
1286                         lwkt_serialize_enter(ifp->if_serializer);
1287                 } else if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1288                            (IFF_UP | IFF_RUNNING)) {
1289                         rum_init(sc);
1290                 }
1291                 error = 0;
1292         }
1293
1294         crit_exit();
1295         return error;
1296 }
1297
1298 static void
1299 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1300 {
1301         usb_device_request_t req;
1302         usbd_status error;
1303
1304         req.bmRequestType = UT_READ_VENDOR_DEVICE;
1305         req.bRequest = RT2573_READ_EEPROM;
1306         USETW(req.wValue, 0);
1307         USETW(req.wIndex, addr);
1308         USETW(req.wLength, len);
1309
1310         error = usbd_do_request(sc->sc_udev, &req, buf);
1311         if (error != 0) {
1312                 kprintf("%s: could not read EEPROM: %s\n",
1313                     device_get_nameunit(sc->sc_dev), usbd_errstr(error));
1314         }
1315 }
1316
1317 static uint32_t
1318 rum_read(struct rum_softc *sc, uint16_t reg)
1319 {
1320         uint32_t val;
1321
1322         rum_read_multi(sc, reg, &val, sizeof val);
1323
1324         return le32toh(val);
1325 }
1326
1327 static void
1328 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1329 {
1330         usb_device_request_t req;
1331         usbd_status error;
1332
1333         req.bmRequestType = UT_READ_VENDOR_DEVICE;
1334         req.bRequest = RT2573_READ_MULTI_MAC;
1335         USETW(req.wValue, 0);
1336         USETW(req.wIndex, reg);
1337         USETW(req.wLength, len);
1338
1339         error = usbd_do_request(sc->sc_udev, &req, buf);
1340         if (error != 0) {
1341                 kprintf("%s: could not multi read MAC register: %s\n",
1342                     device_get_nameunit(sc->sc_dev), usbd_errstr(error));
1343         }
1344 }
1345
1346 static void
1347 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1348 {
1349         uint32_t tmp = htole32(val);
1350
1351         rum_write_multi(sc, reg, &tmp, sizeof tmp);
1352 }
1353
1354 static void
1355 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1356 {
1357         usb_device_request_t req;
1358         usbd_status error;
1359
1360         req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1361         req.bRequest = RT2573_WRITE_MULTI_MAC;
1362         USETW(req.wValue, 0);
1363         USETW(req.wIndex, reg);
1364         USETW(req.wLength, len);
1365
1366         error = usbd_do_request(sc->sc_udev, &req, buf);
1367         if (error != 0) {
1368                 kprintf("%s: could not multi write MAC register: %s\n",
1369                     device_get_nameunit(sc->sc_dev), usbd_errstr(error));
1370         }
1371 }
1372
1373 static void
1374 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1375 {
1376         uint32_t tmp;
1377         int ntries;
1378
1379         for (ntries = 0; ntries < 5; ntries++) {
1380                 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1381                         break;
1382         }
1383         if (ntries == 5) {
1384                 kprintf("%s: could not write to BBP\n", device_get_nameunit(sc->sc_dev));
1385                 return;
1386         }
1387
1388         tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1389         rum_write(sc, RT2573_PHY_CSR3, tmp);
1390 }
1391
1392 static uint8_t
1393 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1394 {
1395         uint32_t val;
1396         int ntries;
1397
1398         for (ntries = 0; ntries < 5; ntries++) {
1399                 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1400                         break;
1401         }
1402         if (ntries == 5) {
1403                 kprintf("%s: could not read BBP\n", device_get_nameunit(sc->sc_dev));
1404                 return 0;
1405         }
1406
1407         val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1408         rum_write(sc, RT2573_PHY_CSR3, val);
1409
1410         for (ntries = 0; ntries < 100; ntries++) {
1411                 val = rum_read(sc, RT2573_PHY_CSR3);
1412                 if (!(val & RT2573_BBP_BUSY))
1413                         return val & 0xff;
1414                 DELAY(1);
1415         }
1416
1417         kprintf("%s: could not read BBP\n", device_get_nameunit(sc->sc_dev));
1418         return 0;
1419 }
1420
1421 static void
1422 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1423 {
1424         uint32_t tmp;
1425         int ntries;
1426
1427         for (ntries = 0; ntries < 5; ntries++) {
1428                 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1429                         break;
1430         }
1431         if (ntries == 5) {
1432                 kprintf("%s: could not write to RF\n", device_get_nameunit(sc->sc_dev));
1433                 return;
1434         }
1435
1436         tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1437             (reg & 3);
1438         rum_write(sc, RT2573_PHY_CSR4, tmp);
1439
1440         /* remember last written value in sc */
1441         sc->rf_regs[reg] = val;
1442
1443         DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1444 }
1445
1446 static void
1447 rum_select_antenna(struct rum_softc *sc)
1448 {
1449         uint8_t bbp4, bbp77;
1450         uint32_t tmp;
1451
1452         bbp4  = rum_bbp_read(sc, 4);
1453         bbp77 = rum_bbp_read(sc, 77);
1454
1455         /* TBD */
1456
1457         /* make sure Rx is disabled before switching antenna */
1458         tmp = rum_read(sc, RT2573_TXRX_CSR0);
1459         rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1460
1461         rum_bbp_write(sc,  4, bbp4);
1462         rum_bbp_write(sc, 77, bbp77);
1463
1464         rum_write(sc, RT2573_TXRX_CSR0, tmp);
1465 }
1466
1467 /*
1468  * Enable multi-rate retries for frames sent at OFDM rates.
1469  * In 802.11b/g mode, allow fallback to CCK rates.
1470  */
1471 static void
1472 rum_enable_mrr(struct rum_softc *sc)
1473 {
1474         struct ieee80211com *ic = &sc->sc_ic;
1475         uint32_t tmp;
1476
1477         tmp = rum_read(sc, RT2573_TXRX_CSR4);
1478
1479         tmp &= ~RT2573_MRR_CCK_FALLBACK;
1480         if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
1481                 tmp |= RT2573_MRR_CCK_FALLBACK;
1482         tmp |= RT2573_MRR_ENABLED;
1483
1484         rum_write(sc, RT2573_TXRX_CSR4, tmp);
1485 }
1486
1487 static void
1488 rum_set_txpreamble(struct rum_softc *sc)
1489 {
1490         uint32_t tmp;
1491
1492         tmp = rum_read(sc, RT2573_TXRX_CSR4);
1493
1494         tmp &= ~RT2573_SHORT_PREAMBLE;
1495         if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1496                 tmp |= RT2573_SHORT_PREAMBLE;
1497
1498         rum_write(sc, RT2573_TXRX_CSR4, tmp);
1499 }
1500
1501 static void
1502 rum_set_basicrates(struct rum_softc *sc)
1503 {
1504         struct ieee80211com *ic = &sc->sc_ic;
1505
1506         /* update basic rate set */
1507         if (ic->ic_curmode == IEEE80211_MODE_11B) {
1508                 /* 11b basic rates: 1, 2Mbps */
1509                 rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1510         } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1511                 /* 11a basic rates: 6, 12, 24Mbps */
1512                 rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1513         } else {
1514                 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1515                 rum_write(sc, RT2573_TXRX_CSR5, 0x15f);
1516         }
1517 }
1518
1519 /*
1520  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
1521  * driver.
1522  */
1523 static void
1524 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1525 {
1526         uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1527         uint32_t tmp;
1528
1529         /* update all BBP registers that depend on the band */
1530         bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1531         bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
1532         if (IEEE80211_IS_CHAN_5GHZ(c)) {
1533                 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1534                 bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
1535         }
1536         if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1537             (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1538                 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1539         }
1540
1541         sc->bbp17 = bbp17;
1542         rum_bbp_write(sc,  17, bbp17);
1543         rum_bbp_write(sc,  96, bbp96);
1544         rum_bbp_write(sc, 104, bbp104);
1545
1546         if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1547             (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1548                 rum_bbp_write(sc, 75, 0x80);
1549                 rum_bbp_write(sc, 86, 0x80);
1550                 rum_bbp_write(sc, 88, 0x80);
1551         }
1552
1553         rum_bbp_write(sc, 35, bbp35);
1554         rum_bbp_write(sc, 97, bbp97);
1555         rum_bbp_write(sc, 98, bbp98);
1556
1557         tmp = rum_read(sc, RT2573_PHY_CSR0);
1558         tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1559         if (IEEE80211_IS_CHAN_2GHZ(c))
1560                 tmp |= RT2573_PA_PE_2GHZ;
1561         else
1562                 tmp |= RT2573_PA_PE_5GHZ;
1563         rum_write(sc, RT2573_PHY_CSR0, tmp);
1564 }
1565
1566 static void
1567 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1568 {
1569         struct ieee80211com *ic = &sc->sc_ic;
1570         const struct rfprog *rfprog;
1571         uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1572         int8_t power;
1573         u_int i, chan;
1574
1575         chan = ieee80211_chan2ieee(ic, c);
1576         if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1577                 return;
1578
1579         /* select the appropriate RF settings based on what EEPROM says */
1580         rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1581                   sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1582
1583         /* find the settings for this channel (we know it exists) */
1584         for (i = 0; rfprog[i].chan != chan; i++)
1585                 ;       /* EMPTY */
1586
1587         power = sc->txpow[i];
1588         if (power < 0) {
1589                 bbp94 += power;
1590                 power = 0;
1591         } else if (power > 31) {
1592                 bbp94 += power - 31;
1593                 power = 31;
1594         }
1595
1596         /*
1597          * If we are switching from the 2GHz band to the 5GHz band or
1598          * vice-versa, BBP registers need to be reprogrammed.
1599          */
1600         if (c->ic_flags != sc->sc_curchan->ic_flags) {
1601                 rum_select_band(sc, c);
1602                 rum_select_antenna(sc);
1603         }
1604         sc->sc_curchan = c;
1605
1606         rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1607         rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1608         rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1609         rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1610
1611         rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1612         rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1613         rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1614         rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1615
1616         rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1617         rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1618         rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1619         rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1620
1621         DELAY(10);
1622
1623         /* enable smart mode for MIMO-capable RFs */
1624         bbp3 = rum_bbp_read(sc, 3);
1625
1626         if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1627                 bbp3 &= ~RT2573_SMART_MODE;
1628         else
1629                 bbp3 |= RT2573_SMART_MODE;
1630
1631         rum_bbp_write(sc, 3, bbp3);
1632
1633         if (bbp94 != RT2573_BBPR94_DEFAULT)
1634                 rum_bbp_write(sc, 94, bbp94);
1635
1636         sc->sc_sifs = IEEE80211_IS_CHAN_5GHZ(c) ? IEEE80211_DUR_OFDM_SIFS
1637                                                 : IEEE80211_DUR_SIFS;
1638 }
1639
1640 /*
1641  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1642  * and HostAP operating modes.
1643  */
1644 static void
1645 rum_enable_tsf_sync(struct rum_softc *sc)
1646 {
1647         struct ieee80211com *ic = &sc->sc_ic;
1648         uint32_t tmp;
1649
1650         if (ic->ic_opmode != IEEE80211_M_STA) {
1651                 /*
1652                  * Change default 16ms TBTT adjustment to 8ms.
1653                  * Must be done before enabling beacon generation.
1654                  */
1655                 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1656         }
1657
1658         tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1659
1660         /* set beacon interval (in 1/16ms unit) */
1661         tmp |= ic->ic_bss->ni_intval * 16;
1662
1663         tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1664         if (ic->ic_opmode == IEEE80211_M_STA)
1665                 tmp |= RT2573_TSF_MODE(1);
1666         else
1667                 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1668
1669         rum_write(sc, RT2573_TXRX_CSR9, tmp);
1670 }
1671
1672 static void
1673 rum_update_slot(struct rum_softc *sc)
1674 {
1675         struct ieee80211com *ic = &sc->sc_ic;
1676         uint8_t slottime;
1677         uint32_t tmp;
1678
1679         slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1680
1681         tmp = rum_read(sc, RT2573_MAC_CSR9);
1682         tmp = (tmp & ~0xff) | slottime;
1683         rum_write(sc, RT2573_MAC_CSR9, tmp);
1684
1685         DPRINTF(("setting slot time to %uus\n", slottime));
1686 }
1687
1688 static void
1689 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1690 {
1691         uint32_t tmp;
1692
1693         tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1694         rum_write(sc, RT2573_MAC_CSR4, tmp);
1695
1696         tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1697         rum_write(sc, RT2573_MAC_CSR5, tmp);
1698 }
1699
1700 static void
1701 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1702 {
1703         uint32_t tmp;
1704
1705         tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1706         rum_write(sc, RT2573_MAC_CSR2, tmp);
1707
1708         tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1709         rum_write(sc, RT2573_MAC_CSR3, tmp);
1710 }
1711
1712 static void
1713 rum_update_promisc(struct rum_softc *sc)
1714 {
1715         struct ifnet *ifp = &sc->sc_ic.ic_if;
1716         uint32_t tmp;
1717
1718         tmp = rum_read(sc, RT2573_TXRX_CSR0);
1719
1720         tmp &= ~RT2573_DROP_NOT_TO_ME;
1721         if (!(ifp->if_flags & IFF_PROMISC))
1722                 tmp |= RT2573_DROP_NOT_TO_ME;
1723
1724         rum_write(sc, RT2573_TXRX_CSR0, tmp);
1725
1726         DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1727             "entering" : "leaving"));
1728 }
1729
1730 static const char *
1731 rum_get_rf(int rev)
1732 {
1733         switch (rev) {
1734         case RT2573_RF_2527:    return "RT2527 (MIMO XR)";
1735         case RT2573_RF_2528:    return "RT2528";
1736         case RT2573_RF_5225:    return "RT5225 (MIMO XR)";
1737         case RT2573_RF_5226:    return "RT5226";
1738         default:                return "unknown";
1739         }
1740 }
1741
1742 static void
1743 rum_read_eeprom(struct rum_softc *sc)
1744 {
1745         struct ieee80211com *ic = &sc->sc_ic;
1746         uint16_t val;
1747 #ifdef RUM_DEBUG
1748         int i;
1749 #endif
1750
1751         /* read MAC/BBP type */
1752         rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
1753         sc->macbbp_rev = le16toh(val);
1754
1755         /* read MAC address */
1756         rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1757
1758         rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1759         val = le16toh(val);
1760         sc->rf_rev =   (val >> 11) & 0x1f;
1761         sc->hw_radio = (val >> 10) & 0x1;
1762         sc->rx_ant =   (val >> 4)  & 0x3;
1763         sc->tx_ant =   (val >> 2)  & 0x3;
1764         sc->nb_ant =   val & 0x3;
1765
1766         DPRINTF(("RF revision=%d\n", sc->rf_rev));
1767
1768         rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1769         val = le16toh(val);
1770         sc->ext_5ghz_lna = (val >> 6) & 0x1;
1771         sc->ext_2ghz_lna = (val >> 4) & 0x1;
1772
1773         DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1774             sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1775
1776         rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1777         val = le16toh(val);
1778         if ((val & 0xff) != 0xff)
1779                 sc->rssi_2ghz_corr = (int8_t)(val & 0xff);      /* signed */
1780
1781         /* Only [-10, 10] is valid */
1782         if (sc->rssi_2ghz_corr < -10 || sc->rssi_2ghz_corr > 10)
1783                 sc->rssi_2ghz_corr = 0;
1784
1785         rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1786         val = le16toh(val);
1787         if ((val & 0xff) != 0xff)
1788                 sc->rssi_5ghz_corr = (int8_t)(val & 0xff);      /* signed */
1789
1790         /* Only [-10, 10] is valid */
1791         if (sc->rssi_5ghz_corr < -10 || sc->rssi_5ghz_corr > 10)
1792                 sc->rssi_5ghz_corr = 0;
1793
1794         if (sc->ext_2ghz_lna)
1795                 sc->rssi_2ghz_corr -= 14;
1796         if (sc->ext_5ghz_lna)
1797                 sc->rssi_5ghz_corr -= 14;
1798
1799         DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1800             sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
1801
1802         rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1803         val = le16toh(val);
1804         if ((val & 0xff) != 0xff)
1805                 sc->rffreq = val & 0xff;
1806
1807         DPRINTF(("RF freq=%d\n", sc->rffreq));
1808
1809         /* read Tx power for all a/b/g channels */
1810         rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1811         /* XXX default Tx power for 802.11a channels */
1812         memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
1813 #ifdef RUM_DEBUG
1814         for (i = 0; i < 14; i++)
1815                 DPRINTF(("Channel=%d Tx power=%d\n", i + 1,  sc->txpow[i]));
1816 #endif
1817
1818         /* read default values for BBP registers */
1819         rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1820 #ifdef RUM_DEBUG
1821         for (i = 0; i < 14; i++) {
1822                 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1823                         continue;
1824                 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1825                     sc->bbp_prom[i].val));
1826         }
1827 #endif
1828 }
1829
1830 static int
1831 rum_bbp_init(struct rum_softc *sc)
1832 {
1833 #define N(a)    (sizeof (a) / sizeof ((a)[0]))
1834         int i, ntries;
1835         uint8_t val;
1836
1837         /* wait for BBP to be ready */
1838         for (ntries = 0; ntries < 100; ntries++) {
1839                 val = rum_bbp_read(sc, 0);
1840                 if (val != 0 && val != 0xff)
1841                         break;
1842                 DELAY(1000);
1843         }
1844         if (ntries == 100) {
1845                 kprintf("%s: timeout waiting for BBP\n",
1846                     device_get_nameunit(sc->sc_dev));
1847                 return EIO;
1848         }
1849
1850         /* initialize BBP registers to default values */
1851         for (i = 0; i < N(rum_def_bbp); i++)
1852                 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1853
1854         /* write vendor-specific BBP values (from EEPROM) */
1855         for (i = 0; i < 16; i++) {
1856                 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1857                         continue;
1858                 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1859         }
1860
1861         return 0;
1862 #undef N
1863 }
1864
1865 static void
1866 rum_init(void *xsc)
1867 {
1868 #define N(a)    (sizeof(a) / sizeof((a)[0]))
1869         struct rum_softc *sc = xsc;
1870         struct ieee80211com *ic = &sc->sc_ic;
1871         struct ifnet *ifp = &ic->ic_if;
1872         struct rum_rx_data *data;
1873         uint32_t tmp;
1874         usbd_status usb_err;
1875         int i, ntries, error;
1876
1877         ASSERT_SERIALIZED(ifp->if_serializer);
1878
1879         crit_enter();
1880
1881         rum_stop(sc);
1882         sc->sc_stopped = 0;
1883
1884         lwkt_serialize_exit(ifp->if_serializer);
1885
1886         /* initialize MAC registers to default values */
1887         for (i = 0; i < N(rum_def_mac); i++)
1888                 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1889
1890         /* set host ready */
1891         rum_write(sc, RT2573_MAC_CSR1, 3);
1892         rum_write(sc, RT2573_MAC_CSR1, 0);
1893
1894         /* wait for BBP/RF to wakeup */
1895         for (ntries = 0; ntries < 1000; ntries++) {
1896                 if (rum_read(sc, RT2573_MAC_CSR12) & 8)
1897                         break;
1898                 rum_write(sc, RT2573_MAC_CSR12, 4);     /* force wakeup */
1899                 DELAY(1000);
1900         }
1901         if (ntries == 1000) {
1902                 kprintf("%s: timeout waiting for BBP/RF to wakeup\n",
1903                         device_get_nameunit(sc->sc_dev));
1904                 error = ETIMEDOUT;
1905                 goto fail;
1906         }
1907
1908         error = rum_bbp_init(sc);
1909         if (error)
1910                 goto fail;
1911
1912         /* select default channel */
1913         sc->sc_curchan = ic->ic_curchan = ic->ic_ibss_chan;
1914
1915         rum_select_band(sc, sc->sc_curchan);
1916         rum_select_antenna(sc);
1917         rum_set_chan(sc, sc->sc_curchan);
1918
1919         /* clear STA registers */
1920         rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
1921
1922         IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
1923         rum_set_macaddr(sc, ic->ic_myaddr);
1924
1925         /* initialize ASIC */
1926         rum_write(sc, RT2573_MAC_CSR1, 4);
1927
1928         /*
1929          * Allocate xfer for AMRR statistics requests.
1930          */
1931         sc->stats_xfer = usbd_alloc_xfer(sc->sc_udev);
1932         if (sc->stats_xfer == NULL) {
1933                 kprintf("%s: could not allocate AMRR xfer\n",
1934                         device_get_nameunit(sc->sc_dev));
1935                 error = ENOMEM;
1936                 goto fail;
1937         }
1938
1939         /*
1940          * Open Tx and Rx USB bulk pipes.
1941          */
1942         usb_err = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
1943                                  &sc->sc_tx_pipeh);
1944         if (usb_err != USBD_NORMAL_COMPLETION) {
1945                 kprintf("%s: could not open Tx pipe: %s\n",
1946                         device_get_nameunit(sc->sc_dev), usbd_errstr(usb_err));
1947                 error = EIO;
1948                 goto fail;
1949         }
1950
1951         usb_err = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
1952                                  &sc->sc_rx_pipeh);
1953         if (usb_err != USBD_NORMAL_COMPLETION) {
1954                 kprintf("%s: could not open Rx pipe: %s\n",
1955                     device_get_nameunit(sc->sc_dev), usbd_errstr(usb_err));
1956                 error = EIO;
1957                 goto fail;
1958         }
1959
1960         /*
1961          * Allocate Tx and Rx xfer queues.
1962          */
1963         error = rum_alloc_tx_list(sc);
1964         if (error) {
1965                 kprintf("%s: could not allocate Tx list\n",
1966                         device_get_nameunit(sc->sc_dev));
1967                 goto fail;
1968         }
1969
1970         error = rum_alloc_rx_list(sc);
1971         if (error) {
1972                 kprintf("%s: could not allocate Rx list\n",
1973                         device_get_nameunit(sc->sc_dev));
1974                 goto fail;
1975         }
1976
1977         /*
1978          * Start up the receive pipe.
1979          */
1980         for (i = 0; i < RT2573_RX_LIST_COUNT; i++) {
1981                 data = &sc->rx_data[i];
1982
1983                 usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
1984                     MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
1985                 usbd_transfer(data->xfer);
1986         }
1987
1988         /* update Rx filter */
1989         tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
1990
1991         tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
1992         if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1993                 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
1994                        RT2573_DROP_ACKCTS;
1995                 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
1996                         tmp |= RT2573_DROP_TODS;
1997                 if (!(ifp->if_flags & IFF_PROMISC))
1998                         tmp |= RT2573_DROP_NOT_TO_ME;
1999         }
2000         rum_write(sc, RT2573_TXRX_CSR0, tmp);
2001 fail:
2002         lwkt_serialize_enter(ifp->if_serializer);
2003
2004         if (error) {
2005                 rum_stop(sc);
2006         } else {
2007                 ifp->if_flags &= ~IFF_OACTIVE;
2008                 ifp->if_flags |= IFF_RUNNING;
2009
2010                 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2011                         if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2012                                 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2013                 } else {
2014                         ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2015                 }
2016         }
2017
2018         crit_exit();
2019 #undef N
2020 }
2021
2022 static void
2023 rum_stop(struct rum_softc *sc)
2024 {
2025         struct ieee80211com *ic = &sc->sc_ic;
2026         struct ifnet *ifp = &ic->ic_if;
2027         uint32_t tmp;
2028
2029         ASSERT_SERIALIZED(ifp->if_serializer);
2030
2031         crit_enter();
2032
2033         ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2034         sc->sc_stopped = 1;
2035
2036         ieee80211_new_state(ic, IEEE80211_S_INIT, -1);  /* free all nodes */
2037
2038         sc->sc_tx_timer = 0;
2039         ifp->if_timer = 0;
2040
2041         lwkt_serialize_exit(ifp->if_serializer);
2042
2043         /* disable Rx */
2044         tmp = rum_read(sc, RT2573_TXRX_CSR0);
2045         rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2046
2047         /* reset ASIC */
2048         rum_write(sc, RT2573_MAC_CSR1, 3);
2049         rum_write(sc, RT2573_MAC_CSR1, 0);
2050
2051         if (sc->stats_xfer != NULL) {
2052                 usbd_free_xfer(sc->stats_xfer);
2053                 sc->stats_xfer = NULL;
2054         }
2055
2056         if (sc->sc_rx_pipeh != NULL) {
2057                 usbd_abort_pipe(sc->sc_rx_pipeh);
2058                 usbd_close_pipe(sc->sc_rx_pipeh);
2059                 sc->sc_rx_pipeh = NULL;
2060         }
2061
2062         if (sc->sc_tx_pipeh != NULL) {
2063                 usbd_abort_pipe(sc->sc_tx_pipeh);
2064                 usbd_close_pipe(sc->sc_tx_pipeh);
2065                 sc->sc_tx_pipeh = NULL;
2066         }
2067
2068         lwkt_serialize_enter(ifp->if_serializer);
2069
2070         rum_free_rx_list(sc);
2071         rum_free_tx_list(sc);
2072
2073         crit_exit();
2074 }
2075
2076 static int
2077 rum_load_microcode(struct rum_softc *sc, const uint8_t *ucode, size_t size)
2078 {
2079         usb_device_request_t req;
2080         uint16_t reg = RT2573_MCU_CODE_BASE;
2081         usbd_status error;
2082
2083         /* copy firmware image into NIC */
2084         for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2085                 rum_write(sc, reg, UGETDW(ucode));
2086
2087         req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2088         req.bRequest = RT2573_MCU_CNTL;
2089         USETW(req.wValue, RT2573_MCU_RUN);
2090         USETW(req.wIndex, 0);
2091         USETW(req.wLength, 0);
2092
2093         error = usbd_do_request(sc->sc_udev, &req, NULL);
2094         if (error != 0) {
2095                 kprintf("%s: could not run firmware: %s\n",
2096                     device_get_nameunit(sc->sc_dev), usbd_errstr(error));
2097         }
2098         return error;
2099 }
2100
2101 static int
2102 rum_prepare_beacon(struct rum_softc *sc)
2103 {
2104         struct ieee80211com *ic = &sc->sc_ic;
2105         struct ifnet *ifp = &ic->ic_if;
2106         struct ieee80211_beacon_offsets bo;
2107         struct rum_tx_desc desc;
2108         struct mbuf *m0;
2109         int rate;
2110
2111         lwkt_serialize_enter(ifp->if_serializer);
2112         m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &bo);
2113         lwkt_serialize_exit(ifp->if_serializer);
2114
2115         if (m0 == NULL) {
2116                 if_printf(&ic->ic_if, "could not allocate beacon frame\n");
2117                 return ENOBUFS;
2118         }
2119
2120         /* send beacons at the lowest available rate */
2121         rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan) ? 12 : 2;
2122
2123         rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2124             m0->m_pkthdr.len, rate);
2125
2126         /* copy the first 24 bytes of Tx descriptor into NIC memory */
2127         rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2128
2129         /* copy beacon header and payload into NIC memory */
2130         rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2131             m0->m_pkthdr.len);
2132
2133         m_freem(m0);
2134
2135         return 0;
2136 }
2137
2138 static void
2139 rum_stats_timeout(void *arg)
2140 {
2141         struct rum_softc *sc = arg;
2142         usb_device_request_t req;
2143
2144         if (sc->sc_stopped)
2145                 return;
2146
2147         crit_enter();
2148
2149         /*
2150          * Asynchronously read statistic registers (cleared by read).
2151          */
2152         req.bmRequestType = UT_READ_VENDOR_DEVICE;
2153         req.bRequest = RT2573_READ_MULTI_MAC;
2154         USETW(req.wValue, 0);
2155         USETW(req.wIndex, RT2573_STA_CSR0);
2156         USETW(req.wLength, sizeof(sc->sta));
2157
2158         usbd_setup_default_xfer(sc->stats_xfer, sc->sc_udev, sc,
2159                                 USBD_DEFAULT_TIMEOUT, &req,
2160                                 sc->sta, sizeof(sc->sta), 0,
2161                                 rum_stats_update);
2162         usbd_transfer(sc->stats_xfer);
2163
2164         crit_exit();
2165 }
2166
2167 static void
2168 rum_stats_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2169                  usbd_status status)
2170 {
2171         struct rum_softc *sc = (struct rum_softc *)priv;
2172         struct ifnet *ifp = &sc->sc_ic.ic_if;
2173         struct ieee80211_ratectl_stats *stats = &sc->sc_stats;
2174
2175         if (status != USBD_NORMAL_COMPLETION) {
2176                 kprintf("%s: could not retrieve Tx statistics - cancelling "
2177                     "automatic rate control\n", device_get_nameunit(sc->sc_dev));
2178                 return;
2179         }
2180
2181         crit_enter();
2182
2183         /* count TX retry-fail as Tx errors */
2184         ifp->if_oerrors += RUM_TX_PKT_FAIL(sc);
2185
2186         stats->stats_pkt_noretry += RUM_TX_PKT_NO_RETRY(sc);
2187         stats->stats_pkt_ok += RUM_TX_PKT_NO_RETRY(sc) +
2188                                RUM_TX_PKT_ONE_RETRY(sc) +
2189                                RUM_TX_PKT_MULTI_RETRY(sc);
2190         stats->stats_pkt_err += RUM_TX_PKT_FAIL(sc);
2191
2192         stats->stats_retries += RUM_TX_PKT_ONE_RETRY(sc);
2193 #if 1
2194         /*
2195          * XXX Estimated average:
2196          * Actual number of retries for each packet should belong to
2197          * [2, RUM_TX_SHORT_RETRY_MAX]
2198          */
2199         stats->stats_retries += RUM_TX_PKT_MULTI_RETRY(sc) *
2200                                 ((2 + RUM_TX_SHORT_RETRY_MAX) / 2);
2201 #else
2202         stats->stats_retries += RUM_TX_PKT_MULTI_RETRY(sc);
2203 #endif
2204         stats->stats_retries += RUM_TX_PKT_FAIL(sc) * RUM_TX_SHORT_RETRY_MAX;
2205
2206         callout_reset(&sc->stats_ch, 4 * hz / 5, rum_stats_timeout, sc);
2207
2208         crit_exit();
2209 }
2210
2211 static void
2212 rum_stats(struct ieee80211com *ic, struct ieee80211_node *ni __unused,
2213           struct ieee80211_ratectl_stats *stats)
2214 {
2215         struct ifnet *ifp = &ic->ic_if;
2216         struct rum_softc *sc = ifp->if_softc;
2217
2218         ASSERT_SERIALIZED(ifp->if_serializer);
2219
2220         bcopy(&sc->sc_stats, stats, sizeof(*stats));
2221         bzero(&sc->sc_stats, sizeof(sc->sc_stats));
2222 }
2223
2224 static void
2225 rum_ratectl_change(struct ieee80211com *ic, u_int orc __unused, u_int nrc)
2226 {
2227         struct ieee80211_ratectl_state *st = &ic->ic_ratectl;
2228         struct ieee80211_onoe_param *oparam;
2229
2230         if (st->rc_st_param != NULL) {
2231                 kfree(st->rc_st_param, M_DEVBUF);
2232                 st->rc_st_param = NULL;
2233         }
2234
2235         switch (nrc) {
2236         case IEEE80211_RATECTL_ONOE:
2237                 oparam = kmalloc(sizeof(*oparam), M_DEVBUF, M_INTWAIT);
2238
2239                 IEEE80211_ONOE_PARAM_SETUP(oparam);
2240                 oparam->onoe_raise = 15;
2241
2242                 st->rc_st_param = oparam;
2243                 break;
2244         case IEEE80211_RATECTL_NONE:
2245                 /* This could only happen during detaching */
2246                 break;
2247         default:
2248                 panic("unknown rate control algo %u\n", nrc);
2249         }
2250 }
2251
2252 static int
2253 rum_get_rssi(struct rum_softc *sc, uint8_t raw)
2254 {
2255         int lna, agc, rssi;
2256
2257         lna = (raw >> 5) & 0x3;
2258         agc = raw & 0x1f;
2259
2260         if (lna == 0) {
2261                 /*
2262                  * No RSSI mapping
2263                  *
2264                  * NB: Since RSSI is relative to noise floor, -1 is
2265                  *     adequate for caller to know error happened.
2266                  */
2267                 return -1;
2268         }
2269
2270         rssi = (2 * agc) - RT2573_NOISE_FLOOR;
2271
2272         if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan)) {
2273                 rssi += sc->rssi_2ghz_corr;
2274
2275                 if (lna == 1)
2276                         rssi -= 64;
2277                 else if (lna == 2)
2278                         rssi -= 74;
2279                 else if (lna == 3)
2280                         rssi -= 90;
2281         } else {
2282                 rssi += sc->rssi_5ghz_corr;
2283
2284                 if (!sc->ext_5ghz_lna && lna != 1)
2285                         rssi += 4;
2286
2287                 if (lna == 1)
2288                         rssi -= 64;
2289                 else if (lna == 2)
2290                         rssi -= 86;
2291                 else if (lna == 3)
2292                         rssi -= 100;
2293         }
2294         return rssi;
2295 }